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 Author name disambiguation (AND), also recognized as name-identification, 

has long been seen as a challenging issue in bibliographic data. In other words, 

the same author may appear under separate names, synonyms, or distinct 

authors may have similar to those referred to as homonyms. Some previous 

research has proposed AND problem. To the best of our knowledge, no study 

discussed specifically synonym and homonym, whereas such cases are the 

core in AND topic. This paper presents the classification of non-homonym-

synonym, homonym-synonym, synonym, and homonym cases by using the 

DBLP computer science bibliography dataset. Based on the DBLP raw data, 

the classification process is proposed by using deep neural networks (DNNs). 

In the classification process, the DBLP raw data divided into five features, 

including name, author, title, venue, and year. Twelve scenarios are designed 

with a different structure to validate and select the best model of DNNs. 

Furthermore, this paper is also compared DNNs with other classifiers, such as 

support vector machine (SVM) and decision tree. The results show DNNs 

outperform SVM and decision tree methods in all performance metrics. The 

DNNs performances with three hidden layers as the best model, achieve 

accuracy, sensitivity, specificity, precision, and F1-score are 98.85%, 95.95%, 

99.26%, 94.80%, and 95.36%, respectively. In the future, DNNs are more 

performing with the automated feature representation in AND processing. 
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1. INTRODUCTION  

Author name disambiguation (AND) in the publication is a well-known problem. Such a technique 

used to overcome the problem of ambiguous in digital libraries (DL), including DBLP, Google Scholar, and 

others. When searching for an author’s name or article title with a specific author’s name on a DL, ambiguity 

problems often arise. Thus many related articles will appear with the same name or the same title in a 

bibliographic database [1]. Basically, AND condition occurs because of the following four reasons as  

follow [2]; (i) caused by someone who publishes with different names; (ii) many authors publish with the same 

name; (iii) incomplete data or errors; and (iv) the increasing number of articles and or journals published on 

DL. These four causes can be used as a reference for gathering all the information needed to find out and solve 

the problem of ambiguity. 

https://creativecommons.org/licenses/by-sa/4.0/
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To overcome the above problems, several researchers have proposed a solution [3]–[5]. However, the 

method can’t guarantee accurate results. The AND topic was introduced by V.I. Torvik [6]. But specifically, 

the subject of AND is pursed in the case of homonyms and synonyms. The case of homonyms and synonyms 

is the core problem in AND which makes it even more complicated [7]. Homonyms are cases where two names 

are the same in a journal publication but are owned by different people, while Synonyms is the opposite case 

when there are different names but are owned by the same person [8], [9]. The research focused on the 

homonym case was conducted by Momeni F. using DBLP bibliographic data [10]. The study aims to evaluate 

the method used for the network co-authors in the case of homonym authors by clustering on the same name 

data (homonym). The research yielded good performance for the most names. Unfortunately, the method  

used still needed optimization. Many studies on AND topics pertain to the homonym and synonym  

cases [9], [11]-[13]. However, no specific research focuses on finding solutions in the cases of homonyms and 

synonyms classification.  

Currently, there are several methods have proposed to give a solution in the AND classification 

problem based on machine learning with the supervised [14] and unsupervised approach [15]. One technique 

commonly used for the classification, and it has been proven to provide good results is support vector machine 

(SVM). Jason D. M. Rennie conducted a multiclass text classification using SVM, and it compared with Naïve 

Bayes [16]. The results prove that SVM can reduce losses 10% to 20% lower to Naïve Bayes, which means 

SVM has the performance to reduce losses to the lowest point. Jason D. M. Rennie present multiclass 

classification with SVM, a similar study was conducted by Giles M. Foody with image datasets [17]. In such 

a study SVM compares with discriminant analysis and decision trees. The results as shown by using SVM has 

93.7% accuracy, discriminant analysis has 90% accuracy, and decision tree has 90.3% accuracy respectively. 

