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Resumo 

Redes neuronais existem há décadas, tendo sido primeiramente introduzidas nos anos 40 por 

dois cientistas que modelaram uma simples rede neuronal usando circuitos elétricos. Desde 

então, vários avanços têm sido feitos no campo de redes neuronais com o objetivo de as 

adaptar na resolução de tarefas cada vez mais complexas, por sua vez levando a que as suas 

arquiteturas se tornem gradualmente mais elaboradas. Esta progressão tem dificultado a 

melhoria da qualidade de redes neuronais por parte de utilizadores, visto haver cada vez mais 

hiperparâmetros (i.e. componentes arquiteturais) que requerem ajustes na tentativa de 

melhorarem a sua precisão. 

A otimização de hiperparâmetros de uma rede neuronal é feita ajustando os mesmos de 

maneira a encontrar a arquitetura com os melhores resultados, podendo ser feita de forma 

tentativa erro, e guiada por algoritmos que o facilitem. Esta tese enquadra-se neste tema, 

apresentado uma solução que utiliza otimização Bayesiana como o algoritmo de otimização 

de hiperparâmetros para automaticamente configurar qualquer tipo de rede neuronal. O 

sistema desenvolvido não só otimiza os hiperparâmetros de redes neuronais, mas também 

localiza as caraterísticas mais relevantes de um conjunto de dados (também conhecido como 

seleção de caraterísticas) e aprende como cada hiperparâmetro e caraterística afeta o 

desempenho da rede, tornando-o útil na previsão do desempenho de uma configuração de 

uma rede neuronal sem sequer ter que a treinar e testar. 

Os resultados observados na avaliação do sistema demonstram as suas fortes capacidades de 

aprendizagem e a sua habilidade de balancear a exploração de configurações com elevadas 

chances de ter um desempenho alto com a exploração de configurações menos familiares 

com um nível de desempenho mais imprevisível, de forma a evitar contentar-se com uma 

configuração suficientemente boa e tentar encontrar aquela com precisão máxima. Tanto o 

caso de estudo como a otimização de uma rede neuronal convolucional realizados 

demonstram a capacidade de adaptação do sistema a diferentes tipos de redes neuronais e 

de obtenção de resultados positivos em ambos os cenários. A avaliação do sistema demonstra 

o potencial do mesmo e com desenvolvimentos futuros poderá atingir um nível de qualidade 

e desempenho onde será capaz de encontrar configurações que superem aquelas 

provenientes tanto de abordagens manuais e automáticas existentes.  

 

Palavras-chave: Redes Neuronais; Otimização de Hiperparâmetros; Seleção de Caraterísticas.   
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Abstract 

Neural networks have existed for decades, having first been introduced in the 1940s by two 

scientists modelling a simple neural network using electrical circuits. Since then, many 

advancements have been made in the field of neural networks with the intention of adapting 

them to solve increasingly more complex tasks, in turn leading to neural networks 

architectures gradually becoming more intricate. This progression has made it harder for users 

to improve the quality of neural networks, as there are ever more hyperparameters (i.e. 

architecture components) that require tweaking in an attempt to increase their accuracy. 

In an attempt to overcome this issue, the concept of hyperparameters optimization emerged, 

where each hyperparameter of a neural network is adjusted manually or automatically by a 

system, so as to find the network architecture with the best results. This thesis delves into this 

subject, presenting a solution that employs Bayesian optimization as its hyperparameters 

optimization algorithm to automatically configure any type of neural network. The developed 

system not only optimizes the hyperparameters of neural networks, but it can also pinpoint 

the most relevant features in a dataset (also known as feature selection) and learn how each 

hyperparameter and feature affects the performance of the network, making it useful for 

predicting the performance of a neural network configuration without even having to train 

and test it in the first place. 

The results observed in the evaluation of the system showcase its strong learning capabilities 

and its ability to balance the exploitation of configurations with an elevated chance of having 

a high performance and the exploration of unknown configurations with an unpredictable 

level of performance, in an attempt to avoid settling for a good enough configuration and find 

the best one. Both the undertaken case study and optimization of a convolutional neural 

network demonstrate the system’s ability to adapt to different types of neural networks and 

obtain positive results in both scenarios. The system’s evaluation demonstrates it has 

potential and with future work can reach a level of quality and performance where it can find 

configurations that surpass those of both existing automatic and manual approaches. 

 

Keywords: Neural Networks; Hyperparameters Optimization; Feature Selection.   
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1 Introduction 

This section introduces the thesis by first giving a brief overview of the history of neural 

networks and the problem this thesis contributes to, followed by a more detailed description 

of said problem. Following that, it lists the goals of the thesis, the expected outcomes, and the 

initial advocated approach in order to solve the identified problem. Lastly, the structure of this 

document is presented. 

1.1 Background 

Neural networks (more specifically, artificial neural networks) are systems inspired by the 

behavior of biological neural networks. Their history can be traced back to 1943, when a 

neurophysiologist named Warren McCulloch and a mathematician named Walter Pitts 

modelled a simple neural network using electrical circuits to describe how neurons in the 

brain may work (McCulloch & Pitts, 1943). Since then, neural networks (NNs) have involved 

into intricate structures of hundreds, thousands, or even millions of neurons, all working 

together to solve very complex tasks, such as detecting road lanes in self-driving car systems 

(McCall & Trivedi, 2006) and predicting Parkinson’s disease in medical patients (Sadek, et al., 

2019). 

However, with the increase in complexity of neural networks over the years came the increase 

in difficulty to configure them. As the architecture of a NN becomes more intricate, users 

spend longer periods of time tweaking it in order to attempt to increase its performance. With 

NNs oftentimes having millions of possible different configurations, it becomes unfeasible and 

costly for users to experiment every single one. 

In an attempt to solve this issue, the concept of hyperparameters optimization (HPO) 

emerged. The idea behind this technique is the automation of the configuration of neural 

networks using optimization algorithms, with a system having the capability of making 

informed decisions on what configurations to evaluate. Throughout the optimization process, 

the system tweaks the hyperparameters (i.e. architectural components) of the NN with the 
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intention of improving the network’s results. The process by which the system decides what 

hyperparameters to tweak is dependent on the employed optimization algorithm. 

1.2 Problem 

Neural networks have been increasingly employed throughout recent years as tools for the 

identification and understanding of patterns and classification of data, having an autonomous 

reasoning capability in the resolution of the tasks for which they are trained. Algorithms of 

this kind do not possess a “hard-coded” logic; instead, they develop their own way of thinking 

throughout their training process. 

Two of the most crucial tasks undertaken by developers when creating these types of systems 

are the configuration of their hyperparameters (e.g. activation functions, number of layers, 

layer types, etc.) and the selection of the most relevant attributes of the given dataset (also 

known as feature selection). Despite the vitality and importance of these processes, they have 

to be performed manually and are extremely time-consuming due to the semi-random trial-

and-error approach taken by users in order to figure out which attributes and parameters 

provide the network with the best results (Stein, et al., 2018). 

By automating this entire process, it can be performed in a more deliberate and 

knowledgeable way. An HPO system can keep track of every change it makes to every 

hyperparameter alongside the network performance that configuration led to, and then use 

that information to make new changes in the hyperparameters that will lead to improved 

network results. Moreover, if the system also has feature selection capabilities, it can choose 

to ignore certain features that it believes to either be irrelevant or detrimental towards the 

performance of the NN. 

The thesis here presented, developed in the scope of the Thesis / Dissertation / Master’s 

(TMDEI) class of the Master’s in Computer Science at the Instituto Superior de Engenharia do 

Porto (ISEP), delves into the subjects of hyperparameters optimization and feature selection in 

neural networks. Proposed by two professors part of ISEP’s GECAD (Research Group on 

Intelligent Engineering and Computing for Advanced Innovation Development) research 

center, the project consists in the implementation of a framework to automate the 

configuration of neural networks. 

1.3 Objectives 

The main goal of this thesis is to design and develop a software solution to tackle the time-

consuming process of manually experimenting different configurations of a neural network. 

The system should automate the configuration and evaluation process of neural networks, 

thus alleviating end users from having to perform this process manually. 
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In order to accomplish this, it will be necessary to: 

• Understand what a neural network is and how it functions; 

• Explore the different types of existing neural networks and understand what 

differentiates them, the use cases for each, and the advantages and disadvantages of 

each one; 

• Research problems of different natures solved through the usage of neural networks, 

in an attempt to try and find patterns in the configuration process of the networks 

and the feature selection process of the input data; 

• Investigate already existing solutions for the automation of the configuration of 

neural networks, analyzing employed techniques, system performance and quality of 

generated networks; 

• Apply the acquired knowledge in the design and architecture for the solution, 

adaptable to any use case and easily extensible to accommodate future additions; 

• Implement the actual system based on the design and architecture previously 

specified; 

• Incrementally evaluate and improve the final solution, reducing its time complexity 

and increasing its overall performance.  

1.4 Expected Outcomes 

Based on the objectives set out for the thesis and its system’s development, the final version 

of the implemented framework is expected to have the ensuing capabilities: 

• It should be able to take into account the user’s data and the context of the problem 

at hand and find a neural network optimal for it. The obtained NN should perform 

comparably to a NN obtained through a manual process by a user; 

• It should be able to create and configure multiple different types of neural networks, 

such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN); 

• It should be designed and implemented in a way where future extensibility (such as 

the ability to support other machine learning algorithms) is straightforward and 

simple; 

• Due to the sheer complexity of iterating through and evaluating networks with 

different configurations until an optimal one is obtained, it is expected for the 

framework to operate for a long period of time1. With this in mind, it is also expected 

that the framework’s time complexity is optimized in order to try and minimize this 

issue as much as possible. 

 
1 This will depend a lot on the problem to be solved, the type of, quality and quantity of the input data, the 
specification of the machine where the framework will operate on, among other factors. 
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1.5 Advocated Approach 

In order to develop a system to automatically configure neural networks, a state-of-the-art 

study must be performed so as to investigate, evaluate and compare several different 

algorithms and techniques, both as a core part of the system’s implementation, and as a way 

to optimize the system itself and reduce its complexity. This research will mainly focus on the 

core piece of the system, its optimization algorithm, delving into the various existing 

approaches, such as evolutionary and genetic algorithms, applied to both the context of 

hyperparameters optimization as well as other types of optimization. It will majorly consist of 

books and journal articles of the past ten years (i.e. between 2010 and 2020), as both neural 

networks and optimization algorithms are fast moving areas where it is vital to have the most 

recent research possible. 

The system will then be designed in a way that conforms to the performed study, along with 

its expected behavior and characteristics (e.g. versatility and extensibility). It should adapt to 

any use case and be capable of optimizing the architecture of any type of neural network, 

with an optimization algorithm that can learn the most, the quickest, and have mechanisms 

that can lower the time complexity of computing the quality of a given NN configuration. 

Additionally, the system should have a mechanism to safeguard itself and its learning process 

against certain edge cases, such as data outliers and configurations with unexpected results. 

The implementation will be closely guided by the design and how it is expected to be 

employed by a user, focusing on hiding its complexity from users and only exposing the 

features they need to tweak the system (such as its learning behavior, the configurations and 

data features to evaluate, and the criteria in charge of considering the optimization process 

finished). The user will have the freedom and control over how to specify each of the 

parameters the system will optimize and what the values of each of these parameters should 

look like. 

Lastly, the entire system will undergo a series of experimental tests, where its performance 

will be evaluated in different case studies. These tests will deal with real world data and 

different types of neural networks, ensuring the system can learn the architectural patterns 

that make up the best performing NNs and obtain them. Not only that, but the feature 

selection capabilities of the system will also be assessed, to find out whether it can pinpoint 

the most relevant features of a dataset and the most redundant ones. 

The entire methodology can be seen summarized by the process in the following figure: 
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Figure 1 – Thesis methodology. 

1.6 Report Structure 

Section 1 starts off with the introduction of the thesis, where both the background behind 

neural networks and the optimization of hyperparameters are described, followed by a brief 

summarization of the thesis’ problem. Afterwards, both the objectives of the thesis as well as 

its expected outcomes are listed, finalizing with an explanation of the advocated approach for 

the thesis.  

Section 2 goes into a more thorough and deeper examination of the context behind the thesis. 

First, key basic concepts vital in understanding the entirety of the thesis, such as machine 

learning and neural networks, are clarified to the reader. Subsequently, the thesis’ problem is 

explained in greater detail, emphasizing the existing struggles in the manual configuration of 

NNs, while also exposing the complications which arise from trying to automate this process. 

As a last point in this section, the business value of the thesis’ system and the benefits of it to 

users is examined. 

Section 3 presents the conducted state of the art, commencing with the undergone market 

study of existing optimization algorithms, where algorithms such as Bayesian optimization and 

particle swarm optimization are analyzed. Following that, various different researched 

solutions are discussed and compared where optimization algorithms are used in the 

optimization of hyperparameters in NNs. 

Section 4 depicts the design of the system, starting off with the chosen optimization algorithm, 

Bayesian optimization, and going in depth over its main components: the surrogate model and 

the acquisition function. The flow of the entire system is also presented through a diagram, 

followed by the discussion on how the configurations to use in the optimization process 

should be specified. Lastly, the idea of parallelizing the evaluation of multiple configurations 

at the same time is deliberated. 
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Section 5 begins by listing the technologies employed in the development of the system, as 

well as how the human-computer interaction component of the system was handled. An 

overview of how the search space will work in the system follows, together with an 

explanation of the system’s concept of objective function.  Ending the section is an analysis of 

the scalability of the system. 

Section 6 goes into the evaluation of the system, beginning with the methodology followed in 

the conduction of the system’s experiments and the key metrics considered in the assessment 

of the system’s performance. Afterwards, a case study on a dataset of vibrations detected by 

motion sensors is presented, with the system having to optimize a neural network in charge of 

understanding the cause of each vibration. Lastly, the system is put against other 

hyperparameters optimization systems and manually configured networks in the optimization 

of a convolutional neural network. 

Section 7 presents the conclusions of the thesis, first listing its goals, and whether these were 

accomplished or not, and then delving into ideas for future work and development in the 

system.  To finish off, a final appreciation over the entire thesis is made. 
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2 Context 

This section introduces the reader to some fundamental concepts necessary to better 

understand the area in which this thesis will dive into, such as machine learning and neural 

networks. Following that, the problem of the thesis is explained in greater detail, together 

with the highlighting of a few key points that elucidate the difficulties of implementing a 

solution to the problem. Lastly, a value analysis on the project is presented, where both the 

benefits and drawbacks of the system are underlined. 

