
Framework para a configuração e treino de
redes neuronais utilizando otimização
Bayesiana

TIAGO FILIPE ALVES DA SILVA
Outubro de 2020

Framework for the configuration and training of

neural networks using Bayesian Optimization

Tiago Filipe Alves da Silva

Dissertation for the attainment of a Master’s Degree in Computer
Science, Specialization Area in Information and Knowledge Systems

Supervisor: Isabel Praça

Co-supervisor: Luis Gomes

Porto, October 2020

ii

iii

To everyone that has kept me in the path leading to this stage in my life, thank you.

iv

v

Resumo

Redes neuronais existem há décadas, tendo sido primeiramente introduzidas nos anos 40 por

dois cientistas que modelaram uma simples rede neuronal usando circuitos elétricos. Desde

então, vários avanços têm sido feitos no campo de redes neuronais com o objetivo de as

adaptar na resolução de tarefas cada vez mais complexas, por sua vez levando a que as suas

arquiteturas se tornem gradualmente mais elaboradas. Esta progressão tem dificultado a

melhoria da qualidade de redes neuronais por parte de utilizadores, visto haver cada vez mais

hiperparâmetros (i.e. componentes arquiteturais) que requerem ajustes na tentativa de

melhorarem a sua precisão.

A otimização de hiperparâmetros de uma rede neuronal é feita ajustando os mesmos de

maneira a encontrar a arquitetura com os melhores resultados, podendo ser feita de forma

tentativa erro, e guiada por algoritmos que o facilitem. Esta tese enquadra-se neste tema,

apresentado uma solução que utiliza otimização Bayesiana como o algoritmo de otimização

de hiperparâmetros para automaticamente configurar qualquer tipo de rede neuronal. O

sistema desenvolvido não só otimiza os hiperparâmetros de redes neuronais, mas também

localiza as caraterísticas mais relevantes de um conjunto de dados (também conhecido como

seleção de caraterísticas) e aprende como cada hiperparâmetro e caraterística afeta o

desempenho da rede, tornando-o útil na previsão do desempenho de uma configuração de

uma rede neuronal sem sequer ter que a treinar e testar.

Os resultados observados na avaliação do sistema demonstram as suas fortes capacidades de

aprendizagem e a sua habilidade de balancear a exploração de configurações com elevadas

chances de ter um desempenho alto com a exploração de configurações menos familiares

com um nível de desempenho mais imprevisível, de forma a evitar contentar-se com uma

configuração suficientemente boa e tentar encontrar aquela com precisão máxima. Tanto o

caso de estudo como a otimização de uma rede neuronal convolucional realizados

demonstram a capacidade de adaptação do sistema a diferentes tipos de redes neuronais e

de obtenção de resultados positivos em ambos os cenários. A avaliação do sistema demonstra

o potencial do mesmo e com desenvolvimentos futuros poderá atingir um nível de qualidade

e desempenho onde será capaz de encontrar configurações que superem aquelas

provenientes tanto de abordagens manuais e automáticas existentes.

Palavras-chave: Redes Neuronais; Otimização de Hiperparâmetros; Seleção de Caraterísticas.

vi

vii

Abstract

Neural networks have existed for decades, having first been introduced in the 1940s by two

scientists modelling a simple neural network using electrical circuits. Since then, many

advancements have been made in the field of neural networks with the intention of adapting

them to solve increasingly more complex tasks, in turn leading to neural networks

architectures gradually becoming more intricate. This progression has made it harder for users

to improve the quality of neural networks, as there are ever more hyperparameters (i.e.

architecture components) that require tweaking in an attempt to increase their accuracy.

In an attempt to overcome this issue, the concept of hyperparameters optimization emerged,

where each hyperparameter of a neural network is adjusted manually or automatically by a

system, so as to find the network architecture with the best results. This thesis delves into this

subject, presenting a solution that employs Bayesian optimization as its hyperparameters

optimization algorithm to automatically configure any type of neural network. The developed

system not only optimizes the hyperparameters of neural networks, but it can also pinpoint

the most relevant features in a dataset (also known as feature selection) and learn how each

hyperparameter and feature affects the performance of the network, making it useful for

predicting the performance of a neural network configuration without even having to train

and test it in the first place.

The results observed in the evaluation of the system showcase its strong learning capabilities

and its ability to balance the exploitation of configurations with an elevated chance of having

a high performance and the exploration of unknown configurations with an unpredictable

level of performance, in an attempt to avoid settling for a good enough configuration and find

the best one. Both the undertaken case study and optimization of a convolutional neural

network demonstrate the system’s ability to adapt to different types of neural networks and

obtain positive results in both scenarios. The system’s evaluation demonstrates it has

potential and with future work can reach a level of quality and performance where it can find

configurations that surpass those of both existing automatic and manual approaches.

Keywords: Neural Networks; Hyperparameters Optimization; Feature Selection.

viii

ix

Acknowledgments

I would first like thank my university, Instituto Superior de Engenharia do Porto, for providing

me with the opportunity for pursuing a Master’s in Computer Science. This degree has

enabled me to extend my knowledge in fields such as software engineering, artificial

intelligence, and information systems, and has also led me to work on and write the thesis

here presented.

I would also like to thank both my supervisors, Isabel Praça and Luis Gomes, for guiding me

throughout this stage of my life and ensuring the success of my thesis. Their constant

supervision and feedback were vital in guaranteeing the utmost quality of the thesis. A special

thanks goes out to Professor Luis, as the thesis would not be what it is now was it not for his

continuous availability and assistance with any questions I might have had or any issue that I

experienced. Furthermore, his support was critical in ensuring the writing of this document

was as insightful as it was gripping.

I would also like to thank my girlfriend for always being there for me whenever I needed her

the most, for keeping me motivated and encouraged, and for being a constant source of

inspiration for what I should strive to be. Her emotional support was indispensable during the

entire course of the thesis.

Last but not least, I would like to thank my family and friends for their determination and

perseverance in keeping me focused on the thesis and assuring I worked as hard as possible to

achieve something I could be proud of.

x

Table of Contents

1 Introduction ... 1

1.1 Background ... 1

1.2 Problem ... 2

1.3 Objectives .. 2

1.4 Expected Outcomes ... 3

1.5 Advocated Approach .. 4

1.6 Report Structure .. 5

2 Context ... 7

2.1 Neural Networks ... 7

2.2 Problem ... 8

2.3 Value Analysis...11

3 State of the Art .. 13

3.1 Optimization Algorithms ..13
3.1.1 Grid Search ..13
3.1.2 Random Search ...14
3.1.3 Bayesian Optimization ...15
3.1.4 Genetic Algorithms ...16
3.1.5 Particle Swarm Optimization ...17
3.1.6 Bat Algorithm ...18

3.2 Researched Solutions ..20
3.2.1 Random Search for Hyper-Parameter Optimization of Neural Networks20
3.2.2 Algorithms for Hyper-Parameter Optimization of Deep Belief Networks21
3.2.3 Automatic Configuration of Deep Neural Networks23

4 Design ... 25

4.1 Optimization Algorithm Analysis ...25
4.1.1 Surrogate Model ..27
4.1.2 Acquisition Function ...28
4.1.3 Outliers ..29

4.2 System Flow ...32

4.3 Configuration Search Space ...33

4.4 Parallelization of Configurations’ Evaluation ..34

5 Implementation .. 37

5.1 Technologies ..37

xii

5.2 Human-computer Interaction .. 38

5.3 Search Space .. 39

5.4 Objective Function... 40

5.5 Scalability ... 40

6 Evaluation .. 41

6.1 Methodology .. 41

6.2 Metrics ... 43

6.3 Case Study - Detection of Sensor Vibrations ... 44
6.3.1 Datasets ... 44
6.3.2 Neural Network Structure and Search Space ... 46
6.3.3 Human Fall Classification ... 47
6.3.4 Vibration Source Classification ... 51

6.4 Hyperparameters Optimization of Convolutional Neural Network 55
6.4.1 Dataset .. 56
6.4.2 Convolutional Neural Network ... 56
6.4.3 Neural Network Structure and Search Space ... 58
6.4.4 Analysis .. 59

7 Conclusions .. 65

7.1 Goals Accomplishment .. 65

7.2 Future Work ... 67

7.3 Final Appreciation ... 67

xiii

List of Figures

Figure 1 – Thesis methodology. ... 5

Figure 2 – Architecture of a neural network (Bre, et al., 2017) and structure of a neural

network’s neuron (Zhou, 2019). .. 8

Figure 3 – Total number of configurations versus the number of features, exemplified using

the static possible values of the three hyperparameters in Table 1. .. 10

Figure 4 – Grid search of nine different configurations with two hyperparameters (yellow and

green areas) (Bergstra & Bengio, 2012). .. 14

Figure 5 - Random search of nine different configurations with two hyperparameters (yellow

and green areas) (Bergstra & Bengio, 2012). ... 15

Figure 6 – Example of the Bayesian optimization process at two different stages: on the left,

after 2 configurations evaluations; on the right, after 8 configurations evaluations (Koehrsen,

2018). ... 16

Figure 7 – Flow of a genetic algorithm (Saeed, 2017).. 17

Figure 8 – Flow of a bat algorithm. .. 20

Figure 9 – An example regression with outliers present: on the left, using a Gaussian model;

on the right, using a Student-t model (Vanhatalo, et al., 2009). ... 30

Figure 10 – Flow of the system’s optimization process. .. 32

Figure 11 – Parallelization of evaluation of configurations: on the left, performed by the

system; on the right, performed by the user. .. 34

Figure 12 – Evaluation flow of a neural network configuration according to the thesis’

evaluation methodology. ... 42

Figure 13 – System performance results, throughout 3000 iterations, given different values for

the trade-off parameter: 0, 4, 8, and 12, respectively, on the top left, top right, bottom left,

and bottom right corners. Configurations deemed outliers by the system in the final iteration

are not present... 48

Figure 14 – Distribution of loss residuals and standard deviation of the system’s predictions in

all four tests for the last 500 iterations, outliers included... 49

Figure 15 – Number of inliers and outliers in each of the four performed tests, according to

the last iteration of each test. .. 51

Figure 16 – System performance results, throughout 3000 iterations, given different values for

the trade-off parameter: 4 and 8, respectively, on the left and right. Configurations deemed

outliers by the system in the final iteration are not present. .. 52

Figure 17 - Distribution of loss residuals and standard deviation of the system’s predictions in

both tests for the last 500 iterations, outliers included. ... 53

Figure 18 - Number of inliers and outliers in the two performed tests, according to the last

iteration of each test. ... 55

Figure 19 – Handwritten digit images from the MNIST dataset (Lecun, et al., 1998). 56

Figure 20 – Example structure of a CNN (Phung & Rhee, 2019). ... 57

Figure 21 – System performance results, throughout 500 iterations, for a trade-off parameter

of 1.3. Configurations deemed outliers by the system in the final iteration are not present. .. 60

xiv

xv

List of Tables

Table 1 – Total number of possible configurations of an example neural network. 9

Table 2 – Test set classification error of the best NN configuration found by each solution

(Bergstra, et al., 2011). ... 22

Table 3 – Test set classification error of the best NN configuration in (Stein, et al., 2018) on the

MNIST dataset, compared with other manually configured networks. 23

Table 4 – Test set accuracy of the best NN configuration in (Stein, et al., 2018) on the CIFAR-10

dataset, compared with other manually configured networks. .. 23

Table 5 – Example configuration search space containing all possible data types. 39

Table 6 – Example configuration for a given iteration. .. 40

Table 7 – Features of sensor vibrations’ datasets.. 45

Table 8 – Search space of the vibrations’ case study. .. 47

Table 9 – The 10 configurations found with the lowest loss, across all four trade-off parameter

system tests, sorted by loss. .. 50

Table 10 - The 10 configurations found with the lowest loss, across both trade-off parameter

system tests, sorted by loss. .. 54

Table 11 - Search space of the CNN optimization. ... 59

Table 12 - The 10 configurations found with the lowest loss, sorted by loss. 61

Table 13 – Comparison of the thesis’ system’s best configuration with the best configuration

of other HPO systems. ... 62

Table 14 – Comparison of the thesis’ system’s best configuration with manually-configured

neural networks. .. 62

Table 15 – Level of accomplishment of the thesis’ system’s goals. ... 66

xvi

xvii

List of Acronyms

Acronym Meaning

ANN Artificial Neural Network

BO Bayesian Optimization

CNN Convolutional Neural Network

DBN Deep Belief Network

GA Genetic Algorithm

GECAD
Research Group on Intelligent Engineering and Computing
for Advanced Innovation Development

GP Gaussian Processes

HPO Hyperparameters Optimization

ISEP Instituto Superior de Engenharia do Porto

MNIST Modified National Institute of Standards and Technology

NN Neural Network

PI Probability of Improvement

PSO Particle Swarm Optimization

RNN Recurrent Neural Network

TMDEI Thesis / Master’s / Dissertation

TOP Trade-off Parameter

TPE Tree of Parzen Estimators

List of Symbols

Acronym Meaning

λ Set of hyperparameter values of a given NN configuration

Ψ HPO response function

Λ NN configuration space

xviii

1

1 Introduction

This section introduces the thesis by first giving a brief overview of the history of neural

networks and the problem this thesis contributes to, followed by a more detailed description

of said problem. Following that, it lists the goals of the thesis, the expected outcomes, and the

initial advocated approach in order to solve the identified problem. Lastly, the structure of this

document is presented.

1.1 Background

Neural networks (more specifically, artificial neural networks) are systems inspired by the

behavior of biological neural networks. Their history can be traced back to 1943, when a

neurophysiologist named Warren McCulloch and a mathematician named Walter Pitts

modelled a simple neural network using electrical circuits to describe how neurons in the

brain may work (McCulloch & Pitts, 1943). Since then, neural networks (NNs) have involved

into intricate structures of hundreds, thousands, or even millions of neurons, all working

together to solve very complex tasks, such as detecting road lanes in self-driving car systems

(McCall & Trivedi, 2006) and predicting Parkinson’s disease in medical patients (Sadek, et al.,

2019).

However, with the increase in complexity of neural networks over the years came the increase

in difficulty to configure them. As the architecture of a NN becomes more intricate, users

spend longer periods of time tweaking it in order to attempt to increase its performance. With

NNs oftentimes having millions of possible different configurations, it becomes unfeasible and

costly for users to experiment every single one.

In an attempt to solve this issue, the concept of hyperparameters optimization (HPO)

emerged. The idea behind this technique is the automation of the configuration of neural

networks using optimization algorithms, with a system having the capability of making

informed decisions on what configurations to evaluate. Throughout the optimization process,

the system tweaks the hyperparameters (i.e. architectural components) of the NN with the

2

intention of improving the network’s results. The process by which the system decides what

hyperparameters to tweak is dependent on the employed optimization algorithm.

1.2 Problem

Neural networks have been increasingly employed throughout recent years as tools for the

identification and understanding of patterns and classification of data, having an autonomous

reasoning capability in the resolution of the tasks for which they are trained. Algorithms of

this kind do not possess a “hard-coded” logic; instead, they develop their own way of thinking

throughout their training process.

Two of the most crucial tasks undertaken by developers when creating these types of systems

are the configuration of their hyperparameters (e.g. activation functions, number of layers,

layer types, etc.) and the selection of the most relevant attributes of the given dataset (also

known as feature selection). Despite the vitality and importance of these processes, they have

to be performed manually and are extremely time-consuming due to the semi-random trial-

and-error approach taken by users in order to figure out which attributes and parameters

provide the network with the best results (Stein, et al., 2018).

By automating this entire process, it can be performed in a more deliberate and

knowledgeable way. An HPO system can keep track of every change it makes to every

hyperparameter alongside the network performance that configuration led to, and then use

that information to make new changes in the hyperparameters that will lead to improved

network results. Moreover, if the system also has feature selection capabilities, it can choose

to ignore certain features that it believes to either be irrelevant or detrimental towards the

performance of the NN.

The thesis here presented, developed in the scope of the Thesis / Dissertation / Master’s

(TMDEI) class of the Master’s in Computer Science at the Instituto Superior de Engenharia do

Porto (ISEP), delves into the subjects of hyperparameters optimization and feature selection in

neural networks. Proposed by two professors part of ISEP’s GECAD (Research Group on

Intelligent Engineering and Computing for Advanced Innovation Development) research

center, the project consists in the implementation of a framework to automate the

configuration of neural networks.

1.3 Objectives

The main goal of this thesis is to design and develop a software solution to tackle the time-

consuming process of manually experimenting different configurations of a neural network.

The system should automate the configuration and evaluation process of neural networks,

thus alleviating end users from having to perform this process manually.