One method of artificial neural networks with a “deep” structure known as the deep neural networks 

(DNNs) method is the most popular and widely used in classification problems. DNNs classifier produces an 

excellent performance for text processing [18]. In [19], the DNNs method significantly outperforms other 

methods and produces 99.31% accuracy in the Vietnamese author name. However, this method only detection 

author ambiguations, whereas, homonyms and synonyms are an essential problem in AND. To the best of our 

knowledge, only limited research about AND topic based on DNNs technique in the literature, and such 

research without investigation in homonym and synonym case. Hence, the homonym-synonym classification 

is desirable to the deep investigation. The rest of the paper is structured as follows. In the introduction, some 

related works to AND are discussed, and their capabilities and limitations are highlighted. The proposed 

method of DNNs describes in detail the working of homonym-synonym classification. We simulated the 

proposed algorithm on the Jinseok Kim dataset and compare it to baseline methods in experiments and 

discussions. In the end, we conclude with a discussion of conclusions and future work in conclusions.  

 

 

2. MATERIAL AND METHODS 

This paper proposes the text processing method to calculate appropriate features from the AND raw 

data. The method consists of data acquisition, data preparation, data pre-processing, feature reduction, 

classification, and validation, as in Figure 1. All the stages can be described as detail in the following section. 

 

 

 
 

Figure 1. AND classification process 
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2.1.  Data acquisition 

The dataset used in this study came from Jinseok Kim [2], with raw data made by Giles Lee [20]. 

Initially, the raw data contained separate name data for one author in one file from many Digital Libraries 

(DL). The dataset has used by Richardo G. Cota [21] and Alan F. Santana [22]. Then, the raw data is improved 

by Muller [23] and he found that the dataset has a tendency towards DL DBLP and matches it with DBLP data. 

Furthermore, the dataset was cleaned up again and completed by Jinseok Kim [8] by adding missing data and 

eliminating unnecessary data based on DBLP data so that the dataset becomes a DBLP dataset with clear 

entities and attributes. In this dataset, there are six attributes always used because it has a great influence on 

AND data. The six attributes are a name, author, author ID, title, venue, and year. This dataset has the same 

length or amount of data for each attribute about 5018 data. There are 456 different names in the name attribute 

with three names over 100. The most names are Seong-Whan Lee about 125, David S. Johnson about 104, and 

Anoop Gupta about 104. While in the Authors attribute there are as many as 4654 names different, which 

shows that the name in the Authors attribute is very much different in number from the name in the Name 

attribute. This is due to the fact that in a journal publication, there are many authors who follow the author’s 

name in the Name attribute. Whereas the Author ID attribute has 480 distinct data of Author ID data. It means 

there are 480 different labels scattered in the data along 5018. 

 

2.2.  Data preparation 

All attributes contained in the dataset will be separated into feature attributes and label attributes. The 

feature attribute is commonly referred to as input, which is an attribute that will be used as input data to be 

processed by the classifier. The results will be grouped into one of the data in the label or output attribute. The 

label attribute is an attribute that is selected from many attributes that exist in the data that will be used as 

output (a place to group input data) from feature or input attributes. Feature attributes are taken from all the 

attributes that have important influences in the data aside from the label attributes. The label attribute is taken 

from the most specific and the unique attribute among all the attributes in the data that will be able to distinguish 

the data groups that are classified. In this study, the Author ID attribute is used as a label attribute because it is 

specific and unique. 

In data preparation, the main task is to find individual homogeneous data in the dataset and store it as 

a new label (see in Figure 2). By adding a homonym label column to the dataset that can be initialized label 1 

for the homonym and label 0 for the non-homonym. The next step is to find the synonym labels in the same 

way. The result is added as a new label column with initialization label 1 for synonym data and label 0 for  

non-synonym. Furthermore, two columns are added in the dataset, the first column of the homonym-synonym 

with label 1 labels and non-homonym-synonym with label 0. The second is a non-homonym-synonym label 

column, which is a label derived from data that is not included in the homonym label column and a synonym 

or the opposite of the synonym label column. Therefore, four new label columns are achieved, each new label 

column will be merged into a new label column with labels 0, 1, 2, and 3 representing each new label column 

homonym, synonym, homonym, non-synonym respectively. Thus, the training to be performed is a four-label 

training that results from the search for homonyms, synonyms, synonyms, and non-synonyms. 

 

 

 
 

Figure 2. Data preparation process 
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2.3.  Data pre-processing 

In the pre-processing stage, all features except the Year feature are changed to dummy variable. The 

process of raw data processing into a dummy variable can be represented in Figure 3. These features can be 

easily interpreted by the classifier. For all features in the form of text, it will be changed into numeric form. 

