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Resumo 

A combinação de princípios da teoria de jogo e metodologias de machine learning aplicados 

ao contexto de formular estratégias ótimas para jogos está a angariar interesse por parte 

de uma porção crescentemente significativa da comunidade científica, tornando-se o jogo 

do Poker num candidato de estudo popular devido à sua natureza de informação 

imperfeita. 

Avanços nesta área possuem vastas aplicações em cenários do mundo real, e a área de 

investigação de inteligência artificial demonstra que o interesse relativo a este objeto de 

estudo está longe de desaparecer, com investigadores do Facebook e Carnegie Mellon a 

apresentar, em 2019, o primeiro agente de jogo autónomo de Poker provado como 

ganhador num cenário com múltiplos jogadores, uma conquista relativamente à anterior 

especificação do estado da arte, que fora desenvolvida para jogos de apenas 2 jogadores.  

Este estudo pretende explorar as características de jogos estocásticos de informação 

imperfeita, recolhendo informação acerca dos avanços nas metodologias disponibilizados 

por parte de investigadores de forma a desenvolver um agente autónomo de jogo que se 

pretende inserir na classificação de "utility-maximizing decision-maker". 
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Abstract 

The combination of game theory principles and machine learning methodologies applied to 

encountering optimal strategies for games is garnering interest from an increasing large 

portion of the scientific community, with the game of Poker being a popular study subject 

due to its imperfect information nature. 

Advancements in this area have a wide array of applications in real-world scenarios, and 

the field of artificial intelligent studies show that the interest regarding this object of study 

is yet to fade, with researchers from Facebook and Carnegie Mellon presenting, in 2019, 

the world’s first autonomous Poker playing agent that is proven to be profitable while 

confronting multiple players at a time, an achievement in relation to the previous state of 

the art specification, which was developed for two player games only. 

This study intends to explore the characteristics of stochastic games of imperfect 

information, gathering information regarding the advancements in methodologies made 

available by researchers in order to ultimately develop an autonomous agent intended to 

adhere to the classification of a utility-maximizing decision-maker. 
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1 Introduction 

This chapter introduces the project, providing a high-level description, contextualizing it 

and describing its main objectives. The problem statement and solution hypothesis are 

presented, as well as the procedures that will be adopted throughout the design and 

development process of the solution. Finally, it describes the structure of this document. 

1.1 Context 

In computer science, artificial intelligence (AI) is used to define the field of study of 

intelligent agents – any device that perceives its environment and takes actions that 

maximize its chance of successfully achieving its goals (Poole, Mackworth and Goebel, 

1998). The application of game theory concepts in association with machine learning 

algorithms constituting an interesting and widely publicized field of scientific investigation, 

with the knowledge acquired through the development of algorithms in academic context 

finding ample application in real-world scenarios. 

The importance of games is demonstrated by the fact that strategic games were one of the 

first sub-domains to be studied in artificial intelligence, initially with the sole objective of 

finding winning strategies, and posteriorly with the goal of maximizing agents’ utility, a term 

which allows for a deep definition of certain game assets and characteristics, and one which 

has been a target of a significant amount of studies. 

Games such as Checkers and Chess have been a publicized object of game theory studies 

for decades, with renowned scientist formulating extensive theories regarding them and 

developing intelligent game playing agents. The set of rules and goals that characterize 

these games render them as advantageous test subjects for artificial intelligence 

approaches, enabling the accurate measurement of the agent’s success and thereby the 

solution’s validation. 
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The aforementioned games, however, are in many ways unrelated to real-world events due 

to the completeness of the information available and, on the contrary, the lack of 

stochasticity, characteristics which real-world decision-makers face daily when acting in 

competitive environments. 

Poker and other games deemed of incomplete information provide a domain for artificial 

intelligence studies in which the knowledge obtained, and methodologies developed are 

passible of transferring to scenarios separate from the game’s universe. This, along with 

other characteristics associated with the game of Poker such as the opponent modelling, 

calculated risk management and its recent media coverage, makes it a common domain for 

artificial intelligence studies. 

1.2 Problem 

The game of Poker is considered a major challenge in the field of artificial intelligence due 

to factors in the nature of its domain, the main of which are the inherent imperfect-

information and the size of the game tree. 

Recently, Facebook and the Carnegie Mellon University’s joint effort produced Pluribus 

(Brown, 2019), the first Poker-playing agent proved capable of defeating human players in 

a setting where the game isn’t limited to 2 players, with all previous studies culminating in 

solutions aimed at a heads-up game in which the agent is playing against a single human. 

Despite the developments presented in recent years, few takeaways were able to be 

extracted from the research for human players to implement in their game, with factors 

such as the following making it extremely difficult to construe strategic insights that can be 

generalized: 

• Incomplete information; 

• Size of the decision tree (depending on the game’s betting structure); 

• Hand evaluation, from which only an estimate can be obtained; 

• Low number of observations; 

• Partial results; 

• Multiple equilibrium’s (on a multiplayer setting). 
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1.3 Hypothesis 

When analyzing a problem, it becomes important to formulate a hypothesis for a solution, 

so that this hypothesis can be posteriorly tested in order to conclude about the project 

achievement level. 

The hypothesis proposed by this study is that machine learning and game theory 

methodologies can be applied in order to develop a game playing agent that can compete 

against human players in the game of Poker. This agent should adhere to specified 

standards of computational and in-game performance, functioning in the form of an API 

that is capable of outputting a response action to a given in-game situation that is fed to it 

via HTTP or other communication protocol, and store a record of its games and actions for 

posterior evolutionary analysis of results and tendencies. 

1.4 Goals 

The main goal of this dissertation is to study different machine learning approaches based 

on probability, rules and events models, as well as their conjunction with game theory 

methodologies of situational probabilistic calculation, estimative of utility, opponent 

modeling and risk management in order to formulate decisions in response to in-game 

situations. 

This goal is accompanied by the secondary objectives of developing a HTTP-REST service 

that implements a selection of the previously mentioned methodologies for the 

accomplishment of the main goal, which is to be coupled with a web-interface through 

which a human is able to play against the solution’s agent. 

1.5 Procedures 

1.5.1 Methodology 

A methodology based on the principles of agile development will be used in the 

development of the solution, focusing on features, user stories and test cases as instructive 

forms of documentation and guidance. 

1.5.2 Version control 

A software development version control system will be used in order to manage and 

safeguard the solution’s source code along its development lifecycle, namely Git, through 
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GitHub’s infrastructure. GitHub is a distributed version control and source code 

management platform that bundles basic Git functionality with proprietary features such 

as task management, bug tracking and feature requests among other functionality in an 

integrated and easily accessible package. 

1.5.3 Task management and planification 

GitHub’s integrated features will be used in order to assess tasks’ and overall project 

completion, report problems in specified components and compile the solution’s 

documentation artifacts. 

In accordance to agile principles, the development lifecycle will be planned in an iterative 

and incremental manner, with a defined duration for sprints, each of which will be 

attributed a number of tasks to complete. The development expectations for each sprint 

shall be adjusted along iterations in order to improve the measurement of expectations and 

improve the accuracy of the measure in which designated tasks can be accomplished within 

a sprint’s timeframe. 

1.6 Document Structure 

This document contains the following sections, which can be divided into 3 separate groups: 

The Theoretical knowledge and State of the Art chapters present the theoretical domain on 

which this study focuses; The Value analysis, Design and Development chapters define the 

methodology and artifacts based on which a solution for the presented hypothesis is to be 

implemented and discuss said implementation; Experimentation and evaluation and 

Conclusion chapters evaluate the solution and discusses the obtained results. 

The definition of each chapter’s content is as follows: 

• Theoretical knowledge presents the fundamental theoretical concepts and 

background material considered to be indispensable for the understanding of this 

study. This material relates to game theory in general and its application to the 

game of Poker; 

• State of the Art contextualizes solutions that share similarities with the one this 

study aims to develop and describes general applications that are relevant to this 

study; 

• Analysis presents an analysis of the project’s value through the identification and 

analysis of use cases, scenarios and requirements. Beyond this, it defines metrics to 
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evaluate the fulfillment of requirements and justifies the decisions made in regard 

to the selection of technologies; 

• Design describes the design of the business and data models, as well as the 

architectural design of the product, based on current standards and good practices 

established for web and software development; 

• Development reports the challenges faced and decisions made during the 

development process of the solution; 

• Experimentation and evaluation introduces the testing methodology and 

parameters based on which the evaluation of the solution will be conducted, and 

finalizes by analyzing the results of the evaluation; 

• Conclusion provides an overview of the project’s achievements and limitations, as 

well as discussing some ideas for further development.  
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2 Theoretical knowledge 

In order to understand the concepts involved in this project, it is vital to acquire theoretical 

knowledge regarding the business concepts and their formalization. Concepts presented 

become less generic as this chapter progresses, relating specifically to the object in study 

at it’s ending. 

Terms specific to the game of Poker are available for consultation in Appendix A – Poker 

glossary. 

2.1 Game theory 

Game theory is the study of strategic interaction through the use of mathematical models 

which translate the conflict and cooperation transactions among rational decision-makers 

in an environment with defined characteristics (Myerson, 1991). This field has a wide range 

of applications, from economical to political and social, aiding agents in the analysis of 

complex decisions that involve trade-offs between the individuals involved in a system. 

Quoting Roger B. Myerson, the situations that game theorists study are not merely 

recreational as the term might suggest, with “Conflict analysis” or “interactive decision 

theory” being more accurate terms. Modern game theory was initially introduced by John 

von Neumann, proving the concept of mixed-strategy equilibria in two-person zero-sum 

games in 1928 (John von Neumann, 1944). 

This field of study generally aims to understand conflict and cooperation by studying 

quantitative models and hypothetical examples which can be applied of in order to predict 

or produce proactive results. 
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Some degree of knowledge regarding the linguistics and assumptions associated with the 

field of game theory is necessary in order to correctly interpret this study. Defining general 

terminology according to (Myerson, 1991), the term game refers to any social situation 

involving two or more individuals, who are termed players. Players are assumed to be 

rational and intelligent, adjectives which carry a technical meaning according to game 

theorists. 

A player is deemed rational if he makes decisions that consistently aid the achievement of 

his objective, which is to maximize the expected value of his payoff, measured in a defined 

scale of utility. The assumption based on which the adjective of intelligence is attributed to 

the player is that he has full knowledge regarding the game and is capable of making every 

inference possible given the available information. 

A decision-maker’s expected utility is defined via its preferences through mathematical 

methods in which quantitative model is used to describe his behavior. Decision theory 

demonstrates that in order to satisfy certain intuitive axioms, rational decision-makers 

should behave – have preferences – in a way that maximizes the expected value of a utility 

function. 

“(…) Any rational decision-maker’s behavior should be describable by a utility function, 

which gives a quantitative characterization of his preferences for outcomes or prizes, and 

a subjective probability distribution, which characterizes his beliefs about all relevant 

unknown factors” 

(Myerson, 1991) 

Decisions applied to events that involve chance are commonly described by probability 

models or state-variable models, both of which pertain a situation where a decision-maker 

is choosing among lotteries, varying on how the lottery is defined. In probability models, a 

lottery is a probability distribution over a set of prizes, while in state-variable models it is a 

function from a set of possible states into a set of prizes. A game of roulette is dependent 

on events which are characterized as objective unknowns due to having obvious objective 

probabilities, while a wager on the result of a sports event is dependent on events which 

are characterized as being subjective unknowns due to the opposite reason – the latter sees 

it’s prize determined by unpredictable events for which probabilities cannot be specified. 

2.1.1 Game classification 

Games can be classified according to characteristics intrinsic to its environment, 

interactions and outcomes, which impact the game’s state and decision-makers behavior. 
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• Cooperative / Non-cooperative: A game is cooperative if players are able to use 

contracts which are specifically modeled in the game and are enforceable by a third 

party (e.g. judge). Players are still able to cooperate in games classified as non-

cooperative, with the basis of differentiation being that in games termed as such, 

contracts must be self-enforcing (Shor, 2006). 

• Zero-sum / Non-zero sum: A game is zero-sum if a player’s winnings equal other 

players losses, implying that player’s choices cannot increase or diminish the 

available resources. In games with such classification, the total benefit to all players 

in the game, for every combination of strategies, always adds to zero. In non-zero-

sum games, such as the prisoner’s dilemma, the outcome has non-zero net results 

(Sfetcu, 2014).  

• Discrete / Continuous: A game is discrete if it has a finite number of elements that 

compose its environment (players, moves, events, outcomes, etc.). This definition 

is not to be confused with finitely long games – although a game classified as 

discrete being also accurately classified as finitely long game, the latter classification 

defines a game where the winner or payoff is unknown until all the moves are 

completed. 

• Symmetric / Asymmetric: A game is symmetric if the payoff obtained by employing 

a certain strategy would remain unaltered if the players employing it was switched. 

• Deterministic / Stochastic: A game is deterministic if a set of actions input by the 

player(s) always outputs the same result, and stochastic if the response to a player’s 

actions can be influenced by chance events, which ultimately affect the winner or 

payoff. 

• Sequential / Simultaneous: A game is sequential when players are aware of 

previous players’ actions, and simultaneous when players act at the same time, or 

the later players are unaware of the previous actions taken. 

• Perfect information / Imperfect information: A game is of perfect information if 

every player has knowledge of all the events that previously occurred, including the 

“initialization event” – player’s starting hands in a card game, for example (Muthoo, 

Osborne and Rubinstein, 1996). 

• Complete information / Incomplete information: A game is of complete 

information if every player has knowledge of the strategies and payoffs available to 

other players – in this case, it is said that the state of the game is globally available. 
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2.1.2 Representation 

The standard form of game representation varies in accordance to the classification 

assigned to it in terms of being sequential or simultaneous. 

Simultaneous games, also termed normal form games or strategic games, are typically 

denoted in the form of a payoff matrix composed by the strategy set and corresponding 

payoffs for each player. 

Table 1 - Prisoner's dilemma payoff matrix 

  A                              B B stays silent B betrays 

A stays silent (-1, 1) (-3, 0) 

A betrays (0, 3) (-2, 2) 

This form of representation, termed normal form representation, is put in use to identify 

strictly dominated strategies and Nash equilibria. 

In turn, sequential or extensive-form games are typically denoted in the form of a decision 

tree, in which each player’s decision points are placed and connected in accordance to 

every possible outcome his actions lead to. The tree commences at the decision point which 

will be referred to as root, controlled by the player who acts first (Tipton, 2012). This 

decision point is connected to other nodes through lines, each of which represents an 

action that this player can possibly perform at this point of the game. 

The set of actions taken by the player ultimately leads to an end node in which the play 

reaches its conclusion and payoffs are defined, which will be referred to as leaf. The line 

connecting the root to the leaf which represents the player’s strategy in the given play is 

often called line as per Poker terms (Line - Poker Terms Glossary | PokerStrategy.com, 

2020), an important definition for this study.  
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Figure 1 – Decision tree as a form of extensive form game representation 

Unlike normal form representation, extensive-form representation does not omit 

information in the representation, preserving aspects such as the sequence of possible 

actions and the player’s choices along the game. 

2.1.3 Strategy 

In game theory, a decision-makers behavior is translated by his strategy, which is the 

options chosen in a setting where the outcome is influenced by all player’s options (Polak, 

2007). While the concept of move refers to the action chosen by the player at a certain 

point of a game, the concept of strategy refers to the algorithm through which a decision-

maker act throughout every possible situation in the game. Strategy can therefore be 

described in the form of a function that receives the game state1 input and outputs an 

action, which is the player’s decision, and is commonly divided among 3 studied types: 

• Pure strategy: One action is mapped to each possible state. A move is defined for 

every possible game state, and the player never deviates. 

 
1 Information set containing all the game’s information that is known to the player. 
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• Mixed strategy: Each possible state is mapped to a probability distribution over 

actions. A probability is assigned to each pure strategy, and the player randomly 

selects one. 

• Totally mixed strategy: Each action is mapped to varying states with positive 

probability. 

A player’s strategy set is composed by all the pure strategies available to them and is always 

a subset of all the possible strategies. The combination of every player’s strategy sets forms 

the game’s strategy, which defines all the possible paths in a game. 

2.1.4 Nash equilibrium 

John Forbes Nash, a young mathematics graduate student at Princeton University, 

formulated the notion of equilibrium that is named after him in a 1950 communication to 

PNAS2, in what became known as the Nash equilibrium theory (Nash, 1949). 

The Nash equilibrium (NE) is a proposed solution to non-cooperative games involving 𝑛 

players with a set of mixed-strategies, in which it is assumed that every player knows the 

equilibrium strategy of the remaining, and there is no incentive for any player to deviate 

from his strategy – in fact, the player doing so will encounter a decrease in his overall utility. 

Consequently, every Nash equilibrium strategy is the best response strategy3 to all others 

in that equilibrium. 

Nash equilibrium is formally defined as per the following equation (Van Benthem and Ter 

Meulen, 2011): 

 

∀𝑖 ∈ 𝑁, ∀𝑠𝑖 ∈ 𝐹𝑖  , 𝜇𝑖 (𝑠𝑖
∗, 𝑠∗

−𝑖
) ≥  𝜇𝑖 (𝑠𝑖 , 𝑠

∗
−𝑖

) (1) 

, where: 

• 𝑖 represents a player; 

•  −𝑖 represents an opponent; 

• 𝑁 represents the set of players involved in the play; 

• 𝐹𝑖 represents the strategy set of player 𝑖; 

 
2 Proceedings of the National Academy of Sciences of the United States of America 
3 The best response strategy is that with the largest utility for a given player, given the equilibrium 
strategies of the remaining players. 
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• 𝜇𝑖  represents a function which takes strategy sets as arguments and returns the 

average utility for player 𝑖 given both strategies; 

• 𝑠𝑖  represents a mixed strategy profile for player 𝑖; 

• 𝑠𝑖
∗ represents a mixed strategy profile for player 𝑖 which is in Nash equilibrium; 

Nash equilibrium strategies are typically computed via self-play algorithms or linear 

programming, forming an output of 2 strategies, one for each player involved (Teófilo, 

2016). The output strategies assure maximum possible utility to the player employing it, 

guaranteeing that opponents cannot perform better than a given utility value. 

2.1.5 Formalization 

Consider game 𝐺  to be a finite, extensive-form game for which a sequential decision 

problem can be represented in the form of a decision tree in which the root and leaf nodes 

represent a decision and the nodes forming the line of play represents the sequence of 

performed actions. This sequence, termed history, can be denoted by ℎ such that ℎ ∈ 𝐻. 

Game 𝐺 can therefore be represented in the format of the following tuple (Jackson, Leyton-

Brown, 2013): 

 

(𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝜇) (2) 

, where: 

• 𝑁 is a set of 𝑛 players; 

• 𝐴 is a single set of actions; 

• 𝐻 is the set of non-terminal decision nodes; 

• 𝑍 is the terminal nodes, disjoint from 𝐻; 

• 𝜒 is the action function which assigns a set of possible actions to each decision node 

such that 𝜒 ∶ 𝐻 → 2𝐴; 

• 𝜌 is the player function which assigns to each non-terminal node ℎ a player 𝑖 ∈ 𝑁 

who chooses action at ℎ | 𝜌 ∶ 𝐻 →  𝑁; 
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• 𝜎 is the successor function which maps a choice node and an action to a new choice 

or terminal node4 such that for all ℎ1, ℎ2  ∈ 𝑁 and 𝜎(ℎ1, 𝑎1) = 𝜎(ℎ2, 𝑎2) then ℎ1 =

 ℎ2 and 𝑎1 = 𝑎2; 

• 𝜇  is a utility function for player 𝑖  on the terminal nodes 𝑍 , such that 𝑢 =

(𝑢1, … , 𝑢𝑛); 𝑢 ∶ 𝑍 →ℝ. 

The successor function combined with the nodes defines a tree, with nodes encoding 

history. 𝑁,𝐴, 𝐻, 𝑍 describe of the game’s tree and history, while 𝜒, 𝜌, 𝜎, 𝜇 defines actions, 

succession and utility. 

There is a utility function for every player, which assigns a real value to a player on every 

terminal node, which translates the player’s payoff in that node. 

2.2 The game of Poker 

Poker is a generic name used by most people when referring to the game of Texas Hold’em, 

the most popular of its many variants. This game gained its popularity amidst the rise of 

online Poker, an ascend believed to be fueled by its coverage in television shows while 

being played in major events such as the World Series of Poker. It’s moderate learning curve 

and fast speed of play allows even novice players to quickly pick up the game and play a 

significant number of hands per hour, which was not the case in the previous most played 

format, 7 Card Stud. 

While there are hundreds of variants available, most of them share characteristics despite 

being played with a different set of rules. Additionally, there are different betting structure 

rules available for each individual variant, although these only influence the moments in 

which players are allowed to post bets, and in which amounts. For the purpose of this study, 

we will focus on the game of Texas Hold’em. 

2.2.1 Rules 

This game is played using a deck of 52 cards, leaving both jokers out. The lowest card is the 

deuce and the highest is the ace, with cards higher or equal than 105 being often referred 

to as “broadway cards”, which are ordered in the following order, from left to right: 

 
4 The successor function combined with the nodes defines a tree. Therefore, for all pairs of decision 
nodes and for every possible action that can be taken, the only way for the successor function to be 
equal in both cases is if both choice nodes and actions were the same. 
5 The card 10 is referred to as ‘T’, maintaining a single-character notation for all the cards in the deck - 
{2,3,4,5,6,7,8,9,T,J,Q,K,A}. 
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Figure 2 - Broadway cards 

Game tables are composed by any number of players ranging from 2 to 10, with the most 

common formats being: 

• Heads-up – 2 players 

• 6-max – 6 players 

• 9-max6 – 9 players 

 

Figure 3 - Table positions 

Each table position has a nomenclature, and players move forward one position clockwise 

at the conclusion of each play. 

 
6 Tables with a number of players ranging from 7 to 10 are referred to as “Full-Ring”. 
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• UTG – Stands for Under The Gun. This player is first to act on when a hand is initially 

dealt. The positions between this and middle position can be referred to UTG+1 and 

UTG+2; 

• MP – Stands for Middle Position. The positions between this and the Hijack can be 

referred to as MP+1 and MP+2; 

• HJ – Stands for Hijack. The player in this position is to the left of Cutoff; 

• CO – Stands for Cutoff. The player in this position is to the left of the Button; 

• BTN – Stands for Button, also referred to as Dealer; 

• SB – Stands for Small-Blind. This player must place half a minimum bet and is first 

to act on betting rounds posterior to the first; 

• BB – Stands for Big-Blind. This player must place a minimum bet on the first betting 

round; 

A play in the game of Poker is often referred to as a “hand”, and at the beginning of each, 

the players positioned in the small-blind and big-blind have to post the minimum-bets 

according to the table limit or the level being played. The player in the UTG position is the 

first to act and that in the big-blind is the last, with turns being taken sequentially in a 

clockwise movement. 

In the heads-up format the game is played by only 2 players, hence the regular table 

positioning structure not being possible to reproduce. There are only 2 positions considered 

in this format, and they are the button and the big-blind. As to preserve the order of play 

rules, which dictate that the big-blind must act last in the preflop stage, the player in the 

button posts the small-blind, being the first to act on the preflop stage of the game, and 

second on the remaining. 