3

In order to accomplish this, it will be necessary to:

• Understand what a neural network is and how it functions;

• Explore the different types of existing neural networks and understand what

differentiates them, the use cases for each, and the advantages and disadvantages of

each one;

• Research problems of different natures solved through the usage of neural networks,

in an attempt to try and find patterns in the configuration process of the networks

and the feature selection process of the input data;

• Investigate already existing solutions for the automation of the configuration of

neural networks, analyzing employed techniques, system performance and quality of

generated networks;

• Apply the acquired knowledge in the design and architecture for the solution,

adaptable to any use case and easily extensible to accommodate future additions;

• Implement the actual system based on the design and architecture previously

specified;

• Incrementally evaluate and improve the final solution, reducing its time complexity

and increasing its overall performance.

1.4 Expected Outcomes

Based on the objectives set out for the thesis and its system’s development, the final version

of the implemented framework is expected to have the ensuing capabilities:

• It should be able to take into account the user’s data and the context of the problem

at hand and find a neural network optimal for it. The obtained NN should perform

comparably to a NN obtained through a manual process by a user;

• It should be able to create and configure multiple different types of neural networks,

such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN);

• It should be designed and implemented in a way where future extensibility (such as

the ability to support other machine learning algorithms) is straightforward and

simple;

• Due to the sheer complexity of iterating through and evaluating networks with

different configurations until an optimal one is obtained, it is expected for the

framework to operate for a long period of time1. With this in mind, it is also expected

that the framework’s time complexity is optimized in order to try and minimize this

issue as much as possible.

1 This will depend a lot on the problem to be solved, the type of, quality and quantity of the input data, the
specification of the machine where the framework will operate on, among other factors.

4

1.5 Advocated Approach

In order to develop a system to automatically configure neural networks, a state-of-the-art

study must be performed so as to investigate, evaluate and compare several different

algorithms and techniques, both as a core part of the system’s implementation, and as a way

to optimize the system itself and reduce its complexity. This research will mainly focus on the

core piece of the system, its optimization algorithm, delving into the various existing

approaches, such as evolutionary and genetic algorithms, applied to both the context of

hyperparameters optimization as well as other types of optimization. It will majorly consist of

books and journal articles of the past ten years (i.e. between 2010 and 2020), as both neural

networks and optimization algorithms are fast moving areas where it is vital to have the most

recent research possible.

The system will then be designed in a way that conforms to the performed study, along with

its expected behavior and characteristics (e.g. versatility and extensibility). It should adapt to

any use case and be capable of optimizing the architecture of any type of neural network,

with an optimization algorithm that can learn the most, the quickest, and have mechanisms

that can lower the time complexity of computing the quality of a given NN configuration.

Additionally, the system should have a mechanism to safeguard itself and its learning process

against certain edge cases, such as data outliers and configurations with unexpected results.

The implementation will be closely guided by the design and how it is expected to be

employed by a user, focusing on hiding its complexity from users and only exposing the

features they need to tweak the system (such as its learning behavior, the configurations and

data features to evaluate, and the criteria in charge of considering the optimization process

finished). The user will have the freedom and control over how to specify each of the

parameters the system will optimize and what the values of each of these parameters should

look like.

Lastly, the entire system will undergo a series of experimental tests, where its performance

will be evaluated in different case studies. These tests will deal with real world data and

different types of neural networks, ensuring the system can learn the architectural patterns

that make up the best performing NNs and obtain them. Not only that, but the feature

selection capabilities of the system will also be assessed, to find out whether it can pinpoint

the most relevant features of a dataset and the most redundant ones.

The entire methodology can be seen summarized by the process in the following figure:

5

Figure 1 – Thesis methodology.

1.6 Report Structure

Section 1 starts off with the introduction of the thesis, where both the background behind

neural networks and the optimization of hyperparameters are described, followed by a brief

summarization of the thesis’ problem. Afterwards, both the objectives of the thesis as well as

its expected outcomes are listed, finalizing with an explanation of the advocated approach for

the thesis.

Section 2 goes into a more thorough and deeper examination of the context behind the thesis.

First, key basic concepts vital in understanding the entirety of the thesis, such as machine

learning and neural networks, are clarified to the reader. Subsequently, the thesis’ problem is

explained in greater detail, emphasizing the existing struggles in the manual configuration of

NNs, while also exposing the complications which arise from trying to automate this process.

As a last point in this section, the business value of the thesis’ system and the benefits of it to

users is examined.

Section 3 presents the conducted state of the art, commencing with the undergone market

study of existing optimization algorithms, where algorithms such as Bayesian optimization and

particle swarm optimization are analyzed. Following that, various different researched

solutions are discussed and compared where optimization algorithms are used in the

optimization of hyperparameters in NNs.

Section 4 depicts the design of the system, starting off with the chosen optimization algorithm,

Bayesian optimization, and going in depth over its main components: the surrogate model and

the acquisition function. The flow of the entire system is also presented through a diagram,

followed by the discussion on how the configurations to use in the optimization process

should be specified. Lastly, the idea of parallelizing the evaluation of multiple configurations

at the same time is deliberated.

6

Section 5 begins by listing the technologies employed in the development of the system, as

well as how the human-computer interaction component of the system was handled. An

overview of how the search space will work in the system follows, together with an

explanation of the system’s concept of objective function. Ending the section is an analysis of

the scalability of the system.

Section 6 goes into the evaluation of the system, beginning with the methodology followed in

the conduction of the system’s experiments and the key metrics considered in the assessment

of the system’s performance. Afterwards, a case study on a dataset of vibrations detected by

motion sensors is presented, with the system having to optimize a neural network in charge of

understanding the cause of each vibration. Lastly, the system is put against other

hyperparameters optimization systems and manually configured networks in the optimization

of a convolutional neural network.

Section 7 presents the conclusions of the thesis, first listing its goals, and whether these were

accomplished or not, and then delving into ideas for future work and development in the

system. To finish off, a final appreciation over the entire thesis is made.

7

2 Context

This section introduces the reader to some fundamental concepts necessary to better

understand the area in which this thesis will dive into, such as machine learning and neural

networks. Following that, the problem of the thesis is explained in greater detail, together

with the highlighting of a few key points that elucidate the difficulties of implementing a

solution to the problem. Lastly, a value analysis on the project is presented, where both the

benefits and drawbacks of the system are underlined.

2.1 Neural Networks

Machine learning, a process which neural networks are a part of, can be described as “an

application of artificial intelligence (AI) that provides systems the ability to automatically learn

and improve from experience without being explicitly programmed” (Expert System Team,

2017). Machine learning can contain multiple types of learning algorithms, such as supervised,

unsupervised, and reinforcement learning, and each of these can include several different

machine learning models, such as ANNs, decision trees, and support vector machines.

Neural networks are composed of multiple interconnected units called neurons that pass

around information since they are given an input, until an output (i.e. prediction) is eventually

obtained. Each neuron receives one or more inputs, performs various mathematical

operations on it (depending on the type of neuron), and produces an output (Zhou, 2019) (see

Figure 2). Groups of neurons are then put together in what are called layers, with the first

layer being known as the input layer (where the input data is fed), the final layer as the output

layer (where the prediction(s) are obtained), and any layer in between these two (assuming

any exist) known as a hidden layer (see Figure 2).

8

Figure 2 – Architecture of a neural network (Bre, et al., 2017) and structure of a neural network’s

neuron (Zhou, 2019).

Each neuron also attributes a weight to each one of its inputs, thus controlling how strongly

neurons affects one another (aside from the input layer, every neuron’s input must be

another neuron’s output). The weights of every neuron in a neural network are also known as

the network’s parameters, and they are the source behind its learning process: every weight

starts out as a randomized value, and throughout the training process of the network, the

error of the network’s predictions is calculated (also known as a cost / loss function), with

each weight getting slightly adjusted towards a value that will minimize the loss of the

network and, therefore, improve its results (DeepAI, n.d.).

Just like a NN’s parameters are a critical part of its thought process, its hyperparameters are

also a critical part of its learning process. Examples of a network’s hyperparameters are the

number of hidden layers, the number of neurons per hidden layer, the network’s learning rate,

etc. Unlike the parameters of a NN, though, which are automatically tweaked throughout its

training process to improve its accuracy, hyperparameters tend to be manually tweaked by

users due to several complications brought about by attempting to automate it (see following

section 2.2).

It is also relevant to talk about deep learning, as it will be the area where this system’s

benefits will be the most noticeable. Deep learning is a subset of machine learning comprised

of neural networks with more complex architectures, constituted by multiple hidden layers

meant to learn representations of data with multiple levels of abstraction. These are crucial in

certain areas where datasets tend to be much more complex and difficult to understand, such

as in speech recognition, natural language processing, and computer vision (LeCun, et al.,

2015). The reason why the system will be the most useful in deep learning NNs is because

these tend to have a much higher number of hyperparameters to configure, in comparison to

NNs with simpler architectures.

2.2 Problem

The implementation of a neural network is a highly complex and laborious process, with users

expending a vast amount of time since the initial network’s design, until a final solution with

9

an expected optimal performance is obtained. This systematic procedure can be classified into

the following steps:

1. Define the network’s architecture (i.e. its hyperparameters), according to the problem

it is meant to solve;

2. Implement the NN;

3. Train and test the network with the architecture initially specified;

4. Tweak the hyperparameters of the network;

5. Repeat steps three and four until the NN reaches optimal results.

The issue with this approach is the amount of time developers spend in step four, where they

semi-randomly fine-tune each hyperparameter without having a good idea on what the

results after those changes are going to be. By making the smallest change, the network may

drastically improve its results, or it may worsen its performance significantly, or no change

may even occur. It is a very time-consuming process with unpredictable outcomes. Not only

that, but developers are not able to try out every single possible hyperparameter value, as

there are too many combinations. Table 1 presents an example of a neural network with three

hyperparameters, each having an arbitrary number of possible values, and a dataset

containing four features, where each feature is either used or ignored by the NN. The

hyperparameters and features equal a total of (2 ∗ 2 ∗ 2 ∗ 2 − 1) ∗ 5 ∗ 10 ∗ 3 = 2250

possible configurations (the combination of the features’ possible values is decremented since

the scenario with no features is not possible), a quantity rather impractical to be fully tested

by developers. In real scenarios, however, it becomes even more complex, as datasets have

more features and neural networks have dozens, or more, of hyperparameters with much

larger ranges of values, resulting in millions of different possible configurations.

Table 1 – Total number of possible configurations of an example neural network.

Features & Hyperparameters Possible Values
Number of

Possible Values

Feature 1 Ignore or Do Not Ignore 2

Feature 2 Ignore or Do Not Ignore 2

Feature 3 Ignore or Do Not Ignore 2

Feature 4 Ignore or Do Not Ignore 2

Number of Layers From 1 to 5 5

Number of Neurons per Layer From 1 to 10 10

Number of Epochs From 1 to 3 3

Total 2250

10

By keeping the same three hyperparameters in the above table with the exact same number

of possible values, but varying the number of features in a dataset, the impact in the number

of total configurations can be visually analyzed. The line chart in Figure 3 demonstrates the

exponential increase in the total amount of configurations of a NN as the number of features

increase. Whereas with one feature, there are 150 possible configurations, by ten features

this value is upwards of 100 thousand (153450, to be exact).

Figure 3 – Total number of configurations versus the number of features, exemplified using the static

possible values of the three hyperparameters in Table 1.

The search automation of a NN’s best hyperparameter values for a given dataset is a known

subject in the area of machine learning known as hyperparameters optimization. This method

can be expressed through the following equation:

λ(∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜆∈Λ

 Ψ(λ) (1)

where we are trying to obtain a given set of hyperparameters λ, belonging to Λ, which

minimize a given response function Ψ (also referred as the objective function) that will be

optimized by the system. The set Λ (also known as the configuration space of the network)

represents the array of hyperparameters {λ(1) … λ(𝑆)} to be evaluated by the function Ψ, in

order to obtain the hyperparameter values which provide the network with the lowest loss

calculated by Ψ . Both the response function Ψ and the set Λ vary depending on the

optimization algorithm and dataset used, as well as the tasks performed by the network over

the dataset (Bergstra & Bengio, 2012).

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10

To
ta

l N
u

m
b

er
 o

f
C

o
n

fi
gu

ra
ti

o
n

s

Number of Features

11

Currently, the main obstacles with hyperparameter optimization are (Feurer & Hutter, 2019):

• Evaluations of the function Ψ can be very time-and-resources-demanding, especially

with more complex NNs and larger datasets;

• The search space2 of a given hyperparameter can be extremely complex and high-

dimensional;

• It is hard to know which hyperparameters require optimization and which ones do not;

• It is hard to know which hyperparameters are the most substantial in improving the

network’s results;

• It is not always possible to optimize the hyperparameters of a network through the

usage of a cost function, like it is done in the training process of a NN.

2.3 Value Analysis

With the employment of a system like this, users will not have to spend a lot of their time

manually tweaking hyperparameters of the network and re-training and re-testing it multiple

times. The framework will automate the entire process, ensuring an optimal solution is

eventually reached, thus freeing up users’ time to work on other projects. This becomes even

more obvious when it comes to deep learning networks, as these tend to be exponentially

more complex to configure.

In view of the system’s versatility, it can be employed in the automatic configuration of any

type of neural networks, be it CNNs, RNNs, Feedforward NNs, etc. Furthermore, the system

encourages experimentation, as it may try out network configurations that the user would

never even consider testing.

Despite what is said in section 1.4 about the system being expected to run for long periods of

time, it does not necessarily mean it will take longer than if the optimization process was

performed manually by users. This is due to the fact that the system will employ metaheuristic

techniques to predict the performance of not-yet-evaluated configurations, and subsequently

use that knowledge to avoid evaluating configurations which it expects to have worse results

than configurations that have already been evaluated. A user may not be capable of carrying

out these assessments and end up spending a greater amount of time experimenting with

worse-performing configurations.

2 Domain of the hyperparameter being optimized (e.g. the number of hidden layers).

13

3 State of the Art

This section presents a state-of-the-art on existing algorithms and techniques used in the

automatic configuration of neural networks. It starts off by summarizing and comparing

multiple existing optimization algorithms that can be adapted to the optimization of

hyperparameters, such as Bayesian optimization and genetic algorithms. Following that,

various scientific publications are examined where systems with different optimization

algorithms are employed in the automatic configuration of neural networks.

3.1 Optimization Algorithms

Throughout the years, many different optimization algorithms have been developed and

employed in the hyperparameters optimization process of neural networks. This chapter

introduces some of these existing algorithms and how each one of them operates.

3.1.1 Grid Search

Grid search is one of the most well-known hyperparameter optimization algorithms,

consisting on the combination of every possible value of the search space of every

hyperparameter (Bergstra & Bengio, 2012). As an example, if 𝐴 is the search space of a given

hyperparameter, such that 𝐴 = {1, 2}, and 𝐵 is the search space of another hyperparameter,

such that 𝐵 = {3, 4}, then, in accordance to eq. 1, Λ = {(1, 3); (1, 4); (2, 3); (2, 4)}. Figure 4

showcases how grid search would select nine configurations in an optimization process, only

testing three distinct values on two hyperparameters (cf. Figure 5).

14

Figure 4 – Grid search of nine different configurations with two hyperparameters (yellow and green

areas) (Bergstra & Bengio, 2012).

The simplicity of this algorithm comes with the cost of the curse of dimensionality, whereby

the number of function evaluations exponentially increase with the dimensionality of the

configuration space of the network (Feurer & Hutter, 2019). In other words, performing

optimization using grid search becomes exponentially more expensive the more

hyperparameters the network has and the larger the search space of each one is.

3.1.2 Random Search

Random search is an alternative to grid search which attempts to overcome its curse of

dimensionality issue by randomly selecting configurations to evaluate, instead of evaluating

every single possibility (Bergstra & Bengio, 2012). For example, if there was a search space

𝐴 = {1, 2} for hyperparameter 𝐻𝐴, and a search space 𝐵 = {1, 2, 3, 4, 5} for hyperparameter

𝐻𝐵, grid search would evaluate configurations sequentially, starting off by evaluating all the

configurations where 𝐻𝐴 = 1, such as (1, 1) and (1, 2), and then all configurations where

𝐻𝐴 = 2, such as (2, 1) and (2, 2); random search, on the other hand, would evaluate

configurations randomly, never selecting them in any specific order. Figure 5 showcases how

random search would select nine configurations in an optimization process, testing an

heterogenous range of values on two hyperparameters (cf. Figure 4).

15

Figure 5 - Random search of nine different configurations with two hyperparameters (yellow and green

areas) (Bergstra & Bengio, 2012).

Outside of that, it features most of grid search’s characteristics, such as easy parallelization of

the evaluation of different configurations (since each one is completely independent on the

rest) and the need to specify the search space of every hyperparameter ahead of time.