2.1 Neural Networks 

Machine learning, a process which neural networks are a part of, can be described as “an 

application of artificial intelligence (AI) that provides systems the ability to automatically learn 

and improve from experience without being explicitly programmed” (Expert System Team, 

2017). Machine learning can contain multiple types of learning algorithms, such as supervised, 

unsupervised, and reinforcement learning, and each of these can include several different 

machine learning models, such as ANNs, decision trees, and support vector machines. 

Neural networks are composed of multiple interconnected units called neurons that pass 

around information since they are given an input, until an output (i.e. prediction) is eventually 

obtained. Each neuron receives one or more inputs, performs various mathematical 

operations on it (depending on the type of neuron), and produces an output (Zhou, 2019) (see 

Figure 2). Groups of neurons are then put together in what are called layers, with the first 

layer being known as the input layer (where the input data is fed), the final layer as the output 

layer (where the prediction(s) are obtained), and any layer in between these two (assuming 

any exist) known as a hidden layer (see Figure 2).  
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Figure 2 – Architecture of a neural network (Bre, et al., 2017) and structure of a neural network’s 

neuron (Zhou, 2019). 

Each neuron also attributes a weight to each one of its inputs, thus controlling how strongly 

neurons affects one another (aside from the input layer, every neuron’s input must be 

another neuron’s output). The weights of every neuron in a neural network are also known as 

the network’s parameters, and they are the source behind its learning process: every weight 

starts out as a randomized value, and throughout the training process of the network, the 

error  of the network’s predictions is calculated (also known as a cost / loss function), with 

each weight getting slightly adjusted towards a value that will minimize the loss of the 

network and, therefore, improve its results (DeepAI, n.d.). 

Just like a NN’s parameters are a critical part of its thought process, its hyperparameters are 

also a critical part of its learning process. Examples of a network’s hyperparameters are the 

number of hidden layers, the number of neurons per hidden layer, the network’s learning rate, 

etc. Unlike the parameters of a NN, though, which are automatically tweaked throughout its 

training process to improve its accuracy, hyperparameters tend to be manually tweaked by 

users due to several complications brought about by attempting to automate it (see following 

section 2.2). 

It is also relevant to talk about deep learning, as it will be the area where this system’s 

benefits will be the most noticeable. Deep learning is a subset of machine learning comprised 

of neural networks with more complex architectures, constituted by multiple hidden layers 

meant to learn representations of data with multiple levels of abstraction. These are crucial in 

certain areas where datasets tend to be much more complex and difficult to understand, such 

as in speech recognition, natural language processing, and computer vision (LeCun, et al., 

2015). The reason why the system will be the most useful in deep learning NNs is because 

these tend to have a much higher number of hyperparameters to configure, in comparison to 

NNs with simpler architectures. 

2.2 Problem 

The implementation of a neural network is a highly complex and laborious process, with users 

expending a vast amount of time since the initial network’s design, until a final solution with 
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an expected optimal performance is obtained. This systematic procedure can be classified into 

the following steps:  

1. Define the network’s architecture (i.e. its hyperparameters), according to the problem 

it is meant to solve; 

2. Implement the NN; 

3. Train and test the network with the architecture initially specified; 

4. Tweak the hyperparameters of the network; 

5. Repeat steps three and four until the NN reaches optimal results. 

 

The issue with this approach is the amount of time developers spend in step four, where they 

semi-randomly fine-tune each hyperparameter without having a good idea on what the 

results after those changes are going to be. By making the smallest change, the network may 

drastically improve its results, or it may worsen its performance significantly, or no change 

may even occur. It is a very time-consuming process with unpredictable outcomes. Not only 

that, but developers are not able to try out every single possible hyperparameter value, as 

there are too many combinations. Table 1 presents an example of a neural network with three 

hyperparameters, each having an arbitrary number of possible values, and a dataset 

containing four features, where each feature is either used or ignored by the NN. The 

hyperparameters and features equal a total of (2 ∗ 2 ∗ 2 ∗ 2 − 1) ∗ 5 ∗ 10 ∗ 3 = 2250 

possible configurations (the combination of the features’ possible values is decremented since 

the scenario with no features is not possible), a quantity rather impractical to be fully tested 

by developers. In real scenarios, however, it becomes even more complex, as datasets have 

more features and neural networks have dozens, or more, of hyperparameters with much 

larger ranges of values, resulting in millions of different possible configurations. 

Table 1 – Total number of possible configurations of an example neural network. 

Features & Hyperparameters Possible Values 
Number of 

Possible Values 

Feature 1 Ignore or Do Not Ignore 2 

Feature 2 Ignore or Do Not Ignore 2 

Feature 3 Ignore or Do Not Ignore 2 

Feature 4 Ignore or Do Not Ignore 2 

Number of Layers From 1 to 5 5 

Number of Neurons per Layer From 1 to 10 10 

Number of Epochs From 1 to 3 3 

Total  2250 
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By keeping the same three hyperparameters in the above table with the exact same number 

of possible values, but varying the number of features in a dataset, the impact in the number 

of total configurations can be visually analyzed. The line chart in Figure 3 demonstrates the 

exponential increase in the total amount of configurations of a NN as the number of features 

increase. Whereas with one feature, there are 150 possible configurations, by ten features 

this value is upwards of 100 thousand (153450, to be exact). 

 

Figure 3 – Total number of configurations versus the number of features, exemplified using the static 

possible values of the three hyperparameters in Table 1. 

The search automation of a NN’s best hyperparameter values for a given dataset is a known 

subject in the area of machine learning known as hyperparameters optimization. This method 

can be expressed through the following equation: 

λ(∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜆∈Λ

 Ψ(λ)     (1) 

where we are trying to obtain a given set of hyperparameters λ, belonging to Λ, which 

minimize a given response function Ψ (also referred as the objective function) that will be 

optimized by the system. The set Λ (also known as the configuration space of the network) 

represents the array of hyperparameters {λ(1) … λ(𝑆)} to be evaluated by the function Ψ, in 

order to obtain the hyperparameter values which provide the network with the lowest loss 

calculated by Ψ . Both the response function Ψ  and the set Λ  vary depending on the 

optimization algorithm and dataset used, as well as the tasks performed by the network over 

the dataset (Bergstra & Bengio, 2012).  
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Currently, the main obstacles with hyperparameter optimization are (Feurer & Hutter, 2019): 

• Evaluations of the function Ψ can be very time-and-resources-demanding, especially 

with more complex NNs and larger datasets; 

• The search space2 of a given hyperparameter can be extremely complex and high-

dimensional; 

• It is hard to know which hyperparameters require optimization and which ones do not; 

• It is hard to know which hyperparameters are the most substantial in improving the 

network’s results; 

• It is not always possible to optimize the hyperparameters of a network through the 

usage of a cost function, like it is done in the training process of a NN. 

2.3 Value Analysis 

With the employment of a system like this, users will not have to spend a lot of their time 

manually tweaking hyperparameters of the network and re-training and re-testing it multiple 

times. The framework will automate the entire process, ensuring an optimal solution is 

eventually reached, thus freeing up users’ time to work on other projects. This becomes even 

more obvious when it comes to deep learning networks, as these tend to be exponentially 

more complex to configure. 

In view of the system’s versatility, it can be employed in the automatic configuration of any 

type of neural networks, be it CNNs, RNNs, Feedforward NNs, etc. Furthermore, the system 

encourages experimentation, as it may try out network configurations that the user would 

never even consider testing. 

Despite what is said in section 1.4 about the system being expected to run for long periods of 

time, it does not necessarily mean it will take longer than if the optimization process was 

performed manually by users. This is due to the fact that the system will employ metaheuristic 

techniques to predict the performance of not-yet-evaluated configurations, and subsequently 

use that knowledge to avoid evaluating configurations which it expects to have worse results 

than configurations that have already been evaluated. A user may not be capable of carrying 

out these assessments and end up spending a greater amount of time experimenting with 

worse-performing configurations. 

 
2 Domain of the hyperparameter being optimized (e.g. the number of hidden layers). 
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3 State of the Art 

This section presents a state-of-the-art on existing algorithms and techniques used in the 

automatic configuration of neural networks. It starts off by summarizing and comparing 

multiple existing optimization algorithms that can be adapted to the optimization of 

hyperparameters, such as Bayesian optimization and genetic algorithms. Following that, 

various scientific publications are examined where systems with different optimization 

algorithms are employed in the automatic configuration of neural networks. 

3.1 Optimization Algorithms 

Throughout the years, many different optimization algorithms have been developed and 

employed in the hyperparameters optimization process of neural networks. This chapter 

introduces some of these existing algorithms and how each one of them operates. 

3.1.1 Grid Search 

Grid search is one of the most well-known hyperparameter optimization algorithms, 

consisting on the combination of every possible value of the search space of every 

hyperparameter (Bergstra & Bengio, 2012). As an example, if 𝐴 is the search space of a given 

hyperparameter, such that 𝐴 =  {1, 2}, and 𝐵 is the search space of another hyperparameter, 

such that 𝐵 =  {3, 4}, then, in accordance to eq. 1, Λ =  {(1, 3); (1, 4); (2, 3); (2, 4)}. Figure 4 

showcases how grid search would select nine configurations in an optimization process, only 

testing three distinct values on two hyperparameters (cf. Figure 5). 
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Figure 4 – Grid search of nine different configurations with two hyperparameters (yellow and green 

areas) (Bergstra & Bengio, 2012). 

The simplicity of this algorithm comes with the cost of the curse of dimensionality, whereby 

the number of function evaluations exponentially increase with the dimensionality of the 

configuration space of the network (Feurer & Hutter, 2019). In other words, performing 

optimization using grid search becomes exponentially more expensive the more 

hyperparameters the network has and the larger the search space of each one is. 

3.1.2 Random Search 

Random search is an alternative to grid search which attempts to overcome its curse of 

dimensionality issue by randomly selecting configurations to evaluate, instead of evaluating 

every single possibility (Bergstra & Bengio, 2012). For example, if there was a search space 

𝐴 =  {1, 2} for hyperparameter 𝐻𝐴, and a search space 𝐵 =  {1, 2, 3, 4, 5} for hyperparameter 

𝐻𝐵, grid search would evaluate configurations sequentially, starting off by evaluating all the 

configurations where 𝐻𝐴 =  1, such as (1, 1) and (1, 2), and then all configurations where 

𝐻𝐴 =  2, such as (2, 1) and (2, 2); random search, on the other hand, would evaluate 

configurations randomly, never selecting them in any specific order. Figure 5 showcases how 

random search would select nine configurations in an optimization process, testing an 

heterogenous range of values on two hyperparameters (cf. Figure 4). 
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Figure 5 - Random search of nine different configurations with two hyperparameters (yellow and green 

areas) (Bergstra & Bengio, 2012). 

Outside of that, it features most of grid search’s characteristics, such as easy parallelization of 

the evaluation of different configurations (since each one is completely independent on the 

rest) and the need to specify the search space of every hyperparameter ahead of time. 

3.1.3 Bayesian Optimization 

Bayesian optimization (BO) algorithms avoid the complexity of calculating Ψ by instead 

creating a surrogate function that approximates Ψ and that is optimized and improved 

throughout the HPO process. This optimization process is accomplished on account of a 

history of past configurations evaluations maintained by the algorithm, allowing it to make 

informed choices on what hyperparameters to evaluate next based on past results (Hutter, et 

al., 2011). 

Figure 6 demonstrates an example Bayesian optimization process at two different stages, with 

the dashed red line representing the real objective function of a given hyperparameter, the 

bold black line representing the surrogate model of the objective function, the black dots 

representing the results of evaluations made, and the grey area representing the uncertainty 

of the surrogate model. As can be seen, a BO algorithm optimizes its surrogate function, in 

every iteration, by “adding” the evaluation result of that iteration to it, slowly approximating 

it to the real objective function Ψ, whilst too lowering its uncertainty.  
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Figure 6 – Example of the Bayesian optimization process at two different stages: on the left, after 2 

configurations evaluations; on the right, after 8 configurations evaluations (Koehrsen, 2018). 

Bayesian optimization algorithms can have different implementations depending on two 

distinct aspects of the algorithm: how the surrogate function is built (e.g. Gaussian Processes 

(GP), Tree of Parzen Estimators (TPE), etc.); which criteria to use to select the next 

hyperparameters in each iteration of the process (i.e. acquisition function) (e.g. Probability of 

Improvement (PI), Expected Improvement (EI), etc.). 

3.1.4 Genetic Algorithms 

Genetic algorithms (GA) are a class of evolutionary algorithms pioneered in the 1960s and 

1970s which, similarly to neural networks, take inspiration from biological processes. More 

specifically, GAs take inspiration from Darwin’s theory of evolution, involving concepts such as 

natural selection, mutations and crossover (Yang, 2013). 

Each solution to be evaluated by a GA is called an individual, and a group of individuals is 

called a population. Each individual possesses a chromosome representing the features of 

that individual. In the context of HPO, an individual would be considered a network 

configuration to be evaluated and its chromosome would be the hyperparameter values of 

that configuration. Each individual would also be part of a given population P, such that 𝑃 ⊆

 Λ. 

In order to select the best individuals of a population, a fitness function is used to evaluate the 

performance of each one (this function is linked to the response function Ψ). The best 

individuals of each population are then added to a mating pool, where the higher the quality 

of an individual, the higher are the chances it is selected. In the selection process, multiple 

pairs of individuals are chosen to generate offsprings (i.e. children). Each offspring’s 

chromosome will be a combination of its parents’ chromosomes.  

Since every offspring will always share a combination of its parents’ characteristics, in order to 

introduce some randomness into the process, each offspring will suffer mutations too, where 

their chromosomes will suffer slight changes. The individuals obtained after the mutation 

process will then replace the previous generation as the new one. 

Figure 7 shows a flowchart of a typical genetic algorithm. After a population is randomly 

initialized, its fitness is evaluated, with the best performing individuals being selected. These 
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individuals then undergo the crossover process to produce children, which, subsequently, 

have their chromosome mutated. These new individuals will compose the new population 

which will undergo the exact same process, until some given termination criteria are reached. 

 

 

Figure 7 – Flow of a genetic algorithm (Saeed, 2017). 

