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Purkinje cells following optokinetic learning 
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Abstract 

The optokinetic response (OKR), a reflexive eye movement evoked by a motion of the visual field, is known to adapt 
its strength to cope with an environmental change throughout life, which is a type of cerebellum-dependent learn-
ing. Previous studies suggested that OKR learning induces changes in in-vivo spiking activity and synaptic transmis-
sion of the cerebellar Purkinje cell (PC). Despite the recent emphasis on the importance of the intrinsic excitability 
related to learning and memory, the direct correlation between the intrinsic excitability of PCs and OKR learning has 
not been tested. In the present study, by utilizing the whole-cell patch-clamp recording, we compared the responses 
of cerebellar PCs to somatic current injection between the control and learned groups. We found that the neurons 
from the learned group showed a significant reduction in mean firing rate compared with neurons in the control 
group. In the analysis of single action potential (AP), we revealed that the rheobase current for the generation of 
single AP was increased by OKR learning, while AP threshold, AP amplitude, and afterhyperpolarization amplitude 
were not altered. Taken together, our result suggests that the decrease in the intrinsic excitability was induced in the 
cerebellar PC of learned group by an increase in the current threshold for generating AP.
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Main text
The optokinetic response (OKR) is a reflex of eye move-
ment that follows the motion of the visual field, which 
stabilizes an image on the retina. The OKR is exhibited 
to adapt to changes in the environment throughout life. 
The cerebellum is well-known to participate in this motor 
learning as an adaptive controller [1]. The cerebellar 
Purkinje cell (PC) lies in the center of the adaptive con-
trolling unit. PCs are the sole output of the cerebellum 
that converge two primary afferent pathways, the parallel 
fiber (PF) pathway carrying vestibular signals and climb-
ing fiber carrying the error signal in their dendrites. Due 

to the significance of PCs in neural circuitry modulating 
OKR, many studies have attempted to find cellular traces 
of OKR memory in PCs. Early studies performed in vivo 
unit recording from cerebellar PCs of rabbits in OKR 
learning, which revealed that spiking activities of PCs 
were altered after OKR learning in response to optoki-
netic stimuli [2]. More recently, several studies observed 
structural and functional changes in PF-PC synapses 
after OKR learning [3, 4]. However, although it has been 
suggested that the intrinsic excitability is considered as a 
crucial cellular correlate of cerebellum-dependent motor 
learning and memory [5, 6], whether an alteration in the 
intrinsic excitability is present in PCs following OKR 
learning has not been verified yet.

Here, we asked whether changes in the intrinsic excit-
ability of PC accompany OKR learning. To address 
our question, we utilized an ex vivo approach, in which 
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whole-cell patch-clamp recordings were performed from 
PCs in acute cerebellar slices prepared from mice that 
underwent OKR learning of 50  min. A similar ex  vivo 
approach has been already taken to elucidate a role of 
intrinsic excitability in delay eye-blinking conditioning, 
another form of cerebellum-dependent learning [7, 8].

C57BL/6 mice were subjected to continuous oscilla-
tion (0.5 Hz, ± 5° peak-to-peak) of the optokinetic screen 
for 50  min using the previously described apparatus [9] 
(Fig. 1a). The OKR gain, a ratio of the eye response to the 
visual stimulus, was significantly increased after com-
pletion of the learning compared with the gain at the 
beginning (Fig. 1b; t = − 4.51159, df = 5, p < 0.01, paired 
t-test). After completion of the oculomotor test, we pre-
pared acute coronal cerebellar slices and performed the 
whole-cell patch-clamp recordings from PCs in the cer-
ebellar flocculus, which is a crucial region for oculomotor 
learning in the cerebellum [10, 11] (Fig. 1a). All record-
ings from the flocculus were performed in the mid-
line subregion of the flocculus known to be involved in 

horizontal eye movement (H zone). We recorded from 89 
and 67 floccular PCs in the control (8 mice) and learned 
(6 mice) groups, respectively. It is known that distinct fir-
ing responses existed in cerebellar PCs in response to the 
somatic current injection in rodents [12]. In this study, an 
analysis was conducted on regular spiking neurons, the 
major neuronal population (> 79%) in both groups (Con-
trol, 71 neurons; Learned, 53 neurons).