At the beginning of a hand, each player is dealt 2 hole cards, which only they can see. When 

it is their turn to act, they must choose to either bet, call or fold. When betting or calling, 

players are adding chips to the pot, the entirety of which will be collected by the winning 

player at the conclusion of the hand. 

• Bet – Raise the current highest bet. When a player Raises or Re-raises, his action 

can be classified as a bet. If the player bets all of his chips, he is said to be All-in; 

• Call – Match the current bet amount. Called a Check if the player does not need to 

put any more chips into the pot to do so, an event that can occur when he is 

positioned in the big-blind, or on the postflop stages of the game, when bets are 

yet to be placed; 
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• Fold – Forfeit the hole cards and any chances of receiving a portion of the pot. 

There are 4 betting rounds in Texas Hold'em, namely the Preflop, Flop, Turn and River. For 

the betting rounds to progress, a bet must be called by at least one player, meaning that if 

one player bets and all the remaining fold, the betting player collects the pot and the hand 

ends. 

With the flop, turn and river rounds come the community cards - cards that are dealt face-

up at the center of the table, constituting what is called “the board”. The flop is composed 

of 3 community cards, while the turn and river are composed of 1 card each, making for a 

total of 5 community cards. Every player can use the community cards in combination with 

their hole cards, adding to the strength of their hand. 

• Preflop: No community cards are revealed; 

• Postflop: 

o Flop: The three first community cards; 

o Turn: The fourth community card; 

o River: The fifth and final community card. 

Betting rounds are often referred to as “streets”, and plays are usually separated between 

the preflop – when no community cards are revealed – and the postflop stages – the flop, 

turn and river. While the player in the UTG position is the first to act on the preflop stage, 

when the hand is first dealt, the small-blind acts first in all posterior streets which compose 

the postflop stages. 

When all the betting rounds are over, the remaining players in the game show their hand 

and the winner is decided by evaluating the strength of each player's hand, composed by 

the 5 best cards in the play. Hand strengths are measured according to ranks, with each 

rank outperforming all the ones that precede it. 
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Table 2 – Texas Hold’em hand ranking 

Rank strength Rank description Rank example 

10 Royal Flush: A straight flush from Ace to 

10. 
 

9 Straight Flush: A five card sequence of 

equal suit. 
 

8 Four of a Kind: A set of four cards of equal 

rank. 
 

7 
Full House: Three of a kind plus a pair. 

 

6 Flush: A set of five cards of equal suit. 

 

5 
Straight: A five card sequence. 

 

4 
Three of a Kind: A set of three cards of 

equal rank. 
 

3 
Two Pair: Two sets of two cards of the 

same rank. 
 

2 Pair: Two cards of the same rank. 

 

1 High card: The highest card of the five that 

make a hand, when no other rank applies. 
 

In the case of the hand being concluded through folding, the player who placed the bet 

inevitably wins the entire pot. If the hand reaches showdown, all the remaining players 

present their hand and the player with the best ranked hand is awarded the entirety of the 

pot. In the event of multiple players having a hand that is equally ranked, players’ kicker 

card is evaluated, with the player having the highest kicker being declared the winner. The 

kicker card is the highest card in those available to the player – either in is hole cards or the 

flop – that does not combine to form one of the ranks presented above. For example, player 

A, holding A4, and player B, holding K4, go to showdown on a 44432 board. Player A will 

win the pot, because his fifth card in play is an Ace, which outperforms player B’s King.  

In case a tiebreak is not possible, the plot is split evenly amongst the players with the 

equally highest holdings. 
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2.2.2 Domain knowledge 

Certain concepts of the game are fundamental to grasp the particularities and complexities 

of this study. The aspects deemed most relevant of some of these concepts are discussed 

in this chapter.  

2.2.2.1 Table positioning 

Table positioning is a key concept to this game, with players often referred to as being "in-

position" or "out-of-position" according to their positional advantage. Players on the later 

positions have an information advantage since they already know the previous players' 

actions when their turn to act comes, and less players have a turn to act in front of them, 

and thus their play carries a lower amount of risk. While the UTG will look to play only 

premium holdings, the player in the button will be playing a wide range of hands when 

everyone folds before him since he has an incentive to win the pot, there are only 2 players 

left to act, and even if he gets called, he will be playing in-position for the remaining streets. 

This implies that players should ideally play a wider range of hands on tables with a lower 

number of opponents. 

2.2.2.2 Blind-versus-blind dynamic 

In the aforementioned hypothetical situation, the player on the button is said to be 

“stealing the blinds” when he raises with weaker holdings in order to try to take the pot. 

Players have an incentive to try to collect the blinds because they represent “dead money” 

in the pot – chips that were not voluntarily placed in the pot, and that no intervenient has 

a particular attachment to or incentive to defend. Due to pot odds, explained in a following 

chapter, this player can play profitably a wide array of hands in this situation. This fact in 

combination with the so called “blind-versus-blind” situations expose one of the most 

important dynamics of the game. 

2.2.2.3 Hand nomenclature 

Hands, or hole cards, are typically referred to by the combination of the cards’ ranks and 

its suit in descending order, with the rank as a capital letter and the suit as a lowercase 

letter. The ace of spades can be referenced to by ‘As’, for example. 

2.2.2.4 Hand history representation 

Hand histories are an historical log of a player’s hands, containing detailed information 

regarding the full setting of games the player participated in. This feature was made 
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available in online Poker software, providing users with a mean of obtain an overview or 

retrospective of the hands played. 

 

Figure 4 – PokerStars hand history interpreter and reviewer 

Widely used for statistical analysis of a player’s own tendencies or those of his opponents, 

a standard format and syntax has been established to represent a play’s stages or players’ 

actions. 

2.2.3 Pot odds 

Pot odds are the ratio of the size of the pot to the size of a bet the player must call in order 

to continue playing. Suppose a hand reaches the flop which comes AhJh2s with 2 players 

remaining and a $15 pot. Player A bets $5, giving player B 4-to-1 (4:1) odds7, since the total 

pot is now $20 and player B must pay a quarter-part of it in order to continue. 

 

𝐴𝑊 * p - 𝐴𝐿  * (1 - p) = 0 (1) 

, where p is the probability of winning and 𝐴𝑊 and 𝐴𝐿 are the amounts won 
and lost when calling, respectively. 

 

 

Player B needs at least a 4 / (4 + 1)  =  0.8 =  20% chance of winning in order to make a 

profitable call. In order to determine chances of winning and evaluate a winning probability, 

 
7 Pot odds are typically represented using a colon ‘:’ (e.g. 4-to-1 represented as 4:1). 
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a player’s number of outs is counted. If player B’s cards are 7h6h he needs only one more 

card of the heart suit in order to make a flush draw. We know that 9 cards8 of this suit 

remain in the deck out of 47 unknown cards9. Therefore, player B has a 
9

47
= 19.14% 

chance of hitting a flush on the turn card, and a 
9

46
= 19.15%  chance of hitting it on the 

river. In total, this player has a 19.14% + (
9

46
 × (1 − 19.14%)) = 34.96%  chance of 

completing his hand until the end of the play. Since 34.96% > 20%, player B is making the 

best mathematical decision by calling the bet. 

In the given example, it is assumed that player B wins the hand every time he completes his 

flush draw, and the possibility of player A placing a bet on the turn is not taken into 

consideration. Considering that player A is an aggressive player who is likely to place a bet 

on the turn, it might appear that player B has no incentive to call since his chance of hitting 

the flush on the turn (19.14%) is marginally lower than required given the pot odds (20%). 

This, however, is not the case, due to implied odds (Campos, 2013) – odds that are 

inexistent but still considered due to being likely to win additional bets in case of hitting the 

hand, in this case directly related with player A’s aggression tendencies. 

The concept of blockers is also one of the most relevant for the decision-making process. If 

player A is holding a hand such as KcTd, he blocks his opponents possibilities of drawing a 

straight, gaining the ability of playing in a more passive manner, and possibly giving the 

opponent better odds, since he has access to private information that dictates that player 

B is less likely to hit a straight, if drawing for one. 

2.2.4 Ranges 

A range is a group of hands used to describe the most probable hands a player is believed 

to be playing in a particular context (Tipton, 2012). Ranges mirror a players strategy, and 

can be deduced from observation of a significant number of trials (2.2.8), assuming the 

player in analysis is playing according to a somewhat defined strategy. We can, for example, 

refer to the range a player might be opening10 from the UTG position, or the range with 

which the big-blind will be defending from steal attempts from the button. 

Hand ranges are typically abbreviated, being described in one of two formats: 

 

 
8 13 cards minus the 4 heart suited cards in player’s B hole cards and the flop. 
9 52 cards minus player B’s 2 hole cards and the 3 flop cards. 
10 Opening the pot is the act of placing the first raise in a given betting round. 
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• Percentual: Playing 3% of hands means the players range is the top portion of hands 

encompassed by the defined percentage – in this case, the top 3% of hands is 

composed by AA, KK, QQ, KK, TT, 99, AKs, AKo, AQs; 

• List: The group of cards containing every ace, king, suited queen and offsuit jack 

combos with a kicker larger than 8 can be mentioned as {A2+, K2+, Q2s+, J8o+}. 

 

In some situations, a range can be composed by a fraction of a particular hand. Suppose a 

player’s strategy is to open 76s half of the time on the button and fold it the other half. His 

range is said to contain 76s with a weight of 0.5, or to contain 50% of all 76s hands. In the 

3% range mentioned above as an example, 99 has a 0.5067 weight. 

It is useful to be familiar with hand charts which are a representation of ranges, with the 

colored squares representing the holdings contained in the defined range, and the color 

opacity of each square’s background representing the weight of a given hand. 

 

Figure 5 - Hand chart with the top 3% hands 

Understanding the concept of ranges is fundamental to the application of other strategic 

concepts, such as pot odds, equity and hand strength. 
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2.2.5 Hand evaluation 

A player’s decisions on the different betting streets of a play are controlled by the 

evaluation of his hand and strategy, as well as the opponents perceived strength. For this, 

it is imperative to have the ability to assess the quality of a hand – it’s potential to be the 

best hand in play – at any point of the game. 

Sklansky and Malmuth (Skalinsky and Malmuth, 1994) have classified pre-flop hands in 

human understandable and applicable terms by assigning them to separate groups, each of 

which having a defined strategy assessed based on the group’s strength, player’s position, 

number of players on the table and opponent classification (2.2.8). 

A different approach that is found to have a strong correlation with the aforementioned 

methodology consists in simply ranking hands according to their chance of winning when 

going all-in preflop versus any random hand (Tipton, 2012), producing an approximated 

statistical measure of expectation for each hand through repeated randomized trials. 

In order to generalize the ideas presented in (Skalinsky and Malmuth, 1994) and create an 

algorithm capable of evaluating a hand on any betting street, the state of the art 

methodologies analyzed in (Billings et al., 1998; Teófilo, 2011) can be used. 

2.2.5.1 Hand odds 

The process of calculating hand odds involves enumerating all possible outcomes in order 

to assess the number of times each player is a winner or loser at the end of the play. It is 

considered that the opponents can have any of the remaining unknown cards – cards that 

aren’t in hero’s11 hole cards or the community cards – and that both players will go to 

showdown. The hand ranks of all players are computed for every possible board and a 

comparison is drawn between them, evaluating the frequency with which each player will 

be ahead at the end of the play. 

Concerns regarding this evaluation process revolve around the size of the sample space, 

which is proportional to the number of players in game and the number of unknown 

community cards remaining at the time of the evaluation. A heads-up game on the flop has 

47 unknown cards (52 – 2 – 3) and a sequence size of 4 (the turn and river cards and villain’s7 

cards), making for a total of 
47!

(47−4)!
 ≈ 4.28 × 106  card sequences, a quantity associated 

with a calculation time that can make the application of this methodology unfeasible. 

 
11 In Poker terminology, the player we are referring to when commenting a play is commonly referred 
to as “hero”, and his opponent(s) as “villain”. 
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Analyzing hand odds via a Monte Carlo simulation (Ulam, 1949) has been proven to be a 

viable solution (Calculating Win Odds for Multiple Opponents - Poker for Programmers: 

Poker Algorithms and Tools for the C# Programmer, 2006) – considering only a limited 

subset of the possible card sequences, a usable approximation is obtained with only a 

fraction of the calculation time necessary. 

2.2.5.2 Hand strength 

It is possible to assess the strength of a hand on every betting round through the use of 

enumeration methods in which the number of possible hands that are better, equal or 

worse than that being assessed is counted in order to retrieve a percentile ranking that is 

indicative of the hand’s strength. 

In contrast to the assessment described in the previous section, this is applicable on any 

betting street of the play and does not consider the remaining community cards. In 

comparison, this procedure is significantly less demanding, with a number of cycles that is 

not only much smaller – 𝐶2
50 = 1225 in the worst-case scenario – but is also not affected 

by the number of players being considered. 

 
function HandStrength(hand, board) { 
  var ahead = tied = behind = 0 
  var handRank = Rank(cards, board) 
  var opponentCards = CardCombos(deck - hand - board) 

 
  foreach (opponentCards) { 
    var opponentHandRank = Rank(opponentCards, board) 
    if (handRank > opponentHandRank) ahead++ 
    else if (handRank == opponentHandRank) tied++ 
    else behind++ 
  } 

 
  return (ahead + tied / 2) / (ahead + tied + behind) 
} 

Code snippet 1 – Evaluation of hand strength 

This assessment can be extrapolated to multiway scenarios by raising its result to the 

number of active opponents. 

𝐻𝑆𝑛 = (𝐻𝑆1)
𝑛 (3) 

, where 𝐻𝑆 is the resulting hand strength and 𝑛 is the number of active opponents. 
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2.2.5.3 Hand potential 

Hand strength measurement provides an incomplete assessment of the overall quality of a 

hand, not accounting for the possibility of weaker hands developing into strong ones as the 

game progresses – in this case referred to as it’s potential. 

function HandPotential(hand, board) { 

  var HP[3][3], HPTotal[3] 

  var handRank = Rank(cards, board) 

  var opponentCards = CardCombos(deck - hand - board) 

  var simulatedBoards = EnumerateBoards(deck - hand - board) 

 

  /* Consider all opponent cards */ 

  foreach (opponentCards) { 

    var opponentHandRank = Rank(opponentCards, board) 

     

    if (handRank > opponentHandRank) index = ahead 

    else if (handRank = opponentHandRank) index = tied 

    else index = behind HPTotal[index]++ 

 

    /* Consider all boards */ 

    foreach (simulatedBoards => simulatedBoard) { 

      bestRank = Rank(cards, simulatedBoard) 

      opponentBestRank = Rank(opponentCards, simulatedBoard) 

      if (bestRank > opponentBestRank) HP[index][ahead]++ 

      else if (bestRank = opponentBestRank) HP[index][tied]++ 

      else HP[index][behind]++ 

    } 

  } 

  var PPot = (HP[behind][ahead] + HP[behind][tied]/2 + HP[tied][ahed]/2) / 

(HPTotal[behind]+HPTotal[tied]/2) 

  var NPot = (HP[ahead][behind] + HP[tied][behind]/2 + HP[ahead][tied]/2) / 

(HPTotal[ahead]+HPTotal[tied]/2) 

  return [PPot, NPot] 

} 

Code snippet 2 – Evaluation of hand potential 

Evaluating a hand’s potential involves analyzing how it’s rank may evolve throughout the 

play as the community cards are dealt. Picture a scenario where hero is holding 5h4h on a 

Kh6s3h flop – with open-ended12 straight and flush draws, he has a 59.98 % chance of 

winning and 1 % chance of tying versus two random cards, with any 2, 7, heart, 55 or 44 

combo completing the hand and making it a winner. Despite this, the hand obtains a poor 

strength figure associated with it, since it is highly improbable for hero to have the winning 

hand were the game to end at this point. Thus, unlike the methodology presented for hand 

strength measurement, this assessment accounts for community cards and uses the 

 
12 Open-ended refers to a situation where a player has 4 cards to a straight that can be completed on 
either end (e.g. player has cards 3 to 6 with any 2 or 7 completing his straight). 
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previously described enumeration methods to calculate the positive and negative 

potentials of a hand. 

• Positive potential: The probability of a hand improving when behind. 

• Negative potential: The probability of a hand falling behind when ahead. 

2.2.5.4 Effective hand strength 

Combining the hand strength and hand potential algorithms, it is possible to measure the 

effective hand strength, which represents the probability of the hand being the best or 

improving to become the best. 

 

𝐸𝐻𝑆 = 𝐻𝑆𝑛 + (1 − 𝐻𝑆𝑛)  × 𝑃𝑃𝑜𝑡 (4) 

, where 𝐻𝑆𝑛 is the hand strength and 𝑃𝑃𝑜𝑡 is the positive potential. 

As denoted by Luís Teófilo’s study (Teófilo, 2011), this formula is deduced by setting the 

negative potential variable to 0. The full equation, representing the probability of winning, 

is as follows: 

 

𝑝𝑤𝑖𝑛 = 𝐻𝑆 × (1 − 𝑁𝑃𝑜𝑡)  + (1 − 𝐻𝑆) ×  𝑃𝑃𝑜𝑡 (5) 

, where 𝐻𝑆 is the hand strength, 𝑁𝑃𝑜𝑡 is the negative potential and 𝑃𝑃𝑜𝑡 is the positive 

potential. 

This method provides robust results that take every possible scenario into consideration. It 

does however have limitations associated with it, such as the assumption that opponents 

are playing any two cards with equal probability, as well as it’s inadequacy for application 

on the preflop and river betting rounds, due to the only available information being the 

player’s hole cards, and the hand being unable to evolve any further, respectively. 

2.2.6 Expected value 

The expected value (EV) of stochastic events is the weighted average of all possible values 

and the likelihood of each value. In Poker, it represents the average result of a given play 

obtained if it occurred thousands of times and is usually applied in relation to players 

actions in order to estimate the payout associated with it. 
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This figure refers to the amount of chips in the player’s stack after making a decision, 

averaging over the uncontrollable and unknown information – community cards and 

opponents hole cards – that may affect the outcome of the play. 

Disregarding loss leader type plays13, the most profitable decision to make is always that 

with the largest EV. 

The formula for calculating the value expectation of a decision can be formalized as follows: 

 

𝐸𝑉 = 𝑝𝑤𝑖𝑛  × (𝑆 + 𝑃) + (1 − 𝑝𝑤𝑖𝑛)  × (𝑆 + 𝑃) (6) 

, where 𝑝
𝑤𝑖𝑛

  is the probability of winning, 𝑆 is the player’s stack size, 𝑃 is the pot size. 

Demonstrating the expected value estimation of a practical situation, consider a heads-up 

play scenario where both players start with a 30 BB stack. Villain places a 10 BB preflop 

raise which Hero calls and goes all-in on the flop for the remaining 20 BB. The pot has a 

total of 30 BB and Hero considers having a 40% chance of winning. 

• If Hero folds, his stack at the end of the end will be 20 BB. 

• If hero calls, his stack at the end of the hand will be 0.4 × 60 𝐵𝐵 + 0.6 × 0 𝐵𝐵 =

22.5 𝐵𝐵. 

Since calling is the action with the largest expectation, it is the most profitable play. 

When calculating the expected value of aggression plays, one can extend the formula to 

consider the fold equity the play employs over the opponent. This formula considers the 

chips gained by making the opponent fold, the chips gained when the opponent calls and 

Hero wins, and the chips lost when the opponent calls and wins. 

 

𝐸𝑉 = 𝑓𝑓𝑜𝑙𝑑 × (𝑆 + 𝑃) + 𝑓𝑐𝑎𝑙𝑙 × 𝑒ℎ𝑒𝑟𝑜  ×  (𝑆 + 𝑃) − 𝑓𝑐𝑎𝑙𝑙 × 𝑒𝑣𝑖𝑙𝑙𝑎𝑖𝑛  × (𝑆 + 𝑃) (7) 

, where 𝑓 represents the frequency of fold and call actions, 𝑒 represents equities of both 

players, 𝑆 is the player’s stack size and 𝑃 is the pot size. 

Note that expert knowledge (Tipton, 2012) shows that calculating EV based on expected 

stack size is more advantageous than calculating it based on expected variation of stack 

size. 

 
13 A loss leader play in Poker is one that has a negative expected value but increases that of the general 
strategy, typically by making it less predictable. 
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2.2.7 Equity 

Equity is the portion of the pot the player is entitled to would the hand end at a given 

moment, and is a function of hand strength (2.2.5.2). It is important to introduce the 

concepts of equity realization and denial in order to demonstrate how these may relate 

with strategic decision reasoning, and how the balance of actions in a strategy may be 

optimized in general and against particular opponents. 

Similar to the concept of expected value but presented as a percentage, equity (or raw 

equity) is the average percentage of the pot a hand is expected to win when reaching 

showdown. Equity realization differs from raw equity by considering the action in the play’s 

betting streets and comes into play in situations where players are forced to fold despite 

holding strong hands, becoming unable to realize their equity. The postflop dynamics in 

games such as No Limit Texas Hold’em provokes large intervals between the mathematical 

expectancy of a hand and it’s true value, with factors such as the amount of time a player 

bluffs or fold to bluffs and the percentage of the pot a player bets holding a major influence. 

The realization of equity can be measures as in 𝑒𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑒 × 𝑓𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑  where 𝑒 is the 

equity of a hand in a given situation and versus an opponents’ range, and 𝑓𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑  is the 

frequency with which it is passible of realization. 

Although pocket jacks has a 77.15% chance of winning versus a random holding, it is 

reasonable to estimate that it will only be able to realize it’s equity about 60% of the time, 

considering that there is nearly a 45% chance of a broadway card coming on the flop and 

that the player will often find himself in a position where he has to fold against an aggressor. 

Thus, we say that this hand has a 0.6 × 77.15% = 46.5% chance of realizing it’s equity, or 

that it will only win 46.5% of the times it is played, unlike what the raw equity figure of 

77.15% led us to believe. 

Also important is to understand the concept of equity denial – the act of preventing a player 

from realizing his equity by forcing him to fold before showdown – and how it may impact 

betting strategies. 

By denying opponents’ equity, a player is gaining potential value. This is a common case 

study for continuation bets, with cases where it is mathematically viable to perform a 

continuation bet with nearly 100% of a range. In order to evaluate how much the opponent 

needs to fold for a bluff to be profitable, we calculate the required fold equity (RFE): 

 

𝑅𝐹𝐸 =  
𝐵

𝐵 + 𝑃
 (8) 

, where 𝐵 represents the chip amount bet and 𝑃 is the pot size. 



 

29 
 

 

2.2.8 Opponent modeling 

Opponent modeling allows for the segregation of opponents according to characteristics of 

their strategy and skill level. While it may not be of major relevance in other strategic games 

where the performance lost by disregarding it is ignorable, it plays a key role in Poker 

agent’s ability. The strategy often found to be the most profitable is not one based on 

constant, theoretically optimal decisions, but one that is based on modelling and 

responding to (exploring) the characteristics of the opponents and table environment. 

By archiving and analyzing hands played against a specific opponent, it is possible to 

calculate an array of statistics that decompile his strategy: 

• VPIP – Voluntarily put $ in the pot: The frequency in which the player calls on the 

preflop; 

• PFR – Preflop raise: The frequency in which the player raises on the preflop betting 

round; 

• RFI – Raise first in: The frequency in which player is the first player to raise in an 

unopened pot; 

• CBet – Continuation bet: The frequency in which the player places a continuation 

bet after being an aggressor on the previous betting street; 

• Fold to 3bet: The frequency in which the player folds to a 3bet after betting. 