3.1.5 Particle Swarm Optimization 

Particle swarm optimization (PSO) is an optimization algorithm introduced in the 1990s and 

inspired by the behavior observed in groups of social organisms, such as the coordinated flight 

of flocks of birds and the schooling of fish. PSO shares the concepts of individual and 

population also present in GA (also known as a particle and a swarm), where, iteratively, 

particles in a swarm move around in an attempt to find an optimal solution to a given problem 

(Martínez & Cao, 2019). 

Each particle is defined by its current position and velocity—which stochastically change in 

every iteration—, in turn affecting its trajectory.  The trajectory of each particle is also 

affected by the best position achieved by that particle and the swarm’s best position. The 

position and velocity of each particle changes every iteration according to: 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑥𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑖

𝑡)   (2) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1     (3) 

where 𝑥𝑖
𝑡 is the position of particle 𝑖 at iteration 𝑡, 𝑣𝑖

𝑡 is the velocity of particle 𝑖 at iteration 𝑡, 

𝑥𝐵𝑒𝑠𝑡𝑖 is the particle 𝑖’s best position, 𝑔𝐵𝑒𝑠𝑡 is the swarm’s overall best position, and 𝜔, 𝑐1, 

𝑐2, 𝑟1, and 𝑟2 are the inertia weight, two positive constants and two random parameters 

within [0, 1], respectively. The 𝜔, 𝑐1 and 𝑐2 parameters control the influence of different 

factors in the particle’s velocity, with 𝜔 regulating the weight of the particle’s previous 
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velocity, 𝑐1 regulating the weight of the particle’s best position, and 𝑐2 regulating the weight 

of the swarm’s best position. 𝑟1 and 𝑟2 are values selected randomly in every iteration and are 

meant to introduce randomness in the process and avoid particles converging to a local 

optimum. 

3.1.6 Bat Algorithm 

Bat algorithm (BA) is the most recent optimization algorithm here presented, having been 

introduced in 2010 by Xin-She Yang (Yang, 2010). Despite their blindness, through the 

mechanism of echolocation, bats are able to detect preys, avoid obstacles, and completely 

map out three-dimensional environments around them. They vary their echolocation pulses’ 

frequency, loudness, and rate of emission in order to adapt to their surrounding environment 

and better perform tasks such as hunting. BA takes inspiration from this behavior of bats, in 

conjunction with other existing metaheuristic optimization algorithms, such as PSO and 

harmony search, establishing a novel population-based optimization algorithm. 

In BA, the frequency, position, and velocity of each bat is updated in accordance with the 

following equation: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑟1    (4) 

             𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + (𝑥𝑖
𝑡 − 𝑔𝐵𝑒𝑠𝑡𝑡)𝑓𝑖       (5) 

         𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1     (6) 

where 𝑥𝑖
𝑡, 𝑣𝑖

𝑡, and 𝑟1 have the same meaning as in PSO’s equations (eq. 2 and 3), 𝑔𝐵𝑒𝑠𝑡𝑡 is the 

bat population’s best position at iteration 𝑡, 𝑓𝑖 is the pulse frequency of bat 𝑖, and 𝑓𝑚𝑖𝑛 and 

𝑓𝑚𝑎𝑥 are the minimum and maximum frequencies allowed, respectively. 

Up to this point, BA seems to follow a very similar logic as PSO. Where it starts to differentiate 

from it is through the concept of local search. It states that in every iteration, after the 

velocity and position of every bat is updated using the above equations, each bat should fly 

randomly. This random flight will involve two new parameters: the pulse emission rate 𝑅𝑖
𝑡 and 

the loudness 𝐴𝑖
𝑡. The local search will then be conducted either based on the current best 

solution or a randomly chosen one, depending on the bat’s 𝑅𝑖
𝑡, according to the following 

formula (Adarsh, et al., 2016): 

        𝑥𝑖
𝑡+1,𝑛𝑒𝑤 = {

𝑔𝐵𝑒𝑠𝑡𝑡 + 𝑟2𝐴𝑖
𝑡,      𝑟3 > 𝑅𝑖

𝑡

𝑥ℎ
𝑡 + 𝑟2𝐴𝑖

𝑡,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (7) 

where 𝑅𝑖
𝑡 is the pulse emission rate of bat 𝑖 at iteration 𝑡, 𝐴𝑖

𝑡 is the loudness of bat 𝑖 at 

iteration 𝑡,  𝑟2 is a random parameter within [-1, 1], 𝑟3 is a random parameter within [0, 1], 

and ℎ is a random parameter within [1, 2, …, Nb], ℎ ≠ 𝑖 (where Nb is the number of bats in the 

population), such that 𝑥ℎ
𝑡  is the position of a bat in the population that is not bat 𝑖 at iteration 

𝑡 picked randomly. 
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For each bat, it will be decided whether this new 𝑥𝑖
𝑡+1,𝑛𝑒𝑤 position or the previous 𝑥𝑖

𝑡+1 

position will be maintained according to: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+1,𝑛𝑒𝑤 ⇒ 𝑟4 < 𝐴𝑖
𝑡 ∧ Ψ(𝑥𝑖

𝑡+1,𝑛𝑒𝑤) < Ψ(𝑥𝑖
𝑡+1)   (8) 

where 𝑟4 is a random parameter within [0, 1] and Ψ is the objective function that is trying to 

be minimized in the HPO process. In case the “random walk” position of the bat becomes the 

bat’s actual new position, the pulse emission rate and loudness of the bat will also be updated: 

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡     (9) 

   𝑅𝑖
𝑡+1 = 𝑅𝑖

0[1 − exp(−𝛾𝑡)]    (10) 

where 𝑅𝑖
0 is the initial pulse emission rate of bat 𝑖 at iteration 𝑡, and 𝛼 and 𝛾 are two positive 

constants. The initial loudness  𝐴𝑖
0 and pulse emission rate 𝑅𝑖

0 of a bat are randomly selected 

within [1, 2] and [0, 1], respectively. 

Figure 8 summarizes the flow of a typical bat algorithm, starting off by defining the frequency 

and initial position, velocity, loudness, and emission rate of each bat. Following that, the 

position and velocity of each bat is updated, and each bat takes a walk starting off from the 

best bat’s position or a random one, depending on a given condition. The new position of the 

bat is maintained if another given condition is met and if it is better than the previous bat 

position, in which case the bat’s loudness and pulse emission rate are also updated. This 

process is repeated until some given termination criteria is reached. 
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Figure 8 – Flow of a bat algorithm. 

3.2 Researched Solutions 

Applying the concepts behind the optimization algorithms presented in the previous section 

3.1, numerous authors have designed and implemented their own systems to automatically 

configure neural networks. This section delves into various of these solutions, describing the 

technical details behind each one, their testing results, and how they fare against other 

previously developed systems. 

3.2.1 Random Search for Hyper-Parameter Optimization of Neural Networks 

In a study by Bergstra & Bengio, the authors implemented an automatic NN configurator using 

the random search algorithm (Bergstra & Bengio, 2012). The system was set up to configure 

seven hyperparameters on a one-layer NN, such as the type of input data preprocessing, 

number of hidden units, and learning rate of the network’s stochastic gradient descent 
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optimization algorithm. The system was then compared to a grid search solution from 

(Larochelle, et al., 2007), in which, despite the hyperparameters to-be-optimized being 

different, the covered configuration search space was roughly the same size. 

The tests were performed on eight different image datasets, five of which being the Modified 

National Institute of Standards and Technology (MNIST) dataset, a famous dataset of 70,000 

28x28 greyscale images of handwritten digits,  and four other variants of it, such as with the 

images rotated or with random background images. For each dataset, the random search 

system was evaluated on varying numbers of trials (network configurations evaluations): 1, 2, 

4, 8, 16, 32, and 64; and compared with the results of the grid search solution which, on 

average, ran for 100 trials. 

Overall, random search managed to find a better network configuration than grid search at 

the end of eight configurations evaluations, less than one tenth the number of configurations 

tested by grid search. Even on test scenarios where random search had to perform more trials, 

it always managed to outperform grid search after reaching 64 evaluations. 

The paper also presents experiments made using Gaussian processes to determine the 

relevance of each of the seven hyperparameters in the results and performance of the 

evaluated network configurations. Two important conclusions were reached through these 

experiments: only a small fraction of hyperparameters matter for any given dataset, and 

different hyperparameters matter on different datasets. These conclusions manage to better 

explain how the random search system managed to greatly outperform the grid search one 

with a much smaller number of trials: even though grid search evaluated more configurations, 

it did not evaluate certain important hyperparameters that random search did. This was due 

to the inherent grid search’s limitations on the size of the configuration space of a network, as 

the algorithm puts the exact same weight on every hyperparameter and attempts to evaluate 

every possible configuration, a process that can take multiple days to finish. 

3.2.2 Algorithms for Hyper-Parameter Optimization of Deep Belief Networks 

In another study by the same two authors et al (Bergstra, et al., 2011)3, grid search and 

random search were compared again in the automatic configuration of a Deep Belief Network 

(DBN) over six images datasets (all of them also used in (Bergstra & Bengio, 2012)). This 

random search system had to configure more hyperparameters than in (Bergstra & Bengio, 

2012), including the number of hidden layers (between one and three), leading to a larger 

configuration search space. 

The testing methodology was also very similar to (Bergstra & Bengio, 2012), with the 

implemented random search system being again compared with two other grid search 

solutions from (Larochelle, et al., 2007): a one-layer DBN and a three-layer DBN. The base 

 
3 Despite (Bergstra, et al., 2011) having been published the year before (Bergstra & Bengio, 2012), it is safe to 
assume it was written before (Bergstra & Bengio, 2012), as the authors constantly make reference to it. Chapter 
3.2.2 was written with that assumption in mind. 
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configuration space of all three solutions was the same, with (Bergstra, et al., 2011) making 

some slight implementation changes which expanded its own configuration search space. 

Tests results reveal that random search, unlike in (Bergstra & Bengio, 2012), did not manage 

to outperform grid search in every dataset—albeit, in most cases, it still managed to converge 

to a maximum after around 32 trials. In one of the datasets, even after the maximum allowed 

of 128 trials, random search never managed to obtain results as good as the three-layer grid 

search’s best NN. This may suggest that the expanded search space of the random search 

system may not include configurations with improved performance. 

Still in the same study (Bergstra, et al., 2011), two more systems are presented to configure a 

Multi-Layer Perceptron (MLP) on 10 hyperparameters: one with a BO algorithm using GP, and 

another using a BO algorithm too, but with Tree of Parzen Estimators instead. Both systems 

always started out with the first 30 configurations being randomly selected, after which the 

BO acquisition function took over the process of selecting the configurations to evaluate. 

These two systems’ results were compared with the random search solution previously 

introduced in this paper and the grid search solution from (Larochelle, et al., 2007) on two of 

the six datasets also used in the random search’s earlier experiments. Each system was 

allowed to run for up to 200 trials. Each trial was executed on one of four different kinds of 

GPUs: NVIDIA GTX 285, GTX 470, GTX 480, and GTX 580; with a one-hour time limit per trial, 

independently of the GPU.  

The results, seen in Table 2, showcase the two BO systems as being the top-performing 

solutions, with the system using TPE to build the surrogate function finding the configuration 

with the lowest classification error. These results reveal how the modelling approach of BO 

and the capability of selecting new configurations to evaluate based on past results can 

perform better than the brute-force approach of grid search or the random selection 

approach of random search. 

Table 2 – Test set classification error of the best NN configuration found by each solution (Bergstra, et 

al., 2011). 

Algorithm Convex dataset MRBI dataset 

BO w/ TPE 14.13 ± 0.30% 44.55 ± 0.44% 

BO w/ GP 16.70 ± 0.32% 47.08 ± 0.44% 

Grid Search 18.63 ± 0.34% 47.39 ± 0.44% 

Random 
Search 

18.97 ± 0.34% 50.52 ± 0.44% 

 

Time-complexity wise, both BO systems took about 24 hours to run, with up to five 

configurations being evaluated in parallel. By using the surrogate model of BO on the two 

systems to predict the performance of a given configuration, after 200 trials, the system with 

GP and the system with TPE were able to predict Ψ in 150 and 10 seconds, respectively. These 
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represent very positive results as a configuration can usually take hours or even days to be 

evaluated. 

3.2.3 Automatic Configuration of Deep Neural Networks 

In (Stein, et al., 2018), a solution based on Bayesian optimization is presented, implemented 

using random forests to build the surrogate model and Moment-Generating Function (MGF) 

as the acquisition function. Additionally, the system uses parallelization in order to evaluate 

multiple different configurations at the same time, where, in every iteration, five 

configurations are evaluated in parallel using NVIDIA K80 GPUs.  

The system is applied in the automatic configurations of CNNs and is tested on two very 

famous image datasets: MNIST and CIFAR-10, a dataset of 60,000 32x32 coloured images 

containing one of ten different objects, such as airplane, deer, or horse. For each of the two 

datasets, the system’s results were compared with three other manually configured networks, 

as seen on Table 3 and Table 4. 

Table 3 – Test set classification error of the best NN configuration in (Stein, et al., 2018) on the MNIST 

dataset, compared with other manually configured networks. 

Algorithm Error Epochs 

(Ciresan, et al., 2012) 0.23% 800 

(Graham, 2014) 0.32% 250 

(Stein, et al., 2018) 0.61% 10 

(Yang, et al., 2015) 0.71% Unknown 

Table 4 – Test set accuracy of the best NN configuration in (Stein, et al., 2018) on the CIFAR-10 dataset, 

compared with other manually configured networks. 

Algorithm Accuracy Epochs 

(Graham, 2014) 95.59% 250 

(Springenberg, et al., 2014) 95.59% 350 

(Stein, et al., 2018) 86.46% 50 

(Zeiler & Fergus, 2013) 84.87% 500 

 

For both datasets, the system managed to find the optimal network configuration after 

approximately 50 evaluations. Despite the seemingly worse performance of the best network 

configuration found by the paper’s solution, it is important to note that the evaluated 

configurations were only allowed to run up until a number of epochs drastically smaller than 

those of the manually configured NNs (10 and 300 epochs in the MNIST and CIFAR-10 datasets, 

respectively). This was done in order to speed up the optimization process of the system. The 

results suggest that, if allowed to run for a longer number of epochs, the system would have 

been able to find better performing configurations. 
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4 Design 

After the research made in the previous section 3, and with the knowledge gathered through 

it, this chapter will now delve into the design of the system to be developed. It starts out by 

analysing the studied optimization algorithms, weighing their pros and cons, and selecting 

which one will be implemented in the system. It also delves into the two essential parts of the 

chosen algorithm, Bayesian optimization: the surrogate model, that will keep a history of 

evaluated configurations and build a model around it that best represents it; and the 

acquisition function, in charge of, at every iteration, picking the configuration to be evaluated 

next that it believes will provide the best results. The final point relating to the optimization 

algorithm will be outliers, how these can strongly influence the surrogate model and how the 

system is going to handle them as to ensure the model does not behave erratically due to 

them.  

