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A Formal Semantics For Algorithmic Languages
Based On The Scott's Logic
K. Mukai, S. Sekimoto, and M. Sudo
(Mitsubishi Electric Corp.)
Abstract A semantics of algorithmic languages are given apply-

ing the least fixed point theory. The language to be studied in
this paper is a subset of ALGOL60, which is almost the full set of

ALGOL60, but without goto statements.

Mainly, meanings of mutually defined recursive procedure
with parameters are described. A lattice theoretical

foundation for this semantics is seen in the appendix.

§1 Introduction

In Scott[ﬂ »[3] and Strachey [1], mathematical except (7) and (8) domains
are introduced to describe the meanings of the source language.
The list of those is (1) T: truth values (2) N: numbers (3) S:
states (4) L:‘locations (5) P: procedures (6) C: commands (7) Id:
identifiers (8) Env: environments.

These domains - satisfy the next rela-
tions. a) V=T+N+C+P+Lb) P=[V->[5—5Vxs]] c) c=[5—>s] d) Env=[Td
;)C+V].Here X+Y means direct sum of continuous lattices X and Y,
and also X+Y becomesa continuous lattice. LX—?I] denotes the set
of all continuous functions from X to Y.

The syntax of the source language studied in the above
papers is divided into two categories, that is, COMMANDS (Cmd)
and EXPRESSIONS (Exp). And then, two functions Cj and ES are

constructed recursively.



(1) G : cma > [Env - [s5s]]

(2) € : Bxp —> [Env = [s—vx s]]
Meanings of  in Cmd and ¢ in Bxp are(’[[&] and E[E] respective-
ly. Detailed explanations of Cmd, Exp, (O, and 53 are, however,

ommitted here. (See [}] or [_3]).

€2 Recursive Procedures and Block Structures

The source language Cz, whose semantics we are going to
study, is the largest subset of ALGOL60 such that CZ is without
(1) goto statements and labels, (2) for statements, and (3) switch,

own, and array.

2.1 Procedures

We have to modify b) in €1 into b') because in the language
CZ, a number of parameters of a procedure may be taken to be
arbitrarily finite, and procedures are not restricted to function

type. That is, also command type procedures are allowed.

b') P=c + [S+>Vx S] + [V > P]

2.2 Call by name and call by value

The language Cx\allows a flexible parameter passing i.e. call
by name and call by value. The format of a procedure declaration
is:

{ identifier>» (a,b,....,c: X,y,....,2) £ procedure body> ,
where a,b,....,c and x,y,....,2 are formal parameters called by
value and name respectively. And the format of a procedure
statement is:

Call < identifier > (eq, ---, ey : fq, ===, £,) ----- ()
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2.3 A semantics of procedure statements

We describe a semantics of a procedure statement o step by

step. For a given & in S and f’ in Env,

(1) BLeTH)I@) =<V, 6>

- — = -

€ [€mI(P)(Or) =< U, T > :
(2) /= PV /o0 - )Um/c) eLfHI(p)/%, ~-—,6\[§mﬂ (¢)/z ]

(3) finally 7 0\,:: C[@)rocedure body}] (V/) Qotv_vl)
def. 1 C [[o(][ (f)(g‘) 2 ¢

We have to suppose that f has two facilities: ©briefly,
(i) a facility of "copy rule" for identifiers in a given source
program in 6( , and (ii) a dynamic memory allocation without de-

structing any necessary area.

2.4 A semantics of function procedures

For simplicity, we consider a function procedure, whose
formal parameters are only a and x, and they are called by value
and name respectively. We describe a meaning of next (B) as in

section 2.3.

Xle, £) (Xin 1d)  ----- (B)

For given f> in Env and § is S,

(1) Elel ) =<V, 7>
(2) P'= S’EM/&,@BJ(?)/XJ

(3) Q~/ = Cﬂé)rocedure body>:U (?l)(or)
’ /
(4) Contents (‘3(9C) i@‘)=1f3(see [1] or EBJ), so. we obtain

et E[p] (P =<V, 0



4.

2.5 Block structure

Blocks are considered to be procedures with no parameters.
For a source program T jllcz , let B(J{) be the set of all occur-
rences of blocks in [ . Each occurrence of a block in J{ is impli-
citly supposed to have an‘identifierbin Id. That is, B(T )G Id
(inclusion map is, say, iﬁ)' Then for each b in B(T ) and f in
Env, f(iK (b)), or in short, f(b), is in C+V.

It may be more useful to introduce a few notions before we

finally describe a meaning of w . Let D be a continuous lattice.

def. 3 <J(D) is the set of all trees over D.
def. 4 For s and t in ET(D), s < t is true if and only if dom(s)=
dom(t), and s(V )Ct(y ) for all ) in dom(s), where L is
the order relation in D.
O "
def. 5 Let F - U [I)~§Ii1, and each element in F is supposed to
cger. o n=p

be assigned a rank in the apparent way.