Additional statistics similar to this is Fold to 4bet, 5bet (…); 

• XF – Check-fold: The frequency in which the player folds to a bet after checking; 

• AF – Aggression factor: Calculated based on the ratio of  
𝑏𝑒𝑡𝑠

𝑐𝑎𝑙𝑙𝑠
  which is the 

frequency of aggressive moves in relation to passive moves. 

All the presented statistics are a percentage between 0% and 100%, and are often 

decompiled (when applicable) in order to provide insights that are as closely related as 

possible to each scenario, based on the following factors: 

• Positional advantage: The frequency in which the player took said action in-

position (IP) or out-of-position (OOP). 

• Position: The frequency in which player took said action in each of the table 

positions – UTG, MP, CO, BTN, SB, BB. 

• Betting street: The frequency in which player took said action in each betting street 

– preflop, flop, turn, river. 
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Opponent models can be created based on these statistics according to pre-defined value 

intervals for which standardized adjustments to an agent’s strategy can be induced. It is 

important to note that a significant sample is required in order to form elations based on 

these statistics, with these not being based on the number of hands played, but rather on 

the amount of opportunities of the action the statistic aims to represent (Patvs, 2013). On 

the event of the sample lacking significance, the agent should play a conserving strategy 

such as Nash equilibrium (0) or adjust based on the population tendencies. 

 

Figure 6 - Player classification 

How the opponent model will influence betting strategy, which is primarily based on 

effective hand strength and pot odds. Hand strength assessment versus opponents 

perceived range. 

With an agent’s betting strategy being primarily influenced by hand strength and pot odds 

(Billings et al., 1998) (see 2.2.5.4 and 2.2.3), one can improve by inference based on the 

opponent model, which provides the theoretical bases necessary to restrict an opponent’s 

range in order to calculate hand strength taking into account the opponent’s, as suggested 

in (Dinis Felix, 2008). 

Software such as Hold’em Manager (HM3 Official Page New Users, 2020) and PokerTracker 

(PokerTracker, 2020) collect hand histories and calculate hundreds of statistics that are then 

shown in a heads-up display (HUD), aiding players in the decision-making process. 



 

31 
 

 

 

Figure 7 - Example Hold’em Manager HUD statistics pop-up 

2.3 Theoretical concepts applied to Texas Hold’em 

Texas Hold’em can be attributed the following classifications: 

• Incomplete information: Players don't have knowledge of all previous events, 

specifically the initialization event, and are therefore unaware of other players' hole 

cards; 

• Non cooperative: No third-party enforceable contracts are modeled in the game, 

and contracts are unable to be self-enforced. Information sharing is considered a 

form of cooperation termed “collusion” and is against the game's rules; 

• Finitely long: The winner and payoff is unknown until all the moves are completed; 

• Discrete: A finite number of elements compose the game's environment; 

• Zero-sum: A player's winnings equal other players' losses, unless the game has rake 

associated, which is common in games hosted in casinos; 

• Stochastic: Responses to player's actions are influenced by chance events; 

• Sequential: Players are aware of previous players' actions; 

• Asymmetrical: The payoff and overall course of the game is influenced by a player's 

amount of chips and would in many scenarios be impossible of matching by 

switching 2 players. 
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This game is classified as sequential, and therefore extensive form will be the utilized form 

of representation in this study, adhering to the norm which implies that normal form shall 

be used to represent simultaneous games, and extensive form to represent sequential 

ones. 

The characteristics of the various Poker variants can in most cases be refined further based 

on the betting structure in place, of which there are the following for Texas Hold’em: 

• No Limit (NL) – There is a minimum bet size for bets and raises, but no upper limit. 

A player can bet the full amount of his stack (“go all-in”) and re-raise (3bet, 4bet, …) 

as many times as his stack allows at any given betting round. 

• Fixed Limit (FL) – As the name implies, bets and raises can only be placed in fixed 

amounts, with 2 defined bet sizes in the game: small bet and big bet. Players can 

only place small bets on the preflop and flop betting rounds, and big bets in the 

remaining. The big-blind is equal to 1 small bet. The first bet in any round must be 

exactly equal to the small bet size, if on the preflop or flop, or the big bet size, on 

the turn and river. Raises must also exactly equal to the relevant bet size and a total 

of 3 raises can be places in any given betting round. 

• Pot Limit (PL) – Similar to No Limit but the maximum amount a player can bet or 

raise is determined by the size of the current pot, which includes not only the bets 

made in the current and previous betting rounds, but also the amount one has to 

call in order to match any previous bets (𝑝𝑜𝑡 = 𝑝𝑜𝑡 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑜𝑢𝑛𝑑 + 𝑐𝑎𝑙𝑙). 

This is one of the more complicated betting structures and is particularly popular in 

the Omaha variant. 

• Spread Limit – A compromise between the No Limit and Fixed Limit structures, with 

bets and raises being capped but raises not necessarily matching the relevant bet 

amount, being instead defined by a spread. 

• Cap Limit – Similar to No Limit but there is a limit to how much a player can bet in 

a given hand. 

This study intends to focus particularly on the No Limit and Fixed Limit betting structures, 

with the first of these being the one which experiences the most popularity, having 

surpassed the latter in recent years. 
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Figure 8 – Extended decision tree representing the No Limit Texas Hold’em game in extensive 

form 

Analyzing the extensive-form representations of games in both variants, it is observable 

that the Fixed Limit structure produces decision trees which have a smaller maximum 

possible distance between the root and leaf, and each decision point is significantly simpler. 

The reasons for such observations are directly deductible: 

• The existence of a total amount of raises per betting round impacts the maximum 

possible distance between the root and leaf; 

• The fixed bet and raise amount impacts decision points’ available actions. 

2.3.1 Approximate games 

When games are too large and computationally expensive to solve, an approximation to 

the full solution is often found to be the only viable methodology for studying certain 

aspects of the game. Although incomplete, approximate solutions are still capable of 

providing a deep enough overview of a game or play that humans can extract information 

from and adapt or add to their strategies. 

The full game of Heads-up No Limit Hold’em is an example of a game deemed too large to 

solve, and it is easy to understand why. Depict a scenario where both players have 100 BB 

stacks and the play starts at the small-blind, who can place an open-raise of any size, which 

can then be re-raised by the big-blind. This cycle can repeat itself until one of the players 

decides to either call or fold, and if they call, one of 22 100 flops is dealt, and this cycle 

restarts until showdown is reached or one of the player folds. Considering that each of the 

individual action combinations that might occur in the game need to be calculated 
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independently, one can imagine the size of the resulting game tree. Will Tipton (2012) 

estimates a full solution to game described to occupy 5 Petabytes of disk storage space, and 

even this is an approximate solution considering the concessions made in order to simplify 

calculations. 

For the described reasons, games are approximated in order to make them manageable 

from a computational perspective, as well as to enable human players to extract patterns 

from such studies which they can apply to their games, something that isn’t feasible by 

studying the full solution. More so, removing elements from the game based on 

theoretically correct assumptions does not degrade the quality of the solution to a degree 

which affects the best grasp a human player can possibly obtain from studying them. 

2.3.2 Abstractions 

Classifying and limiting strategy sets – or the amount of possible actions for a player – is an 

important task in the field of applied game theory, where expert knowledge and other 

various optimizations can be utilized in order to limit the strategy space, simplifying the 

game and making solution calculation feasible. 

In this sense, ignoring certain elements of a game in order to limit the size of a solution is 

termed an abstraction. Through the identification of player’s tendencies or game situations 

where players are strongly incentivized to select a certain subset of their available actions, 

the scenarios which are believed to be unlikely can sometimes be ignored with no harm to 

the quality of the solution. 

There are 3 primary approximation methods for the game of Heads Up No Limit Hold’em 

(Tipton, 2012): 

• Narrow players’ strategic options: Lines of action which are nearly always incorrect 

or highly uncommon can be excluded; 

• Remove future card possibilities: Instead of considering all the possible cards that 

might be dealt on the flop, turn and river betting rounds, a significant-enough 

subset of the possible cards can be considered in order to limit the simulation while 

not affecting predictions. For similar reasons, a play can be forced to finalize on a 

certain street through an all-in or fold action, disregarding any subsequent action; 

• Consider only part of a hand: In order to study a play on a late betting street such 

as the river, any previous play needs not to be considered apart from each player’s 

starting hand range. 

These methods combine multiple abstractions which can be decoupled into the following 

factors: 
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• Ranges: Player’s ranges are capped according to the statistical model attributed or 

the situation in play, considering only a fraction of both player’s entire sample space 

of possible hole cards; 

• Stacks sizes: Player’s strategic options are proportional to their stack sizes, and 

therefore a simplification of this characteristic of a given game state may be 

conducted; 

• Bet sizes: It is assumed that players only utilize 3 bet sizes for any given situation, 

simplifying the solution to a major degree, specifically in games with a No Limit 

betting structure; 

• Bucketing: This technique consists in considering a meaningful subset of flops 

instead of the 22 100 available possibilities, dramatically reducing the requirements 

for the calculation of this betting street. Will Tipton (2012) documents a functional 

bucketing methodology, with PioSOLVER and MonkerSolver 14  having allegedly 

improved upon this method for optimized performance and results, the first of 

which claims to perform a simplification to only 1 755 flops, showing a 92% 

reduction (Choosing a subset of flops to represent the whole game – PioSOLVER, 

2020); 

• Texture abstraction: This technique is similar to that of bucketing, but instead of 

applying to flops applies to card suits instead, reducing the number of board 

possibilities that would otherwise have to be calculated. 

2.3.3 Game theory optimal 

Game theory optimal or “GTO” is a term used in the universe of Poker to describe an 

optimal, unexploitable strategy – a strategy that is in the Nash equilibrium. 

In order to understand the concept of an optimal strategy in theoretic terms, we first have 

to understand what a strategy is in the context of the game of Poker – a strategy is a 

function that returns an action given a past sequence of events and a hand, mathematically 

described by 𝐴 = 𝑓(𝐸, 𝐻) (Alex, 2014). While some strategies are easy to write down and 

follow, for which push/fold charts are an example, others aren’t feasible of being stored 

without abstractions to the existing information or the set of possible actions from which 

to choose from – in the example of push/fold charts, an abstraction to the sequence of past 

events 𝐸 is made, rendering it binary  - whether or not an opponent went all-in before us. 

A Nash equilibrium is obtained when both of the following conditions are met: 

 
14 PioSOLVER and MonkerSolver are game analysis and simulation software which are discussed in 
depth in chapter 3.2 of this study. 
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1. Each player has perfect knowledge of every other player’s strategies; 

2. Each player plays a strategy that maximizes their utility, given the opponents’ 

strategies; 

A simple example can be found in the game of rock-paper-scissors, where it can be said that 

a player employs a Nash equilibrium strategy if he consistently picks one of the 3 possible 

actions at random, effectively preventing his opponent from exploiting his strategy. In this 

scenario, the best strategy the opponent can employ is to play the exact same strategy, and 

thus, the Nash equilibrium is said to have been reached. Any deviation the opponent makes 

from this strategy leads to a decrease in his utility. 

Nash equilibrium strategies for the game of Poker are attractive for a number of reasons: 

• They guarantee a certain amount of utility; 

• They simplify the game by consistently making the same decision instead of 

adapting to the opponent’s strategy or the action history of the current state of the 

game; 

However, these also have their pitfalls – in the scenario of playing against a weak opponent 

who makes a lot of mistakes, employing a Nash equilibrium strategy reduces the expected 

value a better player expects to achieve from playing this game, as this strategy does not 

exploit the opponent’s mistakes. 

Porting the rock-paper-scissors example to the game of Poker, how can we know if a set of 

strategies is within the Nash equilibrium in a heads-up game? Provided we are the player 

in the Small Blind and have perfect knowledge regarding the range of hands the player in 

the Big Blind is calling our shoves with, can we increase the expected value of our play by 

folding any of the hands we are shoving, or shoving any of the hands we are folding? What 

about if we apply the same process to the scenario in which we are the player in the Big 

Blind? Provided we can’t increase our expected value in any of the aforementioned 

scenarios, it can be said that the strategy pair is within the Nash equilibrium. 

While the Nash equilibrium guarantees un-exploitability in 2 player games such as Heads 

Up No Limit Texas Hold’em, this concept cannot be ported to games with 3 or more players, 

which have additional factors to be considered such as implicit and explicit collusion and 

the fact that a player can unilaterally gain or lose utility by modifying his strategy. 
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2.4 Approaches 

This chapter focuses on game theoretical solution concepts, which dictate formal rules for 

predicting how a game will play out. The achieved solutions – also termed predictions – 

describe the players’ strategies and the result of the game, and are achieved through the 

application of multiple different concepts, with the most commonly used being those based 

on equilibrium, and most famously the Nash equilibrium (2.1.4). 

In the following sections, some of the approaches that have previously been utilized in 

order to create autonomous Poker playing agents will be documented. 

2.4.1 Rule based 

A rule-based approach is the most intuitive methodology of developing autonomous 

agents, basing their behavior on conditional rules. This implies that the agent is incapable 

of adapting and easy to predict after being observed by a period which may vary according 

to the complexity and number of rules. 

Besides the immediately obvious limitations, this approach presents other drawbacks when 

applied to the game of Poker, such as the fact that it requires expert knowledge, the 

difficulty to represent decisions made based on player’s intuition and the size of the full 

game making it too difficult to meaningfully represent in such manner. 

2.4.2 Evolution based 

Evolutionary game theory (EGT) originated in 1973 (J. Maynard Smith, 1973) and is based 

on the application of game theory to evolving populations in biology, differing from classical 

game theory by placing extra focus on the dynamics of strategy change. 

According to EGT, evolution is modelled as behavioral linkages between the parents and 

offspring, with these principles having been previously applied to the context of Poker. This 

methodology is based on the creation of a competition for space in a population, whose 

members need to learn which strategies are successful in order to propagate them into 

further generations (Bartone and While, 2000). 

Implicit evolutionary learning processes such as this provide adaptive capacities to the 

agents developed since this is an essential trait that enables them to learn and exploit 

opponent’s weaknesses, maximizing profit. 
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2.4.3 Simulation based 

Simulation based approaches refer to the Monte Carlo Simulation (Ulam, 1949) and are 

based on enumerating the entire sample space of possible outcomes, or at least a 

significant portion of it, through randomized trials, with the intention of empirically 

obtaining best response for a given game state. 

Such simulations rely on a large number of simulations to the opponent’s behavior, which 

uses a large number of iterations and can produce inaccurate predictions when applied to 

games of incomplete information (Teófilo, 2016). In order to overcome this, pre-established 

profiles that have been previously attributed to the opponent can bias the sampling and 

drastically reduce the number of iterations, as well as produce more accurate results. 

The most relevant simulation-based application to the development of autonomous Poker 

playing agents is the Monte-Carlo Tree Search algorithm (MCTS), which is a simulation-

based algorithm adapted for sequential products. This algorithm initializes the game tree 

by creating a single root node containing the game state, and iterating through the 

following stages a fixed number of times: 

1. Selection: selection of a leaf node to expand; 

2. Expansion: add child nodes to the selected node; 

3. Simulation: simulate on all the nodes added in the previous step until the leaf is 

reached. 

4. Backpropagation: the value resulting from a given simulation’s followed path is 

stored on the nodes that define it. 

2.4.4 Equilibrium based 

Although there are equilibrium algorithms other than Nash’s, we will only focus on it due 

to the popularity and use-cases demonstrated for the specific use-cases of this study. 

As defined on chapter 2.1.4, a Nash Equilibrium is said to be reached when the game 

participants, with a set of mixed strategies, cannot improve their performance by 

unilaterally changing their strategy. This set of strategies assumes, however, that the 

players always make the best possible move, which does not hold true for the game of 

Poker, where even experienced players may find themselves in situations where they are 

uncertain of the optimal play. 

It must also be emphasized that a Nash-Equilibrium strategy won’t, in many cases, be the 

most profitable strategy, as it does not exploit the opponent. It does, however, ensure that 
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an agent’s utility won’t fall bellow a certain threshold, which is a significant and usable 

achievement for the world of Poker in itself. 

The equilibrium which can be computed is based on abstractions such as those described 

on section 2.3.2, achieving an Epsilum-Nash equilibrium which must posteriorly be 

translated into the full game, at the expense of degradation and added exploitability to the 

solution, as it is dependent on the used abstraction (Teófilo, 2016). 

2.4.5 Counterfactual Regret Minimization 

The Counterfactual Regret Minimization (CFR) is a self-play algorithm intended to find 

approximate Nash-Equilibrium solutions for sequential games larger than those that can be 

computed through traditional linear programming techniques. 

The algorithm starts off with a random strategy, playing every action at every decision point 

with equal probability. By simulating games against itself and revisiting its decisions, the 

strategy is improved over billions of iterations, coming consistently closer to the optimal 

strategy. 

Based on the concept of counterfactual regret initially defined by Zinkevich et al. (2009), 

summing the total amount of regret for each decision point is how the algorithm improves, 

where regret signifies how much better the algorithm would have done over all of the 

simulated games if it had always played a certain action at a certain decision point. An 

action with a positive regret value is an action one should opt for, as it is the one which 

offers the most value (Johanson, 2015). 
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3 State of the Art 

This chapter intends to provide an in-depth depiction of the current state of the field of 

studies of game-theory applied to the game of Poker. Section 3.1 provides an overview of 

the academic efforts devoted to this thesis’ field of studies, while section 3.2 dives into 

commercial software which is of interest for this study. 

3.1 Academic Poker studies 

Due to the study of games being a major driving force in the field of artificial intelligence, 

and with games such as Checkers and Chess being already solved, academics placed their 

focus on the game of Poker. Endorsed by an ever-growing number of institutions, annual 

poker-bot competitions are held and universities have departments dedicated specifically 

to the study of this game. 

Some of the most renowned competitions are: 

• MIT Pokerbots – Computerized poker tournament where teams have one month 

to develop a completely autonomous poker agent to compete against other teams 

(MIT, 2021); 

• Brains Vs. AI – Matches between a group of selected professional Poker players, 

specializing in the Heads Up No Limit Hold’em variant, and an artificial intelligence 

algorithm developed by Carnegie Mellon University (Carnegie Mellon, 2017). Taking 

place in 2017, the AI beat poker players with statistical significance over a sample 

of 120 000 hands (PokerNews, 2017); 
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• Annual Computer Poker Competition (ACPC) – Competition held annually at the 

AAAI 15 , attracting enthusiasts from all over the world and featuring separate 

competitions for the games of Limit Texas Hold’em for 2 and 3 players, Heads-up 

No Limit Texas Hold’em and Kuhn Poker for 3 players (CRPG, 2020). 

Groups which are the most prominent in the artificial intelligence applied to the game of 

Poker field of studies are: 

• Computer Poker Research Group (CPRG) – Based on the University of Alberta, this 

group has laid the groundwork for the field of academic Poker research has 

achieved milestones regarding the study of the game of Poker since 1997 and is 

responsible for many of the most renowned Poker bots on record. It’s most recent 

prominent development is the DeepStack.AI poker bot, discussed in chapter Error! 

Reference source not found. (Dr. Michael Bowling, Trevor Davis, Dustin Morrill, 

2020); 

• Carnegie Mellon University (CMU) – Already mentioned in regards to the Brains Vs. 

AI event, many of the breakthroughs seen in this field of studies are associated with 

this university, with the most recent prominent developments being the Libratus 

and Pluribus bots, discussed in chapters 3.1.4 and 3.1.6, respectively; 

The following sections regard some of the most renowned autonomous Poker playing 

algorithms, with details as to the methodologies and processes implemented and the 

results obtained, allowing the reader to grasp the evolution process such algorithms 

suffered over the years, with research groups and competitions such as the ones mentioned 

being a major driver, pushing those involved in this field of studies to break barriers, re-

iterate and optimize year after year. 

3.1.1 Polaris (2007) 

Polaris was developed by University of Alberta’s Computer Poker Research Group to play 

the Limit variant of the Texas Hold’em game, only playing the Heads-up format. Being 

composed of a number of previously developed bots, this bot contains an array of strategies 

from which it chooses during play, and had been in development for 16 years by the time 

it was put to the test in a match against professional Poker players in 2007. The learning 

algorithm of this bot can be categorized as counterfactual regret minimization (2.4.5) and 

restricted Nash response (2.1.4). 

In this competition, Polaris played four matches, composed of 500 hands each, against 

professionals Phil Laak and Ali Eslami. While this is a lackluster sample, a variance reducing 

 
15 AAAI – Conference on Artificial Intelligence - https://www.aaai.org/ 
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method was put in play where the player and the bot received the same cards in an 

alternate fashion, effectively meaning that the overall hand strength of the hands received 

by both the player and the bot was the same by the end of the match (Glaister, 2007). 

Polaris record in this event was one win, one tie and two losses. 

In 2008, the Second Man-Machine Poker Championship was held with six professional 

players facing Polaris, in an event where the bot came ahead with three wins, two losses 

and one tie (Alberta, 2008). 

At the time, Polaris’ results were ground-breaking, effectively proving that artificial 

intelligence can stand a match against even the most trained human opponents. 

3.1.2 Claudico (2014) 

Claudico is a Poker-playing bot developed by Tuomas Sandholm16 and his students in the 

Carnegie Mellon University. The name is derived from the latin expression “I limp”, a 

strategy which the bot often employs (Malara, 2015). 

This bot was directed at the No Limit variant of the Texas Hold’em game, in the Heads-up 

format, and required a supercomputer with 16 terabytes of RAM to complete. Despite the 

significant computational requirements, this bot was considered innovative due to the 

abstractions applied to the No Limit variant. It’s learning algorithm falls under evolutionary 

game theory (2.4.2), with reports of it’s application to equilibrium solution learning in order 

to accelerate the convergence process of the solution, by breeding and merging different 

equilibrium profiles (Teófilo, 2016). 

In the 2015 Brains Vs. AI competition, Claudico faced four of the world’s best Poker players 

at the time – Doug Polk, Dong Kim, Bjorn Li and Jason Les – in a total of four matches lasting 

20 000 hands and 14 days, including one rest day in the middle. A variance reduction 

mechanism such as the one described in 3.1.1 was applied. The 80 000 hand sample of 

human-computer play which resulted was the largest existing to this date. 

The final result of the match was determined by the overall chip count after all hands were 

played, considering that the four human players were playing as a team against the bot. 

The bot ultimately lost by a disadvantage of 732 713 chips, representing 36 buy-ins at the 

stake played – a figure considered to be of statistical significance, preventing the result of 

the match from being a draw and providing the human team with the victory (Glatzer, 

2015). 

 
16 Tuomas Sandholm is a Computer Science professor at the Carnegie Mellon University who has 
demonstrated a great amount of interest in the research of artificial intelligence applied to the game of 
Poker (Sandholm, 2020). 
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3.1.3 Cepheus (2015) 

Developed by the Computer Poker Research Group at the University of Alberta, Cepheus is 

reported to be the first Poker bot to have weakly solved the game of Heads-up Limit Texas 

Hold’em. 