The succeeding section presents the designated flow of the system, from the moment its 

optimization process begins, until it finishes. Afterwards, two different approaches are 

discussed on the definition of the configurations search space, together with each one’s 

strongest and weakest points. As the final design component of the system, an examination 

on the parallelization of the evaluation of network configurations is made. 

4.1 Optimization Algorithm Analysis 

The core component of the system presented in this thesis is the HPO algorithm, as it will be 

in charge of selecting the configurations to be evaluated based on certain criteria that differ in 

each algorithm. This can be a very intricate task as it is important for the algorithm to balance 

exploration and exploitation, a trade-off between the system evaluating configurations similar 

to past ones that have delivered positive results (i.e. exploitation), and the system attempting 

to try out novel configurations, in the hope of finding even better performing ones (i.e. 

exploration) (Berger-Tal, et al., 2014). 
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This dilemma leads straight into the grid search and random search optimization algorithms, 

which were some of the first optimization algorithms employed in the HPO process and that, 

of those studied, are the simplest to implement too. Unfortunately, none of these two 

algorithms have the aforementioned capability of balancing exploration and exploitation, as 

neither one keeps track of past configurations evaluations to make informed decisions on 

selecting new configurations. Grid search employs a brute-force approach, in which, once the 

configuration space is defined, every single configuration in it is evaluated. This approach 

easily becomes impractical in the real world as the dimensionality of the configuration space 

increases (i.e. more hyperparameters with more possible values are added to a NN). This grid 

search drawback (described in chapter 3.1.1) becomes an even bigger predicament in the 

system to-be-implemented in the thesis, which is expected to be employed by users for any 

kind of dataset and type of neural network and, as such, no assumptions can be made about 

the dimensionality of the configuration space. Adding to this, the systems analysed in 

chapters 3.2.1 and 3.2.2 demonstrate how easily other optimization algorithms can 

outperform grid search in a shorter amount of time. 

Looking at random search, despite it solving the curse of dimensionality issue of grid search by 

randomly selecting configurations to evaluate, instead of evaluating every single one, it still 

suffers from not having the ability to learn from past configurations evaluations and use that 

knowledge to select new candidates that have a higher chance of performing well. Since 

configurations are always randomly selected, the results of the system can often be 

unpredictable, where running the system on the exact same dataset with the exact same 

configuration space can lead to varying results every time. 

Unlike grid search and random search, population-based optimization algorithms (GA, PSO, 

and BA), along with the BO algorithm, take into consideration past trials in order to select new 

configurations to evaluate. Moreover, they inherently possess exploration versus exploitation 

mechanisms that can be tweaked in order to better adapt them to each network 

configuration scenario. Through this, they are able to make smarter and more knowledgeable 

decisions upon what configurations could have  the most potential at any given point. 

As the last point of consideration, the elevated time-complexity of HPO can be pinpointed to 

the evaluation of the response function Ψ. Calculating this function involves the training and 

testing of a neural network from scratch with a given set of hyperparameters λ, a process that 

can sometimes take hours or even days to finish. This issue is still one of the current biggest 

complications of the automatic  configuration of NNs hindering it from being employed in the 

real world more often (albeit manual configuration of NNs also suffers from this). The BO 

algorithm possesses a mechanism that helps deter this problem by building a surrogate model 

of Ψ which is much easier and faster to calculate than Ψ (more details about this on section 

3.1.3). Using the surrogate model, BO can avoid having to resort to Ψ to evaluate a given 

configuration as much as possible, thus drastically reducing the time taken by the system to 

find an optimal configuration and allowing it to run more trials without as much of a time 

penalty. 
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Having all of these advantages and disadvantages in mind, in addition to the versatility and 

intelligent decision-making skills of the BO algorithm and the promising results observed in 

3.2.2 and 3.2.3, it was adopted as the HPO algorithm of the thesis system. 

4.1.1 Surrogate Model 

For a given set of points { 𝑌(𝑥) | 𝑥 ∈ 𝑋 }, indexed by a set 𝑋, there is a possibly limitless 

amount of functions that could describe the distribution of these points. The surrogate model 

of the system, Gaussian Processes, attempts to solve this problem by assigning a given 

probability to each of these functions in order to try and find the one that best describes the 

dataset. It achieves this by extending a multivariate Gaussian distribution, which is specified 

by a mean vector and a covariance matrix, to an infinitely dimensional Gaussian distribution, 

specified instead by a mean function and a covariance (also known as kernel) function (Ebden, 

2015) (see eq. 11). In the given implementation of the system, the mean function was defined 

as 0 for any value of 𝑥—as  GPs are able to model the mean arbitrarily well (Krasser, 2018)—

(see eq. (12)) and the covariance function was defined as the square exponential kernel (see 

eq. (13)). 

   𝑓 ~ 𝐺𝑃(𝜇, 𝑘)                               (11)                

𝜇(𝑥) ≡ 0 ∀ 𝑥                             (12) 

𝑘(𝑥, 𝑥′) = exp (−
𝑑(𝑥,𝑥′)

2

2𝑙2 )                               (13) 

where 𝑙 is the length scale of the kernel and 𝑑(𝑥, 𝑥′) is the Eucledian distance between points 

𝑥 and 𝑥′.  

Considering 𝑇 as the training data (configurations evaluated so far) and 𝑇∗ as the testing data 

(configurations yet to be evaluated), the three presented equations can be used: to define the 

prior distribution 𝑃𝑇∗
, used to make predictions before any training data has yet to be seen; 

the posterior distribution 𝑃𝑇∗|𝑇 , used to make predictions based on already evaluated 

configurations (Görtler, et al., 2019). To calculate the posterior, one must first look at the joint 

distribution 𝑃𝑇∗,𝑇: 

𝑃𝑇∗,𝑇  =  [
𝑇
𝑇∗

] ~ 𝑁 ([
𝜇
𝜇∗

] , [
K K∗

K∗
𝑇 K∗∗

])        (14)                  

where 𝜇 and 𝜇∗ stand for the means of the training and testing data, respectively, 𝐾 and K∗∗ 

are the covariance matrices for the training and testing data, respectively, and K∗ and K∗
𝑇 are 

the covariance matrices between the training and testing data, normal and transposed, 

respectively. Knowing the value for 𝑇, one can calculate 𝑃𝑇∗|𝑇 (i.e. the posterior distribution) 

using: 

𝑃𝑇∗|𝑇 ~ 𝑁(𝜇∗ + 𝐾∗
𝑇𝐾−1(𝑇 − 𝜇), 𝐾∗∗ − 𝐾∗

𝑇𝐾−1𝐾∗)               (15) 



 

28 
 

According to eq. 12, since the mean is considered to be 0 for every configuration, eqs. 14 and 

15 can thus be simplified, respectively, to: 

𝑃𝑇∗,𝑇 =  [
𝑇
𝑇∗

] ~ 𝑁 (0, [
K K∗

K∗
𝑇 K∗∗

])    (16)                  

𝑃𝑇∗|𝑇 ~ 𝑁(𝐾∗
𝑇𝐾−1𝑇, 𝐾∗∗ − 𝐾∗

𝑇𝐾−1𝐾∗)       (17) 

4.1.2 Acquisition Function 

The goal of an acquisition function is to select the next configuration to evaluate on every 

iteration according to select criteria. The chosen acquisition function for the system, 

Probability of Improvement, estimates the probability of improvement for a given 

configuration by calculating the probability (between zero and one) that it will perform better 

than the best configuration obtained thus far. It uses the surrogate function to predict, 

according to the knowledge of past configurations evaluated, what the configuration’s result 

value will be and how certain it is of it (represented by the respective standard deviation). Its 

formula is as follows (MathWorks, n.d.): 

𝑃𝐼(𝑥, 𝑄) = Φ (
𝜇𝑄(𝑥𝑏𝑒𝑠𝑡)−𝜇𝑄(𝑥)

𝜎𝑄(𝑥)
)          (20) 

where 𝑄 is the posterior distribution function of the surrogate model (in our case, according 

to eq. 17, 𝑃𝑇∗|𝑇), 𝑥 is the configuration, 𝑥𝑏𝑒𝑠𝑡 is the best configuration found so far, 𝜇𝑄 and 𝜎𝑄 

are the posterior mean and standard deviation, respectively, of the configuration, and Φ is the 

unit normal cumulative distribution function.  

For the main thesis’ solution, the metric to be used by both the surrogate model and the 

acquisition function as the one to be optimized will be the loss (also known as the error or 

cost) of a neural network with a given configuration. As such, the optimization problem at 

hand is one of minimization, and the best configuration will be considered to be the one with 

the lowest loss and the one with highest probability of improvement as the one with the 

highest chances of having a smaller loss. This is important to mention, as eq. 20 showcases the 

minimization version of the PI formula, not the maximization one. 

As mentioned in section 4.1, one of the biggest advantages of Bayesian Optimization over 

other optimization algorithms is its ability to balance exploration and exploitation of 

configurations over time. The acquisition function of the BO algorithm is the one in charge of 

balancing this mechanism in a manner that best optimizes results and increases the chances 

of finding the global optimum. The formula for the acquisition function of the system 

presented in the previous section (eq. 20) currently has no such mechanism, being purely 

exploitational. 

The idea of using a variable called the trade-off parameter (TOP) to balance out exploration 

versus exploitation in the PI acquisition function was first introduced in (Kushner, 1964). Since 

then, many other authors have explored the importance of this parameter in various different 
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domains (Törn & Zilinskas, 1989) (Jones, 2001) (Lizotte, 2008). With the introduction of the 

parameter, eq. 20 of the PI function becomes: 

𝑃𝐼(𝑥, 𝑄, 𝑡) = Φ (
𝜇𝑄(𝑥𝑏𝑒𝑠𝑡)−𝜇𝑄(𝑥)+𝜉(𝑡)

𝜎𝑄(𝑥)
)          (21) 

where 𝑡  is the current iteration of the optimization process, and  𝜉(𝑡)  is the trade-off 

parameter, whose value will depend on the iteration. As 𝜉(𝑡) → +∞, the acquisition function 

prioritizes configurations with higher posterior standard deviation, thus encouraging 

exploration. Conversely, as 𝜉(𝑡) → 0, the acquisition function prioritizes configurations with 

higher posterior mean, thus encouraging exploitation. Thus, the parameter should be adapted 

depending on the user’s preferences. 

In (Kushner, 1964), Kushner suggests tweaking this value over time, starting off with it quite 

high, to encourage the exploration of regions of higher interest, and to decrease it throughout 

the optimization process, in order to slowly search more the regions of interest previously 

explored and converge to the best value. It does not, however, provide an algorithm for how 

one could achieve this. For the thesis, the approach taken was to linearly decrement the value 

of the TOP at every iteration, so it reaches 0 at the last one. Thus, the formula is: 

𝜉(𝑡) = 𝜉(𝑡 − 1) −
𝜉(0)

𝑛
          (22) 

where 𝑛 is the number of iterations the system will run for, and 𝜉(0) is the initial value of the 

trade-off parameter. The importance of 𝜉(0) is explored in section 6.3, where experimental 

system tests are performed with different TOP values to evaluate the influence it has over the 

entire system’s behaviour. 

4.1.3 Outliers 

Gaussian Processes works with the expectation that every variable involved in the 

optimization process follows a normal distribution which, when joined together, form a 

multivariate normal distribution (Vanhatalo, et al., 2009). The problem with this expectation is 

its non-robustness, as a single outlier can drastically reduce the accuracy of the model when 

making predictions. This issue can be observed in Figure 9 (a), where the black line represents 

the real function, the blue line represents the surrogate model, the red dashed line represents 

the standard deviation of the surrogate model, and the blue dots represent the sample data 

points. 
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Figure 9 – An example regression with outliers present: on the left, using a Gaussian model; on the right, 

using a Student-t model (Vanhatalo, et al., 2009). 

In (Martinez-Cantin, et al., 2017), the authors mention two ways to handle outliers: 

robustness of inference to outliers, which consists on developing models which are capable of 

including outliers without allowing them to dominate non-outlier data; outlier diagnostics, 

consisting on analyzing the data for any anomalies and excluding them, ensuring the surrogate 

model is built only on standard data. Robustness of inference to outliers tends to be more 

computationally expensive as the surrogate model must have extra logic in order to handle 

outliers, whereas with outlier diagnostics the model can be kept as is and the discovery and 

removal of outliers can be done separately, which tends to be faster to perform. 

Both (Xia, 2017) and (Vanhatalo, et al., 2009) demonstrate approaches taken on the issue of 

handling outliers based on model robustness. In (Xia, 2017), a Student-t Process is used in 

place of a Gaussian Process, which is similar but uses student-t distributions instead of normal 

distributions, capable of fitting outliers without skewing the model completely towards them 

(see Figure 9, (b)). In (Vanhatalo, et al., 2009), a modified version of a Gaussian Process is 

presented that employs student-t likelihood. On the other hand, (Martinez-Cantin, et al., 2017) 

describes an approach based on detecting and removing outliers before fitting the data on the 

surrogate model. It fits the data on a GP with student-t likelihood, similar to (Vanhatalo, et al., 

2009), but instead of using that as the real surrogate model, it uses it to find outliers, removes 

them, and then the outlier-free data is fitted on the real ordinary GP model. This approach is 

quicker as the real surrogate model does not have to be robust to outliers, leading to faster 

predictions.  

Martinez-Cantin et al paired up their system against two other robust systems similar to (Xia, 

2017) and (Vanhatalo, et al., 2009) in four separate experiments, with their system coming 

out on top in every experiment, performing almost as well as when there were no outliers in 

the data. This was most likely due to the fact that their surrogate model did not have adapt to 

the existence of outliers (due to these having been removed beforehand) and, as such, 

managed to perform more accurate predictions and, thus, get closer to a global optimum. 

