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Abstract 

Background:  Although ophthalmic devices have made remarkable progress and are widely used, most lack stand‑
ardization of both image review and results reporting systems, making interoperability unachievable. We developed 
and validated new software for extracting, transforming, and storing information from report images produced by 
ophthalmic examination devices to generate standardized, structured, and interoperable information to assist oph‑
thalmologists in eye clinics.

Results:  We selected report images derived from optical coherence tomography (OCT). The new software consists 
of three parts: (1) The Area Explorer, which determines whether the designated area in the configuration file contains 
numeric values or tomographic images; (2) The Value Reader, which converts images to text according to ophthalmic 
measurements; and (3) The Finding Classifier, which classifies pathologic findings from tomographic images included 
in the report. After assessment of Value Reader accuracy by human experts, all report images were converted and 
stored in a database. We applied the Value Reader, which achieved 99.67% accuracy, to a total of 433,175 OCT report 
images acquired in a single tertiary hospital from 07/04/2006 to 08/31/2019. The Finding Classifier provided patho‑
logic findings (e.g., macular edema and subretinal fluid) and disease activity. Patient longitudinal data could be easily 
reviewed to document changes in measurements over time. The final results were loaded into a common data model 
(CDM), and the cropped tomographic images were loaded into the Picture Archive Communication System.

Conclusions:  The newly developed software extracts valuable information from OCT images and may be extended 
to other types of report image files produced by medical devices. Furthermore, powerful databases such as the CDM 
may be implemented or augmented by adding the information captured through our program.
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Background
Ophthalmic examinations have made remarkable pro-
gress in recent years. In clinical practice, ophthalmic 
examinations are necessarily aided by specific technolo-
gies, including optical coherence tomography, ophthal-
mic biometry, corneal topography, and others. Although 
these technologies and devices are widely used, they 
produce different standardized image formats, such as 
the digital imaging and communications in medicine 
(DICOM) standard, and also other standardized result 
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reporting formats [1]. In most cases, ophthalmologists 
should use the dedicated viewer provided by each device 
and manufacturer to read the captured images, and may 
review the resulting reports in portable document for-
mat (PDF), or review the images directly. Most ophthal-
mic devices do not provide a way to access internal data 
directly and lack standardization in both image review 
and results reporting systems, making interoperability 
unfeasible. In addition, the lack of standardization also 
makes it difficult for ophthalmologists to observe over-
all improvement or progression trends, since the reports 
are not structured to enable longitudinal data assess-
ment. From the clinician’s point of view, the first and 
most important step is to organize results in a structured 
and standardized format, with subsequent storage of 
the information in a clinician-friendly and interoperable 
system. If recently developed computer vision and deep-
learning technologies are coupled with optical charac-
ter recognition (OCR), then this medical need may be 
addressed by enabling the creation of software custom-
ized for reading reports produced by ophthalmic exami-
nation devices. This effort is specifically required because 
existing legacy software cannot be customized. In addi-
tion, deep-learning-based algorithms could also provide 
reliable classification (e.g., disease presence), or segmen-
tation results (e.g., amount of fluid indicating disease 
severity) from ophthalmic images [2–5]. Consequently, 
we developed and validated new software designed to 
extract, transform, and store data from report images 
produced by ophthalmic examination devices, providing 
ophthalmologists in eye clinics ready access to standard-
ized, structured, and interoperable information.

Implementation
Among the various types of equipment available to oph-
thalmologists, optical coherence tomography (OCT) is 
crucial for non-invasive clinical evaluation of the optic 
disc and retina in various ophthalmic diseases. OCT pro-
duces tomographic images of retinal optical reflectivity 
analogous to an ultrasound B-scan, but with much higher 
resolution [6]. Spectrum-domain OCT, or swept-source 
OCT, which has a higher resolution than conventional 
time-domain OCT, can provide highly-detailed images 
of the structure of each retinal layer [7]. In fact, present 
day ophthalmologists in clinical practice could not possi-
bly provide a definitive diagnosis without OCT. The OCT 
technology enables quantification of retinal structures 
that must be evaluated such as the optic disc, retinal 
nerve fiber layer, and macula, since they can be a major 
cause of blindness [8]. At the Seoul National University 
Bundang Hospital, the number of OCT tests performed 
in one year reached 54,041 in 2018 and continues to 
increase rapidly. All these test results are stored only as 

image files in the hospital Electric Health Record (EHR) 
system.

We have developed new software to extract measure-
ment values from Spectralis OCT report images (Hei-
delberg engineering, Heidelberg, Germany), and import 
them into a well-defined database. The new software can 
also import various reports derived from other ophthal-
mic examination devices by modifying configuration 
files containing the coordinates of image regions of inter-
est. All of our software source code is freely available on 
the GitHub. (https​://githu​b.com/ophth​al-cdm/SNUBH​
_CharR​eadOC​T).