For example, the Name feature is changed from name text to a number with a specific value or number in each 

name, and the value will be the same for the same name. The value is given in a random value. If there is a 

name like “Gupta”, then the name will be represented as a random number from 0 to 9. That number will differ 

as much as the different names that exist. If there are 456 distinct names, then there will be 456 different 

numbers, which will represent each name in one column along 5018 data. After all, names become numbers 

and stored in a variable, a new variable will be prepared to store dummy variables whose contents are 0 and 1. 

The new variable will contain a number of columns the same number of the names. If there are 456 different 

names, then there will be 456 columns in the new variable. The length of the data on the new variable will be 

the same as the previous variable about 5018 data rows containing 0 and 1. 

 

 

 
 

Figure 3. Data pre-processing 

 

 

The number representing each name in the first variable will be used as the index column in the new 

variable. If the name “Gupta” is represented by the number 9, then in the ninth column in the new variable has 

the value 1 and the other column will be 0. Throughout the ninth column 9 from the first row to the 5018th row 

given a value of 1, if the previous variable contains the number 9. For example, if in the first variable the 

number 9 in the index row fifth and hundredth, then in the ninth column, the fifth and hundredth rows in the 

new variable will be worth 1 and otherwise 0. The rule will apply to all different numbers in the new variable. 

Pre-processing the author’s feature is different from the Name feature, but it is still important to create a dummy 

variable. The step is to separate each text by name for all the names in the Authors feature and save it to a 

variable (e.g. variable “x”). Then a dictionary is also made which is stored in a variable (e.g. variable “z”) from 

the name data in variable x. In the design of a dictionary does not change the shape or number of data in the 

“x” variable. Then all the names in the variable “x” are given the value 0, and also stored in a variable (e.g. 

variable “t”). The “x” variable is compared to the “z” variable by referring to the “t” variable, and the output 

of the process is a dummy variable as a feature to be an input classifier. Basically, the process changes the 

value of 0 in the variable “t” to 1, if the variable “z” finds the same name in the variable “x”. Pre-processing 

of the Authors, Title and venue features are done in the same way because it has the same form of data. 

However, pre-processing in the year feature has a different step from the previous four features, because the 

Year feature is numeric, it only needs to be normalized into a value on a scale of 0 to 1. Finally, all features are 

collected into a single data with labels as the initial dataset. Then, the feature data is divided into 80% for 

training and 20% for testing. 
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2.4.  Classification with deep neural networks 

In this study, the multi-class-classification of AND based on DNNs use the implementation of the 

backpropagation (BP) algorithm for training and testing. The classifier is trained by using input data x and an 

annotated label as an output. The Softmax function is used as an activation function for the output layer of the 

classifier. By using the Softmax function, the output of each unit can be treated as the probability of each label. 

Here, let N be the number of units of the output layer, let x be the input, and let 𝑥𝑖 be the output of unit i. Then, 

the output 𝑝(𝑖) of unit I is defined by in (1): 

 

𝑝(𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑁
𝑗=1

 (1) 

 

Cross entropy is used as the loss function of the classifier LF as follow: 
 

𝐿𝐹(𝜃) = −
1

𝑛
∑ ∑ 𝑦

𝑖𝑗
𝑙𝑜𝑔(𝑝

𝑖𝑗
)𝑚

𝑗=1
𝑛
𝑖=1  (2) 

 

where n is the sample size, m is the number of classes, 𝑝𝑖𝑗 is the output of the classifier of class j of the 𝑖𝑡ℎ 

sample and 𝑦𝑖𝑗 is the annotated label of class j of the 𝑖𝑡ℎ sample.  

In the experiment, all classes are divided into four categories, such as homonym, synonym, homonym-

synonym, and non-homonym-synonym. Based on four classes, a DNNs comprises multiple nodes connected 

to each other, with each node representing the activation function. The experiment is conducted by increasing 

the number of hidden layers from layer 1 to layer 4, and all the performances are observed in order to choose 

the best model. The deep structures of NNs have 100 nodes in each layer. The activation function used in the 

input layer and at each hidden layer is ReLU, while the activation function used in the output layer is Softmax. 

In the DNN structure loss function is categorical cross-entropy with Adam optimizer. All experiments are 

conducted with a tuning learning rate from 0.0001 decreases to 0.1, with a batch size increase from 8 to 64 

with 50 epochs. The parameter fixes for each experiment starting with 1 hidden-layer with batch size 8 up to 4 

hidden-layers and batch size 64. The proposed DNNs structure can be seen in Figure 4. 
 