Unfortunately, (Martinez-Cantin, et al., 2017) does not provide the technical details of the 

algorithm used on their system. As such, the thesis will employ an outlier diagnostics 

approach, similar to (Martinez-Cantin, et al., 2017), but using a Grubb’s test instead.  
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The Grubb’s test is a statistical test introduced by Frank Grubbs in 1950 (Grubbs, 1950) that 

detects outliers in a dataset originating from a normal distribution. It tests a null hypothesis 

that a dataset has no outliers versus an alternative hypothesis that one outlier is present in 

the dataset. It detects outliers one at a time, retesting the entire dataset every time it finds an 

outlier, until no more outliers are detected. The two-sided version of Grubb’s test was 

employed, which checks whether the point furthest away from the mean (eq. 23) is an outlier 

or not (eq. 24). If eq. 24 is proven to be true, the null hypothesis is rejected, and the value is 

considered an outlier. 

𝐺 = max𝑖=1,…,𝑁
|𝑋𝑖−�̅�|

𝑠
          (23) 

𝐺 >
𝑁−1

𝑁
√

𝜈2

𝑁−2+𝜈2 ,   𝜈 = 𝑡 𝛼

2𝑁
,𝑁−2   (24) 

where 𝑁 is the number of observations in the dataset, �̅� and 𝑠 are the mean and standard 

deviation of the dataset, respectively, 𝛼 is the significance level, and 𝑣 is the upper critical 

value of the student-t distribution with significance level 
𝛼

2𝑁
 and 𝑁 − 2 degrees of freedom. 

Due to a lack of sufficient data, Grubb’s test, like other outlier tests, can be extremely 

sensitive with few data points, frequently classifying most of them as outliers, and, as such, is 

not advised to be used in the first few iterations. Taking that into consideration, like in 

(Martinez-Cantin, et al., 2017), the diagnostic of outliers is not executed for the first ten 

iterations. Unlike (Martinez-Cantin, et al., 2017), however, the diagnostics mechanism is ran 

on every iteration from then onwards, instead of only every two iterations, as it is cheap 

enough to do so, leading to a more performant surrogate model. 

Given that the configurations of the neural networks in the search space are generated inside 

a predictable and controlled environment—based on the interval of hyperparameter values 

specified by the user—, there will never be noisy samples and, as such, will not need to be 

checked for outliers. The outliers detection-and-removal process is only applied to the 

objective value of the surrogate model (i.e. the loss of a neural network with a given 

configuration).  

Similarly to (Martinez-Cantin, et al., 2017), no outlier is ever permanently removed from the 

data history. Every data point, at every iteration, has the chance to be reclassified as either an 

outlier or an inlier and, consequently, be removed or added to the surrogate model, 

respectively. As the system evaluates more configurations, its judgement changes on which 

configurations it considers to be outliers and which ones it does not. 
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4.2 System Flow 

In view of the previous section 4.1, mainly the selected optimization algorithm and outlier 

handling mechanism, the flowchart seen on Figure 10 was devised, showcasing the logic and 

flow of the system’s optimization process. 

 

Figure 10 – Flow of the system’s optimization process. 

The system starts by checking if it has reached the maximum number of iterations (the 

designed stopping criterion) it is mean to run for and, if so, immediately presents the 

optimization process’ results to the user, together with the best neural network configuration 

it found. However, if the current iteration is not the last one, it will use the acquisition 

function to select the next configuration, train and test a neural network using the given 

configuration, and mark said configuration as evaluated. If the system has undergone at least 

ten iterations, it will detect outliers in the previously evaluated configurations and remove 

them before adding the evaluated configurations to the surrogate model. Finally, it decreases 

the value of the trade-off parameter and redoes the entire process again for the next iteration. 
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4.3 Configuration Search Space 

Every studied solution ( (Larochelle, et al., 2007), (Bergstra, et al., 2011), (Bergstra & Bengio, 

2012), (Stein, et al., 2018)) took the same approach when defining the configuration search 

space of a neural network: the authors defined it directly in their system themselves. The 

definition of the search space came from research made by the authors or from the authors’ 

own past experiences solving problems with similar datasets and/or similar neural networks. 

This approach comes with a few complications for the thesis system: 

1. The configuration search space has to be manually defined by the system’s 

developer for every NN type – Given that the thesis system is expected to be easily 

adaptable for any type of neural network, requiring the developer to first define the  

configuration search space directly in the system can become an obstruction to this. 

In order to manually define the search space, the developer must first do a lot of 

research on the type of neural network in order to know what are the key 

hyperparameters of the network and their respective search spaces. Not only is this a 

very time-consuming process, especially if the developer does not already possess 

some knowledge on the network type, but it is also not very versatile. This is due to 

the fact that even if the developer ends up defining a broad and suitable search space, 

chances are, it will not work for every single dataset. As proven in (Bergstra & Bengio, 

2012) (see section 3.2.1), different hyperparameters have varying degrees of 

importance depending on the dataset in question. As such, manually implementing a 

“one size fits all” configuration search space for every type of NN is not a feasible 

choice; 

2. The system’s user has no control over the configuration search space – Since the 

developer is the one in charge of specifying the configuration search space in the 

system, the user will not be able to modify it. This is not necessarily an issue for the 

researched articles, as the solutions presented in them were implemented for 

scientific experimentation purposes, and not meant to be used directly by anyone 

rather than the authors, but it is for the thesis system, as it is meant to be open to any 

user. Even if the user has interest in expanding or shrinking the search space of a 

hyperparameter, add and/or remove hyperparameters, or change how the search 

space is explored by the system, they will be constrained to how all of this was 

defined by the developer. 

 

With these points in mind, a different approach will be taken to describe the configuration 

search space of the system: users will specify it themselves. The biggest drawback of this 

approach is that users will still be involved in the process of configuring a neural network, 

whereas instead of directly tweaking hyperparameters values and manually re-training and re-

testing the network, they will instead have to specify the search spaces of each 

hyperparameter. This disadvantage is also the method’s most significant benefit: users have 

complete control over what the configuration search space of the system will be. Not only 

that, but this approach also ensures the system can be more easily expanded to other neural 
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network types, as the developer will not have to worry about deeply researching the subject 

and having to come up with a search space that will most likely not suit every use case. 

4.4 Parallelization of Configurations’ Evaluation 

By default, BO (and other optimization algorithms) evaluate network configuration 

sequentially. This means that even if the system has multiple GPUs and/or CPUs at their 

disposal, it will only use one at a time to evaluate a given configuration. In the case of BO, 

evaluating configurations through a sequential manner ensures that there will be the most 

feedback about previous evaluations’ results when selecting new configurations. On the other 

hand, parallelizing this process reduces the time taken by the system and allows for the 

possibility of running more trials in the same time span (see Figure 11, left side), but comes 

with the complication of having less information in the configuration selection process. For 

example, if five configurations are being evaluated in parallel in five different GPUs, once the 

first configuration finishes being evaluated, a sixth one will have to be selected, which will 

only be based on the results of the configuration that has concluded, and not on the other 

four that are still being evaluated. 

Another possible approach to the parallelization of the evaluation of a configuration is done 

on the user’s side, wherein they setup the training and testing of a configuration beforehand 

in such a way that the work of it is split among multiple different devices (GPUs and/or CPUs) 

(see Figure 11, right side). So instead of the system evaluating, for example, three 

configurations at the same time in three separate devices, only one evaluation will be 

evaluated at any given time, but its evaluation effort will be split among the three devices. In 

general, this will cut the configuration evaluation time by a third, although this depends a lot 

on the parallelization strategy applied and how the devices coordinate among themselves. 

 

Figure 11 – Parallelization of evaluation of configurations: on the left, performed by the system; on the 

right, performed by the user. 
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With the user side approach, the user has full control over whether to follow a parallelization 

approach or not, as they may want to sacrifice the time reduction in the optimization process’ 

execution with the aim of having the most information for the system’s acquisition function. 

Not only that, but the user also has the freedom to select the parallelization strategy they 

intend to use and that best adapts to the problem at hand. With these points in mind, in 

addition to the fact that the decrease in the time complexity deriving from either approach is 

relatively the same, it was determined to not implement a mechanism to evaluate 

configurations in parallel in the system, and instead leave this decision up to the system’s user. 
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5 Implementation 

This section presents the technical implementation of the system, based on the design earlier 

described and the selected hyperparameters optimization algorithm. It starts off by 

presenting the technologies employed in the coding of the system, such as the programming 

language, followed by its human-computer interaction component, listing what data the user 

and system will provide to each other to ensure an optimal workflow. Two sections detailing 

how the search space was implemented and how it relates to the user-implemented objective 

function follow, concluding with a scalability issue of the system and how it was determined 

to be tackled. 

5.1 Technologies 

The system was implemented from the ground up using Python, a recognized programming 

language commonly employed in the fields of data science and machine learning. Wherever 

possible, already well established, tested, and documented frameworks and libraries were 

used, as long as these were not an impediment towards the quality and end goals of the 

system. The employed libraries are as follows: 

• scikit-learn – Provides a Gaussian Process surrogate model that can be trained on 

existing data and used to perform predictions on unseen data; 

• SciPy – Provides a function to calculate the cumulative distribution function of a 

normal distribution, used in the acquisition function; 

• NumPy – Manipulates data (configurations, losses, etc.) as multi-dimensional arrays 

and performs mathematical operations on them; 

• outlier_utils – Provides a function for the two-sided Grubb’s test; 

• Pandas – Creates a summary of the evaluated configurations and respective results as 

a dataframe for the user to consult. 

 

As can be seen, no library or framework was employed in the system in relation to the 

implementation of neural networks. This is because the system was made in such a way that it 
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can be used to optimize the architecture of any machine learning algorithm, not just neural 

networks. Nevertheless, this was not a system requirement for the thesis and, as such, tests 

were only performed on neural networks and conducted with the following tools: 

• Pandas – Reads structured data from CSV files and manipulates it as dataframes; 

• Tensorflow – Sets up datasets as batches for training and evaluation of neural 

networks; 

• Keras – Runs Tensorflow under the hood, simplifying the implementation, training, 

and evaluation of NNs; 

• Matplotlib – Draw charts containing the results of the optimization system. 

5.2 Human-computer Interaction 

With the intention of keeping the system as accessible and user-friendly as possible, the 

system was implemented in such a way that the user only interacts with it through a single 

function. By calling this function with the required parameters, the system will immediately 

start the optimization process and output its results as it goes along, returning a summary of 

the entire procedure once it finishes. 

The required parameters are: 

• Search space – A dictionary specifying the configurations search space. More details 

in section 5.3; 

• Objective function – A user-defined function, which receives as parameter a 

dictionary consisting of the selected neural network configuration for the current 

iteration. More details in section 5.4;  

• Number of iterations – The stopping criterion of the optimization process. The system 

will execute for the specified number of iterations; 

• Trade-off parameter – The initial value of the acquisition function’s trade-off 

parameter (𝜉(0), according to eq. 22). The higher the value, the more the system will 

explore the search space, and vice-versa; 

• Outlier threshold – Alias for the alpha value of the Grubb’s outliers test (𝛼, according 

to eq. 24). The higher the value, the more sensitive the system will be to outliers and 

the more easily it will classify them as such. 

 

The values returned by the system are: 

• Evaluated configurations – A dataframe containing all the evaluated configurations at 

every iteration and their respective loss, accuracy, and the surrogate model’s 

predicted loss and respective prediction standard deviation. The user can use this 

dataframe for diagnostic purposes, collect statistics, draw graphs, etc.; 
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• Surrogate model – The surrogate model with the knowledge gained by all the 

evaluated configurations. The user can save this model and later use it to predict 

other configurations; 

• Best configuration – A fully trained neural network with the best performing 

configuration. The user can save the neural network or deploy it to start using it right 

away. 

 

Despite the simple human-computer interaction of the system, as it grows in complexity and 

configurability in the future, it can easily be extended to possess an internal state and give 

room for more convoluted interactions with the user. 

5.3 Search Space 

As specified earlier in section 4.3, the user of the system will have complete control over the 

configurations search space the system will use. This search space will be specified through a 

dictionary, where each item’s key and value will be, respectively, the name of a 

hyperparameter and the hyperparameter’s search space, consisting of a vector of either 

numeric (integer or floating-point) or textual values (but not both at the same time). The 

numeric values will be kept as is when feeding them into the optimization algorithm, but the 

textual values will instead be considered as categorical data and converted to natural 

numbers ranging from zero to the number of values in the respective search space minus one, 

as the surrogate model only understands numeric values (see Table 5). The search space of all 

the hyperparameters combined will represent the overall configurations search space. 

Table 5 – Example configuration search space containing all possible data types. 

Hyperparameter Name 
Original Search 

Space 
Converted Search 

Space 

Number of Layers [1, 2, 3] [1, 2, 3] 

Learning Rate [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] 

Training Optimizer [Adam, AdaGrad] [0, 1] 

 

The search space of all the hyperparameters combined will represent the overall 

configurations search space. An example of a possible configuration at a given iteration can be 

seen in Table 6. 
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Table 6 – Example configuration for a given iteration. 

Hyperparameter Name 
Hyperparameter 

Value 

Number of Layers 2 

Learning Rate 0.01 

Training Optimizer 1 

5.4 Objective Function 

Since the user is in charge of specifying the configurations search space, they are the one that 

knows where each hyperparameter is meant to be used. Even if a given hyperparameter has 

the name “Number of Layers”, the system will not know what it represents or how to use it. 

This ensures the user is not constrained on specifying only hyperparameters the system 

knows and supports, but instead has full freedom and flexibility on using whichever 

hyperparameters they wish. 

To accomplish this, one of the parameters the user must pass to the system is a function 

defined by them, referred to as the objective function. At every iteration of the optimization 

process, the system will call this function and inject the value of each of the configuration’s 

hyperparameters for that iteration as function arguments. The code the user wrote for the 

function will then be responsible for using each hyperparameter wherever the user intended 

it to be used. For example, if the function has an argument for the number of layers of a 

neural network, somewhere in the function’s code could be a loop that creates the number of 

layers of the network based on that variable. 

5.5 Scalability 

The biggest weak point of the system’s surrogate model, Gaussian Processes, is its scalability. 