In the January 2015’s paper entitles “Heads-up limit hold’em poker is solved”, published in 

Science Maganize, it is shown that an optimal counter-strategy to Cepheus is only expected 

to win 0.000986 big blinds per game, a value of magnitudes which enable the authors – 

Michael Bowling, Neil Burch, Michael Johanson and Oskari Tammelin – to claim that the 

game is, indeed, “essentially” solved (Bowling et al., 2015). 

Using the CFR+ learning algorithm, which is an optimized variant of counterfactual regret 

minimization (2.4.5), Cepheus solved the game without resorting to abstraction, achieving 

a near-zero exploitability, rendering it unbeatable in the long-run (Teófilo, 2016). 

CRPG provides a website17 where users are able to play against the bot. 

3.1.4 DeepStack.AI (2016) 

DeepStack.AI is claimed by it’s authors – the Computer Poker Research Group at University 

of Alberta – to be the first artificial intelligence algorithm to beat professional Poker players 

at the game on Heads-up No Limit Texas Hold’em (CPRG, 2016). 

In a study completed December 2016 and published by Science Maganize in March 2017, 

involving 44 000 hands against 11 professional Poker players, DeepStack won 49 big blinds 

per 100 hands – a small sample, but also one with a win rate so high that it confirms the 

author’s statement (Moravčík et al., 2017). 

While using abstraction ideas, this agent uses a fundamentally different approach from 

abstraction-based algorithms, restricting the number of actions in it’s lookahead tree and 

continually re-solving the public game state, which in combination with heuristic search – 

in a first of it’s kind application for imperfect information games – is responsible for the 

success of this algorithm’s approach. 

3.1.5 Libratus (2017) 

Libratus is Claudico’s successor, also directed at the No Limit variant of Heads-up Texas 

Hold’em, but intended to be of more general application, outside of the context of the game 

of Poker. 

 
17 Play against Cepheus in at http://poker-play.srv.ualberta.ca/. 
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Developed by Carnegie Mellon University, Libratus uses the CFR+ algorithm, a state of the 

art algorithm unveiled in the Cepheus agent, and didn’t reduce the computational 

requirements to be ran in comparison to is predecessor, taking more than 15 million core 

hours of computation to be built, in comparison to just 3 million for it’s previous iteration 

(Hsu, 2017). 

In January 2017, Libratus was matched against four professional Poker players, in a 

competition where the total number of hands to be played increased to 120 000 in order 

to assure the statistical significance of the results (Spice and Allen, 2017). The four players 

were grouped into two teams, and the variance reduction mechanism described in 3.1.1 

and 3.1.2 was applied. Unlike it’s predecessor, Libratus beat not only both teams, but all 

four players, by a statistically significant margin of 14.7 big blinds per 100 hands – a win-

rate which is considered to be very high, which in a sample as large as this event’s proves 

without a doubt that this is a winning algorithm. 

3.1.6 Pluribus (2019) 

Developed by Facebook’s AI Lab and Carnegie Mellon University, Pluribus became the first 

agent to beat humans outside a Heads-up setting in a the game on No Limit Texas Hold’em. 

Directed at the 6-max format, in which 6 players sit at the table, Pluribus was tested with 

statistical significance against professional Poker players, including two WSOP18 winners. 

Being put to the test on both a “five Ais + one human player” and “five human players + 

one AI” setting, the agent won an average of 5 chips per hand in the latter setting. 

Pluribus’ success if a product of capitalizing upon the knowledge provided by Carnegie 

Mellon’s studies already put to the test in the Libratus agent and innovating upon it. 

Incorporating “a new online search algorithm that can efficiently evaluate its options by 

searching just a few moves ahead rather than only to the end of the game” and “new, faster 

self-play algorithms for games with hidden information”, this agent improves the CFR+ 

algorithm, providing it not only with improved in-game performance, but also improved 

computational performance, making this break-through available using $150 of cloud 

computing resources, in contrast to the millions of dollars used in computer equipment for 

the developments described in the chapters dedicated to Claudico, and it’s successor, 

Libratus (Brown, 2019). 

3.2 Commercial game solvers 

Surfacing on the market recently, a game solver is a software which allows a player to insert 

a game’s state, utilizing machine learning to compute the best possible strategy. Through 

 
18 WSOP – World Championship of Online Poker 
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the usage of data aggregation and visualization techniques, this strategy is then packaged 

into a format the user can interpret and study. 

With a rise in the game’s competitiveness, a growing number of players started resorting 

to such software, and solvers now constitute well established studying tools which are in 

every serious player’s toolbox.  

3.2.1 PioSOLVER 

Surfacing on the market in the year of 2015, PioSOLVER (Piosolver.com - PioSOLVER, 2020) 

established itself as the de-facto standard of endgame solving (Ganzfried and Sandholm, 

2015) software for the game of Hold’em. Utilizing user input to create a game scenario, this 

software demonstrated to be capable of formulating game theory optimal strategies with 

a high degree of accuracy, allowing players to analyze the game in an analytical manner to 

a degree which that was uncommon up to this point. 

With most of the player’s study of the game at the time consisting of equity simulations in 

characteristic range versus range scenarios, PioSOLVER was the first product to provide 

players with human-interpretable solution trees from which they could derive information 

that they could implement into their strategy, potentially covering their leaks while also 

learning how to optimally adapt to and exploit their opponents. 

In order to analyze a game situation, users are required to input the players’ stack sizes, bet 

sizes and ranges. While the first information is deterministic, users are required to make 

correct assumptions for the remaining in order to obtain an accurate solution. Although 

estimation errors in the arbitrary game situation can degrade or altogether invalidate the 

quality of the solution, it is important to note that human players tend to use standardized 

bet sizes, and a player’s range in a certain situation can be approximated with a significant 

enough sample. 

Demonstrating how to use this software to study a situation that consists of a 6-Max No 

Limit Hold’em flop spot. The pre-flop action folded to the button who open-raises to 2.5 

BB, the small-blind re-raises to 8.5 BB, the big-blind folds and the player on the button calls, 

revealing a Qs Jh 2h flop. In order to generate a solution for the flop, turn and river sub-

games, we start by make reasonable assumptions for both player’s ranges. It is important 

to note that since we intend to study the post-flop stage of the game, the player in the 

small-blind is considered to be the out-of-position player, even though he has the positional 

advantage in the pre-flop stage of the game.  
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Figure 9 - PioSOLVER's range assigning tool (1) 

We consider the player in the player in the small-blind, in this case referred to as “OOP” for 

“out-of-position”, to raising every suited hand that contains an ace, every pair larger than 

55, every broadway apart from QJo and KJo, as well as some suited connectors, namely 54s, 

65s, 76s, 87s, 98s, T9s, T8s, J9s, K8s and K9s. The selected range consists of 220 hands, or 

16.59% of all starting hands. 

 

Figure 10 - PioSOLVER's range assigning tool (2) 
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We consider the player in the button, shown as “IP” for “in-position”, to be calling 262 

hands or 19.76% of all starting hands, as described in the figure. There are several important 

takeaways from the defined range. The fact that the strongest possible hands, AA, AKs and 

KK are not included in this player’s range is due to the fact that we do not consider this 

player to be ever calling with these hands, always playing this with a re-raise. The concept 

of hand weight is also present, with the player calling half of the times with the hands AKo, 

QQ and JJ, giving these a 0.5 weight in this range. 

Having defined both player’s ranges and the pot details, which in this case consist of a 

starting pot value of 36 chips and an effective stack size of 325 chips, it is necessary to input 

the allowed actions and bet sizes for both players in the flop, turn and river. We allow the 

in-position player to bet 33.55% of the pot on the flop, and 66% on the turn and river. We 

also allow him to raise to three times the size of the pot on the flop, as well as 50% of the 

pot on the turn and river, as well as move all-in. The out-of-position player configuration is 

similar to that of the in-position player’s in every parameter except for the flop raise size, 

which we define as 50%. 

With every arbitrary parameter defined, the software is ready to build the game tree based 

on which it will simulate the game in order to derive the optimal solution. While it is 

common for the degree of imperfection associated with the solutions to be measured in 

Epsilon-equilibrium, PioSOLVER presents it as “exploitability per hand”, representing the 

chip amount a perfect adversary – one knowing our exact strategy and employing the best 

possible counter strategy – would expect to win per hand (Technical Details - PioSOLVER, 

2015). In order to obtain a reasonable approximation from which we can derive useful 

information, it is advisable to solve until the solution presents an exploitability of 0.25% to 

1% of the value of the pot. 

 

Figure 11 - PioSOLVER example output 
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Once calculated, the solution is browsable on all nodes of the game tree, presenting the 

optimal frequency the player in a decision point should perform each action with each his 

hole cards. Each color signifies an action, with red representing bet, green representing 

check, and gray representing the cards that are not in the player’s defined range. The 

proportion of color filling the background of each holding is relative to the frequency of the 

action. Analyzing Figure 11 - PioSOLVER example output, we can see that the optimal 

betting frequency for the given situation is 51.03%, with about 99 hand combinations 

betting. Because of the proximity between the betting and checking frequencies, acquiring 

this information in this particular situation wouldn’t be of much use if the frequencies by 

which optimal play is found weren’t available for each of the individual holdings in the 

player’s range. These are also analyzable – the scope can be narrowed to individual hands, 

demonstrating, for example, that the out-of-position player should raise AA with about 80% 

frequency, KQs with about 50% frequency, and TT with about 33% frequency. The exact 

values for each action are displayed and hovering the mouse over a certain holding will 

display additional information, such as the fact that the out-of-position player should 

always raise A2s of clubs and diamonds, but only raise the spades suited hand two-thirds 

of the time. 

Elations that can be obtained from the provided solution are numerous. However, 

simplifications are necessary in order for a human player to follow the provided strategy – 

while it is feasible for a human player to integrate always raising his lowest and highest 

suited ace hands while checking AJs to A5s half of the time into his strategy, it is unrealistic 

to consider a player can apply the exact action frequency obtained by the solver in the most 

various game situations, considering that on later streets of the game the solver can apply 

different frequencies for multiple raise sizes as well as a check action on each hand. 

While this software offers additional analysis features that are not going to be described in 

this study, such as equity and expected value explorers, it is relevant to mention that a pre-

flop solver was made available 9 months after it’s market debut (The preflop solver - 

PioSOLVER, 2015). Due to the RAM and disk space requirements associated with solving a 

full game with the pre-flop, flop, turn and river stages, an arbitrary subset of flops is 

necessary to be input in order to perform the solve. This is a necessary abstraction in order 

to enable users with ordinary computers to use this feature, and as demonstrated on 

chapter 2.3.2, it should be noted that selecting a subset of flops that adheres to certain 

criteria can create a solution that is approximate to that achieved by solving for the entirety 

of the possible flops. Combining this abstraction with the restriction of stack and bet sizes, 

a tree describing a heads-up game when the in-position player can open fold, limp or raise 

can be simplified to the format that follows. 
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Figure 12 - PioSOLVER's example preflop game tree 

The ability to provide human-interpretable solution trees and the relatively low processor 

capacity requirements were breakthrough factors for the widespread adoption of this 

software in the poker community, being equally as relevant as the game solving approach 

it employed. A whole new market was created for this type of software, with a large portion 

of professional poker players taking advantage of its capacities by utilizing it in order to 

deterministically study game situations, when the previously available alternative was to 

strategically discuss it with others. 

Several alternatives to PioSOLVER have been made available in the market during the 

upcoming years, such as MonkerSolver (MonkerWare.com - MonkerSolver, 2020), 

SimplePostFlop (SimplePostFlop, no date), GTO+ (GTO+ – Making Game Theory Practical, 

no date) and jesolver (jeskola.net/jesolver_beta/, no date), some of which will be discussed 

in the following chapters. 

3.2.2 MonkerSolver 

Launched in February 2017, MonkerSolver (MonkerWare.com - MonkerSolver, 2020) 

quickly cemented its market position due to its ability to solve Omaha, a poker variant that 

plays similarly to Hold’em in most aspects, with the main distinction between them residing 

in the player’s starting cards. In this variant, players’ starting hands contain four cards, from 

which they must use exactly two in order to make a hand, meaning that while in Hold’em a 

player can make a flush with one of his hole cards if there are four cards of the same suit 

on the board, this is not the case in Omaha(Chad Holloway, 2017). Additional distinctions 

between these variants are not a factor of the game’s rules but rather the dynamics these 

create. It is easily deductible that the game is more prone to action with players being two 

times as likely to attain a made hand or draw. Relative hand strength is more difficult to 

ascertain – while the best ranked hand in Hold’em (Ax Ax) is an 83% favourite versus the 

second best ranked hand (Kx Kx), in Omaha the best ranked hand (Ax Ax Kh Ks) has only a 
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31% chance of winning, and 41% change of tying, against the second best ranked hand (Ax 

Ax Td Jc). Therefore, and likely in part due to the aforementioned game dynamics, the most 

popular Omaha betting structure is pot-limit, which as previously demonstrated reduces a 

solution’s number of nodes. 

 

Figure 13 - MonkerSolver's user interface 

A greater novelty than Omaha solving was the fact that this software is capable of 

generating solutions for sub-games with more than two players on all betting streets, 

including the pre-flop. While theoretically unsound as previously demonstrated in chapter 

2.3.3, multiway sub-game solving became a highly sought-after feature, in particular by 

players of Sit & Go type games. Certain characteristics of this type of games makes the 

application of multi-way solving more feasible – multiple players to reach the flop with a 

lower frequency, the actions in the preflop street gain importance due to the shorter stacks 

and blind pressure, and players tend to adhere to a defined strategy more constantly than 

in other formats – but they do not guarantee the player following an equilibrium strategy 

not to lose, unlike what occurs in heads-up scenarios. 

Revealing no information in regard to its multi-way solving methodology, MonkerSolver 

does claim to use “state of the art techniques to reduce game size”(MonkerWare.com - 

MonkerSolver, 2020) in the form of a technique referred to as 

“bucketing”(MonkerWare.com - Abstraction, 2020). This technique consists in grouping 



 

52 
 

strategically similar hands in order to reduce the size of the game tree in a considerable 

manner while maintaining the significance of the solution. The software resorts to this type 

of abstraction in two particular situations. The first use occurs when calculating preflop 

situations in the game of Hold’em, and follows the principles described in chapter 2.3.2, 

with different levels of abstraction being compared to the University of Alberta’s full game 

solution (Tammelin et al., 2015) so as to provide an indication of how the reduction of the 

game size affects the preflop solution (MonkerWare.com - Abstraction, 2020). Such 

comparison can be viewed in the figure that follows. 

 

Figure 14 - Solution quality comparison between multiple abstraction techniques 

The second use occurs when calculating Omaha situations, a game for which the developers 

of this software claim that even a post-flop only solution is unfeasible to be generated 

without the use of heavy abstractions. While the principle is maintained – grouping 

strategically similar hands – it is in this case applied by merging cards according to their 

potential of reaching a flush. Before the river, only suits capable of becoming flushes are 

considered, while only suits with three or more cards on the board are considered on the 

river. This type of abstraction is referred to as “texture abstraction”. 
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One shortcoming in this software is the lack of an exploitability measure associated with 

the presented solution, which hinders their evaluation on a theoretical level. Despite this, 

tests performed by users on a benchmark blind-versus-blind simulation showed that the 

solution presented by MonkerSolver can closely relate to that output by PioSOLVER with 

abstraction settings set to one of the following: 

• 90 buckets, no abstraction on the flop (Full game), small abstraction on the turn and 

river (30/Large); 

• 30 buckets, no abstraction on the flop and turn, minor abstraction on the river 

(30/Large). 

Despite the efforts put into reducing the game size without creating a degree of noise that 

would degrade the quality of the solution to a point where it had major flaws, simulations 

for Omaha games and multi-way scenarios require enormous amounts of RAM, which 

essentially made these features only available to those with the resources to rent or acquire 

server-grade computers. 

3.2.3 SimplePostFlop 

While largely similar to the previously mentioned solver softwares, SimplePostFlop 

(SimplePostFlop, no date) differed in the fact that it offered various calculation algorithms 

for the user to choose from, doing so in order to enable users equipped with less capable 

computers to run Poker simulations. 

Available algorithms are classified in 2 different categories, the first being vector algorithms 

– Local A1, Local A2 and Local A3 – and the remaining being Monte Carlo simulation based 

algorithms – ESCFR and CSCFR. The algorithms positioned in the last category are only 

available for usage on the flop, with the turn and river calculation options consisting solely 

of the vector algorithms. Analyzing the same situation using different algorithm 

combinations for the multiple betting streets can provide insight on how the quality of the 

solutions achieved relate with the time elapsed and memory required to calculate it. The 

different algorithms generally vary on the following characteristics: 

• Convergence – Some algorithms are not guaranteed to converge, and some take 

more time to do so than their alternatives; 

• Precision – The minimum nash distance achieved in the solution is different 

between algorithms and their combinations; 

• Memory requirements – Some algorithms can require twice as much RAM 

compared to their alternatives. 
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In terms of abstractions, the software can calculate using 4 different settings – Small, 

Medium, Large and Perfect – which in similarity with MonkerSolver’s settings (see Figure 

14 - Solution quality comparison between multiple abstraction techniques) to the 

completeness of the game tree in which the game will be simulated, in what is assumed to 

resemble the methodologies described in 2.3.2. An approximation mode can also be 

defined in which the selected first percentage of the calculations are approximated, and 

the remaining calculated to exactitude. 

 

Figure 15 - SimplePostFlop's user interface 

Results are displayed in an interface similar to that of PioSOLVER’s, with the optimal action 

frequency for each individual hand, and the equity and expected value figures for all players 

analyzed. 

It is important to note that SimplePostFlop is only part of the software package made 

available by Simple Poker(Poker, no date b), bundling with Simple Preflop Hold’em with the 

capability of solving preflop situations, Simple 3-way (Poker, no date a), enabling the 
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calculation of equilibrium strategies for 3 player situations and Simple Omaha, which is to 

the Omaha variant what SimplePostFlop is to Hold’em. 

3.3 Overview 

The continuous evolution of academic poker bots and solvers demonstrated in this chapter 

shows that there is an ever growing amount of resources being made available which use 

machine learning methodologies in order to allow humans to grasp aspects of the game 

which were previously unknown. 

With the continuous increase in computational performance accompanied by a decrease in 

the price of components, it is foreseen that the game of No Limit Texas Hold’em will 

inevitably reach a state where it is considered effectively solved, just as it’s Limit Texas 

Hold’em counterpart, and it’s Chess and Checkers ancestors.  
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4 Value analysis 

This chapter provides an in-depth view of the Value Analysis (VA) process applied to the 

solution in development with the main objective of identifying the optimal ratio of 

production cost to value offered. This provides a measure of how the requirements and 

overall functionality package affects the development process in terms of effort and time-

to-market, which translates into the products market viability (Rich and Holweg, 2000). 

A Value Engineering (VE) approach was adopted for conducting the aforementioned 

process, applying many of the same principles and techniques to the manufacturing stages. 

A product or service’s value is strongly related to a set of attributes (Rich and Holweg, 2000), 

some of which relate to the product’s functionality and others to the product’s value from 

the consumer point of view: 

• Utility value: how functional a product or service intends to be; 

• Esteem value: the value a user or customer attributes to the product or service’s 

attributes, not directly contributing to utility but aesthetic and subjective value 

instead; 

• Market value: what is the market prepared to pay for the product or service’s 

usage, consisting of the sum between the aforementioned attributes 

(𝑀𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 + 𝐸𝑠𝑡𝑒𝑒𝑚 𝑣𝑎𝑙𝑢𝑒). 

The Value Analysis and Value Engineering processes are systematical, formal and organized 

methodologies which can be described by the following figure. 
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Figure 16 – The Value Analysis process adapted from Rich and Holweg, 2000; Nicola, 2019 

In order to correctly assess and direct a products function in order to meet the market’s 

demand, a profound understanding between the product’s functional specification, how it 

provides an answer to a market’s inefficiency and how it’s value will ultimately be perceived 

by the end customer. The phases that compose the Value analysis process (Figure 16) 

concede this assessment, and can be described as follows (Rich and Holweg, 2000): 

• Orientation: selection, preparation and presentation of the product to be adopted 

during the Value Analysis process; 

• Functional identification and analysis: analysis of the product and identification of 

it’s primary functionality, considering the market and consumers; 

• Creative alternatives: identifying solutions that enable the achievement of the 

product’s intended functions; 

• Analysis & evaluation: evaluating the cost-benefit relation in each of the solutions 

derived in the previous phase in order to identify which is more adequate to the 

project; 

• Implementation: briefly described the solution to be implemented based on the 

conclusions reached through this procedure. 

4.1.1 Orientation 

The orientation phase consists of the selection, preparation and presentation of the 

product as well as the creation of the value analysis team. 

In this stage of the analysis, the New Concept Development (NCD) was adopted in order to 

present the product’s environment, providing a common language representation and 

definition of a product’s innovation process (Koen et al., 2002). 
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Figure 17 – Product innovation process adapted from (Koen et al., 2002; Nicola, 2019) 

This innovation process is composed by 3 phases, as described by Figure 17: 

1. Fuzzy Front End (FFE), composed by unpredictable, unorganized and unstructured 

activities; 

2. New Product Development (NPD), composed by structured activities; 

3. Commercialization of the resulting product. 

The NCD model adapts the activities to be developed in the FFE specifying no particular 

order, enabling their execution when deemed appropriate. It is a relationship model 

composed of the engine – senior and executive-level support – and the elements it powers, 

as well as influencing factors. 

 

Figure 18 – New concept development model adapted from (Koen et al., 2002; Nicola, 2019) 
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4.1.1.1 Influencing factors 

These are factors derived from the product or service provider’s environment and consist 

of the organizational capabilities, customer, competitor and outside world influences and 

capabilities provided by the scientific or technological resources in use (Koen et al., 2002). 

In their whole, these dictate the provider’s business strategies and competitive factors. 

The influencing factors identified for this study’s project are the following: 

1. Technological adequacy and capability; 

2. Maturity and complexity of the concepts to apply; 

3. Regulatory and legal influences; 

4. Customer influences; 

5. Organizational capabilities. 

With chapter 2.3.1 in mind, it is immediately evident that the processing and storage 

capabilities required to generate, store and access a full No Limit Hold’em solution tree in 

real-time are yet to be available even to super computers as of the date of this study. 

Moore’s law (Moore, 2004) can be utilized in order to estimate when such capacities might 

be available, but in order to compete with the solution’s remaining market players, the 

abstraction techniques regarded in chapter 2.3.2 have to be considered. More so, the 

solution to implement must consider how a technology might adapt to the specific project’s 

requirements, due to the task having very specific requirements which are not typically 

considered by software products. 

The academic Poker bot market described in chapter 3.1 shows consistent, year-over-year 

innovation in the machine learning algorithms applied, as well as improvements to the 

previous state-of-the-art contenders, which not only consolidates the maximum viable time 

for the development process of a product which intends to present disruptive capabilities, 

but also allows for a much smaller time-frame for researchers and engineers to grasp the 

methodologies applied and establish how to improve based on them. 