 

 
 

Figure 4. DNNs structure 
 

 

2.5.  Model evaluation  

In the evaluation stage of the model that has been built, it is looking for the value of predicting testing 

features and testing labels of the model built, then utilizing the predicted value obtained to obtain the confusion 

matrix of the model. The classifier must be produced the trust value of the prediction results. The classifier 

makes correct predictions even though it is roughly interpreted as a probability. However, the possibility of 

getting the correct prediction is not enough to only give one number. The five measures of one beat H are as 

shown in (3) to (7) as follows: 
 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛) =  
∑ 𝑇𝑃𝐻

𝐾
𝐻=1

∑ 𝑇𝑃𝐻
𝐾
𝐻=1 +∑ 𝐹𝑁𝐻

𝐾
𝐻=1

 (3) 

 

𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒) =  
∑ 𝑇𝑁𝐻

𝐾
𝐻=1

∑ 𝑇𝑁𝐻
𝐾
𝐻=1 +∑ 𝐹𝑃𝐻

𝐾
𝐻=1

 (4) 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =  
∑ 𝑇𝑃𝐻

𝐾
𝐻=1 +∑ 𝑇𝑁𝐻

𝐾
𝐻=1

∑ 𝑇𝑃𝐻
𝐾
𝐻=1 +∑ 𝑇𝑁𝐻

𝐾
𝐻=1 +∑ 𝐹𝑃𝐻+∑ 𝐹𝑁𝐻

𝐾
𝐻=1

𝐾
𝐻=1

 (5) 

 

K is the number of beat types. TPH (true positives) is the number of H types that are correctly 

classified. TNH (true negative) is the number of not-H types that are correctly classified. FPH (false positive) is 

the number of not-H types that are incorrectly predicted as H types. FNH (false negative) is the number of H 

types that are incorrectly predicted as not-H types. 
 

 

3. RESULTS AND DISCUSSION 

The four classes of AND are classified with DNNs. The classes consist of non-homonym-synonym 

(class 0), homonym (class 1), synonym (class 2), and homonym-synonym (class 3). The twelve models are 

fine-tuned with the different batch sizes and hidden layers in each four class. One hidden layer is implemented 

in the first to fourth model. The fourth to eight model uses two hidden layers. Last, the ninth to twelfth model 

uses three hidden layers. Each hidden layer consists of a batch size of 8, 16, 32, and 64, respectively. For the 

non-homonym-synonym represented in Table 1, overall, the good performance with the percentage up 95% 

have worked out in twelve models of DNNs. The best model can be seen in the seventh and eighth model, 

which use two hidden layers and batch sizes 32 and 64, respectively. The differences between these two models 

are not significant. 
 

 

Table 1. DNNs performance for non-homonym-synonym classification (class 0) 

Model 
Performance Evaluation (%) 

Number of Data 
Accuracy Sensitivity Specificity Precision F1-Score 

1 98 97 98 99 98 615 

2 96 95 98 99 97 600 
3 97 96 99 99 98 590 

4 97 95 99 99 97 599 

5 98 97 99 99 98 600 

6 97 97 98 98 96 588 

7 98 97 99 99 98 599 

8 98 97 99 99 98 606 
9 97 96 99 99 97 590 

10 97 96 98 99 97 609 

11 97 96 98 98 97 611 
12 97 96 99 99 98 584 

 

 

For the homonym class, Table 2 shows the results of up to 87% as overall in the twelve models. The 

number of homonym data smaller than the non-homonym-synonym class. The fifth model with two hidden 

layers and a batch size of 8 is the best model for this class. For the Synonym class in Table 3, the results achieve 

the performance up to 92%, moreover, in the second (one hidden layer) and eleventh model (three hidden 

layers), the sensitivity gets the perfect performance, 100%. Different from three classes, the last class of 

homonym-synonym, the results are not good enough, with the percentage up 68%. From Table 4, the 

performance in sensitivity, precision, and F1-score are not satisfying. Adding more hidden layers not give 

significant results, because it does not really affect the DNNs performance. The limited parameters that  

fine-tuned (layers and batch size) are not always given a promising result. The learning rate and optimizer in 

each model are highly to consider. The proposed DNNs architecture in each class cannot be equated due to the 

proportion of the number of data is different.  
 