3.1.3 Bayesian Optimization

Bayesian optimization (BO) algorithms avoid the complexity of calculating Ψ by instead

creating a surrogate function that approximates Ψ and that is optimized and improved

throughout the HPO process. This optimization process is accomplished on account of a

history of past configurations evaluations maintained by the algorithm, allowing it to make

informed choices on what hyperparameters to evaluate next based on past results (Hutter, et

al., 2011).

Figure 6 demonstrates an example Bayesian optimization process at two different stages, with

the dashed red line representing the real objective function of a given hyperparameter, the

bold black line representing the surrogate model of the objective function, the black dots

representing the results of evaluations made, and the grey area representing the uncertainty

of the surrogate model. As can be seen, a BO algorithm optimizes its surrogate function, in

every iteration, by “adding” the evaluation result of that iteration to it, slowly approximating

it to the real objective function Ψ, whilst too lowering its uncertainty.

16

Figure 6 – Example of the Bayesian optimization process at two different stages: on the left, after 2

configurations evaluations; on the right, after 8 configurations evaluations (Koehrsen, 2018).

Bayesian optimization algorithms can have different implementations depending on two

distinct aspects of the algorithm: how the surrogate function is built (e.g. Gaussian Processes

(GP), Tree of Parzen Estimators (TPE), etc.); which criteria to use to select the next

hyperparameters in each iteration of the process (i.e. acquisition function) (e.g. Probability of

Improvement (PI), Expected Improvement (EI), etc.).

3.1.4 Genetic Algorithms

Genetic algorithms (GA) are a class of evolutionary algorithms pioneered in the 1960s and

1970s which, similarly to neural networks, take inspiration from biological processes. More

specifically, GAs take inspiration from Darwin’s theory of evolution, involving concepts such as

natural selection, mutations and crossover (Yang, 2013).

Each solution to be evaluated by a GA is called an individual, and a group of individuals is

called a population. Each individual possesses a chromosome representing the features of

that individual. In the context of HPO, an individual would be considered a network

configuration to be evaluated and its chromosome would be the hyperparameter values of

that configuration. Each individual would also be part of a given population P, such that 𝑃 ⊆

 Λ.

In order to select the best individuals of a population, a fitness function is used to evaluate the

performance of each one (this function is linked to the response function Ψ). The best

individuals of each population are then added to a mating pool, where the higher the quality

of an individual, the higher are the chances it is selected. In the selection process, multiple

pairs of individuals are chosen to generate offsprings (i.e. children). Each offspring’s

chromosome will be a combination of its parents’ chromosomes.

Since every offspring will always share a combination of its parents’ characteristics, in order to

introduce some randomness into the process, each offspring will suffer mutations too, where

their chromosomes will suffer slight changes. The individuals obtained after the mutation

process will then replace the previous generation as the new one.

Figure 7 shows a flowchart of a typical genetic algorithm. After a population is randomly

initialized, its fitness is evaluated, with the best performing individuals being selected. These

17

individuals then undergo the crossover process to produce children, which, subsequently,

have their chromosome mutated. These new individuals will compose the new population

which will undergo the exact same process, until some given termination criteria are reached.

Figure 7 – Flow of a genetic algorithm (Saeed, 2017).

3.1.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is an optimization algorithm introduced in the 1990s and

inspired by the behavior observed in groups of social organisms, such as the coordinated flight

of flocks of birds and the schooling of fish. PSO shares the concepts of individual and

population also present in GA (also known as a particle and a swarm), where, iteratively,

particles in a swarm move around in an attempt to find an optimal solution to a given problem

(Martínez & Cao, 2019).

Each particle is defined by its current position and velocity—which stochastically change in

every iteration—, in turn affecting its trajectory. The trajectory of each particle is also

affected by the best position achieved by that particle and the swarm’s best position. The

position and velocity of each particle changes every iteration according to:

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑥𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑖

𝑡) (2)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (3)

where 𝑥𝑖
𝑡 is the position of particle 𝑖 at iteration 𝑡, 𝑣𝑖

𝑡 is the velocity of particle 𝑖 at iteration 𝑡,

𝑥𝐵𝑒𝑠𝑡𝑖 is the particle 𝑖’s best position, 𝑔𝐵𝑒𝑠𝑡 is the swarm’s overall best position, and 𝜔, 𝑐1,

𝑐2, 𝑟1, and 𝑟2 are the inertia weight, two positive constants and two random parameters

within [0, 1], respectively. The 𝜔, 𝑐1 and 𝑐2 parameters control the influence of different

factors in the particle’s velocity, with 𝜔 regulating the weight of the particle’s previous

18

velocity, 𝑐1 regulating the weight of the particle’s best position, and 𝑐2 regulating the weight

of the swarm’s best position. 𝑟1 and 𝑟2 are values selected randomly in every iteration and are

meant to introduce randomness in the process and avoid particles converging to a local

optimum.

3.1.6 Bat Algorithm

Bat algorithm (BA) is the most recent optimization algorithm here presented, having been

introduced in 2010 by Xin-She Yang (Yang, 2010). Despite their blindness, through the

mechanism of echolocation, bats are able to detect preys, avoid obstacles, and completely

map out three-dimensional environments around them. They vary their echolocation pulses’

frequency, loudness, and rate of emission in order to adapt to their surrounding environment

and better perform tasks such as hunting. BA takes inspiration from this behavior of bats, in

conjunction with other existing metaheuristic optimization algorithms, such as PSO and

harmony search, establishing a novel population-based optimization algorithm.

In BA, the frequency, position, and velocity of each bat is updated in accordance with the

following equation:

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑟1 (4)

 𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + (𝑥𝑖
𝑡 − 𝑔𝐵𝑒𝑠𝑡𝑡)𝑓𝑖 (5)

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (6)

where 𝑥𝑖
𝑡, 𝑣𝑖

𝑡, and 𝑟1 have the same meaning as in PSO’s equations (eq. 2 and 3), 𝑔𝐵𝑒𝑠𝑡𝑡 is the

bat population’s best position at iteration 𝑡, 𝑓𝑖 is the pulse frequency of bat 𝑖, and 𝑓𝑚𝑖𝑛 and

𝑓𝑚𝑎𝑥 are the minimum and maximum frequencies allowed, respectively.

Up to this point, BA seems to follow a very similar logic as PSO. Where it starts to differentiate

from it is through the concept of local search. It states that in every iteration, after the

velocity and position of every bat is updated using the above equations, each bat should fly

randomly. This random flight will involve two new parameters: the pulse emission rate 𝑅𝑖
𝑡 and

the loudness 𝐴𝑖
𝑡. The local search will then be conducted either based on the current best

solution or a randomly chosen one, depending on the bat’s 𝑅𝑖
𝑡, according to the following

formula (Adarsh, et al., 2016):

 𝑥𝑖
𝑡+1,𝑛𝑒𝑤 = {

𝑔𝐵𝑒𝑠𝑡𝑡 + 𝑟2𝐴𝑖
𝑡, 𝑟3 > 𝑅𝑖

𝑡

𝑥ℎ
𝑡 + 𝑟2𝐴𝑖

𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

where 𝑅𝑖
𝑡 is the pulse emission rate of bat 𝑖 at iteration 𝑡, 𝐴𝑖

𝑡 is the loudness of bat 𝑖 at

iteration 𝑡, 𝑟2 is a random parameter within [-1, 1], 𝑟3 is a random parameter within [0, 1],

and ℎ is a random parameter within [1, 2, …, Nb], ℎ ≠ 𝑖 (where Nb is the number of bats in the

population), such that 𝑥ℎ
𝑡 is the position of a bat in the population that is not bat 𝑖 at iteration

𝑡 picked randomly.

19

For each bat, it will be decided whether this new 𝑥𝑖
𝑡+1,𝑛𝑒𝑤 position or the previous 𝑥𝑖

𝑡+1

position will be maintained according to:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+1,𝑛𝑒𝑤 ⇒ 𝑟4 < 𝐴𝑖
𝑡 ∧ Ψ(𝑥𝑖

𝑡+1,𝑛𝑒𝑤) < Ψ(𝑥𝑖
𝑡+1) (8)

where 𝑟4 is a random parameter within [0, 1] and Ψ is the objective function that is trying to

be minimized in the HPO process. In case the “random walk” position of the bat becomes the

bat’s actual new position, the pulse emission rate and loudness of the bat will also be updated:

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡 (9)

 𝑅𝑖
𝑡+1 = 𝑅𝑖

0[1 − exp(−𝛾𝑡)] (10)

where 𝑅𝑖
0 is the initial pulse emission rate of bat 𝑖 at iteration 𝑡, and 𝛼 and 𝛾 are two positive

constants. The initial loudness 𝐴𝑖
0 and pulse emission rate 𝑅𝑖

0 of a bat are randomly selected

within [1, 2] and [0, 1], respectively.

Figure 8 summarizes the flow of a typical bat algorithm, starting off by defining the frequency

and initial position, velocity, loudness, and emission rate of each bat. Following that, the

position and velocity of each bat is updated, and each bat takes a walk starting off from the

best bat’s position or a random one, depending on a given condition. The new position of the

bat is maintained if another given condition is met and if it is better than the previous bat

position, in which case the bat’s loudness and pulse emission rate are also updated. This

process is repeated until some given termination criteria is reached.

20

Figure 8 – Flow of a bat algorithm.

3.2 Researched Solutions

Applying the concepts behind the optimization algorithms presented in the previous section

3.1, numerous authors have designed and implemented their own systems to automatically

configure neural networks. This section delves into various of these solutions, describing the

technical details behind each one, their testing results, and how they fare against other

previously developed systems.

3.2.1 Random Search for Hyper-Parameter Optimization of Neural Networks

In a study by Bergstra & Bengio, the authors implemented an automatic NN configurator using

the random search algorithm (Bergstra & Bengio, 2012). The system was set up to configure

seven hyperparameters on a one-layer NN, such as the type of input data preprocessing,

number of hidden units, and learning rate of the network’s stochastic gradient descent

21

optimization algorithm. The system was then compared to a grid search solution from

(Larochelle, et al., 2007), in which, despite the hyperparameters to-be-optimized being

different, the covered configuration search space was roughly the same size.

The tests were performed on eight different image datasets, five of which being the Modified

National Institute of Standards and Technology (MNIST) dataset, a famous dataset of 70,000

28x28 greyscale images of handwritten digits, and four other variants of it, such as with the

images rotated or with random background images. For each dataset, the random search

system was evaluated on varying numbers of trials (network configurations evaluations): 1, 2,

4, 8, 16, 32, and 64; and compared with the results of the grid search solution which, on

average, ran for 100 trials.

Overall, random search managed to find a better network configuration than grid search at

the end of eight configurations evaluations, less than one tenth the number of configurations

tested by grid search. Even on test scenarios where random search had to perform more trials,

it always managed to outperform grid search after reaching 64 evaluations.

The paper also presents experiments made using Gaussian processes to determine the

relevance of each of the seven hyperparameters in the results and performance of the

evaluated network configurations. Two important conclusions were reached through these

experiments: only a small fraction of hyperparameters matter for any given dataset, and

different hyperparameters matter on different datasets. These conclusions manage to better

explain how the random search system managed to greatly outperform the grid search one

with a much smaller number of trials: even though grid search evaluated more configurations,

it did not evaluate certain important hyperparameters that random search did. This was due

to the inherent grid search’s limitations on the size of the configuration space of a network, as

the algorithm puts the exact same weight on every hyperparameter and attempts to evaluate

every possible configuration, a process that can take multiple days to finish.

3.2.2 Algorithms for Hyper-Parameter Optimization of Deep Belief Networks

In another study by the same two authors et al (Bergstra, et al., 2011)3, grid search and

random search were compared again in the automatic configuration of a Deep Belief Network

(DBN) over six images datasets (all of them also used in (Bergstra & Bengio, 2012)). This

random search system had to configure more hyperparameters than in (Bergstra & Bengio,

2012), including the number of hidden layers (between one and three), leading to a larger

configuration search space.

The testing methodology was also very similar to (Bergstra & Bengio, 2012), with the

implemented random search system being again compared with two other grid search

solutions from (Larochelle, et al., 2007): a one-layer DBN and a three-layer DBN. The base

3 Despite (Bergstra, et al., 2011) having been published the year before (Bergstra & Bengio, 2012), it is safe to
assume it was written before (Bergstra & Bengio, 2012), as the authors constantly make reference to it. Chapter
3.2.2 was written with that assumption in mind.

22

configuration space of all three solutions was the same, with (Bergstra, et al., 2011) making

some slight implementation changes which expanded its own configuration search space.

Tests results reveal that random search, unlike in (Bergstra & Bengio, 2012), did not manage

to outperform grid search in every dataset—albeit, in most cases, it still managed to converge

to a maximum after around 32 trials. In one of the datasets, even after the maximum allowed

of 128 trials, random search never managed to obtain results as good as the three-layer grid

search’s best NN. This may suggest that the expanded search space of the random search

system may not include configurations with improved performance.

Still in the same study (Bergstra, et al., 2011), two more systems are presented to configure a

Multi-Layer Perceptron (MLP) on 10 hyperparameters: one with a BO algorithm using GP, and

another using a BO algorithm too, but with Tree of Parzen Estimators instead. Both systems

always started out with the first 30 configurations being randomly selected, after which the

BO acquisition function took over the process of selecting the configurations to evaluate.

These two systems’ results were compared with the random search solution previously

introduced in this paper and the grid search solution from (Larochelle, et al., 2007) on two of

the six datasets also used in the random search’s earlier experiments. Each system was

allowed to run for up to 200 trials. Each trial was executed on one of four different kinds of

GPUs: NVIDIA GTX 285, GTX 470, GTX 480, and GTX 580; with a one-hour time limit per trial,

independently of the GPU.

The results, seen in Table 2, showcase the two BO systems as being the top-performing

solutions, with the system using TPE to build the surrogate function finding the configuration

with the lowest classification error. These results reveal how the modelling approach of BO

and the capability of selecting new configurations to evaluate based on past results can

perform better than the brute-force approach of grid search or the random selection

approach of random search.

Table 2 – Test set classification error of the best NN configuration found by each solution (Bergstra, et

al., 2011).

Algorithm Convex dataset MRBI dataset

BO w/ TPE 14.13 ± 0.30% 44.55 ± 0.44%

BO w/ GP 16.70 ± 0.32% 47.08 ± 0.44%

Grid Search 18.63 ± 0.34% 47.39 ± 0.44%

Random
Search

18.97 ± 0.34% 50.52 ± 0.44%

Time-complexity wise, both BO systems took about 24 hours to run, with up to five

configurations being evaluated in parallel. By using the surrogate model of BO on the two

systems to predict the performance of a given configuration, after 200 trials, the system with

GP and the system with TPE were able to predict Ψ in 150 and 10 seconds, respectively. These

23

represent very positive results as a configuration can usually take hours or even days to be

evaluated.

3.2.3 Automatic Configuration of Deep Neural Networks

In (Stein, et al., 2018), a solution based on Bayesian optimization is presented, implemented

using random forests to build the surrogate model and Moment-Generating Function (MGF)

as the acquisition function. Additionally, the system uses parallelization in order to evaluate

multiple different configurations at the same time, where, in every iteration, five

configurations are evaluated in parallel using NVIDIA K80 GPUs.

The system is applied in the automatic configurations of CNNs and is tested on two very

famous image datasets: MNIST and CIFAR-10, a dataset of 60,000 32x32 coloured images

containing one of ten different objects, such as airplane, deer, or horse. For each of the two

datasets, the system’s results were compared with three other manually configured networks,

as seen on Table 3 and Table 4.

Table 3 – Test set classification error of the best NN configuration in (Stein, et al., 2018) on the MNIST

dataset, compared with other manually configured networks.

Algorithm Error Epochs

(Ciresan, et al., 2012) 0.23% 800

(Graham, 2014) 0.32% 250

(Stein, et al., 2018) 0.61% 10

(Yang, et al., 2015) 0.71% Unknown

Table 4 – Test set accuracy of the best NN configuration in (Stein, et al., 2018) on the CIFAR-10 dataset,

compared with other manually configured networks.

Algorithm Accuracy Epochs

(Graham, 2014) 95.59% 250

(Springenberg, et al., 2014) 95.59% 350

(Stein, et al., 2018) 86.46% 50

(Zeiler & Fergus, 2013) 84.87% 500

For both datasets, the system managed to find the optimal network configuration after

approximately 50 evaluations. Despite the seemingly worse performance of the best network

configuration found by the paper’s solution, it is important to note that the evaluated

configurations were only allowed to run up until a number of epochs drastically smaller than

those of the manually configured NNs (10 and 300 epochs in the MNIST and CIFAR-10 datasets,

respectively). This was done in order to speed up the optimization process of the system. The

results suggest that, if allowed to run for a longer number of epochs, the system would have

been able to find better performing configurations.