Hereafter, a tree f over the ranked set F is fixed.
def. 6 (D F) 2 {t € TO)|donlt) =dem(F) g

def. 7 A transformation &(f) on tT(D, f) is defined as follows,
V ve t' = &(f)(t) is true if and only if t' (V)=
f(y)xWw-1),~--, t(Y-r)) for each )} in
dom(f). (A tree is a function from a tree

V[ yor -7 Vi domain to a set of labels.)

def. 8 By Fix (&(f)), the least fixed point of above &(f) is

denoted.



2.6 A semantics of a source program T in Cz

In this section, we give, finally, a definition of a meaning
of a source rpogram T in L{ .
(1) First, transform T into a tree f over F precisely preserv-
ing the block structure of | , where F: U ECM% C_J , and -
[(s—sJ). e

For given f in Env, it is not so difficult to construct a tree

(c

i

f(=fK ,?) mentioned above. For example, let's consider a block
*
(#) «

(#) Dbegin if g then begin A end else B end end

The rule corresponding to (#) is
/\(u, v) Cond (u, v) * g“ﬁ](f} in [_CXC — C]J. We suppose
a construction of such fan (=f for brief)

(2) Second, now we are able to get ST(C, f), &(f), and Fix (&(f))

as in def. 6, def. 7, and def. 8 respectively. Let 6y in C be
the label of the root of Fix (&(f)). And, at ( ast, C?ﬂjt] (f)

is defined to be ©_..

def. o CTI(§)

np o

Bo

€3 Conclusion

The method described in 82 is an extension of one used in

such an example as follows.

example:
FACT(x):= if x=0 then 1 else x*FACT (x-1)
(n)

The least solution of this example is given to be 1im £ s

M-y ®

(nﬂ%x)g if x=0 then

where f(o)§ totally undefined function,and f

else x*f(n) (x-1) for n21.



Without an assumption of memory (or state vectors) of a
machine and a stack manipulation,; it is, we think, almost impos-
sible to describe a meaning of mutually recursive procedures
together with assignment statements. And a detailed description
of 53 in Env corresponds to the stack manipulation or the dynamic
memofy allocation.

One of motivations of this essay is to give a formal descrip-
tion of a source program in CZ in a bit mqfe syntax-directed
method. The def. 7 in 2.5 reminds us of D,Knuth's semantics
theory for context-free languages. We have given in this paper
only an outline of semantics of 6{ . More detailed discussions

must be done,
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AEBendix.m

We show in this appendix an outline of a proof for a
proposition on which our work is mainly‘based. From here on,
a continuous lattice is restricted to such a space whose greatest

element is isolated in the sense of topology.

Proposition A. For given continuous lattices Pgp, Vg, and S

there exist continuous lattices P and V which satisfy the rela-
tions al1) and a2):

v

ne

al) V + P,

0 | |
Po + [s—vxs] + [ vor].

Here X;Y means that there exists some one-to-one and onto

a2) P

correspondence between continuous 1attices X and Y under which
X and Y are both isomorphic and homeomorphic in the sense of
lattice and topolqgical space, respectively.

The proposition A is a result of a series of lemmas listed
below.
Lemma 1. i) If X and Y are continuous lattices, then X+Y;
XxY, and [X—éY] are also continuous lattices.
i) If{ Xn, jn%qzj‘;s an ihverse éystem of continuous létfices
"such that for eéEh nZ0 j, ié a projection, then the inverse
limitéggg(lgh jn_zzgs also avcontinuous lattice.
Lemma 2. If X and Y are continuous lattices, then both X
and Y are projections of X+Y.
Lemma 3. If X4, Xg, Y4, and Yg are continuous lattices,
and X4 and X, are projections of Y, and Yo fespectively, then

next holds,



i) X1+Xp is a projection of Y +Y,,

i) X4xXg is a projection of Yy xYo,

iii ) [X1—+X2]is a projection of [Yl—eYé}.

Lemma 4. If {Xp, Jn> and (Y, k, > are inverse systems such

E— nzo nze

that for each n»0, both jn and k;; are projections, then next

holds.

; 1im { Xn+Yn, jntkny= 1lim<Xp, j im {Yp, k

1) ddm(Xn+¥n, jnknp= dim<{Xn, jn )+ 3im <¥n, knp,

i)  lim< XnXYn, Jn anZ:o lim an, Jn D x lim {Yn, kn Z«’zo

i) _lim [x Y ik ;Llim Xn, 1im ¢ Yp, k ]
. {|Xn— n]s Jn_>lla¢ L < ns JnZZ;9 - < n nzw

Here, for each n»0 jn+kn is the canonical projection from

Xn41+Y¥y,.1 to Xpn+¥n derived from jn and kp, and similar is the

case with either jpxk, or jo—k,.

(An outline of a proof for the proposition A).

First, construct two inverse systems< Pn, jn>” and < Vn, knph
MZY ‘h20
This is all right, i.e., P, (n20) is defined by an inductive

method as follows.

Pni1 = Po + | SOVpxS] + [vn—apn_],

Vn+1 = Vo + Pn.
Of course, using lemma 1, 2, and 3, for each nz0 both j, andkn
can be taken as projections.

Second, the pair of P:&(Pn,jn?‘z‘)and v=lim <V ke 2z

is easily checked to satisfy the relations al) and a2) by

applying the lemma 4.