To test the intrinsic excitability of PCs, we injected 
step currents from + 100 to + 1200 pA (duration of 
500 ms with 100 pA increments) into PCs in the pres-
ence of NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-
benzo[f ]quinoxaline) and picrotoxin to block excitatory 
and inhibitory synaptic inputs, respectively (Fig.  1c). 
Our result revealed that the PCs from the learned group 
showed a significant reduction in mean firing rate com-
pared with PCs in the control group (Fig. 1d, χ2 = 29.97, 
df = 11, p < 0.01, Linear mixed model post hoc Tukey’s 
test). To look for changes in properties of the action 
potential (AP) that could explain the reduction in the 
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Fig. 1  Acute oculomotor learning induces a decrease in the intrinsic excitability of Purkinje cells in the cerebellum. a Experimental design. Mice 
were subjected to oculomotor training for 50 min by rotating an optokinetic screen displaying vertically aligned white and black stripes (top). After 
the learning, cerebellar slices were prepared (middle) and whole-cell patch-clamp was performed from the floccular PCs located at the H zone 
(bottom). The dashed line represents the PC layer. b (Left) representative traces of the screen, eye movements before (middle) and after (bottom) 
the learning. In the middle and bottom traces, gray and black lines represent raw and curve-fitted traces, respectively. (Right) Learning-induced 
increase in OKR gain. A grey circle represents an individual animal (6 mice). Bar graphs indicate the mean values of each time-point. c 
Representative spiking responses in response to depolarizing current injections (bottom) into PCs of the control (top) and learned groups (middle). 
d The mean firing rate significantly decreases in the learned group compared to that of the control group. e OKR learning increases the rheobase 
current. f AP threshold, g AP amplitude, h AHP amplitude, and i Input resistance are comparable between the groups. In (d–i), the control and 
learned groups are depicted in white and black, respectively. Data represents as mean ± SEM
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excitability of PCs, we performed the single AP analysis 
in PCs of both groups. For the single AP analysis, we 
injected a rectangular current step (duration of 50  ms 
with 10 pA increments) into PCs to evoke a single AP 
and measured four AP parameters, the rheobase cur-
rent, AP threshold, AP amplitude, and afterhyperpo-
larization (AHP) amplitude (see Additional File 1). The 
rheobase current after oculomotor learning was signifi-
cantly increased (Fig. 1e; t = − 2.374, df = 91.3, p < 0.05, 
Two-sample t-test). Unlike the rheobase current, other 
three properties, AP threshold, AP amplitude and AHP 
amplitude, were not altered by oculomotor learning 
(Fig. 1f–h; AP threshold, t = − 1.13, df = 119, p = 0.26; 
AP amplitude, t = 0.6, df = 118.98, p = 0.55; AHP ampli-
tude, t = − 0.42, df = 119, p = 0.68, Two-sample t-test). 
Lastly, in response to hyperpolarizing current injec-
tion, no difference was found when comparing the 
input resistance between the groups (Fig.  1i; t = 0.80, 
df = 120, p = 0.42, Two-sample t-test).

In the present study, we showed a significant decrease 
in the firing rate of the cerebellar PC in response to 
the intracellular injection of depolarizing current after 
50  min of OKR learning. Further single AP analy-
sis found that the rheobase current was increased in 
the learned group, while the AP threshold, AP ampli-
tude, and AHP amplitude did not differ significantly 
between the control and learned groups. Taken our 
results together, it would be expected that a decrease 
in the intrinsic excitability was induced in the cerebel-
lar PC of the OKR learning group by an increase in the 
current threshold for generating AP. Our result sup-
ports the emerging hypothesis that cerebellar memory 
may be implemented not only by a change in synaptic 
transmission in the Purkinje cell, but also change in the 
intrinsic excitability [5–8, 13, 14]. Given that the intrin-
sic excitability of neurons is influenced by the conduct-
ance of various transmembrane ion channels that affect 
the passive and active membrane properties of the neu-
ron, a further attempt should be made to determine the 
ion conductance that mediates the reduced excitability 
of cerebellar PCs after OKR learning.
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