Six report types were found across all versions of 
Spectralis OCT (from 1.7.0.0 to 1.10.4.0). They were 
processed as follows (Fig.  1): (1) unilateral retinal nerve 
fiber layer (RNFL) thickness; (2) bilateral RNFL thick-
ness; (3) unilateral macula thickness and volume, current 
only; (4) unilateral macula thickness and volume, previ-
ous and current; (5) unilateral horizontal and vertical 
macula scan, current only; and (6) unilateral horizontal 
and vertical macula scan, previous and current. The first 
four reports include numeric values that are converted to 
text, whereas the second two reports only include tomo-
graphic images. We used Python with open-source librar-
ies including Tensorflow, Numpy, OpenCV, Xlswriter, 
and argparse. We summarized how our software extracts 
values and classifies tomographic image from OCT 
report images in Fig. 2. Initially, the report classifier iden-
tifies the type of report according to the header (Fig. 1). 
The configuration file determines the location of each 
numeric value according to the report type. The area of 
interest using these coordinates is selected (Fig. 3). If the 
area contains numeric values, Area Explorer delivers it 
to the Value Reader module, which converts the numeric 
values to text. If the area contains a tomographic image, 
Area Explorer delivers it to Finding Classifier, a deep 
learning-based algorithm which classifies the pathologi-
cal findings in tomographic images (Fig. 1e, f ).

The Value Reader and Finding Classifier modules are 
based on a deep-learning algorithm, since previously 
developed OCR libraries demonstrated poor recognition 
accuracy for numeric values in OCT report images. The 
Value Reader module was based on novel methodology 
for scene text recognition introduced by Baek et  al. [9] 
and an overview is shown in Fig. 4. The feature extraction 
stage maps the input image to a representation focused 
on the attributes for character recognition. This stage 
handles invariant features such as contrast, color, size, 
and background. We used ResNet in the feature extrac-
tion stage to prevent features (gradient) vanishing as the 
convolutional layers become deeper [10]. The sequence 
modeling stage captures the contextual information 
within a sequence of characters [9]. This stage processes 
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visual features from the feature extraction stage, similar 
to reading a book from left to right, and bidirectional 
long short-term memory is used to prevent gradient 
vanishing during backpropagation. [11] The prediction 
stage estimates the output character sequence [9]. In this 
stage, characters are generated recurrently from the con-
textual features obtained from the sequence modeling 
stage [12]. In our study, the sentence length that could be 
recognized at one time was limited to 50 characters. The 

training batch size was 32, and the number of iterations 
was 160,000. The AdaDelta optimizer (learning rate = 1, 
decay rate = 0.95) was used [9, 13]. Learning curves of 
loss and the Value Reader accuracy are shown in Fig. 5. 
We synthesized datasets to train Value Reader using Text 
Recognition Data Generator [14]. This approach enabled 
generation of huge combinations of numbers and char-
acters with difference sizes, contrasts, and amounts of 
background noise (Fig.  6). We used approximately one 

Fig. 1  Examples of reports including important information provided by the software. a unilateral RNFL thickness; b bilateral retinal nerve fiber 
layer (RNFL) thickness; c unilateral macula thickness and volume, current only; d unilateral macula thickness and volume, previous and current; e 
unilateral horizontal and vertical macula scan, current only; f unilateral horizontal and vertical macula scan, previous and current. The blue boxes 
indicate the area read by the classifier. The titles at top left differ from one another
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million samples of synthetic data for training (0.92  mil-
lion) and validation (0.08 million). The Finding Classifier 

was implemented in the same manner as previously 
reported. [2]

Fig. 2  Overall schematic diagram of our software. CSV comma-separated value; PACS picture archiving communication system

Fig. 3  RNFL and macula reports. Red boxes indicate the area selected for recognition

Fig. 4  Schematic diagram of Value Reader
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Finally, all processed data were stored in pre-defined 
comma-separated values (CSV) files and subsequently 
loaded into a database, such as the Observational Medi-
cal Outcomes Partnership (OMOP) common data model 
(CDM). In addition, the cropped tomographic images 
were stored in the Picture Archiving and Communica-
tion System (PACS) as described in Fig.  2. In order to 
validate the Value Reader, 300 OCT report images were 
randomly selected and labeled separately by two experts. 
The accuracy was assessed by determining whether the 
expert’s results matched the Value Reader labels. After 
assessment, the complete set of stored report images was 
imported into the database.