25

4 Design

After the research made in the previous section 3, and with the knowledge gathered through

it, this chapter will now delve into the design of the system to be developed. It starts out by

analysing the studied optimization algorithms, weighing their pros and cons, and selecting

which one will be implemented in the system. It also delves into the two essential parts of the

chosen algorithm, Bayesian optimization: the surrogate model, that will keep a history of

evaluated configurations and build a model around it that best represents it; and the

acquisition function, in charge of, at every iteration, picking the configuration to be evaluated

next that it believes will provide the best results. The final point relating to the optimization

algorithm will be outliers, how these can strongly influence the surrogate model and how the

system is going to handle them as to ensure the model does not behave erratically due to

them.

The succeeding section presents the designated flow of the system, from the moment its

optimization process begins, until it finishes. Afterwards, two different approaches are

discussed on the definition of the configurations search space, together with each one’s

strongest and weakest points. As the final design component of the system, an examination

on the parallelization of the evaluation of network configurations is made.

4.1 Optimization Algorithm Analysis

The core component of the system presented in this thesis is the HPO algorithm, as it will be

in charge of selecting the configurations to be evaluated based on certain criteria that differ in

each algorithm. This can be a very intricate task as it is important for the algorithm to balance

exploration and exploitation, a trade-off between the system evaluating configurations similar

to past ones that have delivered positive results (i.e. exploitation), and the system attempting

to try out novel configurations, in the hope of finding even better performing ones (i.e.

exploration) (Berger-Tal, et al., 2014).

26

This dilemma leads straight into the grid search and random search optimization algorithms,

which were some of the first optimization algorithms employed in the HPO process and that,

of those studied, are the simplest to implement too. Unfortunately, none of these two

algorithms have the aforementioned capability of balancing exploration and exploitation, as

neither one keeps track of past configurations evaluations to make informed decisions on

selecting new configurations. Grid search employs a brute-force approach, in which, once the

configuration space is defined, every single configuration in it is evaluated. This approach

easily becomes impractical in the real world as the dimensionality of the configuration space

increases (i.e. more hyperparameters with more possible values are added to a NN). This grid

search drawback (described in chapter 3.1.1) becomes an even bigger predicament in the

system to-be-implemented in the thesis, which is expected to be employed by users for any

kind of dataset and type of neural network and, as such, no assumptions can be made about

the dimensionality of the configuration space. Adding to this, the systems analysed in

chapters 3.2.1 and 3.2.2 demonstrate how easily other optimization algorithms can

outperform grid search in a shorter amount of time.

Looking at random search, despite it solving the curse of dimensionality issue of grid search by

randomly selecting configurations to evaluate, instead of evaluating every single one, it still

suffers from not having the ability to learn from past configurations evaluations and use that

knowledge to select new candidates that have a higher chance of performing well. Since

configurations are always randomly selected, the results of the system can often be

unpredictable, where running the system on the exact same dataset with the exact same

configuration space can lead to varying results every time.

Unlike grid search and random search, population-based optimization algorithms (GA, PSO,

and BA), along with the BO algorithm, take into consideration past trials in order to select new

configurations to evaluate. Moreover, they inherently possess exploration versus exploitation

mechanisms that can be tweaked in order to better adapt them to each network

configuration scenario. Through this, they are able to make smarter and more knowledgeable

decisions upon what configurations could have the most potential at any given point.

As the last point of consideration, the elevated time-complexity of HPO can be pinpointed to

the evaluation of the response function Ψ. Calculating this function involves the training and

testing of a neural network from scratch with a given set of hyperparameters λ, a process that

can sometimes take hours or even days to finish. This issue is still one of the current biggest

complications of the automatic configuration of NNs hindering it from being employed in the

real world more often (albeit manual configuration of NNs also suffers from this). The BO

algorithm possesses a mechanism that helps deter this problem by building a surrogate model

of Ψ which is much easier and faster to calculate than Ψ (more details about this on section

3.1.3). Using the surrogate model, BO can avoid having to resort to Ψ to evaluate a given

configuration as much as possible, thus drastically reducing the time taken by the system to

find an optimal configuration and allowing it to run more trials without as much of a time

penalty.

27

Having all of these advantages and disadvantages in mind, in addition to the versatility and

intelligent decision-making skills of the BO algorithm and the promising results observed in

3.2.2 and 3.2.3, it was adopted as the HPO algorithm of the thesis system.

4.1.1 Surrogate Model

For a given set of points { 𝑌(𝑥) | 𝑥 ∈ 𝑋 }, indexed by a set 𝑋, there is a possibly limitless

amount of functions that could describe the distribution of these points. The surrogate model

of the system, Gaussian Processes, attempts to solve this problem by assigning a given

probability to each of these functions in order to try and find the one that best describes the

dataset. It achieves this by extending a multivariate Gaussian distribution, which is specified

by a mean vector and a covariance matrix, to an infinitely dimensional Gaussian distribution,

specified instead by a mean function and a covariance (also known as kernel) function (Ebden,

2015) (see eq. 11). In the given implementation of the system, the mean function was defined

as 0 for any value of 𝑥—as GPs are able to model the mean arbitrarily well (Krasser, 2018)—

(see eq. (12)) and the covariance function was defined as the square exponential kernel (see

eq. (13)).

 𝑓 ~ 𝐺𝑃(𝜇, 𝑘) (11)

𝜇(𝑥) ≡ 0 ∀ 𝑥 (12)

𝑘(𝑥, 𝑥′) = exp (−
𝑑(𝑥,𝑥′)

2

2𝑙2) (13)

where 𝑙 is the length scale of the kernel and 𝑑(𝑥, 𝑥′) is the Eucledian distance between points

𝑥 and 𝑥′.

Considering 𝑇 as the training data (configurations evaluated so far) and 𝑇∗ as the testing data

(configurations yet to be evaluated), the three presented equations can be used: to define the

prior distribution 𝑃𝑇∗
, used to make predictions before any training data has yet to be seen;

the posterior distribution 𝑃𝑇∗|𝑇 , used to make predictions based on already evaluated

configurations (Görtler, et al., 2019). To calculate the posterior, one must first look at the joint

distribution 𝑃𝑇∗,𝑇:

𝑃𝑇∗,𝑇 = [
𝑇
𝑇∗

] ~ 𝑁 ([
𝜇
𝜇∗

] , [
K K∗

K∗
𝑇 K∗∗

]) (14)

where 𝜇 and 𝜇∗ stand for the means of the training and testing data, respectively, 𝐾 and K∗∗

are the covariance matrices for the training and testing data, respectively, and K∗ and K∗
𝑇 are

the covariance matrices between the training and testing data, normal and transposed,

respectively. Knowing the value for 𝑇, one can calculate 𝑃𝑇∗|𝑇 (i.e. the posterior distribution)

using:

𝑃𝑇∗|𝑇 ~ 𝑁(𝜇∗ + 𝐾∗
𝑇𝐾−1(𝑇 − 𝜇), 𝐾∗∗ − 𝐾∗

𝑇𝐾−1𝐾∗) (15)

28

According to eq. 12, since the mean is considered to be 0 for every configuration, eqs. 14 and

15 can thus be simplified, respectively, to:

𝑃𝑇∗,𝑇 = [
𝑇
𝑇∗

] ~ 𝑁 (0, [
K K∗

K∗
𝑇 K∗∗

]) (16)

𝑃𝑇∗|𝑇 ~ 𝑁(𝐾∗
𝑇𝐾−1𝑇, 𝐾∗∗ − 𝐾∗

𝑇𝐾−1𝐾∗) (17)

4.1.2 Acquisition Function

The goal of an acquisition function is to select the next configuration to evaluate on every

iteration according to select criteria. The chosen acquisition function for the system,

Probability of Improvement, estimates the probability of improvement for a given

configuration by calculating the probability (between zero and one) that it will perform better

than the best configuration obtained thus far. It uses the surrogate function to predict,

according to the knowledge of past configurations evaluated, what the configuration’s result

value will be and how certain it is of it (represented by the respective standard deviation). Its

formula is as follows (MathWorks, n.d.):

𝑃𝐼(𝑥, 𝑄) = Φ (
𝜇𝑄(𝑥𝑏𝑒𝑠𝑡)−𝜇𝑄(𝑥)

𝜎𝑄(𝑥)
) (20)

where 𝑄 is the posterior distribution function of the surrogate model (in our case, according

to eq. 17, 𝑃𝑇∗|𝑇), 𝑥 is the configuration, 𝑥𝑏𝑒𝑠𝑡 is the best configuration found so far, 𝜇𝑄 and 𝜎𝑄

are the posterior mean and standard deviation, respectively, of the configuration, and Φ is the

unit normal cumulative distribution function.

For the main thesis’ solution, the metric to be used by both the surrogate model and the

acquisition function as the one to be optimized will be the loss (also known as the error or

cost) of a neural network with a given configuration. As such, the optimization problem at

hand is one of minimization, and the best configuration will be considered to be the one with

the lowest loss and the one with highest probability of improvement as the one with the

highest chances of having a smaller loss. This is important to mention, as eq. 20 showcases the

minimization version of the PI formula, not the maximization one.

As mentioned in section 4.1, one of the biggest advantages of Bayesian Optimization over

other optimization algorithms is its ability to balance exploration and exploitation of

configurations over time. The acquisition function of the BO algorithm is the one in charge of

balancing this mechanism in a manner that best optimizes results and increases the chances

of finding the global optimum. The formula for the acquisition function of the system

presented in the previous section (eq. 20) currently has no such mechanism, being purely

exploitational.

The idea of using a variable called the trade-off parameter (TOP) to balance out exploration

versus exploitation in the PI acquisition function was first introduced in (Kushner, 1964). Since

then, many other authors have explored the importance of this parameter in various different

29

domains (Törn & Zilinskas, 1989) (Jones, 2001) (Lizotte, 2008). With the introduction of the

parameter, eq. 20 of the PI function becomes:

𝑃𝐼(𝑥, 𝑄, 𝑡) = Φ (
𝜇𝑄(𝑥𝑏𝑒𝑠𝑡)−𝜇𝑄(𝑥)+𝜉(𝑡)

𝜎𝑄(𝑥)
) (21)

where 𝑡 is the current iteration of the optimization process, and 𝜉(𝑡) is the trade-off

parameter, whose value will depend on the iteration. As 𝜉(𝑡) → +∞, the acquisition function

prioritizes configurations with higher posterior standard deviation, thus encouraging

exploration. Conversely, as 𝜉(𝑡) → 0, the acquisition function prioritizes configurations with

higher posterior mean, thus encouraging exploitation. Thus, the parameter should be adapted

depending on the user’s preferences.

In (Kushner, 1964), Kushner suggests tweaking this value over time, starting off with it quite

high, to encourage the exploration of regions of higher interest, and to decrease it throughout

the optimization process, in order to slowly search more the regions of interest previously

explored and converge to the best value. It does not, however, provide an algorithm for how

one could achieve this. For the thesis, the approach taken was to linearly decrement the value

of the TOP at every iteration, so it reaches 0 at the last one. Thus, the formula is:

𝜉(𝑡) = 𝜉(𝑡 − 1) −
𝜉(0)

𝑛
 (22)

where 𝑛 is the number of iterations the system will run for, and 𝜉(0) is the initial value of the

trade-off parameter. The importance of 𝜉(0) is explored in section 6.3, where experimental

system tests are performed with different TOP values to evaluate the influence it has over the

entire system’s behaviour.

4.1.3 Outliers

Gaussian Processes works with the expectation that every variable involved in the

optimization process follows a normal distribution which, when joined together, form a

multivariate normal distribution (Vanhatalo, et al., 2009). The problem with this expectation is

its non-robustness, as a single outlier can drastically reduce the accuracy of the model when

making predictions. This issue can be observed in Figure 9 (a), where the black line represents

the real function, the blue line represents the surrogate model, the red dashed line represents

the standard deviation of the surrogate model, and the blue dots represent the sample data

points.

30

Figure 9 – An example regression with outliers present: on the left, using a Gaussian model; on the right,

using a Student-t model (Vanhatalo, et al., 2009).

In (Martinez-Cantin, et al., 2017), the authors mention two ways to handle outliers:

robustness of inference to outliers, which consists on developing models which are capable of

including outliers without allowing them to dominate non-outlier data; outlier diagnostics,

consisting on analyzing the data for any anomalies and excluding them, ensuring the surrogate

model is built only on standard data. Robustness of inference to outliers tends to be more

computationally expensive as the surrogate model must have extra logic in order to handle

outliers, whereas with outlier diagnostics the model can be kept as is and the discovery and

removal of outliers can be done separately, which tends to be faster to perform.

Both (Xia, 2017) and (Vanhatalo, et al., 2009) demonstrate approaches taken on the issue of

handling outliers based on model robustness. In (Xia, 2017), a Student-t Process is used in

place of a Gaussian Process, which is similar but uses student-t distributions instead of normal

distributions, capable of fitting outliers without skewing the model completely towards them

(see Figure 9, (b)). In (Vanhatalo, et al., 2009), a modified version of a Gaussian Process is

presented that employs student-t likelihood. On the other hand, (Martinez-Cantin, et al., 2017)

describes an approach based on detecting and removing outliers before fitting the data on the

surrogate model. It fits the data on a GP with student-t likelihood, similar to (Vanhatalo, et al.,

2009), but instead of using that as the real surrogate model, it uses it to find outliers, removes

them, and then the outlier-free data is fitted on the real ordinary GP model. This approach is

quicker as the real surrogate model does not have to be robust to outliers, leading to faster

predictions.

Martinez-Cantin et al paired up their system against two other robust systems similar to (Xia,

2017) and (Vanhatalo, et al., 2009) in four separate experiments, with their system coming

out on top in every experiment, performing almost as well as when there were no outliers in

the data. This was most likely due to the fact that their surrogate model did not have adapt to

the existence of outliers (due to these having been removed beforehand) and, as such,

managed to perform more accurate predictions and, thus, get closer to a global optimum.

Unfortunately, (Martinez-Cantin, et al., 2017) does not provide the technical details of the

algorithm used on their system. As such, the thesis will employ an outlier diagnostics

approach, similar to (Martinez-Cantin, et al., 2017), but using a Grubb’s test instead.

31

The Grubb’s test is a statistical test introduced by Frank Grubbs in 1950 (Grubbs, 1950) that

detects outliers in a dataset originating from a normal distribution. It tests a null hypothesis

that a dataset has no outliers versus an alternative hypothesis that one outlier is present in

the dataset. It detects outliers one at a time, retesting the entire dataset every time it finds an

outlier, until no more outliers are detected. The two-sided version of Grubb’s test was

employed, which checks whether the point furthest away from the mean (eq. 23) is an outlier

or not (eq. 24). If eq. 24 is proven to be true, the null hypothesis is rejected, and the value is

considered an outlier.

𝐺 = max𝑖=1,…,𝑁
|𝑋𝑖−�̅�|

𝑠
 (23)

𝐺 >
𝑁−1

𝑁
√

𝜈2

𝑁−2+𝜈2 , 𝜈 = 𝑡 𝛼

2𝑁
,𝑁−2 (24)

where 𝑁 is the number of observations in the dataset, �̅� and 𝑠 are the mean and standard

deviation of the dataset, respectively, 𝛼 is the significance level, and 𝑣 is the upper critical

value of the student-t distribution with significance level
𝛼

2𝑁
 and 𝑁 − 2 degrees of freedom.

Due to a lack of sufficient data, Grubb’s test, like other outlier tests, can be extremely

sensitive with few data points, frequently classifying most of them as outliers, and, as such, is

not advised to be used in the first few iterations. Taking that into consideration, like in

(Martinez-Cantin, et al., 2017), the diagnostic of outliers is not executed for the first ten

iterations. Unlike (Martinez-Cantin, et al., 2017), however, the diagnostics mechanism is ran

on every iteration from then onwards, instead of only every two iterations, as it is cheap

enough to do so, leading to a more performant surrogate model.

Given that the configurations of the neural networks in the search space are generated inside

a predictable and controlled environment—based on the interval of hyperparameter values

specified by the user—, there will never be noisy samples and, as such, will not need to be

checked for outliers. The outliers detection-and-removal process is only applied to the

objective value of the surrogate model (i.e. the loss of a neural network with a given

configuration).

Similarly to (Martinez-Cantin, et al., 2017), no outlier is ever permanently removed from the

data history. Every data point, at every iteration, has the chance to be reclassified as either an

outlier or an inlier and, consequently, be removed or added to the surrogate model,

respectively. As the system evaluates more configurations, its judgement changes on which

configurations it considers to be outliers and which ones it does not.

32

4.2 System Flow

In view of the previous section 4.1, mainly the selected optimization algorithm and outlier

handling mechanism, the flowchart seen on Figure 10 was devised, showcasing the logic and

flow of the system’s optimization process.

Figure 10 – Flow of the system’s optimization process.