Since it has a cubic time complexity (𝑂(𝑛3)) (Feurer & Hutter, 2019), it can become extremely 

costly to calculate its posterior distribution the more training data there is, which, in turn, 

affects the time taken by the model to make predictions for new configurations. Since the 

acquisition function, at every iteration, uses the surrogate model’s predictions in order to pick 

the next configuration to evaluate, it becomes unattainable to do this for every configuration 

available in the search space at that point (since search spaces can easily get to millions of 

configurations). Instead, based on some manual tests performed, it was decided to cap the 

number of configurations for the acquisition function to evaluate to five thousand. As such, at 

every iteration, a maximum of five thousand configurations (less if the available search space 

is smaller than that) are randomly selected as candidates for the acquisition function. 
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6 Evaluation 

This chapter dives into the performance of the system and discussion of its results, starting off 

by describing the methodology used in the execution of the experiments and enumerating the 

key metrics employed in the assessment of the system’s performance. Following that, a case 

study on sensor vibrations is presented, split into two parts: detecting whether a vibration 

was caused by a human fall or not; detecting the source of the vibration. Lastly, the system is 

tested in the optimization of a convolutional neural network using the MNIST dataset, with its 

best configuration then being compared with the best configuration found by other HPO 

systems and manually configured networks. 

6.1 Methodology 

For the performed case study (section 6.3), where the system is employed in the detection of 

sensor vibrations, the original dataset was split into three separate groups at a ratio of 60%, 

20%, and 20%, respectively: training, validation, and test datasets. For a given iteration of the 

optimization process, the neural network is first exposed to the given training dataset and 

learns from it, followed by its performance evaluation via the validation dataset, where its 

predictions are compared with the real values. This procedure occurs for every epoch the 

neural network is designed to train and evaluate for. Once the last epoch is finished, the NN’s 

performance is evaluated one last time, but against the test dataset instead, and the loss 

obtained from this last evaluation is what is considered as the final loss of the network and 

fed into the surrogate model of the system as the results of the configuration. The figure 

below demonstrates this entire flow: 
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Figure 12 – Evaluation flow of a neural network configuration according to the thesis’ evaluation 

methodology. 

The training, validation, and test datasets are obtained by pseudo-randomly slicing parts of 

the original dataset on every evaluated configuration, always using the same seed. This 

ensures that all datasets are randomized, but in a predictable manner, guaranteeing every 

single configuration always uses the same samples and avoiding an increase or decrease in 

performance between configurations not because of the different architecture or set of 

features, but because of the different data samples used. After splitting the three datasets, 

the training dataset is randomized again (not pseudo-randomized), so even though every 

single evaluated configuration uses the same samples for training, they may be exposed to 

them in a different order throughout different epochs, leading to different learning processes. 

With regard to the optimization system, as aforementioned, it will take into consideration the 

loss of a given neural network configuration when evaluated against the test dataset as the 
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objective value to be minimized. As such, its goal will be to find the combination of 

hyperparameters and input features that will lead to the lowest test loss possible. Regarding 

the outliers’ diagnosis mechanism of the system, every test will be performed with an outlier 

threshold of 0.05. 

Lastly, regarding the more technical side of the opted evaluation methodology, every test was 

performed on the same machine provided by GECAD, ISEP’s research center which proposed 

the thesis here discussed. The machine has the following specifications:  

• Intel Xeon E5-2697 v2 processor, with 2.70GHz; 

• Four NVIDIA Tesla K20c graphics cards, each with 5GB GDDR5 video memory; 

• 64 GB of RAM. 

6.2 Metrics 

With the aim of judging the performance of the implemented system in the conducted 

experiments, multiple different criteria and measures were considered. The first set of criteria 

concern the results of the configurations evaluated by the system, such as their accuracy and 

loss. These criteria will be obtained at the end of every configuration evaluation, after its 

training and testing, and used at the end of the optimization process to determine the quality 

of configurations the system finds and, therefore, the quality of the system itself. These 

criteria are as follows: 

• Best NN configuration found – A system to automatically configure neural networks 

will only be as good as the best network configuration it finds. The accuracy and error 

rate of the optimal configuration will be one of the most vital measurement of the 

system’s results; 

• Configurations performance over time – In order to understand if the system is 

improving its results over time by slowly converging to better performing 

configurations, a history of the results of every configuration will be kept and, 

subsequently, analysed and assessed. 

 

The second set of measures concern the system itself and its own mechanisms, centring 

around its learning behaviour and predictions’ accuracy, crucial for ensuring the system 

remains useful for predicting future configurations, in addition to its ability to handle outliers 

without being neither too sensitive nor impervious to them. Both measures will be kept track 

of throughout the optimization process and obtained after every configuration’s evaluation 

(similar to the first set of measures), which is when the system’s makes its own prediction 

about the evaluated configuration’s loss and when it tests the history of evaluated 

configurations for outliers and removes them. These measures are as follows: 
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• Optimization system’s predictions accuracy and confidence – Even if the system does 

not find the best performing configurations during the carried out tests, if it manages 

to become smarter (i.e. predict the results of configurations with a low standard 

deviation), it will still have developed the intellect to find those configurations, as it 

was able to accurately learn how each hyperparameter and feature affected a 

configuration’s results; 

• Outliers’ detection-and-removal mechanism – It is fundamental that the system is 

able to accurately pinpoint outlier results from the evaluated configurations and 

ignore them, as these can drastically affect the performance of the system’s 

predictions. Whether a value should be considered an outlier or not can be a 

subjective decision, but, nonetheless, the system’s judgement on this matter will be a 

metric to consider. 

 

For every conducted experiment, each one of these metrics will be looked at and discussed 

from various points of views and through different methods depending on the test itself and 

what it is meant to accomplish. 

6.3 Case Study - Detection of Sensor Vibrations 

The case study performed uses a dataset of vibrations detected by a sensor, along with a 

multitude of other tools that obtain data about the vibration itself, such as its acceleration 

and orientation. The dataset was provided by GECAD to be used in the case study here 

presented, as the research center was interested in putting the system to the test with its own 

data and in obtaining the best performing NN configuration the system could find for their 

own applications. 

This case study is split into two separate parts: firstly, the system will be used to find the best 

configuration for a binary classification scenario in which the neural network will have to 

detect whether a given vibration sample was caused by a human fall or not (human fall 

classification); secondly, in a more challenging setting, the system will be used to find the best 

configuration for a multiclass classification problem of recognizing what type of object caused 

the vibration (vibration source classification). Each of these tasks comes with its own separate 

dataset, albeit the two are extremely similar (more details on this in the following section), 

and the results and respective discussion of both can be seen in sections 6.3.3 and 6.3.4. 

6.3.1 Datasets 

Both datasets come in a structured format, split into dozens of comma-separated values (CSV) 

files with a varying number of rows each. The human fall and vibration source datasets have a 

total of 5,926 and 1,535 samples and 12 and 9 features each, respectively. Table 7 below 
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describes the features of both datasets, their data types, and in which datasets each one is 

present. 

Table 7 – Features of sensor vibrations’ datasets. 

Features Data Type Human Fall Dataset 
Vibration Source 

Dataset 

Time Numeric ✓ ✓ 

Accelerometer 1 X-axis Numeric ✓ ✓ 

Accelerometer 1 Y-axis Numeric ✓ ✓ 

Accelerometer 1 Z-axis Numeric ✓ ✓ 

Accelerometer 2 X-axis Numeric ✓ ✓ 

Accelerometer 2 Y-axis Numeric ✓ ✓ 

Accelerometer 2 Z-axis Numeric ✓ ✓ 

Gyroscope X-axis Numeric ✓ ✕ 

Gyroscope Y-axis Numeric ✓ ✕ 

Gyroscope Z-axis Numeric ✓ ✕ 

Sound Numeric ✓ ✓ 

Doppler 
Numeric 

(Categorical) 
✓ ✓ 

 

Each of the 12 total features can be summarized as:  

• Time – Corresponds to the time the vibration was detected at (in Unix time);  

• Accelerometers – Correspond to the two accelerometers used to detect the 

acceleration of the vibration, in each of the three-dimensional axes; 

• Gyroscope – Represents the three-dimensional rotation of the vibration; 

• Sound – Vibration sound detected by a microphone, varying between 0 and 255, and 

symbolizing the sonic intensity of the vibration; 

• Doppler – Obtained by running the signal of a doppler sensor through a function that 

outputs a categorical value between 0 and 16, representing the strength and 

abruptness of the vibration. 

 

The target value of each of the two datasets also differs: for the human fall, it is a binary value 

of whether it was caused by a human fall or not; for the vibration source, it can have one of 

three values, depending on the object that triggered the vibration: water bottle, chair, or 

smartphone. For the human fall dataset, the vibrations of the fall were simulated by the 

dropping of a doll consisting of a thick cardboard tube with a diameter of 20 centimetres, 

holding ten 1.5 litters water bottles inside of it (simulating the approximate density of human 

flesh), and a three-kilogram iron block on top (simulating a human head), all wrapped in 
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clothing. All other non-human fall vibrations originate from random activities and sources, 

such as walking and clapping. 

Given the relatively small amount of samples for each dataset and the complexity of the 

problems at hand, it is not expected that even the best neural network the system finds has 

an exceptionally high accuracy (above 90%). The main goal of this case study is to perform an 

initial assessment of the system’s performance and learning capabilities and to experiment 

and discuss different settings of the system, such as its trade-off parameter. 

6.3.2 Neural Network Structure and Search Space 

Both parts of this case study share a similar neural network structure. Both will consist of a 

feed forward neural network (FFNN), a type of neural network where the connections 

between neurons do not form a cycle (similar to the NN in Figure 2), with the following 

characteristics:  

• Input layer – Receives the dataset as input, with a neuron per data feature; 

• Hidden layers – One or more hidden layers, depending on the respective 

hyperparameter. The number of neurons in each of these layers and their respective 

activation function is always the same for a given configuration and are too 

dependent on their respective hyperparameters; 

• Output layer – For the human fall, this layer is comprised of one neuron with the 

sigmoid activation function; for the vibration source, it is instead comprised of three 

neurons (one for each possible classification class) with the softmax activation 

function; 

• Cost function – Cross-entropy loss. 

 

For the output layer, both sigmoid and softmax output probabilities between zero and one, 

signifying the certainty the network has that a given class is present. Sigmoid outputs values 

independent among multiple neurons, making it more suitable for both binary and multilabel 

classification problems. Softmax, however, outputs values dependent among themselves that 

always sum to one, making it more fitting for multiclass classification problems. As for the cost 

function, cross-entropy loss calculates the performance of a network in which the output(s) 

is(are) between zero and one—thus being applicable to both aforementioned activation 

functions—by measuring the distance between the network’s prediction(s) and the real 

value(s). 

Table 8 demonstrates the established hyperparameters and respective search spaces of each 

of the two datasets, which, when combined with every feature of the corresponding dataset, 

will equate to the configurations search space of that dataset. With that in mind, the human 

fall optimization will have a search space of 5,503,680 configurations and the vibration source 

optimization will have a search space of 2,759,400. Despite the larger search space of some of 

the hyperparameters for the vibration source problem, it manages to have roughly half of the 
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total number of configurations as the human fall problem, which has to take into 

consideration three extra features. 

Table 8 – Search space of the vibrations’ case study. 

Hyperparameters Data Type 
Human Fall Search 

Space 
Vibration Source Search 

Space 

Epochs Numeric [1, 2, 3, 4] [1, 2, 3, 4, 5] 

Training Optimizer Textual 
[Adam, SGD, 

RMSProp] 
[Adam, SGD, RMSProp] 

Batch Size Numeric [16, 32] [16, 32, 64] 

Nr. of Hidden Layers Numeric [1, 2, 3, 4] [1, 2, 3, 4, 5] 

Nr. of Neurons per 
Hidden Layer 

Numeric 
[1, 6, 11, 16, 21, 26, 

31] 
[1, 6, 11, 16, 21, 26, 31, 36] 

Hidden Layers 
Activation Function 

Textual [ReLU, Sigmoid] [ReLU, Sigmoid, TanH] 

 

6.3.3 Human Fall Classification 

For the human fall classification, four runs of the system were executed, each with a different 

value for the trade-off parameter. Given the influence this parameter has in the entire system, 

being solely in charge of managing the exploration versus exploitation mechanism, it was vital 

to understand how it influences the learning behaviour of the system. 

  Influence of the Trade-off Parameter 

Figure 13 showcases the results obtained from the four runs of the system made with four 

different values for the TOP: 0, 4, 8, and 12. Each test was carried out over the course of 3,000 

iterations, exploring ≈0.00005% of the total search space, and taking, on average, around 8 

hours to complete. Each chart in the figure can be interpreted as: blue line corresponding to 

the real loss of the evaluated configurations; red line corresponding to the prediction made by 

the system of the evaluated configurations’ loss; light red area corresponding to the standard 

deviation of the system for each prediction made. 
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Figure 13 – System performance results, throughout 3000 iterations, given different values for the 

trade-off parameter: 0, 4, 8, and 12, respectively, on the top left, top right, bottom left, and bottom 

right corners. Configurations deemed outliers by the system in the final iteration are not present. 

The first noticeable observation is that the system managed to learn with every one of the 

four TOP values, having more and more accurate predictions over time, whilst too lowering its 

predictions’ uncertainty (standard deviation). It is, however, hard to tell whether the system 

managed to find better configurations over time, as any configurations deemed an outlier by 

the system in its last iteration is not presents in the graphs, bringing about the seemingly 

constant line of the real evaluated configurations losses in all of the graphs. It can also be seen 

that the higher the trade-off parameter, the higher (and less accurate) the estimated loss of 

the system at earlier iterations is. This behaviour is expected, as the system explores the 

search space earlier on and, as such, is constantly evaluating configurations very distinct from 

each other, in an attempt to find a global minimum instead of a local one. 

Except when the TOP = 0, the system manages to become proficient at making predictions, in 

the sense that not only does it have predictions spot on with the real loses, but it too is aware 

of its own accuracy, as its extremely low standard deviation of those predictions is proof of. 

On the other hand, when the TOP = 0, the system never quite manages to get very certain of 

its predictions, with the average standard deviation of its predictions hovering around 0.49. 

This can be due to the fact that since the parameter is zero, the system follows a 100% 

exploitational methodology and, as such, is always avoiding risks and selecting very similar 

configurations at every iteration. In turn, this leads to the system never being certain of its 

predictions, as it was never exposed to other more distinct configurations in the search space. 
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Looking at the system’s performance towards the end of the optimization process—when it 

has the most gathered knowledge—, Figure 14 demonstrates the loss residuals (absolute 

difference between the system’s predicted losses and respective real losses) and standard 

deviation for the last 500 evaluated configurations. TOP = 4 has both the lowest residuals and 

standard deviation, with medians of virtually zero and minute interquartile ranges (IQRs), 

confirming what was established with Figure 13. It is interesting to see how despite having the 

highest median standard deviation, as previously determined, TOP = 0 manages to have loss 

residuals comparable with the tests using values of 8 and 12, but with a much less spread out 

and more concentrated distribution. 