Regulatory, legal and customer entities influence the development process due to their 

capacity of endorsing Poker as the study-object of scientific research in the field of artificial 

intelligence, or altogether deeming the creation of autonomous playing agents as a 

frowned-upon practice. Online Poker is still ongoing its regulatory transition in a large 

percentage of the world’s countries (Europe Poker Laws - Best Poker Sites in Europe Today, 

no date), and online Poker networks consistently battle against bots fearing they lead to 
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the alienation of their player base (partypoker closes a further 121 bot accounts in July 2019; 

$76,267 and €88,351 seized, 2019). 

Finally, and in relation to the organizational capabilities which “determine whether and 

how opportunities are identified and analyzed, how ideas are selected and generated, and 

how concepts and technologies are developed” (Koen et al., 2002), one must consider that 

some of state-of-the-art presented in chapter 3.1 is a result of decades of work by teams of 

researchers equipped with enormous computing power, and adapt expectations regarding 

the final product. 

 

4.1.1.2 Engine 

The NCD model is based on leadership, corporate culture and business strategy, the main 

drivers for a company’s innovation process (Koen et al., 2002). The application of 

appropriate methodologies regarding these three corporate facets assure value generation 

through a combination of new products and services. 

For the purposes of this study, these do not entirely constitute what can be defined as the 

engine, but it can be stated that the objective it is intended to accomplish is that of studying 

and analyzing a selection of techniques from the wide array of existing ones which will 

ultimately lead to the implementation of a system that is able to relate with the previously 

existing ones in certain aspects, most notably in terms of performance. This factor, in 

combination with the ambition to grasp how these concepts may solve real-life problems 

outside of this study’s target object – Poker – position this product as a pilot showcase of 

the capabilities of the machine learning capabilities described in chapter 2.4. 

4.1.1.3 Opportunity identification 

An opportunity can be defined as a business or technological gap between the current 

solutions and the ones envisioned which can be taken advantage of by a company or 

individual in order to gain a competitive advantage, respond to a threat, solve a problem or 

ameliorate a difficulty (Nicola, 2019). 

This study’s opportunity lies in the currently observable use-cases in the market for the 

application of algorithms similar to the one described in the specification of this study’s 

solution, as well as the exploration of the scientific advancements that the employment of 

machine learning techniques might have in the most varied fields of study. While the latter 

has a strictly academical purpose, the use-cases for such an algorithm are already present, 

and not only in the market of the game of Poker, although that is the one on focus in this 

study. 
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The most immediate use-cases are the following: 

• Creation of analysis software such as that described in chapter 3.2; 

• Creation of gaming applications which providing the player with the aftermath of 

each decision, serving an educational purpose while enabling the improvement of 

their game – an example of this is PokerSnowie19; 

• Commercializing a SaaS20 solution which empowers the addition of features such 

as the one described in the previous use-case to Poker networks’ software, 

enabling them to provide players with insights while playing a real game. This is 

important for such networks from a marketing and customer retention standpoint, 

and an example of such a solution can already be seen in production in the 

PartyPoker network’s MyGame functionality21 or as a SaaS package22; 

• Developing pattern analysis techniques that aid in the identification of other 

autonomous agents through their in-game tendencies. 

4.1.1.4 Opportunity analysis 

Having identified the valid opportunities from a business perspective, the necessity arises 

to analyze them separately, assessing their capability of providing value to the end user. 

It is important to realize how the game of Poker has evolved since the Moneymaker effect 

(Swains, 2006) catapulted it into the spotlight in the year of 2003. With a massive rise in 

popularity and an increase in accessibility provided by the recently founded online Poker 

rooms such as PokerStars, founded in 2001, and Full Tilt Poker, founded in 2004, the game 

of Poker experienced an unprecedented surge of new players which became interested in 

the game due to the perceived potential of obtaining exponential profits, along with the 

association of a certain degree of skill being required in order to correctly play the game. 

The rise of Internet accessibility and TV coverage of the World Series of Poker events 

propagated the game throughout varied demographics, and the number of players grew 

for several years, reaching its pinnacle somewhere around April 15th, 2011 – Black Friday 

(Popper, 2011). This was when the American Department of Justice accused PokerStars, 

Full Tilt Poker and the Cereus network, which fathered other Poker sites, with several fraud 

related charges, effectively paralyzing the entire operation and leaving the account 

balances of millions of players inaccessible. This event is perceived as a major blow to the 

 
19 https://www.pokersnowie.com/ 
20 SaaS stands for “Software as a service” 
21 https://www.partypoker.com/en/how-to-play/my-game-explained 
22 https://neopokerlab.com/white-label-poker 
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economy of online Poker, with state efforts to regulate and tax the game subsequent to 

this date being one of the commonly attributed causes for the game’s decline. 

With less novice players entering the market and many of the previous staying – some of 

which were professional electronic sports competitors in other games – the game of Poker 

became increasingly hard due to the study efforts continuously put into it over the years, 

as well as coaching material, and most recently, simulation software, which allowed players 

to grasp aspects of optimal theories which lead to the application of near-unexploitable 

strategies which demonstrate elevated profitability, but more importantly, the creation of 

bots. 

Bots are particularly nefarious in online Poker, not only because of their playing tendencies, 

which can as of the date of this study far surpass that of any human even with a simplified 

solution, but also because there have been in-the-wild examples of how bot rings might be 

created in order to collude by sharing their hole cards and soft-playing each other, 

massively exploiting unsuspecting players. 

As more and more cases were uncovered, regular players became aware of how the game 

might be unfair and therefore became untrustworthy of the online Poker networks, which 

in turn launched anti-bot campaigns in which they demonstrate their efforts in eliminating 

non-human players from their tables, with this factor going as far as being presented as a 

competitive advantage in relation to the remaining networks. 

Based on the aforementioned information and regarding the end-user standpoint in this 

matter, an evaluation of the opportunity and it’s benefits and sacrifices can be obtained. In 

the case of this study, the most interested parties are the player, benefitting from training, 

advice or protection, and the Poker networks, benefitting from offering the 

aforementioned qualities to their prospective users. 

Conducting this analysis from a user’s standpoint is of major importance to analyze the 

opportunity’s value, since the party responsible for the project’s development usually holds 

a value perception that differs from that of the end-user (Nicola, 2019). To respond to this 

necessity, Woodall (2003) created the table shown in Figure 19 – Benefits and sacrifices 

table, which provides a value to cost ratio and allows for the assessment of an opportunity’s 

viability. 
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Figure 19 – Benefits and sacrifices table (Woodall, 2003) 

In order to conduct such an assessment, the benefits and sacrifices are identified for both 

the players and the service providers (Poker networks) from product, service and 

relationship standpoints. 

The following table demonstrates the benefits to sacrifices relation the service providers 

are expected to experience.  
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Table 3 – Perceived value for service providers 

Domain         Scope 
Product Service Relationship 

Benefits 

• Quality 

enhancement; 

• Additional 

features 

provided in 

comparison to 

competitors; 

• Additional 

services 

provided in 

comparison 

to 

competitors; 

• Strategic 

benefits in 

the form of 

early-bird 

advantage; 

• Enhance the 

product’s 

perceived 

quality; 

• Financial 

benefits in 

terms of 

customer’s 

results; 

• Gather 

enjoyment 

and 

appreciation 

from users 

Sacrifices 

• Time, human 

energy and 

effort 

resources 

spent on 

development; 

• Maintenance 

of the 

interface; 

• Search or 

acquisition 

costs; 

• Time, human 

energy and 

effort spend 

on 

maintenance; 

• Training and 

maintaining 

a team to 

manage this 

feature; 

In turn, Table 4 demonstrates the same relation for the end-user, the player who gets to 

experience the possible additional features provided by the opportunities being studied. 
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Table 4 – Perceived value for users 

Domain   Scope 
Product Service Relationship 

Benefits 

• In-game 

performance 

improvement; 

• Special service 

aspects in the 

format of tailored 

recommendations; 

• Enhanced 

perception 

of reliability; 

• Enhance the 

product’s 

perceived 

quality; 

• Increase in 

client 

satisfaction; 

Sacrifices 

• Possibility of 

increased costs in 

the format of 

rake; 

• Initial 

adaptation 

to changes 

or additions; 

• Initial 

training and 

adaptation 

to the new 

features 

introduced; 

The aforementioned benefit to sacrifices ratio remain true for both the service providers 

and consumers regardless of the opportunity in study, from the 4 hypothesis presented in 

the opportunity identification chapter (4.1.1.3), as all uniformly require implementation 

and initial support and training effort from the service provider, and provide the user with 

an increased measure of perceived product quality and trust in the organization, due to 

either receiving personalized advice on how to improve their game or the guarantee that 

all opponents are competitively legitimate. 

4.1.1.5 Idea 

An idea can be defined as the most embryonic form of a new product or service. It has a 

directly relation with the opportunity identification phase and can usually be translated in 

a high-level view of the envisioned solution for the problem creating the opportunity. 

The idea is also an important element of the NCD as it’s definition should achieve the 

highest business value possible, influencing the future success and overall health of the 

business (Koen et al., 2002). 

Therefore, this project’s core idea is to adopt a machine learning approach on which the 

implementation an autonomous Poker-playing agent will be based. 
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4.1.1.6 Concept definition 

Concepts are well-defined ideas which include a written and visual description that includes 

primary features, customer benefits and some understanding of the solutions’ 

technological requisites. These represent the final element of the NCD and provide the exit 

to NPD (Koen et al., 2002). 

As such, this project’s concept consists of the development of an autonomous Poker-

playing agent which is coupled with a user-interface enabling users to match against it. 

4.1.2 Functional identification and analysis 

The first step in the Quality Function Deployment (QFD) technique is the analysis of the 

customer value chain, fully depicting the customer and translating his requirements into a 

product design. The advantage obtained from this technique is the representation of the 

separate customer groups the solution is intended to serve (McGraw-Hill, 2003). 

 

 

Figure 20 – Customer value chain 

In this stage of the VA process a product analysis will be conducted accounting for the main 

requirements and functions it makes available to the customer. 

This process is divided in 2 parts, with the first being the functional identification in which 

the product’s main requirements and functions are identified. A function can be defined as 

the esteemed value it transmits to the client, and the set of functions identified in this part 

of the VA process are the parts of the product which will ultimately contribute to its 

esteemed value (Rich and Holweg, 2000) and therefore to its overall viability. 

These functions are described by the following tree diagram in Figure 20: 
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Figure 21 – Functionality tree diagram 

The following part of this process consists of the functional analysis, in which functions are 

comparatively evaluated. The House of Quality technique will be applied in order to 

translate the customer’s desired attributes into engineering requisites, one of the most 

important results of the QFD. Using the aforementioned technique, quality and 

functionality requirements are compared and the relationships between them evaluated in 

order to identify positive and negative relations. 

The functional requirements presented in Figure 22 are a subset of the requirements listed 

in chapter 5.1.1. 
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Figure 22 – House of Quality 
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The following table describes the customer and functional requirements considered in 

order to build the House of Quality. 

Table 5 – Requirements considered for the House of Quality analysis 

Type Requirement Customer Importance 

Customer Performance 25 

Customer Quality 50 

Customer Accessibility 25 

Functional Assessing the game’s state - 

Functional Modeling opponents - 

Functional Formulating strategies - 

Functional Providing information - 

From the House of Quality analysis (Figure 22) we can derive that the most important 

requirement from a user’s standpoint is “Formulating strategies” – the products capability 

to formulate valid, profitable in-game sequences of actions, in accordance to the game’s 

state. The capacity in which the product interprets of the latter is the second most 

important requirement, with the strategy formulation being dependent on this. 

Having assessed all the product’s functionalities, a pairwise comparison is conducted in 

order to rank them by importance. When all pairs are compared, each pair’s resulting sum 

is calculated, with the one which obtains the highest value being considered as the most 

relevant function for the project, and the main one to be taken into consideration along the 

development process (Rich and Holweg, 2000). 
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Figure 23 – Pairwise comparison 

The results demonstrated by the pairwise comparison show that the most important 

function of the autonomous agent is that of “Game solving”, followed by “Game state 

analysis”. These results correlate directly with those obtained in the House of Quality 

analysis, allowing us to objectively conclude that these are the requirements in which the 

main focus of this project lies. 

4.1.3 Alternatives 

In this stage of the value analysis process, tools that enable the development of the product 

being analyzed are presented. One of the provided alternatives must be selected, taking 

into consideration not only the most meaningful requirements derived from the previous 

chapter, but also the production cost to value offered ratio. 

A series of alternatives for the implementation and fulfillment of this product’s main 

requirements have been described in detail in chapter 2.4 and 0, and mainly consist of 

approaches of the following genre: 

• Rule based (2.4.1); 

• Evolution based (2.4.2); 

• Simulation based (2.4.3); 

• Equilibrium based (2.4.4); 

• Counterfactual regret minimization (2.4.5). 
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4.1.4 Analysis and Evaluation 

The following phase to be conducted in the value analysis procedure is the analysis, 

evaluation and decision of the tool which concedes the most value to the consumer at the 

lowest cost to the provider. 

For the means of this VA phase, the Analytical Hierarchy Process (AHP) will be utilized. This 

is a multi-criteria decision support method initially defined by Thomas L. Saaty (1984) with 

the purpose of comparing different tools defined in the alternative creation phase 

according to a set of criteria in order to assess which will be the better tool to use in the 

project. 

Being a discreet multi-criteria decision method, the AHP allows a problem to be divided 

along multiple hierarchies in order to facilitate the evaluation and decision process, 

ultimately reaching a decision. 

The criteria for this study’s product are the following: 

• Implementation – the ease with which the theoretical concepts can be 

implemented into a fully-fledged application; 

• Hardware requirements – in terms of RAM and hard-drive space; 

• Time elapsed – how long the application takes before demonstrating the calculated 

results. 

The aggregated criteria and alternatives form the hierarchical decision tree contained in 

the following figure. 
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Figure 24 – Hierarchical decision tree 

After defining the criteria and building the hierarchical tree for this phase’s assessment, the 

AHP commands the elaboration of a comparison matrix to establish priority between the 

criteria, according to the method’s fundamental scale. 
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Table 6 – Fundamental scale of the Analytical Hierarchical Process (Saaty, 1984) 

Importance on an 
absolute scale 

Definition Explanation 

1 Equal importance Two activities contribute equally 
to the objective 

3 Moderate importance of one over 
another 

Experience and judgement 
lightly favor one activity over 
another 

5 Essential or strong importance Experience and judgment 
strongly favor one activity over 
another 

7 Very strong importance An activity is strongly favored 
and its dominance 
demonstrated in practice 

9 Extreme importance The evidence favoring one 
activity over another is of the 
highest possible order of 
affirmation 

2, 4, 6, 8 Intermediate values between the 
two adjacent judgements 

When compromise is needed 

   

Considering the fundamental scale’s values, priorities are then attributed for each 

comparison set of the criteria. 

Table 7 – AHP’s criteria matrix 

 Implementation 
Hardware 

requirements 
Time elapsed 

Implementation 1 5 9 

Hardware requirements 
1

5
 1 

3 

Time elapsed 
1

9
 

1

3
 

1 

Sum 
𝟓𝟗

𝟒𝟓
 

𝟏𝟗

𝟑
 

13 
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Each column’s sum is calculated in order to normalize the matrix and posteriorly calculate 

a mean, allowing for the criteria to be ordered by level of importance. 

What follows is the attribution of an approximate level of relative priority to the normalized 

matrix. 

Table 8 – AHP’s criteria matrix normalized and with approximate relative priority 

 Implementation 
Hardware 

requirements 
Time elapsed Priority 

Implementation 
45

59
 

15

19
 

9

13
 

0.75 

Hardware 

requirements 

9

59
 

3

19
 

3

13
 

0.18 

Time elapsed 
5

59
 

1

19
 

1

13
 

0.07 

The results define the following criteria priority: 

1. Implementation with 75% priority; 

2. Hardware requirements with 18% priority; 

3. Time elapsed with 7% priority; 

The resulting eigenvector is the following: 

[
0.75
0.18
0.07

] 

A priority consistency ratio can be calculated in order to evaluate the consistency of the 

results by comparing a random index with the consistency index. The resulting consistency 

ratio value must be < 0.1 (10%) for the priorities to be considered consistency (Saaty, 

1984; Nicola, 2019). 

𝐶𝑅 = 
𝐶𝐼

𝑅𝐼
 

(6) 

, where 𝐶𝑅 is the consistency ratio, 𝐶𝐼 is the consistency index and 𝑅𝐼 is the random index. 
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Table 9 – Random Index (𝑅𝐼) values defined by the National Laboratory of Oak Ridge (Nicola, 

2019) 

𝑛 1 2 3 4 5 6 7 8 9 10 

𝑅𝐼 0,00 0,00 0,58 0,90 1,12 1,24 1,32 1,41 1,45 1,49 

In order to obtain the consistency ratio (𝐶𝑅) one must first calculate the consistency index 

(𝐶𝐼), which can be accomplished through the following formula: 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

(6) 

, where 𝐶𝐼 is the consistency index, 𝜆𝑚𝑎𝑥 is the eigenvalue and 𝑛 is the number of evaluated 

criteria. 

The eigenvalue is calculated based on the mean values of the previously obtained 

eigenvector, which was in turn obtained from the initial criteria matrix. These are then 

divided by the values of the eigenvector that results from the normalized matrix. 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 ≅  𝜆𝑚𝑎𝑥  × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 

⟺ [

1
1

5
1

9

  

5
1
1

3

  
9
3
1
] × [

0.75
0.18
0.07

] ≅ 𝜆𝑚𝑎𝑥 × [
0.75
0.18
0.07

]  

 

⟺ [
2.28
0.54
0.21

] ≅ 𝜆𝑚𝑎𝑥 × [
0.75
0.18
0.07

]  

 

⟺ 𝜆𝑚𝑎𝑥 ≅ 3.01 

 

Knowing the 𝜆𝑚𝑎𝑥 value the 𝐶𝐼 and 𝐶𝑅 can now be calculated, considering 𝑛 = 3 and 𝑅𝐼 =

0,58. 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
=  0.005 𝐶𝑅 =  

𝐶𝐼

𝑅𝐼
= 0.008 

With the obtained value being inferior to 0.1 or 10%, the priority values are considered to 

be consistent. Having validated this, a series of pairwise comparisons that intend to 

measure the relative importance of the associated alternatives by building a comparison 

matrix for each of these and repeating the aforementioned procedure. The consistency of 

the obtained results is demonstrated on chapter 0, with all of the criteria having proved to 

be consistent. 
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4.1.4.1 Implementation 

Table 10 – AHP’s criteria matrix for the Implementation criteria 

Implementation 
Rule 

based 

Evolution 

based 
Simulation 

based 

Equilibrium 

based 

Counterfactual 

Regret 

Minimization 

Rule based 1 1 1 1 1 

Evolution based 1 1 1 
1

3
 1 

Simulation based 1 1 1 1 1 

Equilibrium based 1 3 1 1 1 

Counterfactual 

Regret 

Minimization 

1 1 1 1 1 

Sum 5 7 5 
𝟏𝟑

𝟑
 5 
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Table 11 – AHP’s criteria matrix normalized and with approximate relative priority for the 

Implementation criteria 

Implementation 
Rule 

based 

Evolution 

based 
Simulation 

based 

Equilibrium 

based 

Counterfactual 

Regret 

Minimization 

Priority 

Rule based 
1

5
 

1

7
 

1

5
 

3

13
 

1

5
 0.20 

Evolution based 
1

5
 

1

7
 

1

5
 

1

13
 

1

5
 0.15 

Simulation 

based 

1

5
 

1

7
 

1

5
 

3

13
 

1

5
 0. 20 

Equilibrium 

based 

1

5
 

3

7
 

1

5
 

3

13
 

1

5
 0.25 

Counterfactual 

Regret 

Minimization 

1

5
 

1

7
 

1

5
 

3

13
 

1

5
 0. 20 
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4.1.4.2 Hardware requirements 

Table 12 - AHP’s criteria matrix for the Hardware Requirements criteria 

Hardware 

Requirements 

Rule 

based 

Evolution 

based 
Simulation 

based 

Equilibrium 

based 

Counterfactual 

Regret 

Minimization 

Rule based 1 9 9 9 9 

Evolution based 
1

9
 1 3 5 7 

Simulation based 
1

9
 

1

3
 1 3 5 

Equilibrium based 
1

9
 

1

5
 

1

3
 1 1 

Counterfactual 

Regret 

Minimization 

1

9
 

1

7
 

1

5
 1 1 

Sum 
𝟏𝟑

𝟗
 

𝟏𝟏𝟐𝟏

𝟏𝟎𝟓
 

𝟐𝟎𝟑

𝟏𝟓
 19 23 
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Table 13 - AHP’s criteria matrix normalized and with approximate relative priority for the 

Hardware Requirements criteria 

Hardware 

Requirements 

Rule 

based 

Evolution 

based 
Simulation 

based 

Equilibrium 

based 

Counterfactual 

Regret 

Minimization 

Priority 

Rule based 
9

13
 

945

1121
 

135

203
 

9

19
 

9

23
 0.60 

Evolution based 
1

13
 

105

1121
 

45

203
 

5

19
 

7

23
 0.18 

Simulation 

based 

1

13
 

35

1121
 

15

203
 

3

19
 

5

23
 0.10 

Equilibrium 

based 

1

13
 

21

1121
 

5

203
 

1

19
 

1

23
 0.08 

Counterfactual 

Regret 

Minimization 

1

13
 

15

1121
 

3

203
 

1

19
 

1

23
 0.04 
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4.1.4.3 Time elapsed 

Table 14 - AHP’s criteria matrix for the Time Elapsed criteria 

Time Elapsed 
Rule 

based 

Evolution 

based 
Simulation 

based 

Equilibrium 

based 

Counterfactual 

Regret 

Minimization 

Rule based 1 9 9 9 9 

Evolution based 
1

9
 1 3 5 7 

Simulation based 
1

9
 

1

3
 1 3 5 

Equilibrium based 
1

9
 

1

5
 

1

3
 1 1 

Counterfactual 

Regret 

Minimization 

1

9
 

1

7
 

1

5
 1 1 

Sum 
𝟏𝟑

𝟗
 

𝟏𝟏𝟐𝟏

𝟏𝟎𝟓
 

𝟐𝟎𝟑

𝟏𝟓
 19 23 
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Table 15 - AHP’s criteria matrix normalized and with approximate relative priority for the Time 

Elapsed criteria 

Time Elapsed 
Rule 

based 

Evolution 

based 
Simulation 

based 

Equilibrium 

based 

Counterfactual 

Regret 

Minimization 

Priority 

Rule based 
9

13
 

945

1121
 

135

203
 

9

19
 

9

23
 0.60 

Evolution based 
1

13
 

105

1121
 

45

203
 

5

19
 

7

23
 0.18 

Simulation 

based 

1

13
 

35

1121
 

15

203
 

3

19
 

5

23
 0.10 

Equilibrium 

based 

1

13
 

21

1121
 

5

203
 

1

19
 

1

23
 0.08 

Counterfactual 

Regret 

Minimization 

1

13
 

15

1121
 

3

203
 

1

19
 

1

23
 0.04 

4.1.4.4 Overview 

In order to calculate which is the most efficient tool, a matrix composed of all of the 

eigenvalues is created and multiplied by the priorities eigenvector. 

 

[
 
 
 
 
0.20 0.6 0.6
0.15 0.18 0.18
0.20 0.10 0.10
0.25 0.08 0.08
0.20 0.04 0.04]

 
 
 
 

× [
0.75
0.18
0.07

]  =  

[
 
 
 
 

𝟎. 𝟑
0.1575
0.175
0.2075
0.16 ]

 
 
 
 

 

It is hereby concluded that the best performing tool is Rule based with a 30% priority. 