The system starts by checking if it has reached the maximum number of iterations (the

designed stopping criterion) it is mean to run for and, if so, immediately presents the

optimization process’ results to the user, together with the best neural network configuration

it found. However, if the current iteration is not the last one, it will use the acquisition

function to select the next configuration, train and test a neural network using the given

configuration, and mark said configuration as evaluated. If the system has undergone at least

ten iterations, it will detect outliers in the previously evaluated configurations and remove

them before adding the evaluated configurations to the surrogate model. Finally, it decreases

the value of the trade-off parameter and redoes the entire process again for the next iteration.

33

4.3 Configuration Search Space

Every studied solution ((Larochelle, et al., 2007), (Bergstra, et al., 2011), (Bergstra & Bengio,

2012), (Stein, et al., 2018)) took the same approach when defining the configuration search

space of a neural network: the authors defined it directly in their system themselves. The

definition of the search space came from research made by the authors or from the authors’

own past experiences solving problems with similar datasets and/or similar neural networks.

This approach comes with a few complications for the thesis system:

1. The configuration search space has to be manually defined by the system’s

developer for every NN type – Given that the thesis system is expected to be easily

adaptable for any type of neural network, requiring the developer to first define the

configuration search space directly in the system can become an obstruction to this.

In order to manually define the search space, the developer must first do a lot of

research on the type of neural network in order to know what are the key

hyperparameters of the network and their respective search spaces. Not only is this a

very time-consuming process, especially if the developer does not already possess

some knowledge on the network type, but it is also not very versatile. This is due to

the fact that even if the developer ends up defining a broad and suitable search space,

chances are, it will not work for every single dataset. As proven in (Bergstra & Bengio,

2012) (see section 3.2.1), different hyperparameters have varying degrees of

importance depending on the dataset in question. As such, manually implementing a

“one size fits all” configuration search space for every type of NN is not a feasible

choice;

2. The system’s user has no control over the configuration search space – Since the

developer is the one in charge of specifying the configuration search space in the

system, the user will not be able to modify it. This is not necessarily an issue for the

researched articles, as the solutions presented in them were implemented for

scientific experimentation purposes, and not meant to be used directly by anyone

rather than the authors, but it is for the thesis system, as it is meant to be open to any

user. Even if the user has interest in expanding or shrinking the search space of a

hyperparameter, add and/or remove hyperparameters, or change how the search

space is explored by the system, they will be constrained to how all of this was

defined by the developer.

With these points in mind, a different approach will be taken to describe the configuration

search space of the system: users will specify it themselves. The biggest drawback of this

approach is that users will still be involved in the process of configuring a neural network,

whereas instead of directly tweaking hyperparameters values and manually re-training and re-

testing the network, they will instead have to specify the search spaces of each

hyperparameter. This disadvantage is also the method’s most significant benefit: users have

complete control over what the configuration search space of the system will be. Not only

that, but this approach also ensures the system can be more easily expanded to other neural

34

network types, as the developer will not have to worry about deeply researching the subject

and having to come up with a search space that will most likely not suit every use case.

4.4 Parallelization of Configurations’ Evaluation

By default, BO (and other optimization algorithms) evaluate network configuration

sequentially. This means that even if the system has multiple GPUs and/or CPUs at their

disposal, it will only use one at a time to evaluate a given configuration. In the case of BO,

evaluating configurations through a sequential manner ensures that there will be the most

feedback about previous evaluations’ results when selecting new configurations. On the other

hand, parallelizing this process reduces the time taken by the system and allows for the

possibility of running more trials in the same time span (see Figure 11, left side), but comes

with the complication of having less information in the configuration selection process. For

example, if five configurations are being evaluated in parallel in five different GPUs, once the

first configuration finishes being evaluated, a sixth one will have to be selected, which will

only be based on the results of the configuration that has concluded, and not on the other

four that are still being evaluated.

Another possible approach to the parallelization of the evaluation of a configuration is done

on the user’s side, wherein they setup the training and testing of a configuration beforehand

in such a way that the work of it is split among multiple different devices (GPUs and/or CPUs)

(see Figure 11, right side). So instead of the system evaluating, for example, three

configurations at the same time in three separate devices, only one evaluation will be

evaluated at any given time, but its evaluation effort will be split among the three devices. In

general, this will cut the configuration evaluation time by a third, although this depends a lot

on the parallelization strategy applied and how the devices coordinate among themselves.

Figure 11 – Parallelization of evaluation of configurations: on the left, performed by the system; on the

right, performed by the user.

35

With the user side approach, the user has full control over whether to follow a parallelization

approach or not, as they may want to sacrifice the time reduction in the optimization process’

execution with the aim of having the most information for the system’s acquisition function.

Not only that, but the user also has the freedom to select the parallelization strategy they

intend to use and that best adapts to the problem at hand. With these points in mind, in

addition to the fact that the decrease in the time complexity deriving from either approach is

relatively the same, it was determined to not implement a mechanism to evaluate

configurations in parallel in the system, and instead leave this decision up to the system’s user.

37

5 Implementation

This section presents the technical implementation of the system, based on the design earlier

described and the selected hyperparameters optimization algorithm. It starts off by

presenting the technologies employed in the coding of the system, such as the programming

language, followed by its human-computer interaction component, listing what data the user

and system will provide to each other to ensure an optimal workflow. Two sections detailing

how the search space was implemented and how it relates to the user-implemented objective

function follow, concluding with a scalability issue of the system and how it was determined

to be tackled.

5.1 Technologies

The system was implemented from the ground up using Python, a recognized programming

language commonly employed in the fields of data science and machine learning. Wherever

possible, already well established, tested, and documented frameworks and libraries were

used, as long as these were not an impediment towards the quality and end goals of the

system. The employed libraries are as follows:

• scikit-learn – Provides a Gaussian Process surrogate model that can be trained on

existing data and used to perform predictions on unseen data;

• SciPy – Provides a function to calculate the cumulative distribution function of a

normal distribution, used in the acquisition function;

• NumPy – Manipulates data (configurations, losses, etc.) as multi-dimensional arrays

and performs mathematical operations on them;

• outlier_utils – Provides a function for the two-sided Grubb’s test;

• Pandas – Creates a summary of the evaluated configurations and respective results as

a dataframe for the user to consult.

As can be seen, no library or framework was employed in the system in relation to the

implementation of neural networks. This is because the system was made in such a way that it

38

can be used to optimize the architecture of any machine learning algorithm, not just neural

networks. Nevertheless, this was not a system requirement for the thesis and, as such, tests

were only performed on neural networks and conducted with the following tools:

• Pandas – Reads structured data from CSV files and manipulates it as dataframes;

• Tensorflow – Sets up datasets as batches for training and evaluation of neural

networks;

• Keras – Runs Tensorflow under the hood, simplifying the implementation, training,

and evaluation of NNs;

• Matplotlib – Draw charts containing the results of the optimization system.

5.2 Human-computer Interaction

With the intention of keeping the system as accessible and user-friendly as possible, the

system was implemented in such a way that the user only interacts with it through a single

function. By calling this function with the required parameters, the system will immediately

start the optimization process and output its results as it goes along, returning a summary of

the entire procedure once it finishes.

The required parameters are:

• Search space – A dictionary specifying the configurations search space. More details

in section 5.3;

• Objective function – A user-defined function, which receives as parameter a

dictionary consisting of the selected neural network configuration for the current

iteration. More details in section 5.4;

• Number of iterations – The stopping criterion of the optimization process. The system

will execute for the specified number of iterations;

• Trade-off parameter – The initial value of the acquisition function’s trade-off

parameter (𝜉(0), according to eq. 22). The higher the value, the more the system will

explore the search space, and vice-versa;

• Outlier threshold – Alias for the alpha value of the Grubb’s outliers test (𝛼, according

to eq. 24). The higher the value, the more sensitive the system will be to outliers and

the more easily it will classify them as such.

The values returned by the system are:

• Evaluated configurations – A dataframe containing all the evaluated configurations at

every iteration and their respective loss, accuracy, and the surrogate model’s

predicted loss and respective prediction standard deviation. The user can use this

dataframe for diagnostic purposes, collect statistics, draw graphs, etc.;

39

• Surrogate model – The surrogate model with the knowledge gained by all the

evaluated configurations. The user can save this model and later use it to predict

other configurations;

• Best configuration – A fully trained neural network with the best performing

configuration. The user can save the neural network or deploy it to start using it right

away.

Despite the simple human-computer interaction of the system, as it grows in complexity and

configurability in the future, it can easily be extended to possess an internal state and give

room for more convoluted interactions with the user.

5.3 Search Space

As specified earlier in section 4.3, the user of the system will have complete control over the

configurations search space the system will use. This search space will be specified through a

dictionary, where each item’s key and value will be, respectively, the name of a

hyperparameter and the hyperparameter’s search space, consisting of a vector of either

numeric (integer or floating-point) or textual values (but not both at the same time). The

numeric values will be kept as is when feeding them into the optimization algorithm, but the

textual values will instead be considered as categorical data and converted to natural

numbers ranging from zero to the number of values in the respective search space minus one,

as the surrogate model only understands numeric values (see Table 5). The search space of all

the hyperparameters combined will represent the overall configurations search space.

Table 5 – Example configuration search space containing all possible data types.

Hyperparameter Name
Original Search

Space
Converted Search

Space

Number of Layers [1, 2, 3] [1, 2, 3]

Learning Rate [0.1, 0.01, 0.001] [0.1, 0.01, 0.001]

Training Optimizer [Adam, AdaGrad] [0, 1]

The search space of all the hyperparameters combined will represent the overall

configurations search space. An example of a possible configuration at a given iteration can be

seen in Table 6.

40

Table 6 – Example configuration for a given iteration.

Hyperparameter Name
Hyperparameter

Value

Number of Layers 2

Learning Rate 0.01

Training Optimizer 1

5.4 Objective Function

Since the user is in charge of specifying the configurations search space, they are the one that

knows where each hyperparameter is meant to be used. Even if a given hyperparameter has

the name “Number of Layers”, the system will not know what it represents or how to use it.

This ensures the user is not constrained on specifying only hyperparameters the system

knows and supports, but instead has full freedom and flexibility on using whichever

hyperparameters they wish.

To accomplish this, one of the parameters the user must pass to the system is a function

defined by them, referred to as the objective function. At every iteration of the optimization

process, the system will call this function and inject the value of each of the configuration’s

hyperparameters for that iteration as function arguments. The code the user wrote for the

function will then be responsible for using each hyperparameter wherever the user intended

it to be used. For example, if the function has an argument for the number of layers of a

neural network, somewhere in the function’s code could be a loop that creates the number of

layers of the network based on that variable.

5.5 Scalability

The biggest weak point of the system’s surrogate model, Gaussian Processes, is its scalability.

Since it has a cubic time complexity (𝑂(𝑛3)) (Feurer & Hutter, 2019), it can become extremely

costly to calculate its posterior distribution the more training data there is, which, in turn,

affects the time taken by the model to make predictions for new configurations. Since the

acquisition function, at every iteration, uses the surrogate model’s predictions in order to pick

the next configuration to evaluate, it becomes unattainable to do this for every configuration

available in the search space at that point (since search spaces can easily get to millions of

configurations). Instead, based on some manual tests performed, it was decided to cap the

number of configurations for the acquisition function to evaluate to five thousand. As such, at

every iteration, a maximum of five thousand configurations (less if the available search space

is smaller than that) are randomly selected as candidates for the acquisition function.

41

6 Evaluation

This chapter dives into the performance of the system and discussion of its results, starting off

by describing the methodology used in the execution of the experiments and enumerating the

key metrics employed in the assessment of the system’s performance. Following that, a case

study on sensor vibrations is presented, split into two parts: detecting whether a vibration

was caused by a human fall or not; detecting the source of the vibration. Lastly, the system is

tested in the optimization of a convolutional neural network using the MNIST dataset, with its

best configuration then being compared with the best configuration found by other HPO

systems and manually configured networks.

6.1 Methodology

For the performed case study (section 6.3), where the system is employed in the detection of

sensor vibrations, the original dataset was split into three separate groups at a ratio of 60%,

20%, and 20%, respectively: training, validation, and test datasets. For a given iteration of the

optimization process, the neural network is first exposed to the given training dataset and

learns from it, followed by its performance evaluation via the validation dataset, where its

predictions are compared with the real values. This procedure occurs for every epoch the

neural network is designed to train and evaluate for. Once the last epoch is finished, the NN’s

performance is evaluated one last time, but against the test dataset instead, and the loss

obtained from this last evaluation is what is considered as the final loss of the network and

fed into the surrogate model of the system as the results of the configuration. The figure

below demonstrates this entire flow:

42

Figure 12 – Evaluation flow of a neural network configuration according to the thesis’ evaluation

methodology.

The training, validation, and test datasets are obtained by pseudo-randomly slicing parts of

the original dataset on every evaluated configuration, always using the same seed. This

ensures that all datasets are randomized, but in a predictable manner, guaranteeing every

single configuration always uses the same samples and avoiding an increase or decrease in

performance between configurations not because of the different architecture or set of

features, but because of the different data samples used. After splitting the three datasets,

the training dataset is randomized again (not pseudo-randomized), so even though every

single evaluated configuration uses the same samples for training, they may be exposed to

them in a different order throughout different epochs, leading to different learning processes.

With regard to the optimization system, as aforementioned, it will take into consideration the

loss of a given neural network configuration when evaluated against the test dataset as the

43

objective value to be minimized. As such, its goal will be to find the combination of

hyperparameters and input features that will lead to the lowest test loss possible. Regarding

the outliers’ diagnosis mechanism of the system, every test will be performed with an outlier

threshold of 0.05.

Lastly, regarding the more technical side of the opted evaluation methodology, every test was

performed on the same machine provided by GECAD, ISEP’s research center which proposed

the thesis here discussed. The machine has the following specifications:

• Intel Xeon E5-2697 v2 processor, with 2.70GHz;

• Four NVIDIA Tesla K20c graphics cards, each with 5GB GDDR5 video memory;

• 64 GB of RAM.

6.2 Metrics

With the aim of judging the performance of the implemented system in the conducted

experiments, multiple different criteria and measures were considered. The first set of criteria

concern the results of the configurations evaluated by the system, such as their accuracy and

loss. These criteria will be obtained at the end of every configuration evaluation, after its

training and testing, and used at the end of the optimization process to determine the quality

of configurations the system finds and, therefore, the quality of the system itself. These

criteria are as follows:

• Best NN configuration found – A system to automatically configure neural networks

will only be as good as the best network configuration it finds. The accuracy and error

rate of the optimal configuration will be one of the most vital measurement of the

system’s results;

• Configurations performance over time – In order to understand if the system is

improving its results over time by slowly converging to better performing

configurations, a history of the results of every configuration will be kept and,

subsequently, analysed and assessed.

The second set of measures concern the system itself and its own mechanisms, centring

around its learning behaviour and predictions’ accuracy, crucial for ensuring the system

remains useful for predicting future configurations, in addition to its ability to handle outliers

without being neither too sensitive nor impervious to them. Both measures will be kept track

of throughout the optimization process and obtained after every configuration’s evaluation

(similar to the first set of measures), which is when the system’s makes its own prediction

about the evaluated configuration’s loss and when it tests the history of evaluated

configurations for outliers and removes them. These measures are as follows:

44

• Optimization system’s predictions accuracy and confidence – Even if the system does

not find the best performing configurations during the carried out tests, if it manages

to become smarter (i.e. predict the results of configurations with a low standard

deviation), it will still have developed the intellect to find those configurations, as it

was able to accurately learn how each hyperparameter and feature affected a

configuration’s results;

• Outliers’ detection-and-removal mechanism – It is fundamental that the system is

able to accurately pinpoint outlier results from the evaluated configurations and

ignore them, as these can drastically affect the performance of the system’s

predictions. Whether a value should be considered an outlier or not can be a

subjective decision, but, nonetheless, the system’s judgement on this matter will be a

metric to consider.

For every conducted experiment, each one of these metrics will be looked at and discussed

from various points of views and through different methods depending on the test itself and

what it is meant to accomplish.

6.3 Case Study - Detection of Sensor Vibrations

The case study performed uses a dataset of vibrations detected by a sensor, along with a

multitude of other tools that obtain data about the vibration itself, such as its acceleration

and orientation. The dataset was provided by GECAD to be used in the case study here

presented, as the research center was interested in putting the system to the test with its own

data and in obtaining the best performing NN configuration the system could find for their

own applications.

This case study is split into two separate parts: firstly, the system will be used to find the best

configuration for a binary classification scenario in which the neural network will have to

detect whether a given vibration sample was caused by a human fall or not (human fall

classification); secondly, in a more challenging setting, the system will be used to find the best

configuration for a multiclass classification problem of recognizing what type of object caused

the vibration (vibration source classification). Each of these tasks comes with its own separate

dataset, albeit the two are extremely similar (more details on this in the following section),

and the results and respective discussion of both can be seen in sections 6.3.3 and 6.3.4.