 

Table 2. DNNs performance for homonym classification (class 1) 

Model 
Performance Evaluation (%) 

Number of data 
Accuracy Sensitivity Specificity Precision F1-Score 

1 97 92 98 93 92 147 

2 97 93 98 92 92 154 

3 97 96 98 89 92 153 
4 97 97 97 86 91 153 

5 98 98 99 94 96 159 

6 98 92 99 95 94 164 
7 98 95 98 93 94 151 

8 98 97 98 94 95 157 

9 97 92 98 89 90 158 
10 97 94 98 90 92 165 

11 97 93 97 87 90 158 

12 97 97 98 89 93 159 
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Table 3. DNNs performance for synonym classification (class 2) 

Model 
Performance Evaluation (%) 

Number of data 
Accuracy Sensitivity Specificity Precision F1-Score 

1 98 99 98 95 97 212 
2 98 100 98 92 96 218 

3 99 99 99 97 98 232 

4 98 99 98 94 96 218 
5 98 99 98 93 96 215 

6 99 99 99 96 97 210 

7 98 98 98 96 97 218 
8 99 99 99 96 97 204 

9 98 99 98 93 96 219 

10 98 97 98 93 95 196 
11 98 100 98 94 97 209 

12 98 99 98 94 97 227 

 

 

Table 4. DNNs performance for homonym-synonym classification (class 3) 

Model 
Performance Evaluation (%) 

Number of data 
Accuracy Sensitivity Specificity Precision F1-Score 

1 98 80 99 70 75 212 

2 98 88 99 75 81 218 
3 98 75 99 72 73 232 

4 98 68 99 76 72 218 

5 99 81 99 90 85 215 
6 98 90 98 71 80 210 

7 98 83 98 72 77 218 

8 99 89 99 89 89 204 
9 98 80 99 75 77 219 

10 98 86 99 76 81 196 

11 98 70 99 84 77 209 
12 98 77 99 91 83 227 

 

 

In this study, the training data use 80% of the data, and the remaining data percentage is used for the 

testing process. The twelve models that implemented in four class of AND category use the same 

hyperparameters with the learning rate of 0.0001. Further, the activation function in the hidden layer is ReLU 

and Softmax in the output layer. The number of nodes is 100 in the input layer. The total epochs for the twelve 

models are 50. The comparison of DNNs architecture in four classes can be presented in Table 5. From  

Table 5, the eighth model showed accuracy, sensitivity, specificity, precision, and F1-Score, which is 98.85%, 

95.95%, 99.26%, 94.80%, and 95.36%, respectively. Overall, the eighth model shows the best results in other 

models. The proposed DNNs architecture is two hidden layers with a batch size of 64. 
 

 

Table 5. Average performance for 4 classes 

Model 
Performance Evaluation (%) 

Accuracy Sensitivity Specificity Precision F1-Score 

1 98.36 92.74 98.86 89.59 90.92 

2 98.01 94.49 98.68 89.80 91.96 

3 98.41 91.98 99.01 89.76 90.82 
4 97.81 90.17 98.65 89.11 89.47 

5 98.71 94.11 99.15 94.65 94.30 

6 98.36 94.94 98.86 90.58 92.46 
7 98.46 93.90 99.01 90.36 92.01 

8 98.85 95.95 99.26 94.80 95.36 

9 97.81 91.97 98.61 89.39 90.62 
10 97.96 93.67 98.59 90.07 91.77 

11 97.96 90.30 98.54 91.55 90.73 

12 98.31 92.74 98.92 93.71 93.03 

 

 

To verify the proposed DNNs model, the accuracy and the loss curve are shown in Figures 5 (a)  

and (b), respectively. In Figure 5 (a), the accuracy of the training and testing set starts from around 60% in the 

first epoch. Later, the accuracy is increased with more epochs. Then, in the above 10 epochs, the accuracy gets 

the perfect score in the training set. The little gap between accuracy in training and testing set lead the 

overfitting. Figure 5 (b) shows decreasing error along with the increasing epochs in the training and testing set. 

Both curves produce good shapes in the processing with DNN. 
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(a) 

 
(b) 

 

Figure 5. Accuracy and loss curve of proposed dnns architecture: (a) accuracy curve, (b) loss curve 
 

 

In this study, the benchmarking study of DNNs with other ML methods is proposed. The other ML 

classifiers such as SVM (matrix kernel polynomial, RF, and linear), decision tree (CART and C4.5 algorithm), 

and conventional artificial neural networks (ANNs) is compared to the proposed DNNs architecture with three 

hidden layers. The result of classifiers can be seen in Table 6, in both training and testing set. 