4.1.5 Implementation 

Through the AHP methodology, the means for implementing the desired solution have 

been identified based on the demonstrated criteria. The process concludes that a rule 

based approach is the most efficient alternative for the implementation of the desired 

product, and therefore it’s design and development shall adhere to the specifications of 

derived via this procedure. 
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5 Design 

This chapter’s aim is to document the decisions made in the stage where the solution to be 

developed is in it’s specification stage. The requirements, models and architecture of the 

application are documented in-depth in this section, along with context and justifications 

supporting the demonstrated artefacts. 

5.1 Requirements 

Based on the analysis conducted, a list of requirements was elaborated in order to establish 

the necessities, responsibilities, and particularities of the solution in development. 

Said requirements adhere to the FURPS+ model (Fischer and Jost, 1989), commonly used 

for classifying software’s functional and non-functional requirements. FURPS+ is an 

acronym for: 

• Functionality: Capability, reusability and security; 

• Usability: Human factors, aesthetics and consistency; 

• Reliability: Availability, Failure extent, predictability and accuracy; 

• Performance: Speed, efficiency, capacity and scalability; 

• Supportability: Extensibility, testability and flexibility. 
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5.1.1 Functional requirements 

A functional requirement specifies a function of a system or component, and is often 

described via the interactions the system should conduct with users – what input to receive 

and what output to provide – through User Stories which aid the software development 

team in understanding what must be produced (Ambler, no date). 

Due to the fact that this study’s solution consists mostly of functional components which 

the end-user only experiences in a straight-forward game interface that adheres to the 

industry’s standards, requirements of this typology will instead be presenting regarding 

mainly the feature set, capabilities, generality and security of the system (Grady, 1987). 

 

The functional requirements taken into consideration are the following: 

Identifier Summary 

FR-001 – Game state interpretation The solution must be able to interpret the state of 
the game at any given action moment. 

FR-002 – Pot odds calculation The solution must be able to calculate pot odds in 
any given game state. 

FR-003 – Expected value calculation The solution must be able to calculate expected 
value in any given game state. 

FR-004 – Equity calculation The solution must be able to calculate equity in any 
given game state. 

FR-005 – Range evaluation The solution must be able to evaluate ranges in any 
given game state. 

FR-006 – Hand evaluation The solution must be able to evaluate a hand (hole 
cards) in any given game state. 

FR-007 – Opponent modelling The solution must be able to model an opponent’s 
strategy in any given game state, given the existence 
of a sufficient sample size. 

FR-008 – Strategy assignment The solution must be able to attribute pre-modeled 
strategies to opposing players. 

FR-009 – Game tree building The solution must be able to formulate game trees 
from any given root node. 

FR-010 – Game tree simulation The solution must be able to simulate play 
throughout the entirety of a previously generated 
game tree. 

FR-011 – Game tree lookup The solution must be able to validate if a given game 
state is known (has been previously calculated). 

FR-012 – Simulation convergence The solution must assure the game tree simulations 
converge in compliance with NFR-004. 

FR-013 – Data storage The solution stores hand history and / or game tree 
solutions in the database it is connected to. 

FR-014 - Statistics The solution must calculate and demonstrate basic 
player statistics on the user-interface. 

FR-015 - Matchmaking The solution must allow players to initiate matches 
against the autonomous agent. 
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5.1.2 Non-functional requirements 

Functional requirements are supported by non-functional requirements which impose 

constraints on defined aspects of the system’s design or implementation, typically 

regarding specific categories. 

5.1.2.1 Usability 

Usability non-functional requirements relate to how the system performs at providing a 

pleasurable experience to the end user. It was established that this system should: 

• Provide an intuitive and ergonomic design which is adjusted to the to the activity it 

is intended to support; 

• Implement ISO 9241’s design principles in order to create a user-centered design; 

5.1.2.2 Reliability 

Reliability non-functional requirements consider multiple factors regarding how 

dependable the system is in terms of how frequently and severely failures occur and how 

many resources are necessary in order to recover from them. For this sub-category, a single 

requirement was gathered: 

• Provide state-of-the-art end-to-end encryption, with client-server communication 

being handled through the HTTPS protocol; 

5.1.2.3 Performance 

Requirements regarding performance evaluate the measure in which the system’s speed, 

efficiency, throughput and response time satisfy the user’s needs (Grady, 1987). Regarding 

this category, two requirements were established: 

• Provide a response in under the action time-out limit defined (15 seconds); 

• Maintain performance throughout consecutive games with no restarts; 

5.1.2.4 Supportability 

Several aspects of the system were considered in order to assure it’s adaptability, 

configurability, compatibility and extensibility, all of which fall under the supportability sub-

category of non-functional requirements according to the author Grady, 1987. 
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• Provide an API that adheres to the HTTP-REST specification; 

• Provide a low-latency, bidirectional communication channel using the WebSocket 

protocol; 

• Provide responses in a JSON format; 

 

 

The non-functional requirements considered by the development team at this point in time 

are the following: 

Identifier Summary 

NFR-001 – API The solution provides an HTTP-REST API. 
NFR-002 – Client-server socket The solution connects to users through a multilateral 

communication socket. 
NFR-003 – Database connection The solution is connected to a database with read and 

write privileges. 
NFR-004 – Response time The solution must consistently provide a response 

within the established time frame (time-out limit). 
NFR-005 – Continuous operation The solution must be capable of playing against multiple 

players (not concurrently) without being rebooted or 
suffering adjustments. 

NFR-006 – Usability Interface design principles that adhere to ISO 9241’s 
specification shall be utilized in order to create a user-
centered design. 

NFR-007 – Interface design The solution’s interface shall be intuitive, ergonomic 
and adjusted to the activity it is intended to support. 

NFR-008 – Encryption Users must be able to connect to the solution’s server 
through SSL/TLS (HTTPS). 

NFR-009 – Client-server dialogue The solution shall format its output according to the 
JSON specification. 

5.2 Business Model 

By the thorough analysis of the problem as well as the proposed hypothesis, a domain 

model capable of satisfying the logical as well as technological necessities of the 

conceptualized solution was assembled. 
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Figure 25 - Domain Model 

Said solution is based on a client-server dialog which continuously updates the game’s 

state. Being altered every time a player acts, the state is the information index of each play 

or hand in Poker terminology. While the state holds every action which occurred at the 

given moment in each play – including nature’s actions, such as the dealing of the 

community cards – the hand is where each player’s hole cards, as well as the outcome of a 

play, is stored. This decision is supported by the fact that while the game’s state varies 

constantly, the players’ hole cards and the outcome of the play is set only once per play and 

remains unaltered throughout it. Players’ hole cards and the board’s community cards are 

a subset of the available cards in the deck. 

The information set composed of the server’s hand and the current game state is passed 

onto the autonomous agent in order to retrieve a decision on which to act upon, storing it 

in the game’s state and communicating it to the client in order for the game to proceed. 

At the end of each hand, information regarding the autonomous agent’s hole cards and the 

strategies calculated by the autonomous agent are stored in a database for analysis and 

efficiency purposes. 

5.3 Architecture 

In order to obtain the performance and integrity standards demanded from a product such 

as the one in study, it is vital to analyze the infrastructure design possibilities. Standardized 

practices of software engineering, programming principles and documented patterns were 

taken into consideration in order to arrive at the design of a solution which meets the 
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project’s requirements to a high standard and is able to be implemented using established, 

widely utilized and up-to-date technologies. In this section, artefacts describing such a 

design are presented.  

5.3.1 Component diagram 

The component diagram displayed in Figure 26 aims to segregate the various levels of the 

system’s functionality, in this case dividing it in 3 major groups: client, server and database. 

 

Figure 26 – Solution’s component diagram 

Table 16 describes Figure 26’s components. 
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Table 16 – Solution’s components 

Component Description 

Client The device through which the end user 
consumes the solution, typically through a 
web browser or WebView application 
component. 

Server The device providing the solutions artefacts 
to the client. 

Database The solution’s database. 

Express The application providing and handling the 
communication socket established with the 
client. 

Autonomous agent The application providing the solution with a 
strategy response to game states which are 
passed to it. 

In a center position of this architecture lies the server, which maintains an open 

communication channel with the client and mediates the application’s state, sending and 

receiving it from both the client and the autonomous agent. The server also connects with 

a database which it uses to query data which may be of use, such as pre-processed 

strategies for a given state, as well as to store said calculations and results used to measure 

the agent’s performance. 

The autonomous agent’s calculator component resides along the web server, but could be 

externalized were an API to be made available, as it only needs to receive the game’s state 

information in order to perform strategy evaluations and formulate a decision. 

5.3.2 Deployment diagram 

Figure 27 demonstrates the deployment diagram of the components which compose the 

solution, described singularly in Table 16, assuming the agent’s calculator is not 

externalized. 

 

Figure 27 - Deployment diagram 
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5.3.3 Client-server dialogue 

Responding to the application’s necessities and in accordance to the component diagram 

shown in Figure 26, the client-server dialogue is mediated through a socket which 

establishes and maintains a real-time, bi-directional, event-based and asynchronous 

communication channel between the client and the server (Introduction | Socket.IO, 2020). 

While the preferential communications protocol is WebSocket, the library in use falls back 

to HTTP long-polling in case of lack of support in the client’s web-browser, assuring the 

application’s functionality, although with a lower performance standard deriving from the 

fact that the server is unable to push messages to the client, which will be set to check for 

updates on a regular interval. 

According to data found on the popular web browser compatibility index website 

caniuse.com, 98% of web browsers support Web Sockets at the time of writing (Can I use... 

Web Sockets, 2020). 

 

Figure 28 - Browser compatibility for Web Sockets as of 2020 

The following sequence diagram depicts the message exchange process between a client 

and the server application when starting and playing a game. 
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Figure 29 - Client-server dialogue sequence diagram 

This sequence diagram describes the processes triggered by events in the following order: 

1. A client connects to the server through a web-browser; 

2. The client chooses to start a new game; 

3. The server application instantiates all necessary objects, sets up the game state and 

informs the client that the game request was accepted by emitting the “new-game” 

event to the client; 

4. The client act’s by emitting an “action” event to the server; 

5. The server informs the client it’s his turn to act by emitting an “act” event in his 

direction; 

Accompanying every event emitted by the server goes a JSON object containing 

information regarding every aspect of the current state of the game. The client handles this 

information, updating it’s user interface accordingly in order to provide the end-user with 

the entirety of the information and options available to players at the given point in the 

game. 
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{ 
 "stacks": { 
  "client": 9, 
  "server": 6 
 }, 
 "table_position": { 
  "client": 0, 
  "server": 1 
 }, 
 "pot": 5, 
 "street": 1, 
 "hole_cards": [42, 19], 
 "community_cards": { 
  "flop": [46, 4, 18], 
  "turn": [], 
  "river": [] 
 }, 
 "action": [ 
  [{ 
    "action": "check-call", 
    "amount": 0 
   }, 
   { 
    "action": "check-call", 
    "amount": 0 
  }], 
  [{ 
   "action": "raise", 
   "amount": 3 
  }], 

[], 
  [] 
 ], 
 "outcome": null, 
 "num_hands": 0 
} 

Code snippet 3 – JSON object containing game state information (server → client) 

The client communicates with the server in a similar manner when emitting the “action” 

event, which is bundled with a JSON object describing the user’s action to the server. 

 
{ 
 "action": ’bet’, 
 "amount": 3 
} 

Code snippet 4 – JSON object containing user action information (client → server) 

The server continuously evaluates the current hand’s status, ending the play when certain 

conditions are met, at which point the “new-hand” event is sent to the client, indicating 

that the current play is over and the next one has begun. 
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5.3.4 Design patterns 

Software design patterns are formalized best practices which provide established solutions 

to recurring problems. The use of documentation and design patterns in software 

development has been proven to have a positive effect on comprehension and therefore 

maintainability (Wedyan and Abufakher, 2020). 

Established sets of patterns such as the Gang of Four (GoF) and Domain Driven Design (DDD) 

were consulted in an effort to adhere to GRASP’s (General Responsibility Assignment 

Software Patterns) object-oriented design guidelines. 

The following patterns and principles are considered pertinent to the solution’s design: 

• Model-View-Controller: Segregates an application’s concerns in regards to it’s data 

structure, management and output. The model is the definition of an object and it’s 

properties. The view represents a visualization of the model. The controller 

modifies both the model and the view, being able to alter the model’s properties 

and update the view. 

• Strategy: A class’ behavior is altered at runtime based on certain criteria regarding 

the operation being performed. Different classes are instantiated based on said 

criteria, implementing a given method of the context object, thus allowing for the 

same operation to be performed with varying algorithms. 

• Service: Segregates the application’s business logic from the requirements imposed 

by the different clients consuming it or different use cases involving complex 

operations which handle transactional resources. 

• Repository: Encapsulates the logic required to access the persistence layer, thereby 

decoupling the database infrastructure from the domain model layer. 

• Data transfer object: An object that carries data between processes, aggregating 

multiple resources into a single object which is typically transitioned from the server 

to the client. It increases performance by reducing the number of calls necessary to 

fetch data from multiple endpoints in dialogues with remote interfaces where the 

round-trip between the client and the server is expensive. Similarly, the data can be 

curated previous to being transitioned, removing sensitive or unnecessary details. 

• Router: Widely used in web services with CRUD operations available for it’s models, 

the router decomposes the URI endpoint called into parameters in order to 

determine which controller and action should handle the request. This pattern is 

akin to the Facade and Mediator patterns.  
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6 Development 

This chapter describes the development process of the various components of the solution, 

containing in-depth explanations regarding the decisions made throughout the 

development process, dissecting the low-level programmatic details of the procedures 

triggered throughout the flow of the execution, and documenting some of the key 

particularities of an application such as the one which this study results in.  

6.1 Autonomous agent 

Having experimented with base implementations of a number of autonomous learning 

algorithms, such and Counterfactual Regret Minimization (CFR, chapter 2.4.5) and 

Reinforcement Learning (RL, chapter 2.4.2), it became apparent that the only viable option 

in order to meet the requirements and particularities of the solution in hand was the 

implementation of an algorithm based on Fictitious Play (FP), which falls under simulation 

based approaches for machine learning, discussed in chapter 2.4.3. 

This algorithm revolves around simulating every in-game situation available to each player 

and updating the player’s strategy in accordance to the value calculated for all given 

actions. 

In order to formulate a strategy, this component receives the game’s state. In particular, 

the following parameters are necessary: 

• Players’ stack sizes 

• Blinds value (small-blind and big-blind) 

• Ante 
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These parameters are used in order for the solution to calculate the effective stack size and 

the expected value of each’s player’s decision at every possible node on this level of the 

decision tree. This is one of the downsides of this algorithm in comparison to the 

aforementioned alternatives – it does not simulate or take into consideration the additional 

decision points in the play, but instead considers the play is to be finalized at the decision 

point being analyzed. 

6.1.1 Strategy formulation 

The solution initializes by setting up the data set for the given situation being analyzed: 

both players’ stacks, the effective stack, and an initial guess for each player’s range, which 

we can assume to consist of the top 50% hands for the sake of simplicity. 

Posteriorly, the expected value of each action in each of the 1 326 hands each player might 

have is calculated and stored in a strategy profile.  
num_iterations = 500 
num_hands = 1326 
players = ['SB', 'BB'] 
blinds = { 'SB': 0.5, 'BB': 1 } 
stacks = { 'SB': 10, 'BB': 10 } 
effective_stack = max(stacks.values()) 
ranges = { 'SB': Range(0.5), 'BB': Range(0.5) } 
ranges_exploitative = { 'SB': Range(0), 'BB': Range(0) } 
 
for i in num_iterations: 
for player in players: 
  for hand in range(num_hands): 
 opponent = int(not players.index(player)) 
   
 # Calculate EV of each action 
 freq_call_opponent = ranges[opponent].get_play_frequency() 
 equity = equity_calc(hand, range_bb) 
 ev = { 
  'raise': (1 - freq_call_opponent) * (stacks[player] 

 + blinds['BB']) 
                       + (freq_call_opponent * equity * (pot + bet)), 
  'check_call':  freq_call_opponent * equity * pot, 
  'fold':  stacks[player] - blinds['SB'] 
 } 
 
 # Find the key with the highest EV 
 max_ev = ev.keys()[ev.index(max(ev.values()))] 
   

# Update exploitative range (Boolean) 
 for action in ev.keys(): 
   ranges_exploitative[player] 
   .set_hand_freq(hand, action, int(max_ev == action)) 

 
 # Update the overall range 
 ranges[player].update(ranges_exploitative[player], i) 

Code snippet 5 – logic demonstration of the fictitious play algorithm 
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Repeated iteration of this method converges to a strategy that approximates the Nash 

equilibrium, and is therefore unexploitable – in other terms, it is not possible for an 

opponent to have positive expectation versus a player employing this strategy. The 

opponent’s best response strategy is to play the Nash equilibrium as well, with any 

deviation resulting in a decrease in the expected value of his game. 

The outcome of this procedure is a range object for each player, containing every possible 

hand as key and a frequency figure as value. The algorithm generates the opposing player’s 

game-theory optimal strategy in order to continuously learn how to play against it until an 

equilibrium is reached. 

The method through which the range converges is worthy of mention as it affects not only 

the solution that the autonomous agent will output, but also the time elapsed to produce 

it. 

 
def updateRange(self, r, n): 
  fraction = 1 – (1 / (n + config.alpha)) 
 
  for h in range(len(hands)): 
    self.card_range = (self.card_range[h] * fraction) 
                      + (r.card_range[h] * (1-fraction)) 

Code snippet 6 – convergence algorithm 

The parameters of the function are the latest calculated range (r) and the number of the 

iteration it was calculated in (n), and the idea is to incorporate a significant portion of the 

initial calculations into the overall strategy, but rapidly decrease the significance with which 

each iteration affects it. For this purpose, the variable named “fraction” is calculated, being 

attributed a value which increases in proportion to the number of the current iteration - 

parameter “n”. 

Knowing that the percentage of the newly calculated range which is incorporated into the 

overall strategy is 1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, and that 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is as high as the current iteration, it can 

be stated that each subsequent iteration of the calculation algorithm has a lesser effect on 

the final solution than the previous one. The 𝑐𝑜𝑛𝑓𝑖𝑔. 𝑎𝑙𝑝ℎ𝑎 parameter is the learning rate 

hyperparameter, and it assures that the algorithm converges. 



 

98 
 

 

Figure 30 - Evolution of the "fraction" variable in the convergence algorithm 

Since it is unpractical to analyze the output of the algorithm in it’s full format, methods 

were created to aggregate all 1 326 hands into the more common compact format of 169 

hands by discriminating hands by suit symmetry, and finally, through scalable vector 

graphics, generate an image of the compact hand chart, with hands above a certain 

frequency threshold being colored. This is a significant assistance in terms of visualization 

and interpretation of the strategy which aids us in the study and further development of 

the algorithm. Such visualization can be seen in Figure 31. 

 

Figure 31 - Strategy visualization 
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6.1.2 Hand evaluation 

One of the solution’s most important components is it’s hand evaluation procedure, which 

allows the agent to calculate the expected value of the multiple strategic choices presented 

by a given situation. For such purposes, the solution has to be able to calculate a player’s 

equity based on the available information in a certain game state. 

With the mathematical and theoretical bases of this process discussed in length in chapter 

2.2.5, the focus can now be placed upon the software-engineering, practical standpoint of 

this endeavor. While it may at first appear that implementing such an algorithm is a feat 

that can be performed through the simplistic process of enumerating every possibility in a 

game’s state, calculating the winning and drawing odds of each hand and finally the player’s 

equity, the problem in hand is actually non-trivial due to number of reasons which foment 

debate from a software-engineering point-of-view. This debate relates to the trade-off 

between size and time in solving a problem, in which it is considered that the amount of 

time necessary to solve a problem is inversely proportional to the size available to be 

occupied for solving it. Tree traversals are one example of this, with the amount of space 

necessary to traverse a tree being 𝑂(log (𝑛))23 if each node is visited a single time, or 𝑂(1) 

if each node is visited 3 times. 

As stated by Andrew Pork, the author of PokerStove24, one of the most popular equity 

calculators, programmers are faced with a decision when developing an algorithm intended 

to solve complex problems: whether to create a solution which addresses the problem with 

a high degree of specificity, or to create a solution which addresses the problem in a more 

general manner and which may be applied to domains which are similar to but separate 

from that of the problem in hand. The former option describes a zealous approach, in which 

the outcome of the development will consist of a complex library which considers specific 

situations presented by the problem, while the later describes an agnostic approach, which 

will result in the development of a less complex library with a higher degree of abstraction 

based on which more complex tools may be developed. 

Most if not all the available poker calculation libraries to date used an agnostic approach, 

which was not suited the performance requirements end users demand of these types of 

applications. While underlining many of the underlying issues in the zealous approaches, 

such as size of code base, deteriorated maintenance and susceptibility to failure, an 

understanding was reached that such an approach was necessary in order to achieve the 

highest degree of performance, enabling for optimizations across conceptual levels that 

would be unattainable in an architecturally agnostic approach. 

 
23 𝑛 represents the number of nodes in the tree. 
24 PokerStove is a Poker hand evaluation library written in C++. 
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Pork describes a practical example in the form of the equity calculation of the hand AA 

versus 9 opponents whose hole cards are unknown. Through an agnostic approach, every 

possible scenario (hand combination) would have to be evaluated, of which there are 1028 

combinations. But by the means of a zealous approach, this number can be reduced to only 

133 784 560 – the number of different 7-card hands, which we know are all that is needed 

to be evaluated in order to equate the hand’s equity versus the 9 opponents. 

In this same reference, the concept of “subjective all-in equities for full hand distributions” 

(Pork, 2004) is also explored. In present times and throughout this work, this is more often 

referred to as a hand versus range evaluation, and it is invaluable to the development of 

our solution, in which this kind of evaluation is used to determine expected value. 

Several attempts were made at developing a proprietary hand versus range evaluator 

function by enumerating every possible hand the opponent might hold and averaging the 

equities of every hand versus hand scenario. This immediately proved to be unfeasible, as 

a single calculation would take several minutes and produce subpar results, and 1 326 of 

these calculations are necessary per every iteration of the fictitious play algorithm. 25 

With the knowledge that this was a non-trivial, resource intensive process, several hand 

evaluation libraries were studied in order to select one suitable for our calculation, 

performance and integration necessities. Table 17 - Hand evaluator libraries summarizes 

the characteristics and capabilities of the options studied. 

Table 17 - Hand evaluator libraries 

Library vs hand vs range 64 bit Python 3 Performant 

pypoker-eval ✔ ✔ ❌ ❌ ❓ 
freepokerdb ✔ ✔ ❌ ❌ ❓ 
Deuces / Treys ❌ ❌ ✔ ✔ ✔ 
holdem_calc ✔ ❌ ✔ ✔ ❌ 
pbots_calc ✔ ✔ ❌ ❌ ✔ 

A decision was made to utilize the pbots_calc library, which allowed hand-versus-range and 

range-versus-range calculations and displayed significantly superior performance in 

comparison to other libraries testes. This library was originally developed for use in the MIT 

Pokerbots Competition. 