Results
We extracted a total of 433,175 OCT report images from 
the Spectralis OCT stored in the hospital EHR system 
from 7/4/2006 to 8/31/2019. The algorithms used for the 
unilateral and bilateral RNFL reports were identical since 
they had the same format. Two report types (Fig.  1e, f ) 
containing only tomographic images without characters 
were the Finding Classifier module targets, and there-
fore the accuracy of only three report types was vali-
dated. The Value Reader achieved an overall accuracy of 
99.67%. Table 1 shows the accuracy of the Value Reader 
module for each report. The longitudinal dataset from 
each patient was easily viewed by sorting or filtering 
(Fig. 7), enabling straightforward recognition of changes 

and overall trends in measurements. The Finding Clas-
sifier accuracy was beyond the scope of our study, but a 
representative tomographic image is shown in Fig. 8. The 
presence of subretinal fluid or macular edema reflect-
ing disease activity was indicated by the Finding Classi-
fier to support decisions made by the physician, and the 
results in CSV file format were successfully loaded into 
our hospital OMOP CDM. Cropped tomographic images 
were stored separately and will be loaded into the PACS 
as soon as possible.

An example of how to apply the new software in clini-
cal practice follows. For instance, if a patient is diagnosed 
with diabetic macular edema requiring intravitreal anti-
vascular endothelial or steroid injections, the patient’s 
retina should be evaluated at every visit by OCT. The 
Value Reader module displays retinal thickness changes 
numerically, and the Finding Classifier indicates the pres-
ence of macular edema and disease activity (Table  2). 

Fig. 5  Learning curves of a loss and b accuracy of Value Reader

Fig. 6  Samples of synthetic data

Table 1  Value Reader module accuracy as  evaluated 
by two human experts

Total RNFL Macula: 
current 
only

Macula: 
previous 
and current

By Expert 1

 Number of reports 300 100 100 100

 Success (%) 99.67% 100% 99% 100%

 Failure (%) 0.33% 0% 1% 0%

By Expert 2

 Number of reports 300 100 100 100

 Success (%) 99.67% 100% 99% 100%

 Failure (%) 0.33% 0% 1% 0%
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Therefore, clinicians receive valuable evidence from these 
structured data to inform diagnostic decisions.

Discussion
In this study, we extracted information from approxi-
mately 400,000 OCT report files. The overall accuracy of 
Value Reader was 99.67%. The results generated by Value 
Reader and Finding Classifier were stored in CSV files, 
which were subsequently imported into the OMOP CDM 
easily. We also plan to load cropped tomographic images 
into the PACS as soon as possible.

Several studies that used open-source or commer-
cially available OCR software to extract text from 
optical coherence tomography have been described. 

Fig. 7  Content of a comma-separated value file produced by Value Reader and finding classifier module. Longitudinal data of each patient can be 
presented easily by simple manipulation such as sorting or filtering

Fig. 8  An example of a tomographic image

Table 2  An example of  a  table derived from  the  output file produced by  the  Value Reader and  Finding Classifier 
for a patient with neovascular age-related macular degeneration

Longitudinal data with a total of 37 tests from July 2013 to August 2019

Patient ID 12349876
Visit Report type Laterality Total macular 

volume (mm3)
Central macular 
thickness (μm)

… Finding Activity

2013-07-17 Unilateral macula: current only Right 9.08 364 … Subretinal fluid (+) N/A

2013-08-27 Unilateral macula: current only Right 8.21 251 … Subretinal fluid (+) Improvement

2013-10-10 Unilateral macula: current only Right 8.16 218 … Subretinal fluid (−) Stationary

… … … … … … … …

2016-06-02 Unilateral macula: current only Right 8.34 236 … Subretinal fluid (−) Stationary

2016-08-19 Unilateral macula: current only Right 8.29 238 … Subretinal fluid (−) Stationary

… … … … … … … …

2019-08-29 Unilateral macula: current only Right 8.05 189 Subretinal fluid (−) Stationary
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[15–17] Aptel et  al. used a commercial software, 
ABBYY FineReader v 9.0 (Avanquest Software, 
LaGarenne Colombes, France), and Demea et  al. used 
NI Vision Assistant and NI Vision Development Mod-
ule (National Instrument, Austin, Texas, USA) [15, 16]. 
Sood et  al. [17] used Tesseract, an open-source OCR 
engine. The researchers used their OCR modules to 
extract only one or two types of research-specific data. 
They could not structure the data for general purposes. 
The development of customized and flexible software 
providing standardized, structured, and interoper-
able information from various ophthalmic examination 
devices has not been previously reported.

Report image files are simply an array of pixels unless 
a clinician manually reviews them. It is essential for cli-
nicians to base decisions on comparisons of test results, 
however current report image files make this process dif-
ficult. The new software described in this paper enables 
the extraction of information from image files written 
in a non-standardized fashion and subsequently stand-
ardizes it in a structured CSV file. It can accommodate 
various types of image data and makes it easier for cli-
nicians to interpret by organizing data. Structured infor-
mation may be used in various ways; for example, an 
ophthalmologist may use it to interpret disease activity 
or progression by comparing measurement values or by 
referring to an automatically generated result. These fea-
tures aid clinicians in decision-making without delays or 
errors. Processed data such as serial changes in macular 
thickness, macular volume, and disease activity of neo-
vascular age-related macular degeneration in Fig.  2 can 
help ophthalmologists reduce misdiagnosis and deter-
mine appropriate timing of treatment. However, cali-
bration among values may be considered in cases where 
the measurement values are different despite examining 
the same target. (e.g., devices from multiple vendors or 
upgraded measurement technique).