Tables 6 and 7 show the accuracy of the neural networks, whether in DNNs or ANNs, outperform 

SVM and decision tree in all five metrics. It shows the neural network still be the promising classifier for AND 

case, due to neural network much more tedious than using an off-the-shelf classifier like SVM. Table 7 shows 

the same accuracy of DNNs and ANNs is 98.85% in the testing set. However, for the greater and a large amount 

of data in the digital library, making DNNs more have the prospect of being the suggested classifier than ANNs 

in the future. DNNs are more performing with the combination of automated feature representation in Big Data. 
 

 

Table 6. Accuracy benchmarking with other ML methods 
Methods Training Accuracy Testing Accuracy 

DNNs (3 layers) 99.73 98.85 

SVM with matrix kernel polynomial 99.85 98.56 
SVM with matrix Kernel RBF 99.85 98.61 

SVM with Matrix Kernel Linear 99.82 91.88 

Decision tree with CART algorithm  99.80 90.29 
Decision tree with C4.5 algorithm 99.80 88.90 

ANNs  99.68 98.85 

 
 

Table 7. Performance benchmarking with other ML methods 

Methods 
Performance Evaluation (%) 

Accuracy Sensitivity Specificity Precision F1-Score 

DNNs 98.85 95.95 99.26 94.80 95.36 

SVM  98.61 95.08 99.18 89.44 91.80 

Decision tree 90.29 74.34 92.11 67.99 70.64 

ANNs 98.80 95.60 99.26 94.61 95.06 
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The case of AND is not a new study in bibliographic data. This paper also compares the proposed 

DNNs with some previous literature. Table 8 shows the benchmarking study with conventional and neural 

network methods. Tran et al. [19] proposed DNNs for author disambiguation case. The DNNs method achieves 

99.31% in terms of accuracy. DNNs are significantly outperformed other methods that use a predefined feature 

set. However, homonyms and synonyms are essential problems in AND. Still, Chin et al. [24] implement 

Microsoft Academic Search (MAS) for string comparison in the author’s name. The method is merging the 

results of two predictions further boost the performance. This approach method achieves F1-score 0.99202 on 

the private leader board, while 0.99195 on the public leader board. Then, Wang et al. [25] use Publication, 

Web Page & News Storie’s dataset with a pairwise factor graph (PFG) and interaction of user to enhance the 

performance. The F1-score achieves 0.815 in CALO dataset case. The last, with our proposed DNNs method 

with three hidden layers, DNNs can show 98.85% of accuracy in case of non-homonym-synonym, homonym-

synonym, synonym, and homonym authors. 

 

 

Table 8. Performance benchmarking with previous methods 

Authors Method Dataset Case Accuracy 
F1-

Score 

Tran et al. [19] DNNs Vietnamese 

author-name 

Author ambiguations 99.31% - 

Chin et al. [24] Merging results 

of two 

predictions 
further boost the 

performance 

Microsoft 

Academic Search 

(MAS) 

String Comparison - 0.99 

Wang et al. [25] A pairwise 
factor graph 

(PFG) model 

Publication, 
Web Page & 

News Stories 

CALO Dataset - 0.82 

Proposed DNNs DBLP Non-Homonym-Synonym, Homonym-
Synonym, Synonym, and Homonym Authors 

98.85% 0.95 

 

 

4. CONCLUSION 

The main challenge to AND is that the data is becoming more and more complex and dynamic. It 

requires the AND algorithm to be extensible and flexible for different scenarios. This paper proposes one of 

ML algorithms, DNNs, for multiclass classification in non-homonym-synonym, homonym-synonym, 

synonym, and homonym authors task. For the classification task, a knowledge base is required. The DBLP 

computer science bibliography dataset with five attributes have implemented for the AND problems. 

Experimental results show that on all the twelve different models, our proposed method outperforms the 

common existing ML methods, such as SVM and decision tree. The DNNs performance with three hidden 

layers as the best model, achieve accuracy, sensitivity, specificity, precision, and F1-score are 98.85%, 95.95%, 

99.26%, 94.80%, and 95.36%, respectively. In the future, DNNs are more performing with the automated 

feature representation in AND processing. 
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