This library was originally developed to be compiled for 32 bit systems. Due to the memory 

access requirements of our solution, a custom wrapper was developed in order to make 

this library available for use in a x64 Python runtime. 

 
25 The fictitious play algorithm studies every possible hand each player might hold. There are 1 326 
available starting hands. Assuming there are 2 players, the total number of iterations is 1326 ∗ 2 =
2 652. 
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6.1.3 Performance concerns 

With hindering slow initial implementations of the algorithm, it quickly became apparent 

that resource optimization was an indispensable aspect of the development of this solution. 

Starting from a non-software engineering point of view, certain configuration parameters 

were found to have the potential to significantly impact the performance of computation, 

the first of which relates to the number of iterations necessary in order for the strategy 

output to approximate the theoretically correct solution. Questions such as “what is the 

minimum amount of time necessary to a 100% accurate solution” versus “what is the 

minimum amount of time necessary to produce a solution with an error margin that doesn’t 

exceed 2,5%” become pertinent and influence the development process. Empirically, it was 

found that for simple scenarios such as a 10 big-bling shove-fold game, 100 iterations were 

enough to produce a viable solution with a reduced error margin, but 200 are 

recommended in order to consistently produce the theoretically correct solution. 

 

Figure 32 - Differences in solution by number of iterations 

One configuration parameter which majorly affects the aforementioned issue is the initial 

guess provided for each player’s range. The closer the initial guess is to the theoretically 

correct result, the less the algorithm needs to converge in order to convey the exact 

solution, which greatly reduces the number of iterations necessary for such an output. 

While it may appear unfeasible to gear this in our favor, as the correct frequency varies 

based on the game state input provided and even obtaining an approximation is 

uneconomical, through the analysis of an aggregate of solutions within particular 

parameters one could estimate the values between which the solution typically resides, 

and improve the performance of the algorithm by starting with a more accurate guess. 
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Performance optimization efforts directed at reducing the time elapsed by the equity 

calculation procedure in the fictitious play process were introduced – with this being one 

of the most time-intensive portions of the process. Along with identifying a performant 

hand evaluator library, posterior improvements were made by storing calculated results in 

a lookup table. When calculating a certain scenario, the agent would verify if a previous 

calculation had occurred, using it instead of re-calculating. The cost of this lookup operation 

is significantly lower than that of the equity calculation, and this method was found to 

significantly improve performance, due to inefficiencies in the range convergence 

algorithm, which caused players’ ranges to sometimes be unaltered for several consecutive 

iterations – in which scenario, several iterations would complete without any calculation 

being performed. 

 

Figure 33 – Algorithm of a performance optimization through lookup table 

This inefficiency is due to the fact that a player is only considered to play actions that have 

a frequency above a determined threshold, and therefore would not be included in the 

range even if it’s frequency was positively updated in the previous iterations. 

It is important to note that in order to obtain the full performance benefits of this 

methodology, a file with all of the pre-calculated values must be populated and loaded prior 

to the start of a scenario’s computation. This is due to the fact that the operation of loading 

and writing to this file is resource and time intensive. The resulting file contains several GB 

of data, which requires a 64-bit Python runtime in order to make this optimization available. 
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Exhausting the optimization options available for application on the logical layer of the 

solution, multi-processing was introduced in order to direct all of the computational 

capacity available to the calculation of the solution. Python provides the process-based 

threading interface multiprocessing 26  which was utilized for this purpose, allowing 

concurrent processes to be spawned in an effective and simple to handle manner. By using 

subprocesses instead of threads, this library allows the bypass of the Global Interpreter 

Lock27, unlocking additional performance potential for Pythonic applications. 

Due to the way concurrent processes execute and return information, ordered in an often 

unpredictable manner, the agent’s fictitious play algorithm suffered significant 

adjustments. Processes do not share data between themselves, but only with the parent 

process, instead being instantiated with the necessary data as parameters, and returning 

it’s output to the parent handler process. This implicates that the convergence algorithm 

has to reside on the parent process, while the calculation and simulation algorithm have to 

reside on the child processes. This fact combined with the concurrency of the execution 

and the unpredictable order in which processes returned data means that processes that 

take longer to execute were instantiated with a now outdated strategy, and will return a 

similarly outdated strategy output, which regresses the overall strategy into which it will 

now be weighted. 

The performance loss derived from the previous exposition is acceptable, as the overall 

performance of the application improves drastically with the use of multi-processing, as 

shown in Table 18. 

Table 18 - Computation time of optimization techniques 

Optimization Description Execution time 100 
iterations 

Hand-vs-range algorithm Proprietary hand-vs-range 
equity calculation algorithm 
which found the result by 
averaging the sum of all 
hand-vs-hand lookups. 

28 minutes 

Hand-vs-range algorithm 
and lookup table 

Proprietary hand-vs-range 
equity calculation algorithm 
combined with a pre-
calculated lookup table of 
it’s own results. 

25 minutes 

Equity calculator 
dependency 

Equity calculations 
performed in real time. 

15 minutes 

 
26 https://docs.python.org/2/library/multiprocessing.html 

27 The mechanism used by the CPython interpreter to assure that only one thread executes Python 
bytecode at a time. (Glossary — Python 2.7.18 documentation, 2020) 
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Equity calculator 
dependency and lookup 
table 

Hand-vs-range equity lookup 
table. 
Algorithm looks for a pre-
calculated value, calculates 
in real-time if unable to find 
one. 

9 minutes 

Multiprocessing Equity calculations 
performed in real time. 
Multiprocessing introduced 
for work to be distributed 
throughout all cores. 

5 minutes 

Multiprocessing and lookup 
table 

Hand-vs-range equity lookup 
table. 
Algorithm looks for a pre-
calculated value, calculates 
in real-time if unable to find 
one. 
Multiprocessing. 

3 minutes 

In the first optimization techniques attempted, a proprietary preflop hand-versus-range 

equity calculation algorithm was utilized. As described in chapter 6.1.2, associated with this 

methodology is a performance figure that is lower than that achieved by using a state of 

the art equity calculator. The techniques that follow involved pre-calculating equities in 

order to reduce the time of calculation, which was the most significant portion of every 

iteration. The later techniques combine the pre-calculated equities with multiprocessing, 

representing the best performance figure obtained. 

6.2 Client 

Due to the low performance requirements of a cards-game playing application, the decision 

was made to implement the client as a Web Application, through the use of HTML5 and 

JavaScript technologies. Libraries such as jQuery and Socket.IO were used in order to 

complement the native capabilities of such technologies and accelerate the development 

process. 
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Figure 34 - Game client on desktop and mobile devices 

A web application manifest was used in order to approximate the application’s behavior 

with that a user expects from a native application, allowing for possibilities such as adding 

the application to the home screen, capable of being executed without the user realizing 

the resort to a web-browser, as it runs in a web-view only instance. 

Were the application to be introduced to Google’s PlayStore or Apple’s App Store, simple 

applications with a <iframe> component occupying the whole screen’s width and height 

could easily be developed, compiling this application into a native format. Methodologies 

such as this is what frameworks such as Cordova resort to. 

In packaging the application for distribution, attention was paid to ensuring cross-device 

compatibility as well as performance. As such, Gulp was used as a toolkit, aiming to 

standardize the build process of the application. 

 

Figure 35 - gulp.js distribution process 
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Table 19 describes each of the steps shown in Figure 35 in-depth. 

Table 19 - gulp.js distribution process 

Process Description 

Compile SCSS Uses `gulp-sass` to compile the feature-rich 
version of CSS the application was developed 
in into standardized, cross-browser 
compatible CSS. 

Minify CSS Uses `gulp-clean-css` to concatenate all CSS 
files into one and compresses. Saves disk 
space and bandwidth, improving page-load 
times. 

Compile JS Uses `gulp-babel` to compile ECMAScript 
2015+ into backwards compatible JavaScript. 
This assures maximum browser and device 
compatibility. 

Minify JS Uses `gulp-babel` to compress the compiled 
JS files, saving disk space and bandwidth and 
improving page-load times. 

Compress images Uses `gulp-imagemin` to compress all images 
in order to save disk space and bandwidth. 
Improves page-load times. 

Package Moves the compiled artefacts into a 
directory segregated from that where the 
solution artefacts are contained. 
This is ultimately contains the version of the 
application intended for distribution. 

The compilation procedure the solution undergoes eases development operations, making 

it more susceptible for testing and deployment in an automated and controlled manner, 

using the likes of GitHub CI28 or GitLab CI29, or setting up a local Jenkins30 instance. 

6.3 Server 

The server is the central point of the solution’s operation, allowing the user to play against 

the autonomous Poker agent, invoking it in order to formulate strategies to respond to the 

player’s actions, and managing the database in order to log results and to fetch or store 

strategies. It is the mediator of the game’s state, effectively managing all variables which 

compose it and serving them to both the client and the autonomous agent. 

 
28 https://docs.github.com/en/free-pro-team@latest/actions/guides/about-continuous-integration 
29 https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/ 
30 https://www.jenkins.io/ 
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Figure 36 - Client-server communication diagram 

Both of these components are limited to interpreting a given game state, having no 

standalone ability to manage it: 

• The client communicates an action to the server, which the server validates and 

replies with the refreshed game state, given the action received; 

• The server communicates with the autonomous agent, to which the agent replies 

with a strategy upon which the server acts, updating the game state and emitting it 

to the client. 

In order to obtain a gaming experience such as the one players have grown used to in the 

standardized software of most Poker networks, a socket connection is provided, serving a 

low-latency, bi-directional communication channel between the client and the server. 

The technology selected for the development of this component was NodeJS, with an 

Express acting as the web-server which hosts the gaming application client and Socket.IO 

as a socket management library. Both the client and the server API provided by the 

Socket.IO library are used. Sequelize was used to create an object-relational map between 

the server’s data model and the database. This dependency provides a simplified and 

standardized method of creating and managing the server’s interaction with the database. 

The end result is a robust game state management component which is capable of 

managing a number of separate games with distinct clients simultaneously, capped 

however by the amount of processing necessary to formulate strategic responses to a single 

game, or otherwise the amount of storage space necessary in order to store pre-calculated 

solutions. 
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Figure 37 - Network diagram of an communication scenario with an improved setup 

One possibly viable solution to the aforementioned complication is the separation of the 

server component throughout multiple machines, as demonstrated in Figure 37. In such a 

scenario, a single server, or multiple servers behind a load balancer, would serve the client’s 

frontend application, externalizing the autonomous agent and database components. In 

the event of a calculation having to be performed, one of the autonomous agent servers – 

possibly the one with the least load at the time – would be instantiated in order to generate 

a response. This setup is potentially scalable, and would allow the solution to serve multiple 

clients at once without the resort to pre-computed solutions. 

6.4 Dependencies 

The solution depends on a number of external packages, which are documented on Table 

20. While package managers were used – namely NPM 31  for the client and server 

components, and PIP32 for the autonomous agent – a list of all used packages is due in order 

to credit the authors which greatly assisted the development of this study. 

 

 

 

 
31 NPM – Node package manager. 
32 PIP – Python’s de facto standard package-management system. According to the author, PIP is an 
acronym which stands for “Pip installs packages”. 
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Table 20 - Dependencies used for the development of this solution 

Artefact Description 

Node.JS JavaScript run-time environment. 

Express Web server framework. 

Socket.IO JavaScript library enabling bidirectional 
communication between web clients and 
servers through the use of WebSockets. 

Sequelize Object-relational mapper for integration on 
Node.JS applications and support for 
Postgres, MySQL, MariaDB, SQLite and 
Microsoft SQL Server databases. 

jQuery JavaScript library facilitating DOM tree 
traversal and manipulation. 

Gulp.js JavaScript toolkit used to enhance the 
development workflow. 

numpy Python library supporting mathematical and 
data-structure manipulation. 

pickle Python module for serializing and de-
serializing Python’s object structure. 

pbots_calc Equity calculator for the game of Poker. 
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7 Experimentation and evaluation 

In order to assure that the developed solution meets pre-defined quality standards, a set 

of tests will be utilized in order to measure the degree to which it fulfills the requirements 

in terms of functionality and usability. 

This chapter describes the evaluation methodology and the indicators used to verify the 

hypothesis proposed in chapter 1.3, discusses the results and proposes possible future 

improvements. 

7.1 Experimentation methodology 

The established evaluation methodology for testing the hypothesis described in chapter 1.3 

is based on the measurement of how the solution performs on a series of aspects which 

will ultimately dictate the degree to which the functional and non-functional requirements 

have been met. 

Considering the ideal solution as one that strictly complies with the specification, 

requirements can be grouped into dimensions for which parameters are specified in order 

to evaluate the solution and measure the distance between its state at a given moment and 

the ideal  specification, effectively establishing the level in which it fulfills the requirements. 

This methodology is compatible with Myers’ (2005) system testing definition, being “a form 

of higher-order testing that compares the system or program to the original objectives” 

which requires “a written set of measurable objectives”. 
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The following sub-chapters focus on the dimensions which are considered to be most 

relevant for the development process of this study’s solution, with tests to be conducted 

to its functional, performance, security and compliance aspects. 

7.1.1 Functional testing 

Functional testing is a quality assurance process that bases its test cases on the 

specifications of the software component being scrutinized. In Myer’s (2005) definition, 

“function testing is a process of attempting to find discrepancies between the program and 

the external specification”. This testing procedure is classified as black box testing since 

internal program structure is rarely considered, with functions being tested based on the 

analysis of their output given certain inputs. 

Despite what the nomenclature appears to indicate, this testing methodology is passible of 

being applied to modules and classes, and ultimately evaluates the compliance of a 

component with the specified functional requirements. 

Sharing similarities with end-to-end testing, functional testing can be conducted on non-

production environments, and is therefore more suitable for the established evaluation 

methodology, which allows us to assess the quality of the system at any given time. 

7.1.1.1 Indicators 

The following table describes the requirements which are followed by the indicators in 

place to test their fulfilment. 

Identifier Summary Indicator 

FR-001 The game state is correctly interpreted. Boolean 
FR-002 Pot odds are correctly calculated. Boolean 
FR-003 Expected value is correctly calculated. Boolean 
FR-004 Equity is correctly calculated. Boolean 
FR-005 Ranges are correctly evaluated. Boolean 
FR-006 Hands are correctly evaluated. Boolean 
FR-007 Opponents are modelled. Boolean 
FR-008 Opposing players are assigned pre-defined strategies. Boolean 
FR-009 Game trees are able to be generated given root node. Boolean 
FR-010 The simulation of all possibilities in a game tree is correctly 

conducted. 
Boolean 

FR-011 When simulating a game tree, a lookup occurs to see if the given 
situation has already been calculated. 

Boolean 

FR-012 Simulations always converge to a solution. Boolean 
FR-013 Data is stored in the database regarding the agent’s operation. Boolean 
FR-014 Basic player statistics is demonstrated on the user-interface. Boolean 
FR-015 Players are able to initiate matches against the autonomous agent. Boolean 
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7.1.2 Performance testing 

Performance testing is a quality assurance practice used to determine the measure in which 

a system performs in terms of responsiveness and stability under defined workloads. It is 

used to measure the quality attributes of the system described in the FURPS+ model in 

relation to the performance requirements: Speed, efficiency, capacity and scalability. 

The nature of the solution this study aims to develop makes it inherently performance-

dependent, with concessions having to be made in order to preserve computational 

resources, simplify the task and produce results in a timely manner, since it is used in an 

active competitive environment and a decision can only take a certain amount of time 

before the play is forfeited. 

7.1.2.1 Indicators 

The following table describes the requirements which are followed by the indicators in 

place to test their fulfilment. 

Table 21 - Hypothesis and indicators for Performance testing 

Identifier Hypothesis Indicator 

NFR-004 The solution is able to provide a response 
within the established time limit. 

Boolean 

NFR-005 The solution maintains performance 
throughout separate consecutive games. 

Boolean 

7.1.3 Security testing 

Software security testing is the process of attempting to devise test cases that subvert an 

information system’s security mechanisms which protect data and assure functionality, 

such as the operating system’s memory protection mechanism or a database management 

system’s data security mechanisms (Myers, 2005). 

Security requirements often specify elements of authentication and authorization, 

availability, confidentiality, integrity and irrefutability. 

7.1.3.1 Indicators 

The following table describes the requirements which are followed by the indicators in 

place to test their fulfilment. 
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Table 22 - Hypothesis and indicators for Security testing 

Identifier Hypothesis Indicator 

NFR-002 The client-server socket communication is 
secured via a TLS certificate. 

Boolean 

NFR-003 The database connection is performed 
securely with parameter sanitization. 

Boolean 

NFR-008 The solution is able to provide via a secure 
data transfer protocol. 

Boolean 

7.1.4 Compliance testing 

Compliance testing is a form of non-functional testing which aims to validate a system’s 

adherence to the stakeholder’s prescribed standards, with the objective of determining if 

the solution’s development and maintenance process meets the defined methodology, 

among other factors such as documentation. 

7.1.4.1 Indicators 

The following table describes the requirements which are followed by the indicators in 

place to test their fulfilment. 

Table 23 - Hypothesis and indicators for Compliance testing 

Identifier Hypothesis Indicator 

NFR-001 The API provided adhered to the REST 
specification. 

Boolean 

NFR-006 The system’s usability was created with ISO 
9241’s directives in mind. 

Boolean 

NFR-007 The solution’s interface adheres to the 
specification. 

Boolean 

NFR-008 The solution is able to provide via a secure 
data transfer protocol. 

Boolean 

NFR-009 The server outputs JSON formatted data. Boolean 

7.2 Evaluation methodology 

Due to the nature of the nature of the solution developed for the purposes of this study, a 

specific evaluation methodology is defined for its functionality and usability dimensions. 
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7.2.1 Functionality 

The solution’s overall functionality shall be demonstrated through the exhaustive analysis 

of the following critical qualities: 

• Computational performance: The solution should be able to calculate and output 

a decision based on provided input within an established time interval of 15 

seconds. This value is based on the average allotted time period allowed by internet 

Poker rooms, such as PokerStars.com, which provides 10 to 18 seconds depending 

on the type of game (Pokerstars | Time bank in tournaments and cash games, 2020). 

• In-game performance: The solution’s in-game performance should be 

demonstrated to be at least break-even, beating rake over a sample that is sizeable 

enough to overcome variance – the probability of a player’s results not being due 

to variance can be measured using calculator software developed for this specific 

purpose (Poker Variance Calculator - Primedope, 2020). 

To ensure the existence of the aforementioned qualities, as well as the fulfilment of the 

remaining requirements, the solution will be subjected to unit and integration tests 

throughout its development process. 

The definition of milestones along the development process where the system’s efficiency 

is assessed provides a measurement of how the additions and changes implemented impact 

progress towards the final product’s specification. With the definition and documentation 

of the stage of development in which each measurement was executed, a plain overview 

of how different features impact the system’s efficiency in terms of computational and in-

game performance will be available at the end of the development process, as well as a 

measure of how the system performs in relation to its state of the art counterparts 

described in chapter 0. 

7.2.2 Usability 

The user-interface allowing users to immerse in games facing the developed agent is an 

important portion of this solution which will be evaluated according to the System Usability 

Scale (SUS), a tool originally created by John Brooke in 1986 (Patrick W. Jordan, B. Thomas, 

Ian Lyall McClelland, 1996) which became an industry standard for the business and 

technology industries, providing a simple yet effective evaluation framework for a variety 

of services, in which websites and applications are included. 

This scale consists of 10 items which respondents rate according to a Likert scale with five 

options (System Usability Scale (SUS) | Usability.gov, no date). 
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Figure 38 – System Usability Scale 

These items measure different usability aspects such as: 

• Effectiveness: Can users achieve their objectives; 

• Efficiency: How effortlessly can users achieve their objectives; 

• Satisfaction: To which degree are users satisfied when achieving their objectives. 

For interpretation of the obtained results, each item’s contribution is summed, regarding 

the item-specific method of assessing it – for items 1,3,5,7,9 the contribution is the scale 

position minus 1, and for the remaining, the contribution is 5 minus the scale position. 

Posteriorly to executing this assessment, scores are added and multiplied by 2.5, converting 

the original 0 to 40 scores to a 0 to 100 scale. 
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Figure 39 - Screenshot of usabiliTEST's results summary for System Usability Scale project 

(System Usability Scale online with analytics | usabiliTEST, 2020) 

An adjective scale may be implemented, with studies demonstrating a high correlation 

between itself and the overall participant’s description of their experience with a system 

(Bangor et al., 2009), and tools such as System Usability Scale Plus33 implementing this in 

the format of an enhanced SUS. 

An evaluation in terms of usability shall be conducted on development milestones that 

demand it, such as the finalization of the initial user-interface prototype, evaluating it 

according to the aforementioned aspects and making improvements based on user 

feedback. The inquiries shall be conducted on a sufficiently significant sample of 

participants, with results being interpreted and documented in order to demonstrate how 

changes affected usability. 

7.3 Evaluation results 

In order to evaluate the developed solution, an in-depth analysis was performed to it’s 

various components, assessing the degree to which the requirements were met in multiple 

dimensions. This chapter presents the results of the experimentation the solution was 

subjected to in terms of computational performance, in-game results, and usability.  

7.3.1 Computational performance 

Measuring the solution’s computational performance is key to evaluating it’s viability for 

many of the use-cases described at length in chapter 4.1.1.4, the object to which this study 

and it’s applications are directed, is a game with a strict and succinct time limits for each 

 
33 usabilitiTEST’s offers “SUS Plus”, which offers 2 additonal options: Adjective rating scale and 
Promoter rating scale. More information on https://www.usabilitest.com/system-usability-scale. 
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decision. In order to assess the viability of such applications to real-world scenarios, the 

time elapsed in order to return information for each decision was studied. 

Due to the nature of the solution’s architecture, a significant processing overhead resides 

on the calculation component, due to which multiple measurements were taken in an 

attempt to segregate the various components of the application and perform this 

evaluation on an individual basis previously to performing it on the aggregate. This 

methodology provides insights on which components lack performance and require 

improvement, and which achieve an acceptable and constant performance figure. 

All of the following tests were performed on a controlled environment with both the client 

and the server on the localhost. This eliminates variation caused by the differences in the  

server and client machine’s geographical positions, as well as by the load of the server and 

internet-server-provider at the time of testing. While this improves the consistency of the 

test results, it should be noted that the performance benchmark discussed in this section is 

not to be expected in an online production environment. 

7.3.1.1 Server 

This analysis was started on the solution’s entry point, the socket server which handles the 

client-server communication, the state of the game and passes it to the calculation 

component in order to obtain a game-play response. For the purposes of this test, this 

component was decoupled from the calculation component by changing it’s algorithm to 

retrieve a random response within the universe of possibilities available for the current 

state of the game, instead of contacting the calculation component and listening for a 

response. 

With industry-standard tools such as Postman lacking support for testing socket 

connections at the time of writing, and this being a highly specific test case, a script was 

developed in order to test the solution for this specific purpose. Developed using NodeJS 

and Socket.IO’s Client API, this script connects to the server, starts a new game, and send 

an ‘action’ event to the server whenever it receives an ‘act’ event. The action is picked 

randomly and the time elapsed between sending the message and receiving the server’s 

reply is the data intended to be collected in the course of this exercise. 