Deep learning has the potential to revolutionize medi-
cine as demonstrated by a recently developed model 
with good performance for classification of patho-
logic findings [2]. In terms of accuracy, previous stud-
ies did not address the accuracy of their OCR modules 
[15–17]. However, there is a limit to improving accuracy 
by using commercial software or open-source library in 
our experience. For this reason, we developed an OCR 
engine using deep learning. It is possible to achieve the 
high accuracy required in the medical field by using deep 
learning for optical character recognition, since new data 
can raise its accuracy continuously. In addition, it is vital 
that these types of models are applicable to real-world 
practice and that they address unmet clinical needs such 
as trend analysis or prediction of future disease activ-
ity. In this report, we showed how several algorithms 

implemented in Value Reader and Finding Classifier 
modules with deep learning enabled a real-world clini-
cian to make practical decisions by providing pathologic 
findings or evidence of disease activity.

Numerous clinical data registries containing sizeable 
real-world data sets have recently been established [18]. 
In addition, OMOP CDM that allows systematic analysis 
by transforming and integrating clinical data into stand-
ardized formats are emerging as one of the most impor-
tant approaches in medical research [19, 20]. If the large 
amount of data held in millions of report image files 
could be extracted and entered into the databases men-
tioned above using our newly developed software, the 
resulting datasets might become some of the most pow-
erful clinical tools available worldwide. The reliability and 
reproducibility of studies can also be improved tremen-
dously because researchers can easily build databases 
containing millions of data in standardized form with 
this software. We completed the data extraction from 
OCT reports and loaded them into the OMOP  CDM 
at our hospital. However, cropped tomographic images 
have not yet been incorporated into the PACS due to 
hospital policy. As with other medical images, encap-
sulated tomographic images in the DICOM format will 
eventually be uploaded into the PACS. This process will 
provide a structure within the PACS enabling analysis of 
multi-modal images, and will expand the base for imag-
ing studies.

Full-scale validation of the Finding Classifier was not 
performed since it was beyond the scope of our study. In 
addition, since permission by government authorities is 
required to employ the Finding Classifier in clinical prac-
tice, we only investigated its potential application. We 
are currently in the process of building a ground-truth 
dataset utilizing an in-house database and an increasing 
number of open databases, and therefore we expect that 
Finding Classifier will soon be made more reliable.

Our software has several limitations. First, it is diffi-
cult to convert characters with low resolution, although 
humans can read them relatively easily. Second, our 
software can organize data for large-scale retrospective 
research, but it lacks real-time function for practice. It is 
necessary to build a real-time extraction, transformation, 
and loading pipeline and to integrate it with an EHR sys-
tem for clinical implementation. Third, we need to vali-
date and further develop the Finding Classifier. Finally, 
other considerations such as calibration among the same 
type of measurements derived from different vendors are 
required.
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Conclusions
In conclusion, we have developed software consisting of 
Value Reader and Finding Classifier modules that enable 
access to standardized, structured, and interoperable 
results from various ophthalmic examination devices. 
This effort lays the groundwork for the construction of 
very powerful clinical medicine databases. In addition, 
the software program will also directly benefit clinicians 
and medical institutions since Spectralis OCT is one of 
the most widely used OCTs worldwide. Furthermore, we 
expect that this method may be adapted to function with 
OCT reports from other vendors, ophthalmic devices 
such as corneal topography, or other types of medical 
devices. For a clinically relevant software, real-time func-
tion and a more sophisticated model that can cover low-
resolution or more irregular images should be developed 
in the future.

Availability and requirements

Project name: SNUBH_CharReadOCT
Project home page: https​://githu​b.com/ophth​al-
cdm/ SNUBH_CharReadOCT
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 2.7, Python mod-
ules—xlsxwriter, datetime, argparse, Image, opencv_
python 3.4.2, torch 1.2.0, torchvision 0.4.0, keras 
2.2.5, tensorflow 2.0 gpu
License: GNU General Public License
Any restrictions to use by non-academics: None

Abbreviations
OMOP: Observational medical outcomes partnership; CDM: Common data 
model; PACS: Picture archive communication system; DICOM: Digital imaging 
and communications in medicine; OCR: Optical character recognition; IRB: 
Institutional review board; OCT: Optical coherence tomography; RNFL: Retinal 
nerve fiber layer; HER: Electric health record; CSV: Comma-separated values; 
PDF: Portable data format.
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