   

Figure 14 – Distribution of loss residuals and standard deviation of the system’s predictions in all four 

tests for the last 500 iterations, outliers included. 

Only taking into account the findings from Figure 13 and Figure 14, the trade-off parameter 

with the value of four appears to be the best one, where despite it not being the one where 

its predictions converge towards the real values the fastest—TOP = 0 is—it is the one that has 

the most precise predictions and the highest degree of certainty of said predictions for the 

longest period of time. Putting it simply, it is with this TOP value that the system learns the 

best. 

  Evaluated Configurations 

Taking a deeper look at the actual evaluated configurations in all four system tests, Table 9 

lists the ten configurations found with the lowest loss, together with the iteration and test 

they were found in (according to the trade-off parameter used), and their respective loss and 

accuracy. Instead of the accuracy, the loss of the neural network was the metric chosen to 

find the best ten configurations due to its more comparative and less fluctuating nature. 
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Table 9 – The 10 configurations found with the lowest loss, across all four trade-off parameter system 

tests, sorted by loss. 

Trade-off 
Parameter 

Iteration Loss Accuracy 

8 2677 0.60 64.5% 

8 497 0.64 64.7% 

8 62 0.66 54.6% 

0 1380 0.66 60.5% 

0 855 0.67 67.9% 

8 33 0.67 63.2% 

12 869 0.67 50.3% 

12 557 0.68 67.7% 

12 1579 0.68 58.2% 

8 1495 0.68 52.2% 

 

Despite the earlier assessments that the trade-off parameter of four was the one where the 

system learned the best, it is not the one where the best configurations were found, as not a 

single configuration in the top 10 comes from this test. The system trial with a TOP value of 

eight managed to find 5 of the 10 best configurations, with 3 of them being the three best 

ones found, meaning that even though the system did not learn as well with this trade-off 

parameter compared with when it was four, the knowledge the system did gain may have 

been more valuable. As a result, a TOP value of eight may have the best balance between the 

learning of the system and the search for high performing configurations, as a higher TOP 

value indicates a deeper exploration of the search space, in turn leading to a slower 

progression of the system’s predictions’ accuracy, but also to a higher chance of finding the 

highest quality configurations as well. 

However, all of these conclusions do not imply that TOP = 4 is bad, as many of these top 

configurations were found in early iterations of the system, while it was still unintelligent, so 

the likelihood of them having been found by chance is high; but, then again, this is exactly the 

kind of behaviour that can be expected when the system follows a more exploratory approach. 

Considering the features and hyperparameter used by each of the best configurations, it is 

important to analyse whether patterns emerge or not. These details of the configurations are 

not present in Table 9, as there are too many to list, but can instead be observed in Appendix 

1, which has the configurations listed in the same order as Table 9. Looking at the table in the 

appendix, one feature can be seen as being ignored by all of the best configurations: the time. 

This feature was expected ahead of time to be irrelevant towards classifying the vibration as a 

human fall or not, but it was still added to the feature selection mechanism of the system to 

observe whether the system picked up on this too or not. Outside of this feature, though, 

there is no other apparent pattern on the features and hyperparameters of the best 

configurations. A peculiar case is the second-best configuration, which only has one hidden 
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layer with one neuron, but manages to have a loss and accuracy akin to the other top-

performing configurations. 

  Diagnosis of Outliers 

According to the results present in Figure 15, the outliers’ detection-and-removal mechanism 

seems to be working as anticipated. The number of outliers when the trade-off parameter is 8 

or 12 (roughly one third of the total evaluated configurations) may indicate the mechanism to 

be too sensitive, but given that these two tests explore the search space more and the other 

two tests with TOP values of 0 and 4 have a more sensible amount of outliers, the mechanism 

looks to be acting exactly how it ought to. 

  

Figure 15 – Number of inliers and outliers in each of the four performed tests, according to the last 

iteration of each test. 

Another remark about the outliers’ mechanism is how, by the last iteration in the respective 

test, it classified the 30 configurations with the lowest loss as outliers. This was expected 

given the two-sided nature of the employed Grubb’s test, which considers both minimum and 

maximum values as possible outliers. The second part of this case study will experiment with 

using the one-sided version of the Grubb’s test that only looks at maximums to locate outliers, 

in order to assess whether this will have an impact in the system’s learning behaviour. 

6.3.4 Vibration Source Classification 

The second part of this study, the vibration source classification, has similar results’ 

breakdown and discussion as the first part, deepening the analysis of the system in a different 

classification problem variant. Only two experiments were performed in this part, with the 

trade-off parameters values of four and eight, as they were the ones that showed the best 
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results in the previous part, according to both the system’s performance over time and the 

quality of configurations found. Each test ran for 3,000 iterations, exploring ≈0.001% of the 

total search space, over an average of 6 hours. 

  Influence of the Trade-off Parameter 

Commencing by observing Figure 16, the learning behaviour of the system is extremely similar 

to what was seen in the human fall classification in both trade-off parameters. Despite this, 

there are some noticeable differences between both parts’ rounds of tests. In the vibration 

source classification, both charts show how the system is more certain of its predictions after 

the halfway mark of the total number of iterations, evident by the less prominent light red 

areas. This is not necessarily meaningful, as it may have been an effect caused by the different 

search space, dataset, type of classification task, or some other variable, but there is also the 

likelihood it was caused by the change in the Grubb’s test of the system’s outliers mechanism 

(see Diagnosis of Outliers section of the earlier tests). Since the system no longer diagnosis 

any value below the average as an outlier, the surrogate model is able to keep a longer history 

of evaluated configurations, leading to the system’s higher confidence in its predictions, as it 

retains more knowledge than in the first study part. 

  

Figure 16 – System performance results, throughout 3000 iterations, given different values for the 

trade-off parameter: 4 and 8, respectively, on the left and right. Configurations deemed outliers by the 

system in the final iteration are not present. 

The blue line representing the real loss of the evaluated configurations can also be perceived 

to be less constant and more turbulent compared to the previous tests. The explanation can 

be summed up to the same as the previous paragraph, where it may just be a consequence of 

the different problem at hand, or it may be a result of the alteration in the outliers’ 

mechanism, as it caused the system to become less sensitive to outliers, leading to more 

variation in the evaluated configurations shown in the charts (as outliers are not present).  

Despite the higher confidence in its predictions displayed by the system, Figure 17 

demonstrates how its predictions for the last 500 evaluated configurations and with both TOP 

values are worse compared to the human fall classification. Going off of the deduction 

conceived in the previous paragraph, the higher degree of variation in inlier evaluated 

configurations made it harder for the system to understand the feature and architectural 

patterns that lead to the respective configurations’ results. 
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Figure 17 - Distribution of loss residuals and standard deviation of the system’s predictions in both tests 

for the last 500 iterations, outliers included. 

Summarizing the analysis made in this section, the system became more positive of its 

predictions due to less of them being classified as outliers and, thus, ignored by the surrogate 

model; in turn, however, the system’s accuracy deteriorated due to the fact that the higher 

number of configurations it was able to learn from was also more diverse in their losses 

compared to the first part of the study, so understanding how each feature and 

hyperparameter lead to a certain configuration result was a more complex task. 

  Evaluated Configurations 

Examining the results of the best 10 evaluated configurations across the two performed trade-

off parameter tests, the patterns become more apparent than those analysed in the first part 

of the study. The trend of none of the best configurations having been found with TOP = 4 

remains, but, this time, every one of the configurations was found with TOP = 8, as seen in 

Table 10. Furthermore, 9 out of the 10 configurations were found past iteration 1000, 

presumably on account of the balance between the system’s exploration of the search space 

together with all the knowledge gathered by the system up to that point. 
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Table 10 - The 10 configurations found with the lowest loss, across both trade-off parameter system 

tests, sorted by loss. 

Trade-off 
Parameter 

Iteration Loss Accuracy 

8 1025 0.95 56.4% 

8 2250 0.96 55.7% 

8 1472 0.96 50.5% 

8 1119 0.97 54.7% 

8 1702 0.97 49.8% 

8 2281 0.98 54.1% 

8 2552 0.99 55.7% 

8 2194 0.99 56.0% 

8 445 0.99 55.4% 

8 1895 1.00 50.5% 

 

Looking at the features and hyperparameters of the top configurations (see Appendix 2), one 

can spot more obvious patterns on the values preferred by the system compared to what was 

discussed in the human fall classification: none of the configurations used the time column, 

just like in the first part; the X axis of the second accelerometer and the microphone sound 

are always used; the Z axis of both the first and second accelerometers are never used; the 

Doppler value is not used 80% of the time; there were 36 neurons per layer in 9 configurations; 

the activation function of the neurons was always the hyperbolic tangent (TanH). Given that 

36 was the maximum allowed value for number of neurons on the hidden layers, there is the 

possibility that increasing this value could lead to configurations with better results. 

Just like mentioned in the previous section of this part of the study, the more obvious 

patterns of the best configurations can be owed to the Grubb’s test change. As the system 

does not classify minimums as outliers anymore, it can absorb their information and attempt 

to search for other similar configurations with even lower losses. 

  Diagnosis of Outliers 

With the change made in the outliers’ mechanism, the number of diagnosed outliers by the 

last iteration on both experiments lowered compared to the human fall classification, as 

shown in Figure 18. Compared to Figure 15, the total amount of outliers was reduce by about 

half, which was expected given that around half of the evaluated configurations are no longer 

outlier candidates (those with a loss below the mean). 
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Figure 18 - Number of inliers and outliers in the two performed tests, according to the last iteration of 

each test. 

Unlike in the human fall classification, none of the configurations listed in Table 10 were 

classified as outliers; in fact, across the 6000 total iterations of both tests and when sorting by 

loss, the 3338th best configuration was the first to be classified as an outlier.  

In spite of this part of the study having less values classified as outliers, it does not necessarily 

mean the system’s diagnosis-and-removal of outliers’ mechanism improved, as it could be 

categorizing certain configurations as inliers which could, in turn, negatively affect the 

system’s performance and predictions’ accuracy. However, in this case, the system’s learning 

behaviour does seem improved in comparison to the first part of the study, probably due to 

the system having the possibility of learning the features and hyperparameters which 

constitute the best configurations found. As such, the one-sided Grubb’s test was kept for the 

following section’s tests. 

6.4 Hyperparameters Optimization of Convolutional Neural 
Network 

Following the undertaken case study, the system was put to the test against other HPO 

systems and manually configured neural networks. The system will be in charge of optimizing 

a convolutional neural network—a type of NN different from the previous experiments—using 

the MNIST dataset earlier introduced in section 3.2.1 of the state of the art. The structure of 

this section will be similar to the previous section 6.3, where the dataset is first described in 

greater detail, followed by an explanation of how a CNN works, the base structure of the 

neural network and the designated search space, concluding with the analysis and discussion 

of the experiments’ results. 
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6.4.1 Dataset 

The MNIST dataset is a dataset widely used in the scientific community to examine the 

performance of machine learning algorithms applied in the field of computer vision. It consists 

of 70,000 black-and-white 28x28 images of handwritten digits from 0 to 9 (see Figure 19), split 

between a training dataset of 60,000 images and a testing dataset of 10,000 images. 

 

Figure 19 – Handwritten digit images from the MNIST dataset (Lecun, et al., 1998). 

It originates from a 1998 journal article where two separated NIST datasets, named Special 

Database 1 and Special Database 3, were combined, giving origin to the MNIST dataset (Lecun, 

et al., 1998). The authors decided to mix samples from both databases with the intent of 

having more variation after realizing that Special Database 1 had been obtained among high 

school students, whereas Special Database 3 had been collected from American Census 

Bureau employees. 

As the MNIST dataset already comes presplit into a training and a test dataset, in order to 

adhere to the evaluation flow of a neural network as shown in Figure 12, the test dataset will 

also be used as the validation dataset. 

6.4.2 Convolutional Neural Network 

One of the most compelling features of a convolutional neural network is its capability to not 

only individually analyse the pixels of a given image, but also to look at them as groups of 

neighbouring pixels and understand the features that they may identify together. Not only 

that, but CNNs reduce the dimensionality and complexity of images as one goes deeper into 

the network, resulting in reduced computational cost for processing the data and training the 

network.  
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In order to achieve this, a CNN is usually built through the combination of three different 

types of layers (see Figure 20 for an example CNN structure showing every layer type): 

• Convolution layer – As the name implies, a convolution layer convolutes the input it 

receives using a kernel that scans the input for certain features, reducing its 

dimensionality in the process. If a given image has a size of 5x5, for example, a 

convolution layer may go through it with a kernel of size 3x3, outputting a 3x3 image 

for the following layer. A convolution layer can have multiple kernels, each in the 

charge of identifying either different features or the same set of features but in 

different locations in the input. The size of the kernel(s) determines how many 

neighbouring pixels to analyse at once: the larger the kernel, the bigger the group of 

pixels evaluated together, and vice-versa; 

• Pooling layer – A pooling layer uses a kernel mechanism that scans its input, similar to 

a convolution layer, but has a different internal implementation compared to a 

convolution layer’s kernel. Depending on the type of pooling, as the kernel goes 

through the image, it selects the maximum or average value in its area on a maximum 

pooling or average pooling layer, respectively. This does not only reduce the size of 

the input, like with the convolution layer, but it also ensures the network becomes 

impervious to changes in the rotation and position of the image in addition to 

suppressing any existing noise in the input; 

• Fully connected layer – A fully connected layer works in the same way as a hidden 

layer in a FFNN, where every neuron in the layer is connected to every other neuron 

in the subsequent layer (see Figure 2). The purpose of this type of layer in a CNN is to 

use all the features knowledge obtain by the network thus far through the other two 

types of layers and reason about what all the identified features could represent. 

 

 

Figure 20 – Example structure of a CNN (Phung & Rhee, 2019). 

To better understand how the brain of a CNN works, as an example, for the current scenario 

of identifying the digit present in an image, the network could start off with a convolution 

layer in charge of identifying edges in the image. Following that, another convolution layer 

uses the knowledge of the previous layer about the presence or lack thereof of edges in the 
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image to identify corners. A third convolution layer could use the obtained information about 

corners in the image to figure out shapes, such as circles. Finally, a group of one or more fully 

connected layers could then use all of this data to figure out what the number in the image is. 

Concerning the pooling layers, any of the aforementioned convolution layers could be 

followed by a pooling layer to ensure changes in the rotation or position of the image does 

not affect the convolution layer’s ability to identify features. 