6.3.1 Datasets

Both datasets come in a structured format, split into dozens of comma-separated values (CSV)

files with a varying number of rows each. The human fall and vibration source datasets have a

total of 5,926 and 1,535 samples and 12 and 9 features each, respectively. Table 7 below

45

describes the features of both datasets, their data types, and in which datasets each one is

present.

Table 7 – Features of sensor vibrations’ datasets.

Features Data Type Human Fall Dataset
Vibration Source

Dataset

Time Numeric ✓ ✓

Accelerometer 1 X-axis Numeric ✓ ✓

Accelerometer 1 Y-axis Numeric ✓ ✓

Accelerometer 1 Z-axis Numeric ✓ ✓

Accelerometer 2 X-axis Numeric ✓ ✓

Accelerometer 2 Y-axis Numeric ✓ ✓

Accelerometer 2 Z-axis Numeric ✓ ✓

Gyroscope X-axis Numeric ✓ ✕

Gyroscope Y-axis Numeric ✓ ✕

Gyroscope Z-axis Numeric ✓ ✕

Sound Numeric ✓ ✓

Doppler
Numeric

(Categorical)
✓ ✓

Each of the 12 total features can be summarized as:

• Time – Corresponds to the time the vibration was detected at (in Unix time);

• Accelerometers – Correspond to the two accelerometers used to detect the

acceleration of the vibration, in each of the three-dimensional axes;

• Gyroscope – Represents the three-dimensional rotation of the vibration;

• Sound – Vibration sound detected by a microphone, varying between 0 and 255, and

symbolizing the sonic intensity of the vibration;

• Doppler – Obtained by running the signal of a doppler sensor through a function that

outputs a categorical value between 0 and 16, representing the strength and

abruptness of the vibration.

The target value of each of the two datasets also differs: for the human fall, it is a binary value

of whether it was caused by a human fall or not; for the vibration source, it can have one of

three values, depending on the object that triggered the vibration: water bottle, chair, or

smartphone. For the human fall dataset, the vibrations of the fall were simulated by the

dropping of a doll consisting of a thick cardboard tube with a diameter of 20 centimetres,

holding ten 1.5 litters water bottles inside of it (simulating the approximate density of human

flesh), and a three-kilogram iron block on top (simulating a human head), all wrapped in

46

clothing. All other non-human fall vibrations originate from random activities and sources,

such as walking and clapping.

Given the relatively small amount of samples for each dataset and the complexity of the

problems at hand, it is not expected that even the best neural network the system finds has

an exceptionally high accuracy (above 90%). The main goal of this case study is to perform an

initial assessment of the system’s performance and learning capabilities and to experiment

and discuss different settings of the system, such as its trade-off parameter.

6.3.2 Neural Network Structure and Search Space

Both parts of this case study share a similar neural network structure. Both will consist of a

feed forward neural network (FFNN), a type of neural network where the connections

between neurons do not form a cycle (similar to the NN in Figure 2), with the following

characteristics:

• Input layer – Receives the dataset as input, with a neuron per data feature;

• Hidden layers – One or more hidden layers, depending on the respective

hyperparameter. The number of neurons in each of these layers and their respective

activation function is always the same for a given configuration and are too

dependent on their respective hyperparameters;

• Output layer – For the human fall, this layer is comprised of one neuron with the

sigmoid activation function; for the vibration source, it is instead comprised of three

neurons (one for each possible classification class) with the softmax activation

function;

• Cost function – Cross-entropy loss.

For the output layer, both sigmoid and softmax output probabilities between zero and one,

signifying the certainty the network has that a given class is present. Sigmoid outputs values

independent among multiple neurons, making it more suitable for both binary and multilabel

classification problems. Softmax, however, outputs values dependent among themselves that

always sum to one, making it more fitting for multiclass classification problems. As for the cost

function, cross-entropy loss calculates the performance of a network in which the output(s)

is(are) between zero and one—thus being applicable to both aforementioned activation

functions—by measuring the distance between the network’s prediction(s) and the real

value(s).

Table 8 demonstrates the established hyperparameters and respective search spaces of each

of the two datasets, which, when combined with every feature of the corresponding dataset,

will equate to the configurations search space of that dataset. With that in mind, the human

fall optimization will have a search space of 5,503,680 configurations and the vibration source

optimization will have a search space of 2,759,400. Despite the larger search space of some of

the hyperparameters for the vibration source problem, it manages to have roughly half of the

47

total number of configurations as the human fall problem, which has to take into

consideration three extra features.

Table 8 – Search space of the vibrations’ case study.

Hyperparameters Data Type
Human Fall Search

Space
Vibration Source Search

Space

Epochs Numeric [1, 2, 3, 4] [1, 2, 3, 4, 5]

Training Optimizer Textual
[Adam, SGD,

RMSProp]
[Adam, SGD, RMSProp]

Batch Size Numeric [16, 32] [16, 32, 64]

Nr. of Hidden Layers Numeric [1, 2, 3, 4] [1, 2, 3, 4, 5]

Nr. of Neurons per
Hidden Layer

Numeric
[1, 6, 11, 16, 21, 26,

31]
[1, 6, 11, 16, 21, 26, 31, 36]

Hidden Layers
Activation Function

Textual [ReLU, Sigmoid] [ReLU, Sigmoid, TanH]

6.3.3 Human Fall Classification

For the human fall classification, four runs of the system were executed, each with a different

value for the trade-off parameter. Given the influence this parameter has in the entire system,

being solely in charge of managing the exploration versus exploitation mechanism, it was vital

to understand how it influences the learning behaviour of the system.

 Influence of the Trade-off Parameter

Figure 13 showcases the results obtained from the four runs of the system made with four

different values for the TOP: 0, 4, 8, and 12. Each test was carried out over the course of 3,000

iterations, exploring ≈0.00005% of the total search space, and taking, on average, around 8

hours to complete. Each chart in the figure can be interpreted as: blue line corresponding to

the real loss of the evaluated configurations; red line corresponding to the prediction made by

the system of the evaluated configurations’ loss; light red area corresponding to the standard

deviation of the system for each prediction made.

48

Figure 13 – System performance results, throughout 3000 iterations, given different values for the

trade-off parameter: 0, 4, 8, and 12, respectively, on the top left, top right, bottom left, and bottom

right corners. Configurations deemed outliers by the system in the final iteration are not present.

The first noticeable observation is that the system managed to learn with every one of the

four TOP values, having more and more accurate predictions over time, whilst too lowering its

predictions’ uncertainty (standard deviation). It is, however, hard to tell whether the system

managed to find better configurations over time, as any configurations deemed an outlier by

the system in its last iteration is not presents in the graphs, bringing about the seemingly

constant line of the real evaluated configurations losses in all of the graphs. It can also be seen

that the higher the trade-off parameter, the higher (and less accurate) the estimated loss of

the system at earlier iterations is. This behaviour is expected, as the system explores the

search space earlier on and, as such, is constantly evaluating configurations very distinct from

each other, in an attempt to find a global minimum instead of a local one.

Except when the TOP = 0, the system manages to become proficient at making predictions, in

the sense that not only does it have predictions spot on with the real loses, but it too is aware

of its own accuracy, as its extremely low standard deviation of those predictions is proof of.

On the other hand, when the TOP = 0, the system never quite manages to get very certain of

its predictions, with the average standard deviation of its predictions hovering around 0.49.

This can be due to the fact that since the parameter is zero, the system follows a 100%

exploitational methodology and, as such, is always avoiding risks and selecting very similar

configurations at every iteration. In turn, this leads to the system never being certain of its

predictions, as it was never exposed to other more distinct configurations in the search space.

49

Looking at the system’s performance towards the end of the optimization process—when it

has the most gathered knowledge—, Figure 14 demonstrates the loss residuals (absolute

difference between the system’s predicted losses and respective real losses) and standard

deviation for the last 500 evaluated configurations. TOP = 4 has both the lowest residuals and

standard deviation, with medians of virtually zero and minute interquartile ranges (IQRs),

confirming what was established with Figure 13. It is interesting to see how despite having the

highest median standard deviation, as previously determined, TOP = 0 manages to have loss

residuals comparable with the tests using values of 8 and 12, but with a much less spread out

and more concentrated distribution.

Figure 14 – Distribution of loss residuals and standard deviation of the system’s predictions in all four

tests for the last 500 iterations, outliers included.

Only taking into account the findings from Figure 13 and Figure 14, the trade-off parameter

with the value of four appears to be the best one, where despite it not being the one where

its predictions converge towards the real values the fastest—TOP = 0 is—it is the one that has

the most precise predictions and the highest degree of certainty of said predictions for the

longest period of time. Putting it simply, it is with this TOP value that the system learns the

best.

 Evaluated Configurations

Taking a deeper look at the actual evaluated configurations in all four system tests, Table 9

lists the ten configurations found with the lowest loss, together with the iteration and test

they were found in (according to the trade-off parameter used), and their respective loss and

accuracy. Instead of the accuracy, the loss of the neural network was the metric chosen to

find the best ten configurations due to its more comparative and less fluctuating nature.

50

Table 9 – The 10 configurations found with the lowest loss, across all four trade-off parameter system

tests, sorted by loss.

Trade-off
Parameter

Iteration Loss Accuracy

8 2677 0.60 64.5%

8 497 0.64 64.7%

8 62 0.66 54.6%

0 1380 0.66 60.5%

0 855 0.67 67.9%

8 33 0.67 63.2%

12 869 0.67 50.3%

12 557 0.68 67.7%

12 1579 0.68 58.2%

8 1495 0.68 52.2%

Despite the earlier assessments that the trade-off parameter of four was the one where the

system learned the best, it is not the one where the best configurations were found, as not a

single configuration in the top 10 comes from this test. The system trial with a TOP value of

eight managed to find 5 of the 10 best configurations, with 3 of them being the three best

ones found, meaning that even though the system did not learn as well with this trade-off

parameter compared with when it was four, the knowledge the system did gain may have

been more valuable. As a result, a TOP value of eight may have the best balance between the

learning of the system and the search for high performing configurations, as a higher TOP

value indicates a deeper exploration of the search space, in turn leading to a slower

progression of the system’s predictions’ accuracy, but also to a higher chance of finding the

highest quality configurations as well.

However, all of these conclusions do not imply that TOP = 4 is bad, as many of these top

configurations were found in early iterations of the system, while it was still unintelligent, so

the likelihood of them having been found by chance is high; but, then again, this is exactly the

kind of behaviour that can be expected when the system follows a more exploratory approach.

Considering the features and hyperparameter used by each of the best configurations, it is

important to analyse whether patterns emerge or not. These details of the configurations are

not present in Table 9, as there are too many to list, but can instead be observed in Appendix

1, which has the configurations listed in the same order as Table 9. Looking at the table in the

appendix, one feature can be seen as being ignored by all of the best configurations: the time.

This feature was expected ahead of time to be irrelevant towards classifying the vibration as a

human fall or not, but it was still added to the feature selection mechanism of the system to

observe whether the system picked up on this too or not. Outside of this feature, though,

there is no other apparent pattern on the features and hyperparameters of the best

configurations. A peculiar case is the second-best configuration, which only has one hidden

51

layer with one neuron, but manages to have a loss and accuracy akin to the other top-

performing configurations.

 Diagnosis of Outliers

According to the results present in Figure 15, the outliers’ detection-and-removal mechanism

seems to be working as anticipated. The number of outliers when the trade-off parameter is 8

or 12 (roughly one third of the total evaluated configurations) may indicate the mechanism to

be too sensitive, but given that these two tests explore the search space more and the other

two tests with TOP values of 0 and 4 have a more sensible amount of outliers, the mechanism

looks to be acting exactly how it ought to.

Figure 15 – Number of inliers and outliers in each of the four performed tests, according to the last

iteration of each test.

Another remark about the outliers’ mechanism is how, by the last iteration in the respective

test, it classified the 30 configurations with the lowest loss as outliers. This was expected

given the two-sided nature of the employed Grubb’s test, which considers both minimum and

maximum values as possible outliers. The second part of this case study will experiment with

using the one-sided version of the Grubb’s test that only looks at maximums to locate outliers,

in order to assess whether this will have an impact in the system’s learning behaviour.

6.3.4 Vibration Source Classification

The second part of this study, the vibration source classification, has similar results’

breakdown and discussion as the first part, deepening the analysis of the system in a different

classification problem variant. Only two experiments were performed in this part, with the

trade-off parameters values of four and eight, as they were the ones that showed the best

52

results in the previous part, according to both the system’s performance over time and the

quality of configurations found. Each test ran for 3,000 iterations, exploring ≈0.001% of the

total search space, over an average of 6 hours.

 Influence of the Trade-off Parameter

Commencing by observing Figure 16, the learning behaviour of the system is extremely similar

to what was seen in the human fall classification in both trade-off parameters. Despite this,

there are some noticeable differences between both parts’ rounds of tests. In the vibration

source classification, both charts show how the system is more certain of its predictions after

the halfway mark of the total number of iterations, evident by the less prominent light red

areas. This is not necessarily meaningful, as it may have been an effect caused by the different

search space, dataset, type of classification task, or some other variable, but there is also the

likelihood it was caused by the change in the Grubb’s test of the system’s outliers mechanism

(see Diagnosis of Outliers section of the earlier tests). Since the system no longer diagnosis

any value below the average as an outlier, the surrogate model is able to keep a longer history

of evaluated configurations, leading to the system’s higher confidence in its predictions, as it

retains more knowledge than in the first study part.

Figure 16 – System performance results, throughout 3000 iterations, given different values for the

trade-off parameter: 4 and 8, respectively, on the left and right. Configurations deemed outliers by the

system in the final iteration are not present.

The blue line representing the real loss of the evaluated configurations can also be perceived

to be less constant and more turbulent compared to the previous tests. The explanation can

be summed up to the same as the previous paragraph, where it may just be a consequence of

the different problem at hand, or it may be a result of the alteration in the outliers’

mechanism, as it caused the system to become less sensitive to outliers, leading to more

variation in the evaluated configurations shown in the charts (as outliers are not present).

Despite the higher confidence in its predictions displayed by the system, Figure 17

demonstrates how its predictions for the last 500 evaluated configurations and with both TOP

values are worse compared to the human fall classification. Going off of the deduction

conceived in the previous paragraph, the higher degree of variation in inlier evaluated

configurations made it harder for the system to understand the feature and architectural

patterns that lead to the respective configurations’ results.

53

Figure 17 - Distribution of loss residuals and standard deviation of the system’s predictions in both tests

for the last 500 iterations, outliers included.

Summarizing the analysis made in this section, the system became more positive of its

predictions due to less of them being classified as outliers and, thus, ignored by the surrogate

model; in turn, however, the system’s accuracy deteriorated due to the fact that the higher

number of configurations it was able to learn from was also more diverse in their losses

compared to the first part of the study, so understanding how each feature and

hyperparameter lead to a certain configuration result was a more complex task.

 Evaluated Configurations

Examining the results of the best 10 evaluated configurations across the two performed trade-

off parameter tests, the patterns become more apparent than those analysed in the first part

of the study. The trend of none of the best configurations having been found with TOP = 4

remains, but, this time, every one of the configurations was found with TOP = 8, as seen in

Table 10. Furthermore, 9 out of the 10 configurations were found past iteration 1000,

presumably on account of the balance between the system’s exploration of the search space

together with all the knowledge gathered by the system up to that point.

54

Table 10 - The 10 configurations found with the lowest loss, across both trade-off parameter system

tests, sorted by loss.

Trade-off
Parameter

Iteration Loss Accuracy

8 1025 0.95 56.4%

8 2250 0.96 55.7%

8 1472 0.96 50.5%

8 1119 0.97 54.7%

8 1702 0.97 49.8%

8 2281 0.98 54.1%

8 2552 0.99 55.7%

8 2194 0.99 56.0%

8 445 0.99 55.4%

8 1895 1.00 50.5%

Looking at the features and hyperparameters of the top configurations (see Appendix 2), one

can spot more obvious patterns on the values preferred by the system compared to what was

discussed in the human fall classification: none of the configurations used the time column,

just like in the first part; the X axis of the second accelerometer and the microphone sound

are always used; the Z axis of both the first and second accelerometers are never used; the

Doppler value is not used 80% of the time; there were 36 neurons per layer in 9 configurations;

the activation function of the neurons was always the hyperbolic tangent (TanH). Given that

36 was the maximum allowed value for number of neurons on the hidden layers, there is the

possibility that increasing this value could lead to configurations with better results.

Just like mentioned in the previous section of this part of the study, the more obvious

patterns of the best configurations can be owed to the Grubb’s test change. As the system

does not classify minimums as outliers anymore, it can absorb their information and attempt

to search for other similar configurations with even lower losses.