Figure 40 chart’s the response time of the server over 10 000 requests made by a mock 

adversary which also employed a mixed strategy, assuring a large sample or entropic game 

scenarios were tested. As can be observed, the performance remains relatively consistent 

throughout the sample, with an average response time of 25.95 ms, and a mean of 24 ms. 
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Figure 40 - Server response time 

Additional statistics regarding Figure 40 can be seen in Table 24. 

Table 24 - Server performance testing statistics 

Statistic Value 

Average 25.95 ms 
Mean 24 ms 
Max 166.00 ms 
Min 2.00 ms 
Below average 55 % 
Above average 45 % 

The outlying values represent hands which reach showdown, forcing the solution to 

calculate the winning player according to the game’s state. The equity calculation algorithm 

is used for this purpose for the sake of practicality and standardization. This isn’t the most 

optimal decision in terms of performance, leaving room for improvement in this scenario. 

It is also possible to notice a slight but consistent performance degradation, with the third 

quadrant’s values being more concentrated on the lower part of the Y-axis in comparison 

to those in the fourth quadrant. A 100 000 iteration test was performed in order to see that 

this degradation was not proportional to the number of iterations. It was verified that this 

variation stagnates throughout the sample. 
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7.3.1.2 Calculator 

Furthermore, the performance of the strategy calculation component was tested in a 

manner similar to that applied to the server component. It was invoked directly via a shell 

script which entropically conjured game states, ensuring once more that a thorough and 

conclusive sample can be obtained. 

Figure 41 chart’s the components response time over 10 000 calculations. 

 

Figure 41 - Equity calculator response time 

It is visible that the results are highly disperse. Further analysis was deemed necessary in 

order to dissect the scenarios in which performance varied. From a purely theoretical 

standpoint in which a relation of direct proportion can be established between the sample 

size of a game’s state and the computation time needed to solve it, the dispersion in the 

results shown is justifiable due to the algorithm taking more time to compute the earlier 

stages of the game, where there is a larger amount of unknown community cards, directly 

affecting the equity calculation’s performance. In this case, calculating the preflop stage of 

the game would take longer than in the flop, which in turn would take longer than in the 

turn and river stages. Figure 42, Figure 43, Figure 44 and Figure 45 show individual 

performance measurements in order to assess this theory. 
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Figure 42 - Equity calculator response time in the preflop stage of the game 

 

Figure 43 - Equity calculator response time in the flop stage of the game 
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Figure 44 - Equity calculator response time in the turn stage of the game 

 

Figure 45 - Equity calculator response time in the river of the game 

 

Statistics regarding the previous charts can be studied in Table 25. 
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Table 25 - Calculator performance testing statistics 

Statistic Value (seconds) 

Average response time in the Preflop 19.67 
Average response time in the Flop 17.59 
Average response time in the Turn 15.99 
Average response time in the River 0.67 

Analyzing the figures above shows that the theoretical proposition is indeed correct, with 

a faster calculation the closer to the end of the game the state being calculated is. 

One important factor to note is the results dispersed throughout the bottom of the vertical 

scale of Figure 41, largely separated from the remaining results. Paying attention to the 

scale of the pictures that follow, it is visible that the river calculations are far quicker than 

those on the remaining streets of the game. No additional community cards will be made 

available, which provides the calculator with more information, which lowers the sample 

size of the simulation to take place. Referring to chapter 6.1.2, the behavior observed here 

is due to the fact that the calculator takes a zealous approach to the problem in hand, 

enumerating the 42 570 possible outcomes of the hand available and calculating for each 

of them, instead of running 1 000 000 iterations of the Monte Carlo simulation.  

7.3.1.3 Overall solution 

Not less important is the macro view demonstrating the performance of the overall 

solution, which was tested in a manner similar to that described in the chapter 7.3.1.1. It is 

important to note that the database was truncated before the solution was submitted to 

testing, meaning every given game scenario was calculated in real time. 
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Figure 46 - Performance of the overall solution 

As can be observed in Figure 46 - Performance of the overall solutionFigure 46, the solution 

does not meet the maximum response time requirements set, and therefor has reduced 

viability for usage in a real-time game-play scenario in it’s current state. 

Having already studied each component individually, it is clear that the performance 

optimization of the calculation component must be improved significantly were this the 

application to be given to this solution. Theoretically, a trade-off between processing and 

data storage can be performed, pre-calculating a large number of the more complex and 

time-requiring solutions and having them readily available for consultation in the 

application’s database. However, the sample space of the game of No Limit Texas Hold’em 

potentially renders this option unfeasible. 

7.3.2 In-game performance 

An highly capable solution in terms of computational performance is hindered if the insights 

it provides are of little to no use. More than performing quickly, the objective of this 

solution is to provide highly accurate game-theoretically optimal solutions which 

opponents are mathematically incapable of exploiting. 

In order to assess the solution in terms of it’s in-game capabilities, strategy profiles with 

various characteristics were play-tested against it. The following strategy profiles were 

considered: 
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• Strategy profile A: Pure strategy where the agent always folds. This acts as a 

baseline; 

• Strategy profile B: Pure strategy where the agent always raises; 

• Strategy profile C: Totally mixed strategy where the agent picks actions at random 

(but never folds when there is the possibility to check); 

• Strategy profile D: The same strategy as the solution; 

These strategies were tested versus the solution over a sample of 10 000 hands in the 

simplified game of shove-fold34 in order to ease and accelerate the testing procedure. The 

significance of the sample is of great relevance in order to exclude the variance factor from 

the results as much as possible. 

Figure 47 display the solution’s performance over the described sample. 

 

Figure 47 - Solution's in-game performance 

The figures demonstrate that the solution is a clear winner versus adversaries employing 

strategies such as the ones described. Furthermore, the agent’s performance record versus 

strategy profile D indicates that this strategy approximates the Nash equilibrium, as the 

expectation of playing against a mirror opponent over a significant sample is null. 

 
34 Simplified game where players with equal chip stacks can only opt to raise or call an all-in bet or fold. 
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Testing the application from a theoretical standpoint is also possible by computing Nash 

equilibrium charts and comparing them with officially recognized solutions which can be 

consulted in books such as Expert Heads Up No Limit Hold'em: Optimal And Exploitative 

Strategies (Poker Series) Volume 1: Optimal and Exploitative Strategies (Tipton, 2012). 

 

Figure 48 - Heads Up No Limit Hold'em shove/fold game equilibrium for the SB 
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Figure 49 - Heads Up No Limit Hold'em shove/fold game equilibrium for the SB considering an 

effective stack size of 10 BB 

Figure 48 demonstrates the Nash equilibrium strategy in a shove/fold heads up game, with 

each hand’s value representing the stack size up to which player’s shove, while Figure 49 

demonstrates the solution obtained by the solution’s algorithm for the same game. The 

highlighted hands those with which players shove with a stack size of up to 10 big-blinds. It 

is shown that both solutions collide perfectly, proving the effectiveness of the solution’s 

strategy calculation algorithm. 

7.3.3 Usability 

With the end-user interacting directly with the product developed, a study was undertaken 

with the objective of assessing the degree to which it fulfills the usability guidelines 
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specified by standards such as ISO 9241. In this chapter, the methodology, execution 

procedure and results of this study are presented. 

As stated in chapter 7.2.2, the methodology documented by the System Usability Scale was 

used in order to conduct this survey and draw conclusions. Thus, the body of the survey 

consisted of SUS’ standard questions, which can be consulted in Figure 38. Google Forms 

was used in order to ease the survey’s distribution and the analysis of it’s results. 

This study consisted of a survey directed at a general demographic in order to obtain an 

unbiased set of results from which an evaluation onto the user interface’s plus and minus 

points can be drawn. Individuals with ages ranging from 19 to 55 were interviewed in a 

setting where they were able to calmly utilize the application. Due to the world’s social 

distancing context at the time of writing, all of the interviews were mediated remotely. A 

total of 14 answers were gathered. 

The results are demonstrated in Table 26, with each question’s the most voted option being 

highlighted. 

Table 26 - Usability survey results 

Question 1 2 3 4 5 

1. I think that I would like to use this 
system frequently. 

0 (0%) 0 (0%) 0 (0%) 3 (21%) 11 (79%) 

2. I found the system unnecessarily 
complex. 

11 (79%) 3 (21%) 0 (0%) 0 (0%) 0 (0%) 

3. I thought the system was easy to 
use. 

0 (0%) 0 (0%) 0 (0%) 3 (21%) 11 (79%) 

4. I think that I would need the 
support of a technical person to be 
able to use this system. 

0 (0%) 0 (0%) 0 (0%) 12 (86%) 2 (14%) 

5. I found the various functions in this 
system were well integrated. 

0 (0%) 0 (0%) 1 (7%) 4 (29%) 9 (64%) 

6. I thought there was too much 
inconsistency in the system. 

0 (0%) 0 (0%) 0 (0%) 12 (86%) 2 (14%) 

7. I would imagine that most people 
would learn to use this system very 
quickly. 

0 (0%) 0 (0%) 0 (0%) 4 (29%) 10 (71%) 

8. I found the system very 
cumbersome to use. 

10 (71%) 4 (29%) 0 (0%) 0 (0%) 0 (0%) 

9. I felt very confident using the 
system. 

0 (0%) 0 (0%) 2 (14%) 3 (21%) 9 (64%) 

10. I needed to learn a lot of things 
before I could get going with this 
system. 

0 (0%) 0 (0%) 10 (71%) 3 (21%) 1 (7%) 
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The treatment and data analysis of the data is imposed by the methodology in use and is 

documented in chapter 7.2.2. The results were then compared with the methodology’s 

reference values, shown in Table 27. 

Table 27 - Reference adjective values for SUS score 

Score Grade Adjective classification 

> 80.3 A Excellent 
68 – 80.3 B Good 
68 C Acceptable 
51 - 68 D Poor 
< 51 F Worst imaginable 

It is important to note that even though the values are presented within a 0 to 100 scale, 

they do not reflect a percentual value, and should therefore be interpreted based on the 

reference adjective values. 

An overall breakdown of the results is visible in Table 28. 

Table 28 - Breakdown of the SUS results 

Interviewee Score Grade 

1 97.5 A 
2 100 A 
3 87.5 A 
4 87.5 A 
5 97.5 A 
6 95 A 
7 90 A 
8 97.5 A 
9 100 A 
10 82.5 A 
11 90 A 
12 100 A 
13 77.5 B 
14 100 A 
Average 92.08 A 

Analyzing the results, it is verifiable that the usability is satisfactory as all the questionnaire 

scores exceed 77.5, a figure associated with an adjective classification of “Good”. 

There are pitfalls associated with the particular methodology used in order to assess the 

usability of this application. Since this is, on top of the complexity of the underlying 

elements, a card game, most people are already quite familiarized with the concept. The 

elements that the application consists of also lack complexity from a usability standpoint. 

For these reasons, the survey was geared towards evaluating how consistent, performant 
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and visually up-to-standards the application is, instead of it’s overall usability as is the case 

in regular, non-gaming applications. 

7.3.4 Requirements 

Given the aforementioned test results of it’s computational, in-game and usability 

performance, the set of requirements put in place for the current solution was evaluated. 

Starting with the functional requirements, Table 29 demonstrates that 10 out of 15 

requirements were fulfilled, meaning that 66 % of the functional requirements set were 

implemented and functional in the final state of the solution. 

Table 29 - Functional requirements evaluation 

Requirement Description Evaluation 

FR-001 The game’s state is correctly interpreted. 1 

FR-002 Pot odds are correctly calculated. 0 
FR-003 Expected value is correctly calculated. 1 
FR-004 Equity is correctly calculated. 1 
FR-005 Ranges are correctly evaluated. 1 
FR-006 Hands are correctly evaluated. 1 
FR-007 Opponents are modelled. 1 
FR-008 Opposing players are assigned pre-defined strategies 1 
FR-009 Game trees are able to be generated given root node. 0 
FR-010 The simulation of all possibilities in a game tree is correctly 

conducted. 
0 

FR-011 When simulating a game tree, a lookup occurs to see if the 
given situation has already been calculated. 

0 

FR-012 Simulations always converge to a solution. 1 
FR-013 Data is stored in the database regarding the agent’s 

operation. 
1 

FR-014 Basic player statistics is demonstrated on the user-
interface. 

0 

FR-015 Players are able to initiate matches against the 
autonomous agent. 

1 

 

 

 

 

 

 



 

131 
 

 

Proceeding with the non-functional requirements, Table 30 shows that 7 requirements 

have been met out of the total 9, for a ratio of 78 %. 

Table 30 - Non-functional requirements evaluation 

Requirement Description Evaluation 

NFR-001 The API provided adhered to the REST specification. 0 

NFR-002 The client-server socket communication is secured via a TLS 
certificate. 

1 

NFR-003 The database connection is performed securely with 
parameter sanitization 

1 

NFR-004 The solution is able to provide a response within the 
established time limit. 

0 

NFR-005 The solution maintains performance throughout separate 
consecutive games. 

1 

NFR-006 The system’s usability was created with ISO 9241’s 
directives in mind. 

1 

NFR-007 The solution’s interface adheres to the specification. 1 
NFR-008 The solution is able to provide via a secure data transfer 

protocol. 
1 

NFR-009 The server outputs JSON formatted data. 1 

 

Joining the completion ratios of both the functional and non-functional requirements, the 

application fulfills 71% of the requirements which were initially set – a figure which isn’t 

poor considering that the decision of implementing the fictitious play algorithm instead of 

counterfactual regret minimization causes the solution to lack a game tree, preventing it 

from fulfilling 3 of the functional requirements.  
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8 Conclusion 

This chapter provides an analysis of what was achieved through the development of this 

project based on the objectives and the degree to which they were fulfilled. It summarizes 

the lessons, challenges, conquests and defeats which are a product of the development of 

this study and aims to capture what could be improved in future works. 

8.1 Overview 

Analysis of chapter 0 provides great insight on the success of the development process. The 

main goal of creating an autonomous Poker agent was achieved, formulating an algorithm 

capable of learning to play the Heads Up No Limit Texas Hold’em game to an optimal degree 

in theoretical terms, which assures that it won’t be a losing agent. 

While the aforementioned achievement is valuable for the number of valuable lessons it 

provides in terms of game-theory and machine learning concepts, a more sophisticated 

solution, using a state-of-the-art machine learning algorithm more commonly used in the 

break-through studies in this field, would be a better fit were this solution to be put to use 

in one of the scenarios described in 4.1.4.4. Due to the high processing capability or storage 

space necessities of the algorithm in use, it’s scalability is jeopardized, and therefor so is it’s 

real-time usage scenarios. 

8.2 Limitations and improvements 

The lack of performance and scalability of the solution is it’s greatest flaw. With more 

concise knowledge regarding the performance necessities of such an application, it is 
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evident that a better decision could have been made in regards to which language to base 

the autonomous agent’s strategy evaluating algorithm on. While Python’s native data 

accessibility and manipulation capabilities are invaluable, a language that is precompiled 

and supports multi-threading and/or multi-processing, such as C, would have allowed for a 

significantly improved computational performance. Would such an agent be intended for 

use in real-time play situations with a strict time limit imposed on each decision, improving 

the performance of the most resource and processor time intensive component of the 

solution is a must. 

As was previously mentioned, a more modern and proven approach than the one applied 

in this project would lead to better results. 

Several optimization methods which could potentially improve the performance of the 

application were also left to be tested and implemented – a great example of one is the 

calculation of the exploitability of the current solution, setting the stopping point of the 

algorithm to an exploitability threshold instead of executing it for a set of iterations. 

Finally, more in-depth testing methodologies should be applied were this application to be 

launched into a real-world production environment. While testing the strategies calculated 

for simplified games such as the shove/fold is a practical approach which has it’s merits and 

facilitates testing, tests on the full game should be conducted in order to assess factors such 

as which scenarios the solution might behave unexpectedly in, and the degree to which 

having a large set of pre-calculated solutions may improve performance. 

8.3 Final thoughts 

When dealing with algorithms that run millions of iterations composed of non-trivial 

procedures, it is vital to utilize every last bit of performance available. This project allowed 

me to better grasp the performance impacts of the decisions applied to the design and 

implementation of applications, understanding the cost each innocent looking operation 

might hold upon the execution of the entire algorithm. 

Dealing with mathematical implementation of game theory principles is also a challenge I 

enjoyed and believe every individual with a passion for programming would evolve by 

experiencing it. 

While I am satisfied with the outcome of the project, the solution which I would deem 

perfect is far from being achieved. I consider the final product to be in an acceptable state, 

and now realize that the initial expectations set for this project were far too ambitious. 

In a time where the general public’s awareness for real-time assistance (RTA) applications 

is rapidly growing in the world of online Poker, it is crucial for the game-provider networks 
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to position themselves in the bleeding-edge of this field if they wish to preserve the vitality 

of the online Poker playing ecosystem, which is founded on a trust relation formed with 

their customers. 

The investigation of topics such as the one the present study focuses on can potentially aid 

these entities in understanding the methodologies used by dishonest actors and lead to the 

discovery of new, more efficient ways of dealing with these situations. 

As game theory has it, as long as there is a viable profitable trade-off, there will be actors 

pushing the boundaries of our knowledge in order to maximize their utility – and this 

applies not only to the game of Poker, but to all trade-off relationships we, as humans, may 

find in the game of life. 
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9 Appendix A – Poker glossary 

3-bet When there is a bet, raise and re-raise, the re-raise is called a “3-
bet”. 

6-max A table in which up to 6 players can participate. 

9-max A table in which up to 9 players can participate. 

All-in A bet for all of a player’s chips. 

Ante Mandatory bet all players are forced to make, regardless of their 
position. 

ATC Acronym for “any two cards”, typically meaning a random 2 card 
subset from the deck. 

Blinds Mandatory bet players in the small-blind and big-blind positions 
are forced to perform. 

Blind defense  When the players in the blinds re-raise in order to defend a pot 
composed of the chips paid due to the blinds. 

Blind stealing When players raise in late-position in order to take the pot from 
the players in the small-blind and big-blind positions. 

Blind-versus-blind Duel between the small-blind and big-blind players. 

Blockers Cards which prevent adversaries from completing a hand. 

Bluff Betting without a strong hand. 
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Board Refers to the community cards. 

Broadway Cards larger than 9. 

Collusion When two players exchange private information in order to 
increase their individual or combined utility. 

Community cards Cards which all players have access to, composing the flop, turn 
and river. 

Dead money Chips in the pot which no player has a particular incentive to 
protect, typically put there via ante or blind.  

Draw (flush or straight)… drawing.. open-ended… 

Effective stack The largest stack of all the players involved in a play. 

Hand Can refer to a play or a player’s hole cards. 

Heads-up A game between two players. 

Hole cards Players’ private cards. 

Implied odds Extension of pot odds which help decide if it is worth calling a raise 
with a drawing hand. 

In-position A player is said to be “in-position” when he acts after his opponent, 
knowing his decision beforehand. 

Preflop The stage of the game when no community card is yet visible. 

Postflop The flop, turn and river stages of the game. 

Pot The total amount of chips bet up to the given moment in the 
current hand. 

Pot odds The ratio between the size of the total pot and the size of the bet 
a player faces. 

Offsuit Cards of different suits. 

Open To place the first bet in a betting round. 

Open-ended A straight which can be completed by two cards. 

Out of position A player is said to be “out of position” when he acts first. 

Overbet A bet larger than the pot. 

Shove An all-in bet. 
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Stack The amount of chips belonging to each player. 

Street Betting round (preflop, flop, turn and river). 

Suited Cards of the same suit. 
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10 Appendix B – Criteria’s 

consistency 

10.1  Implementation 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 ≅  𝜆𝑚𝑎𝑥  × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 

⟺ 

[
 
 
 
 
 
1 1 1 1 1

1 1 1
1

3
1

1 1 1 1 1
1 3 1 1 1
1 1 1 1 1]

 
 
 
 
 

×

[
 
 
 
 
0.20
0.15
0.20
0.25
0.20]

 
 
 
 

≅ 𝜆𝑚𝑎𝑥 ×

[
 
 
 
 
0.20
0.15
0.20
0.25
0.20]

 
 
 
 

 

 

⟺ 

[
 
 
 
 

1
0.8333

1
1.3
1 ]

 
 
 
 

≅ 𝜆𝑚𝑎𝑥 ×

[
 
 
 
 
0.20
0.15
0.20
0.25
0.20]

 
 
 
 

 

 

⟺ 𝜆𝑚𝑎𝑥 ≅ 5.15 

 

Knowing the 𝜆𝑚𝑎𝑥 value the 𝐶𝐼 and 𝐶𝑅 can now be calculated, considering 𝑛 = 5 and 𝑅𝐼 =

1,12. 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
=  0.0375 𝐶𝑅 = 

𝐶𝐼

𝑅𝐼
= 0.03 
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10.2  Hardware requirements 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 ≅  𝜆𝑚𝑎𝑥  × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 

⟺ 

[
 
 
 
 
 
 
 
 
1 9 9 9 9
1

9
1 3 5 7

1

9

1

3
1 3 5

1

9

1

5

1

3
1 1

1

9

1

7

1

5
1 1]

 
 
 
 
 
 
 
 

×

[
 
 
 
 
0.60
0.18
0.10
0.08
0.04]

 
 
 
 

≅ 𝜆𝑚𝑎𝑥 ×

[
 
 
 
 
0.60
0.18
0.10
0.08
0.04]

 
 
 
 

 

 

⟺ 

[
 
 
 
 

7.4
3.42
2.02
0.57
0.534]

 
 
 
 

≅ 𝜆𝑚𝑎𝑥 ×

[
 
 
 
 
0.60
0.18
0.10
0.08
0.04]

 
 
 
 

 

 

⟺ 𝜆𝑚𝑎𝑥 ≅ 14.4 

 

Knowing the 𝜆𝑚𝑎𝑥 value the 𝐶𝐼 and 𝐶𝑅 can now be calculated, considering 𝑛 = 5 and 𝑅𝐼 =

1,12. 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
=  2.35 𝐶𝑅 = 

𝐶𝐼

𝑅𝐼
= 2.09 

10.3  Time elapsed 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 ≅  𝜆𝑚𝑎𝑥  × 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 

⟺ 

[
 
 
 
 
 
 
 
 
1 9 9 9 9
1

9
1 3 5 7

1

9

1

3
1 3 5

1

9

1

5

1

3
1 1

1

9

1

7

1

5
1 1]

 
 
 
 
 
 
 
 

×

[
 
 
 
 
0.60
0.18
0.10
0.08
0.04]

 
 
 
 

≅ 𝜆𝑚𝑎𝑥 ×

[
 
 
 
 
0.60
0.18
0.10
0.08
0.04]
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⟺ 

[
 
 
 
 

7.4
3.42
2.02
0.57
0.534]

 
 
 
 

≅ 𝜆𝑚𝑎𝑥 ×

[
 
 
 
 
0.60
0.18
0.10
0.08
0.04]

 
 
 
 

 

 

⟺ 𝜆𝑚𝑎𝑥 ≅ 14.4 

Knowing the 𝜆𝑚𝑎𝑥 value the 𝐶𝐼 and 𝐶𝑅 can now be calculated, considering 𝑛 = 5 and 𝑅𝐼 =

1,12. 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
=  2.35 𝐶𝑅 = 

𝐶𝐼

𝑅𝐼
= 2.09 
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