 Diagnosis of Outliers

With the change made in the outliers’ mechanism, the number of diagnosed outliers by the

last iteration on both experiments lowered compared to the human fall classification, as

shown in Figure 18. Compared to Figure 15, the total amount of outliers was reduce by about

half, which was expected given that around half of the evaluated configurations are no longer

outlier candidates (those with a loss below the mean).

55

Figure 18 - Number of inliers and outliers in the two performed tests, according to the last iteration of

each test.

Unlike in the human fall classification, none of the configurations listed in Table 10 were

classified as outliers; in fact, across the 6000 total iterations of both tests and when sorting by

loss, the 3338th best configuration was the first to be classified as an outlier.

In spite of this part of the study having less values classified as outliers, it does not necessarily

mean the system’s diagnosis-and-removal of outliers’ mechanism improved, as it could be

categorizing certain configurations as inliers which could, in turn, negatively affect the

system’s performance and predictions’ accuracy. However, in this case, the system’s learning

behaviour does seem improved in comparison to the first part of the study, probably due to

the system having the possibility of learning the features and hyperparameters which

constitute the best configurations found. As such, the one-sided Grubb’s test was kept for the

following section’s tests.

6.4 Hyperparameters Optimization of Convolutional Neural
Network

Following the undertaken case study, the system was put to the test against other HPO

systems and manually configured neural networks. The system will be in charge of optimizing

a convolutional neural network—a type of NN different from the previous experiments—using

the MNIST dataset earlier introduced in section 3.2.1 of the state of the art. The structure of

this section will be similar to the previous section 6.3, where the dataset is first described in

greater detail, followed by an explanation of how a CNN works, the base structure of the

neural network and the designated search space, concluding with the analysis and discussion

of the experiments’ results.

56

6.4.1 Dataset

The MNIST dataset is a dataset widely used in the scientific community to examine the

performance of machine learning algorithms applied in the field of computer vision. It consists

of 70,000 black-and-white 28x28 images of handwritten digits from 0 to 9 (see Figure 19), split

between a training dataset of 60,000 images and a testing dataset of 10,000 images.

Figure 19 – Handwritten digit images from the MNIST dataset (Lecun, et al., 1998).

It originates from a 1998 journal article where two separated NIST datasets, named Special

Database 1 and Special Database 3, were combined, giving origin to the MNIST dataset (Lecun,

et al., 1998). The authors decided to mix samples from both databases with the intent of

having more variation after realizing that Special Database 1 had been obtained among high

school students, whereas Special Database 3 had been collected from American Census

Bureau employees.

As the MNIST dataset already comes presplit into a training and a test dataset, in order to

adhere to the evaluation flow of a neural network as shown in Figure 12, the test dataset will

also be used as the validation dataset.

6.4.2 Convolutional Neural Network

One of the most compelling features of a convolutional neural network is its capability to not

only individually analyse the pixels of a given image, but also to look at them as groups of

neighbouring pixels and understand the features that they may identify together. Not only

that, but CNNs reduce the dimensionality and complexity of images as one goes deeper into

the network, resulting in reduced computational cost for processing the data and training the

network.

57

In order to achieve this, a CNN is usually built through the combination of three different

types of layers (see Figure 20 for an example CNN structure showing every layer type):

• Convolution layer – As the name implies, a convolution layer convolutes the input it

receives using a kernel that scans the input for certain features, reducing its

dimensionality in the process. If a given image has a size of 5x5, for example, a

convolution layer may go through it with a kernel of size 3x3, outputting a 3x3 image

for the following layer. A convolution layer can have multiple kernels, each in the

charge of identifying either different features or the same set of features but in

different locations in the input. The size of the kernel(s) determines how many

neighbouring pixels to analyse at once: the larger the kernel, the bigger the group of

pixels evaluated together, and vice-versa;

• Pooling layer – A pooling layer uses a kernel mechanism that scans its input, similar to

a convolution layer, but has a different internal implementation compared to a

convolution layer’s kernel. Depending on the type of pooling, as the kernel goes

through the image, it selects the maximum or average value in its area on a maximum

pooling or average pooling layer, respectively. This does not only reduce the size of

the input, like with the convolution layer, but it also ensures the network becomes

impervious to changes in the rotation and position of the image in addition to

suppressing any existing noise in the input;

• Fully connected layer – A fully connected layer works in the same way as a hidden

layer in a FFNN, where every neuron in the layer is connected to every other neuron

in the subsequent layer (see Figure 2). The purpose of this type of layer in a CNN is to

use all the features knowledge obtain by the network thus far through the other two

types of layers and reason about what all the identified features could represent.

Figure 20 – Example structure of a CNN (Phung & Rhee, 2019).

To better understand how the brain of a CNN works, as an example, for the current scenario

of identifying the digit present in an image, the network could start off with a convolution

layer in charge of identifying edges in the image. Following that, another convolution layer

uses the knowledge of the previous layer about the presence or lack thereof of edges in the

58

image to identify corners. A third convolution layer could use the obtained information about

corners in the image to figure out shapes, such as circles. Finally, a group of one or more fully

connected layers could then use all of this data to figure out what the number in the image is.

Concerning the pooling layers, any of the aforementioned convolution layers could be

followed by a pooling layer to ensure changes in the rotation or position of the image does

not affect the convolution layer’s ability to identify features.

6.4.3 Neural Network Structure and Search Space

Following the overview and explanation of how convolutional neural networks work, the

ensuing lists presents the base structure employed for the CNN used in the performed

experiments:

• Convolution and maximum pooling layers pairs – The network starts off with one or

more pairs of layers—depending on the respective hyperparameter—, each consisting

of a convolution layer followed by a maximum pooling layer. The number of kernels,

kernel size, and activation function of each convolution layer will be the same across

all layers for a given configuration and are dependent on the respective

hyperparameters; likewise, the kernel size of every maximum pooling layer of a

configuration will be the same for all layers and will too depend on its

hyperparameter. The input of each convolution layer will be the output of the

previous maximum pooling layer, except for the network’s first convolution layer,

which will act as the input layer of the network and directly receive the MNIST

dataset’s images;

• Fully connected layers – Following the convolution and maximum pooling layers pairs

are the fully connected layers. The number of these layers, as well as the number of

neurons in each layer—which is the same for all layers in a configuration—, are

dependent on the respective hyperparameters to be optimized;

• Output layer – Finally, connected to the last fully connected layer is the output layer,

comprising of 10 neurons with the softmax activation function, where each neuron is

in charge of outputting the likelihood of a given image having a certain digit (similarly

to the output layer in the vibration source classification of the case study);

• Cost function – Cross-entropy loss.

Table 11 showcases the search space used for the optimization of the CNN in the performed

experiments. The combination of the search space of all hyperparameters leads to a total of

699,840 possible configurations. Despite the kernel of both convolution and maximum pooling

layers being two-dimensional, Table 11 presents a one-dimensional search space for both

layer types’ kernels. This is due to the fact that for the base structure of the network, all

kernels were considered to always be squared and, as such, the same value is used for both

the kernels’ width and height.

59

Table 11 - Search space of the CNN optimization.

Hyperparameters Data Type Search Space

Epochs Numeric [3, 6, 9, 12, 15]

Training Optimizer Textual [SGD, Adagrad, Nadam]

Learning Rate Numeric [0.1, 0.01, 0.005, 0.001]

Batch Size Numeric [16, 32, 64]

Nr. of Convolution and Max Pooling
Layers Pairs

Numeric [1, 2, 3]

Nr. of Kernels per Convolution Layer Numeric [1, 2, 3, 4]

Convolution Layers Kernel Size Numeric [2, 3]

Convolution Layers Activation Function Textual [ReLU, Sigmoid, ELU]

Max. Pooling Layers Kernel Size Numeric [2, 3]

Nr. of Fully Connected Layers Numeric [1, 2, 3]

Nr. of Neurons per Fully Connected Layer Numeric [100, 150, 200]

Fully Connected Layers Activation
Function

Textual [Sigmoid, TanH, ELU]

6.4.4 Analysis

In order to assess the system’s performance in the optimization of a CNN, the learning

behaviour of the system will first be observed and discussed, followed by an analysis of the

best 10 configurations it found and their respective architectures, similarly to the case study.

The system will then be matched against other HPO systems and manually configured

networks by comparing the accuracy of the best configuration it finds to the accuracy of the

best configuration found by the other HPO systems and the accuracy of the networks

manually configured by users.

 Learning Behaviour

There are a few factors that make the evaluation of a configuration in this section’s

experiments lengthier than those in the case study in section 6.3: the more intricate semi-

structured nature of the images dataset; the more complex architecture of a CNN; the higher

number of epochs the network trains for. Due to these factors, in addition to the need in

having a procedure more similar to other HPO systems with which results will later be

compared, the stopping criterion of the system was set to 500 iterations.

Due to the reduction in the number of system iterations to one sixth of the value in the case

study, the trade-off parameter had to be adjusted too. As the TOP value of 8 was considered

the best performing one, given that it managed to find the 3 best configurations in section

6.3.3 and the 10 best configurations in section 6.3.4, it was too reduced to one sixth of its

original value, leading to
8

6
≈ 1.3. This change was meant to adapt the exploratory and

60

exploitative balance of the TOP = 8 to the decreased number of iterations in this section’s

experiments.

With those alterations in mind, the optimization procedure took around 31 hours to complete,

with an exploration of ≈0.004% of the total configurations’ search space. The performance of

the system throughout the entire process can be seen in Figure 21.

Figure 21 – System performance results, throughout 500 iterations, for a trade-off parameter of 1.3.

Configurations deemed outliers by the system in the final iteration are not present.

Looking at the graph, it can be seen that the system did not manage to get as accurate as it

did in the case study tests. However, not only did the system have less data to learn from, as it

only ran for 500 iterations, compared to the 3000 iterations in the case study, but the

variation in each configuration’s loss was more spread out too—as perceived by the blue

line—, making it more difficult to predict the loss of a given configuration. Thus, despite the

system not achieving the precision it did in the case study by the end of the optimization

process, its predictions managed to converge towards the real values faster than in the case

study. Two possible causes for this behaviour may have been the smaller trade-off parameter

and the smaller configurations’ search space.

 Evaluated Configurations

Table 1 showcases the 10 best configurations in the optimization process. As can be seen, all

but one configuration have an accuracy between 98% and 99%, as well as very similar losses

among themselves, with 8 out of 10 configurations having been found before the system

reached the halfway mark of the NN’s optimization.

61

Table 12 - The 10 configurations found with the lowest loss, sorted by loss.

Iteration Loss Accuracy

45 0.04 98.6%

47 0.05 98.8%

240 0.05 98.5%

125 0.05 98.3%

10 0.06 98.6%

86 0.06 98.7%

111 0.06 98.0%

257 0.06 98.1%

91 0.06 98.0%

304 0.07 97.9%

Looking at the hyperparameters of each of these configurations through the table in Appendix

3, a few architectural patterns can be noted: 6 out of 10 configurations used the maximum

number of epochs available, 15, including the 4 best configurations; 8 configurations used 0.1

as the learning rate; 9 configurations used 1 convolution and maximum pooling layers pair,

the minimum available; 7 configurations used 4 kernels in the convolution layers, the

maximum available; 8 configurations used a kernel size of 3x3 and 2x2 in the convolution and

maximum pooling layers, respectively; none of the top 10 configurations used the smallest

available number of neurons in the fully connected layers, 100.

The obtained results suggest that even better configurations could have possibly been found if

the number of epochs available in the search space were higher. The fact that most

configurations used only one pair of convolution and maximum pooling layers could be due to

the relatively small resolution of the images (28x28), whereby having more convolution

and/or maximum pooling layers would reduce the resolution of the images to a point where

they are not usable anymore. The high number of kernels in the convolution layers can also

imply that, at every convolution layer, multiple relevant features were detected in the input

by the network. Finally, the higher number of neurons in the fully connected layers is most

likely proof that more neurons were necessary to process the data coming from the

convolution and maximum pooling layers in order to understand the digit present in each

image.

 Best Configuration Comparison

The most accurate configuration found by the system during the optimization process is the

second configuration seen in Table 12, having an accuracy of 98.76%. This configuration was

compared with the best configuration found by other HPO systems (see Table 13) and

network architectures crafted by users manually (see Table 14).

62

Looking at Table 13, one can see the systems of (Stein, et al., 2018) and (Larochelle, et al.,

2007)—which have already been discussed in the state of the art section of this report—with

an EGO and a grid search algorithm, respectively, as their optimization algorithms. (Han, et al.,

2020) and (Yoo, 2019), on the other hand, have a genetic algorithm and a univariate dynamic

encoding algorithm for searches (uDEAS) as their optimization algorithms.

Table 13 – Comparison of the thesis’ system’s best configuration with the best configuration of other

HPO systems.

Configuration
Optimization

Algorithm
Nr. of System

Iterations
Epochs Accuracy

Thesis BO 500 15 98.76%
(Stein, et al., 2018) EGO 200 10 99.39%

(Han, et al., 2020)
Genetic

Algorithm
Unknown Unknown 99.28%

(Yoo, 2019) uDEAS 402 20 99.11%
(Larochelle, et al.,

2007)
Grid Search Unknown Unknown 96.06%

The displayed results showcase how the best configuration found by the thesis’ system did

not manage to reach the level of precision of the other configurations, only outperforming

that of (Larochelle, et al., 2007) with an accuracy difference of more than 2%. Specifically,

(Stein, et al., 2018) managed to find a more accurate configuration despite the smaller

number of iterations in the optimization process (200 versus 500) and the smaller number of

epochs the configuration trained for (10 versus 15).

Compared with manually configured NNs, the thesis’ best configuration did not manage to

have better results, having an accuracy worse than every other configuration (see Table 14).

Despite the more accurate configuration from (Tabik, et al., 2017) with 5 less epochs of

training, the thesis’ best configuration was capable of getting within an accuracy difference of

0.21% with (Ciresan, et al., 2011) despite the extra 485 epochs the network was able to train

for.

Table 14 – Comparison of the thesis’ system’s best configuration with manually-configured neural

networks.

Configuration Epochs Accuracy

Thesis 15 98.76%

(Tabik, et al., 2017) 10 99.07%

(Ciresan, et al., 2011) 500 98.98%

(Graham, 2014) 250 99.68%

63

More epochs of training does not necessarily translate to more accurate configurations (as it

is proof the case study in section 6.3), but given the complexity of the problem at hand and

the research made, it is safe to assume expanding the epochs’ search space of the system

would have led to the finding of better configurations. Increasing the search space of other

hyperparameters and the value of the trade-off parameter could have possibly led to the

discovery of more precise configurations too, although it would also have negatively impacted

the learning behaviour of the system.

65

7 Conclusions

Beginning this chapter, a delineation over the thesis’ goals is done, where initially planned

objectives are presented alongside other initially unforeseen objectives that were achieved

either as a side effect of the approaches taken in the development of the system or as a

necessity to support these same approaches. Following that, a balance is made over future

improvements that can be made to the system in order to enhance its performance,

versatility, and intelligence. Lastly, a summary over the work accomplished throughout the

entire thesis is made, concluding with a final judgment over this work and its final obtained

results.

7.1 Goals Accomplishment

At the beginning of the thesis, a list of goals was laid down to help guide the system’s

development and to help achieve final positive results. Table 15 lists the goals for the system’s

thesis and their respective level of accomplishment, including those not initially planned.

66

Table 15 – Level of accomplishment of the thesis’ system’s goals.

System Goal Level of Accomplishment Initially Planned

Optimization of Hyperparameters Accomplished Yes

Feature Selection Accomplished Yes

Learning Capabilities Accomplished No

Time Complexity Reduction Accomplished Yes

Handling of Outliers Accomplished No

Adaptable to Any Type of Neural
Network

Accomplished Yes

Adaptable to Other Machine
Learning Algorithms

Accomplished No

Best Configuration Superior to
Other Optimization Systems

Not Accomplished Yes

Best Configuration Superior to
Manually Configured Networks

Not Accomplished Yes

Starting off with the key objectives of the thesis necessary for the automatic configuration of

NNs, the system has both the capabilities of optimizing any neural network hyperparameter

and of selecting the most relevant features in structured datasets (feature selection). The

selected optimization algorithm, Bayesian optimization, allowed the system to not only make

informed decisions on the selection of configurations, but also to learn from them and

understand how each hyperparameter and feature affected the final results of a given

configuration. Despite not being a goal initially planned for the thesis, not only did it increase

the value of the system, but it also helped reduce its time complexity, as once the system’s

predictions start lining up with the real values, it can be used to predict the results of a

configuration with even having to train and test the network with that configuration.

With the system’s learning capability also came the need to ensure the quality of the data it

learned from. Given the system’s surrogate model, Gaussian Processes, sensitivity to outliers,

a mechanism not initially considered had to be implemented in order to pinpoint any possible

outlier configurations and exclude them from the list of configurations the system learned

from. Concerning the system’s adaptability to any type of neural network, not only was the

goal accomplished, but it was implemented in such a way that it can be used to optimize any

other machine learning algorithm, such as support vector machines.

Finally, the main method through which the quality of the system was planned to be

evaluated was by comparing the best configuration it could find (i.e. the most accurate)

against the best configuration found by other HPO systems and against networks manually

configured by users. Neither of these goals were accomplished, as can be seen in section 6.4.4,

although the results obtained demonstrate the potential of the implemented system.

67

7.2 Future Work

One of the biggest possible points of improvement for the system is how its scalability is

handled (see section 5.5). Currently, the acquisition function only has to consider five

thousand configurations, chosen randomly at every iteration, as possible candidates for

evaluation at that iteration. This ensures the acquisition function does not spend a long time

assessing the probability of improvement of the entire pool of available not-yet-evaluated

configurations, which could have millions of configurations. This mechanism could be

enhanced by synchronizing it with the surrogate model, so that the five thousand

configurations are not picked completely randomly and are instead chosen according to what

the system believes are the best possible candidates. Not only that, but instead of always

selecting five thousand configurations, the system could automatically adapt this value

depending on the size of the total configurations’ search space and the computational

capabilities of the machine it is running on.

In order to help further mitigate the time complexity of automating the configuration of

neural networks, more techniques could be researched and implemented. One such

technique could be the system keeping track of the time it takes to evaluate each

configuration and subsequently use that data to learn and predict how long future

configurations will take to evaluate. Based on that information, it can prioritize faster-to-

evaluate configurations that it predicts will have the same results as other configurations that

may take longer to evaluate. This would help the system avoid unnecessarily complex network

architectures that have results equally as good as simpler ones.

As more general points of improvement for the system, other existing surrogate models and

acquisitions functions should be investigated and experimented with. There are multiple

available options for each of these two vital components of Bayesian optimization, with only

one of each having been tried out in the thesis. Similarly, there are other methods to detect

data outliers which could be researched and used in place of the employed Grubb’s test. Every

change made in the system should then be followed by several tests on different types of

neural networks and datasets to ensure their versatility and adaptability to any use case.

7.3 Final Appreciation

The topic of the thesis delved into multiple different subjects, such as machine learning,

neural networks, hyperparameters optimization, and feature selection, all modern and

valuable disciplines that keep maturing every day. With this, it was possible to have an

enriching experience on how neural networks came to be, how they function, why their

manual configuration can be a problematic and time-consuming task, and how one can go

about creating a solution to fix this problem.

The framework initially envisioned for the thesis started off with its core, the optimization of

hyperparameters and the selection of features in datasets, and then was expanded and

68

perfected through other features that improved its performance and reduced its inherent

complexity. The undertaken state of the art study gave an overview of existing optimization

algorithms and existing works using these algorithms applied in the optimization of

hyperparameters in neural networks. With the design following that, critical decisions about

the inner workings of the thesis’ system were taken, such as the chosen optimization

algorithm and how configurations’ search spaces should be specified. Finally, the

implementation then built upon the design guidelines to create an easy-to-use solution that

was capable of performing its duty with minimal user intervention.

In the evaluation stage of the system, the performed case study managed to establish a

deeper understanding of the system and how one of its most crucial mechanisms, the

exploration versus exploitation of configurations, can be tweaked through a single value with

a big impact in system’s entire optimization process. Subsequently, the optimization of a

convolutional neural network not only showed how the system can be successfully applied in

the optimization of a different type of neural network, but also how the best configurations it

finds can have results comparable to those of other optimization systems and of manually

obtained configurations.

The value of the system for users is clearly present, and with extra future research and

developments, it can reach a level of quality and performance permitting its general usage by

the public. To conclude, both the thesis and the system through it implemented are

considered a success.

69

References

Adarsh, B. R., Raghunathan, T., Jayabarathi, T. & Yang, X.-S., 2016. Economic dispatch using

chaotic bat algorithm. Energy, Volume 96, pp. 666-675.

Berger-Tal, O., Nathan, J., Meron, E. & Saltz, D., 2014. The Exploration-Exploitation Dilemma:

A Multidisciplinary Framework. PLOS ONE, Volume 9, pp. 1-8.

Bergstra, J., Bardenet, R., Kégl, B. & Bengio, Y., 2011. Algorithms for Hyper-Parameter

Optimization. Red Hook, NY, USA, Curran Associates Inc., pp. 2546-2554.

Bergstra, J. & Bengio, Y., 2012. Random Search for Hyper-Parameter Optimization. Journal of

Machine Learning Research, 13(Feb), p. 281−305.

Bre, F., Gimenez, J. M. & Fachinotti, V. D., 2017. Prediction of wind pressure coefficients on

building surfaces using Artificial Neural Networks. Energy and Buildings, Volume 158.

Ciresan, D. et al., 2011. Flexible, High Performance Convolutional Neural Networks for Image

Classification. International Joint Conference on Artificial Intelligence IJCAI-2011, pp. 1237-

1242.

Ciresan, D., Meier, U. & Schmidhuber, J., 2012. Multi-column Deep Neural Networks for Image

Classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642-

3649.

DeepAI, n.d. Weight (Artificial Neural Network). [Online]

Available at: https://deepai.org/machine-learning-glossary-and-terms/weight-artificial-neural-

network

[Accessed 28 12 2019].

Ebden, M., 2015. Gaussian Processes: A Quick Introduction. arXiv, Volume arXiv preprint

arXiv:1505.02965.

Expert System Team, 2017. What is Machine Learning? A definition. [Online]

Available at: https://expertsystem.com/machine-learning-definition/

[Accessed 22 12 2019].

Feurer, M. & Hutter, F., 2019. Hyperparameter Optimization. In: F. Hutter, L. Kotthoff & J.

Vanschoren, eds. Automated Machine Learning: Methods, Systems, Challenges. s.l.:Springer

International Publishing, pp. 3-33.

Görtler, J., Kehlbeck, R. & Deussen, O., 2019. A Visual Exploration of Gaussian Processes.

[Online]

Available at: https://distill.pub/2019/visual-exploration-gaussian-processes/

[Accessed 26 6 2020].

70

Graham, B., 2014. Fractional Max-Pooling. arXiv preprint arXiv:1412.6071.

Grubbs, F. E., 1950. Sample Criteria for Testing Outlying Observations. The Annals of

Mathematical Statistics, 21(1), pp. 27-58.

Han, J.-H., Choi, D.-J., Park, S.-U. & Hong, S.-K., 2020. Hyperparameter Optimization Using a

Genetic Algorithm Considering Verification Time in a Convolutional Neural Network. Journal of

Electrical Engineering & Technology, 15(2), pp. 721-726.

Hutter, F., Hoos, H. H. & Leyton-Brown, K., 2011. Sequential Model-Based Optimization for

General Algorithm Configuration. Berlin, Heidelberg, Springer-Verlag, pp. 507-523.

Jones, D. R., 2001. A Taxonomy of Global Optimization Methods Based on Response Surfaces.

Journal of Global Optimization, Issue 21, pp. 345-383.

Koehrsen, W., 2018. A Conceptual Explanation of Bayesian Hyperparameter Optimization for

Machine Learning. [Online]

Available at: https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-

based-hyperparameter-optimization-for-machine-learning-b8172278050f

[Accessed 4 2 2020].

Krasser, M., 2018. Gaussian processes. [Online]

Available at: http://krasserm.github.io/2018/03/19/gaussian-processes/

[Accessed 14 6 2020].

Kushner, H. J., 1964. A New Method of Locating the Maximum Point of an Arbitrary Multipeak

Curve in the Presence of Noise. Journal of Basic Engineering, Volume 86.

Larochelle, H. et al., 2007. An empirical evaluation of deep architectures on problems with

many factors of variation. Proceedings of ICML, Volume 227, pp. 473-480.

LeCun, Y., Bengio, Y. & Hinton, G., 2015. Deep learning. Nature, Volume 521, p. 436–444.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P., 1998. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), pp. 2278-2324.

Lizotte, D. J., 2008. Practical Bayesian Optimization, Edmonton, Alberta, Canada: University of

Alberta.

Martinez-Cantin, R., Tee, K., McCourt, M. & Eggensperger, K., 2017. Filtering Outliers in

Bayesian Optimization.

Martínez, C. M. & Cao, D., 2019. Integrated energy management for electrified vehicles. In: C.

M. Martínez & D. Cao, eds. Ihorizon-Enabled Energy Management for Electrified Vehicles.

s.l.:Butterworth-Heinemann, pp. 15-75.

MathWorks, n.d. Bayesian Optimization Algorithm. [Online]

Available at: https://www.mathworks.com/help/stats/bayesian-optimization-

71

algorithm.html#bva8rde

[Accessed 9 July 2020].

McCall, J. C. & Trivedi, M. M., 2006. Video-based lane estimation and tracking for driver

assistance: survey, system, and evaluation. IEEE Transactions on Intelligent Transportation

Systems, 7(1), pp. 20-37.

McCulloch, W. S. & Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5(4), pp. 115-133.

Phung, H. V. & Rhee, E. J., 2019. A High-Accuracy Model Average Ensemble of Convolutional

Neural Networks for Classification of Cloud Image Patches on Small Datasets. Applied Sciences,

Volume 9, p. 4500.

Sadek, R. M. et al., 2019. Parkinson’s Disease Prediction Using Artificial Neural Network.

International Journal of Academic Health and Medical Research, 3(1), pp. 1-8.

Saeed, A., 2017. Using Genetic Algorithm for optimizing Recurrent Neural Network. [Online]

Available at: http://aqibsaeed.github.io/2017-08-11-genetic-algorithm-for-optimizing-rnn/

[Accessed 6 February 2020].

Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M., 2014. Striving for simplicity: The

all convolutional net. arXiv preprint arXiv:1412.6806.

Stein, B. v., Wang, H. & Bäck, T., 2018. Automatic Configuration of Deep Neural Networks with

EGO, s.l.: ArXiv 2018.

Tabik, S., Peralta, D., Herrera-Poyatos, A. & Herrera, F., 2017. A snapshot of image Pre-

Processing for convolutional neural networks: Case study of MNIST. International Journal of

Computational Intelligence Systems, Volume 10, pp. 555-568.

Törn, A. & Zilinskas, A., 1989. Global Optimization. 1st ed. s.l.:Springer-Verlag Berlin

Heidelberg.

Vanhatalo, J., Jylänki, P. & Vehtari, A., 2009. Gaussian process regression with Student-t

likelihood. In: Advances in Neural Information Processing Systems 22. s.l.:Curran Associates,

Inc., pp. 1910-1918.

Xia, Q. T. a. L. N. a. Y. W. a. T. D. a. W. A. a. J. C. a. S.-T., 2017. Student-t Process Regression

with Student-t Likelihood. In: Proceedings of the Twenty-Sixth International Joint Conference

on Artificial Intelligence. s.l.:s.n., pp. 2822-2828.

Yang, X.-S., 2010. A New Metaheuristic Bat-Inspired Algorithm. In: J. R. González, et al. eds.

Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 65-74.

72

Yang, X.-S., 2013. Optimization and Metaheuristic Algorithms in Engineering. In: X. Yang, A. H.

Gandomi, S. Talatahari & A. H. Alavi, eds. Metaheuristics in Water, Geotechnical and Transport

Engineering. Oxford: Elsevier, pp. 1-23.

Yang, Z. et al., 2015. Deep Fried Convnets. Proceedings of the IEEE International Conference on

Computer Vision, pp. 1476-1483.

Yoo, Y., 2019. Hyperparameter optimization of deep neural network using univariate dynamic

encoding algorithm for searches. Knowledge-Based Systems, Volume 178, pp. 74-83.

Zeiler, M. D. & Fergus, R., 2013. Stochastic Pooling for Regularization of Deep Convolutional

Neural Networks. arXiv preprint arXiv:1301.3557.

Zhou, V., 2019. Machine Learning for Beginners: An Introduction to Neural Networks. [Online]

Available at: https://victorzhou.com/blog/intro-to-neural-networks/

[Accessed 23 12 2019].

Appendix 1 – Human Fall Classification Best Configurations

T Ax 1 Ay 1 Az 1 Ax 2 Ay 2 Az 2 Gx Gy Gz S D E TO BS NpHL HL HLAF

✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✓ ✕ ✓ ✕ 2 RMSProp 16 1 3 ReLU

✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✓ ✓ ✓ ✓ 2 Adam 32 1 1 Sigmoid

✕ ✕ ✓ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 3 Adam 32 1 2 ReLU

✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✕ ✕ 4 RMSProp 16 16 2 Sigmoid

✕ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✓ ✕ 4 RMSProp 16 16 2 Sigmoid

✕ ✓ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ 1 SGD 16 31 1 Sigmoid

✕ ✓ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✓ ✕ 2 SGD 16 1 2 Sigmoid

✕ ✕ ✕ ✕ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✓ 1 RMSProp 32 1 1 ReLU

✕ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✕ ✓ 3 Adam 32 16 1 Sigmoid

✕ ✓ ✓ ✓ ✕ ✓ ✕ ✓ ✕ ✓ ✕ ✓ 3 Adam 16 1 3 ReLU

T – Time
Ax 1 – Accelerometer 1 X-axis
Ay 1 – Accelerometer 1 Y-axis
Az 1 – Accelerometer 1 Z-axis
Ax 2 – Accelerometer 2 X-axis
Ay 2 – Accelerometer 2 Y-axis

Az 2 – Accelerometer 2 Z-axis
Gx – Gyroscope X-axis
Gy – Gyroscope Y-axis
Gz – Gyroscope Z-axis
S – Sound
D – Doppler

E – Epochs
TO – Training Optimizer
BS – Batch Size
NpHL – Nr. of Neurons per Hidden Layer
HL – Nr. of Hidden Layers
HLAF – Hidden Layers Activation Function

Appendix 2 – Vibration Source Classification Best Configurations

T Ax 1 Ay 1 Az 1 Ax 2 Ay 2 Az 2 S D E TO BS NpHL HL HLAF

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 2 TanH

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 2 TanH

✕ ✓ ✓ ✕ ✓ ✕ ✕ ✓ ✕ 4 Adam 16 31 3 TanH

✕ ✕ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 1 Adam 16 36 4 TanH

✕ ✓ ✕ ✕ ✓ ✕ ✕ ✓ ✕ 3 RMSProp 16 36 4 TanH

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 1 TanH

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 2 TanH

✕ ✕ ✓ ✕ ✓ ✓ ✕ ✓ ✓ 2 RMSProp 32 36 5 TanH

✕ ✕ ✓ ✕ ✓ ✓ ✕ ✓ ✓ 2 RMSProp 16 36 5 TanH

✕ ✓ ✕ ✕ ✓ ✕ ✕ ✓ ✕ 3 RMSProp 16 36 4 TanH

T – Time
Ax 1 – Accelerometer 1 X-axis
Ay 1 – Accelerometer 1 Y-axis
Az 1 – Accelerometer 1 Z-axis
Ax 2 – Accelerometer 2 X-axis

Ay 2 – Accelerometer 2 Y-axis
Az 2 – Accelerometer 2 Z-axis
S – Sound
D – Doppler
E – Epochs

TO – Training Optimizer
BS – Batch Size
NpHL – Nr. of Neurons per Hidden Layer
HL – Nr. of Hidden Layers
HLAF – Hidden Layers Activation Function

Appendix 3 – Convolutional Neural Network Best Configurations

E TO BS LR CPL KpCL CKS CAF PKS FCL NpFCL FCLAF

15 Adagrad 16 0.01 1 4 3 Sigmoid 2 3 150 TanH

15 Adagrad 16 0.1 1 4 3 ELU 3 1 150 ELU

15 Adagrad 16 0.01 1 4 3 Sigmoid 2 3 150 TanH

15 SGD 16 0.1 1 2 3 Sigmoid 2 1 150 Sigmoid

12 SGD 16 0.1 1 3 3 ELU 2 3 200 TanH

15 Adagrad 16 0.1 1 4 3 Sigmoid 2 3 150 TanH

3 SGD 32 0.1 2 4 3 ELU 2 3 150 ELU

15 SGD 64 0.1 1 2 3 Sigmoid 2 2 200 TanH

6 Adagrad 32 0.1 1 4 2 ELU 2 2 150 TanH

6 Adagrad 32 0.1 1 4 2 ELU 3 1 200 TanH

E – Epochs
TO – Training Optimizer
BS – Batch Size
LR – Learning Rate
CPL – Nr. of Convolution and Max Pooling Layers Pairs
KpCL – Nr. of Kernels per Convolution Layer

CKS – Convolution Layers Kernel Size
CAF – Convolution Layers Activation Function
PKS – Max. Pooling Layers Kernel Size
FCL – Nr. of Fully Connected Layers
NpFCL – Nr. of Neurons per Fully Connected Layer
FCLAF – Fully Connected Layers Activation Function