6.4.3 Neural Network Structure and Search Space 

Following the overview and explanation of how convolutional neural networks work, the 

ensuing lists presents the base structure employed for the CNN used in the performed 

experiments: 

• Convolution and maximum pooling layers pairs – The network starts off with one or 

more pairs of layers—depending on the respective hyperparameter—, each consisting 

of a convolution layer followed by a maximum pooling layer. The number of kernels, 

kernel size, and activation function of each convolution layer will be the same across 

all layers for a given configuration and are dependent on the respective 

hyperparameters; likewise, the kernel size of every maximum pooling layer of a 

configuration will be the same for all layers and will too depend on its 

hyperparameter. The input of each convolution layer will be the output of the 

previous maximum pooling layer, except for the network’s first convolution layer, 

which will act as the input layer of the network and directly receive the MNIST 

dataset’s images; 

• Fully connected layers – Following the convolution and maximum pooling layers pairs 

are the fully connected layers. The number of these layers, as well as the number of 

neurons in each layer—which is the same for all layers in a configuration—, are 

dependent on the respective hyperparameters to be optimized; 

• Output layer – Finally, connected to the last fully connected layer is the output layer, 

comprising of 10 neurons with the softmax activation function, where each neuron is 

in charge of outputting the likelihood of a given image having a certain digit (similarly 

to the output layer in the vibration source classification of the case study); 

• Cost function – Cross-entropy loss. 

 

Table 11 showcases the search space used for the optimization of the CNN in the performed 

experiments. The combination of the search space of all hyperparameters leads to a total of 

699,840 possible configurations. Despite the kernel of both convolution and maximum pooling 

layers being two-dimensional, Table 11 presents a one-dimensional search space for both 

layer types’ kernels. This is due to the fact that for the base structure of the network, all 

kernels were considered to always be squared and, as such, the same value is used for both 

the kernels’ width and height. 
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Table 11 - Search space of the CNN optimization. 

Hyperparameters Data Type Search Space 

Epochs Numeric [3, 6, 9, 12, 15] 

Training Optimizer Textual [SGD, Adagrad, Nadam] 

Learning Rate Numeric [0.1, 0.01, 0.005, 0.001] 

Batch Size Numeric [16, 32, 64] 

Nr. of Convolution and Max Pooling 
Layers Pairs 

Numeric [1, 2, 3] 

Nr. of Kernels per Convolution Layer Numeric [1, 2, 3, 4] 

Convolution Layers Kernel Size Numeric [2, 3] 

Convolution Layers Activation Function Textual [ReLU, Sigmoid, ELU] 

Max. Pooling Layers Kernel Size Numeric [2, 3] 

Nr. of Fully Connected Layers Numeric [1, 2, 3] 

Nr. of Neurons per Fully Connected Layer  Numeric [100, 150, 200] 

Fully Connected Layers Activation 
Function 

Textual [Sigmoid, TanH, ELU] 

6.4.4 Analysis 

In order to assess the system’s performance in the optimization of a CNN, the learning 

behaviour of the system will first be observed and discussed, followed by an analysis of the 

best 10 configurations it found and their respective architectures, similarly to the case study. 

The system will then be matched against other HPO systems and manually configured 

networks by comparing the accuracy of the best configuration it finds to the accuracy of the 

best configuration found by the other HPO systems and the accuracy of the networks 

manually configured by users.  

  Learning Behaviour 

There are a few factors that make the evaluation of a configuration in this section’s 

experiments lengthier than those in the case study in section 6.3: the more intricate semi-

structured nature of the images dataset; the more complex architecture of a CNN; the higher 

number of epochs the network trains for. Due to these factors, in addition to the need in 

having a procedure more similar to other HPO systems with which results will later be 

compared, the stopping criterion of the system was set to 500 iterations.  

Due to the reduction in the number of system iterations to one sixth of the value in the case 

study, the trade-off parameter had to be adjusted too. As the TOP value of 8 was considered 

the best performing one, given that it managed to find the 3 best configurations in section 

6.3.3 and the 10 best configurations in section 6.3.4, it was too reduced to one sixth of its 

original value, leading to  
8

6
≈ 1.3. This change was meant to adapt the exploratory and 
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exploitative balance of the TOP = 8 to the decreased number of iterations in this section’s 

experiments. 

With those alterations in mind, the optimization procedure took around 31 hours to complete, 

with an exploration of ≈0.004% of the total configurations’ search space. The performance of 

the system throughout the entire process can be seen in Figure 21. 

    

Figure 21 – System performance results, throughout 500 iterations, for a trade-off parameter of 1.3. 

Configurations deemed outliers by the system in the final iteration are not present. 

Looking at the graph, it can be seen that the system did not manage to get as accurate as it 

did in the case study tests. However, not only did the system have less data to learn from, as it 

only ran for 500 iterations, compared to the 3000 iterations in the case study, but the 

variation in each configuration’s loss was more spread out too—as perceived by the blue 

line—, making it more difficult to predict the loss of a given configuration. Thus, despite the 

system not achieving the precision it did in the case study by the end of the optimization 

process, its predictions managed to converge towards the real values faster than in the case 

study. Two possible causes for this behaviour may have been the smaller trade-off parameter 

and the smaller configurations’ search space. 

  Evaluated Configurations 

Table 1 showcases the 10 best configurations in the optimization process. As can be seen, all 

but one configuration have an accuracy between 98% and 99%, as well as very similar losses 

among themselves, with 8 out of 10 configurations having been found before the system 

reached the halfway mark of the NN’s optimization. 
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Table 12 - The 10 configurations found with the lowest loss, sorted by loss. 

Iteration Loss Accuracy 

45 0.04 98.6% 

47 0.05 98.8% 

240 0.05 98.5% 

125 0.05 98.3% 

10 0.06 98.6% 

86 0.06 98.7% 

111 0.06 98.0% 

257 0.06 98.1% 

91 0.06 98.0% 

304 0.07 97.9% 

 

Looking at the hyperparameters of each of these configurations through the table in Appendix 

3, a few architectural patterns can be noted: 6 out of 10 configurations used the maximum 

number of epochs available, 15, including the 4 best configurations; 8 configurations used 0.1 

as the learning rate; 9 configurations used 1 convolution and maximum pooling layers pair, 

the minimum available; 7 configurations used 4 kernels in the convolution layers, the 

maximum available; 8 configurations used a kernel size of 3x3 and 2x2 in the convolution and 

maximum pooling layers, respectively; none of the top 10 configurations used the smallest 

available number of neurons in the fully connected layers, 100.  

The obtained results suggest that even better configurations could have possibly been found if 

the number of epochs available in the search space were higher. The fact that most 

configurations used only one pair of convolution and maximum pooling layers could be due to 

the relatively small resolution of the images (28x28), whereby having more convolution 

and/or maximum pooling layers would reduce the resolution of the images to a point where 

they are not usable anymore. The high number of kernels in the convolution layers can also 

imply that, at every convolution layer, multiple relevant features were detected in the input 

by the network. Finally, the higher number of neurons in the fully connected layers is most 

likely proof that more neurons were necessary to process the data coming from the 

convolution and maximum pooling layers in order to understand the digit present in each 

image. 

  Best Configuration Comparison 

The most accurate configuration found by the system during the optimization process is the 

second configuration seen in Table 12, having an accuracy of 98.76%. This configuration was 

compared with the best configuration found by other HPO systems (see Table 13) and 

network architectures crafted by users manually (see Table 14).  
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Looking at Table 13, one can see the systems of (Stein, et al., 2018) and (Larochelle, et al., 

2007)—which have already been discussed in the state of the art section of this report—with 

an EGO and a grid search algorithm, respectively, as their optimization algorithms. (Han, et al., 

2020) and (Yoo, 2019), on the other hand, have a genetic algorithm and a univariate dynamic 

encoding algorithm for searches (uDEAS) as their optimization algorithms. 

Table 13 – Comparison of the thesis’ system’s best configuration with the best configuration of other 

HPO systems. 

Configuration 
Optimization 

Algorithm 
Nr. of System 

Iterations 
Epochs Accuracy 

Thesis BO 500 15 98.76% 
(Stein, et al., 2018) EGO 200 10 99.39% 

(Han, et al., 2020) 
Genetic 

Algorithm 
Unknown Unknown 99.28% 

(Yoo, 2019) uDEAS 402 20 99.11% 
(Larochelle, et al., 

2007) 
Grid Search Unknown Unknown 96.06% 

 

The displayed results showcase how the best configuration found by the thesis’ system did 

not manage to reach the level of precision of the other configurations, only outperforming 

that of (Larochelle, et al., 2007) with an accuracy difference of more than 2%. Specifically, 

(Stein, et al., 2018) managed to find a more accurate configuration despite the smaller 

number of iterations in the optimization process (200 versus 500) and the smaller number of 

epochs the configuration trained for (10 versus 15). 

Compared with manually configured NNs, the thesis’ best configuration did not manage to 

have better results, having an accuracy worse than every other configuration (see Table 14). 

Despite the more accurate configuration from (Tabik, et al., 2017) with 5 less epochs of 

training, the thesis’ best configuration was capable of getting within an accuracy difference of 

0.21% with (Ciresan, et al., 2011) despite the extra 485 epochs the network was able to train 

for. 

Table 14 – Comparison of the thesis’ system’s best configuration with manually-configured neural 

networks. 

Configuration Epochs Accuracy 

Thesis 15 98.76% 

(Tabik, et al., 2017) 10 99.07% 

(Ciresan, et al., 2011) 500 98.98% 

(Graham, 2014) 250 99.68% 
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More epochs of training does not necessarily translate to more accurate configurations (as it 

is proof the case study in section 6.3), but given the complexity of the problem at hand and 

the research made, it is safe to assume expanding the epochs’ search space of the system 

would have led to the finding of better configurations. Increasing the search space of other 

hyperparameters and the value of the trade-off parameter could have possibly led to the 

discovery of more precise configurations too, although it would also have negatively impacted 

the learning behaviour of the system. 
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7 Conclusions 

Beginning this chapter, a delineation over the thesis’ goals is done, where initially planned 

objectives are presented alongside other initially unforeseen objectives that were achieved 

either as a side effect of the approaches taken in the development of the system or as a 

necessity to support these same approaches. Following that, a balance is made over future 

improvements that can be made to the system in order to enhance its performance, 

versatility, and intelligence. Lastly, a summary over the work accomplished throughout the 

entire thesis is made, concluding with a final judgment over this work and its final obtained 

results. 

7.1 Goals Accomplishment 

At the beginning of the thesis, a list of goals was laid down to help guide the system’s 

development and to help achieve final positive results. Table 15 lists the goals for the system’s 

thesis and their respective level of accomplishment, including those not initially planned. 
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Table 15 – Level of accomplishment of the thesis’ system’s goals. 

System Goal Level of Accomplishment Initially Planned 

Optimization of Hyperparameters Accomplished Yes 

Feature Selection Accomplished Yes 

Learning Capabilities Accomplished No 

Time Complexity Reduction Accomplished Yes 

Handling of Outliers Accomplished No 

Adaptable to Any Type of Neural 
Network 

Accomplished Yes 

Adaptable to Other Machine 
Learning Algorithms 

Accomplished No 

Best Configuration Superior to 
Other Optimization Systems 

Not Accomplished Yes 

Best Configuration Superior to 
Manually Configured Networks 

Not Accomplished Yes 

 

Starting off with the key objectives of the thesis necessary for the automatic configuration of 

NNs, the system has both the capabilities of optimizing any neural network hyperparameter 

and of selecting the most relevant features in structured datasets (feature selection). The 

selected optimization algorithm, Bayesian optimization, allowed the system to not only make 

informed decisions on the selection of configurations, but also to learn from them and 

understand how each hyperparameter and feature affected the final results of a given 

configuration. Despite not being a goal initially planned for the thesis, not only did it increase 

the value of the system, but it also helped reduce its time complexity, as once the system’s 

predictions start lining up with the real values, it can be used to predict the results of a 

configuration with even having to train and test the network with that configuration.  

With the system’s learning capability also came the need to ensure the quality of the data it 

learned from. Given the system’s surrogate model, Gaussian Processes, sensitivity to outliers, 

a mechanism not initially considered had to be implemented in order to pinpoint any possible 

outlier configurations and exclude them from the list of configurations the system learned 

from. Concerning the system’s adaptability to any type of neural network, not only was the 

goal accomplished, but it was implemented in such a way that it can be used to optimize any 

other machine learning algorithm, such as support vector machines. 

Finally, the main method through which the quality of the system was planned to be 

evaluated was by comparing the best configuration it could find (i.e. the most accurate) 

against the best configuration found by other HPO systems and against networks manually 

configured by users. Neither of these goals were accomplished, as can be seen in section 6.4.4, 

although the results obtained demonstrate the potential of the implemented system. 
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7.2 Future Work 

One of the biggest possible points of improvement for the system is how its scalability is 

handled (see section 5.5). Currently, the acquisition function only has to consider five 

thousand configurations, chosen randomly at every iteration, as possible candidates for 

evaluation at that iteration. This ensures the acquisition function does not spend a long time 

assessing the probability of improvement of the entire pool of available not-yet-evaluated 

configurations, which could have millions of configurations. This mechanism could be 

enhanced by synchronizing it with the surrogate model, so that the five thousand 

configurations are not picked completely randomly and are instead chosen according to what 

the system believes are the best possible candidates. Not only that, but instead of always 

selecting five thousand configurations, the system could automatically adapt this value 

depending on the size of the total configurations’ search space and the computational 

capabilities of the machine it is running on. 

In order to help further mitigate the time complexity of automating the configuration of 

neural networks, more techniques could be researched and implemented. One such 

technique could be the system keeping track of the time it takes to evaluate each 

configuration and subsequently use that data to learn and predict how long future 

configurations will take to evaluate. Based on that information, it can prioritize faster-to-

evaluate configurations that it predicts will have the same results as other configurations that 

may take longer to evaluate. This would help the system avoid unnecessarily complex network 

architectures that have results equally as good as simpler ones. 

As more general points of improvement for the system, other existing surrogate models and 

acquisitions functions should be investigated and experimented with. There are multiple 

available options for each of these two vital components of Bayesian optimization, with only 

one of each having been tried out in the thesis. Similarly, there are other methods to detect 

data outliers which could be researched and used in place of the employed Grubb’s test. Every 

change made in the system should then be followed by several tests on different types of 

neural networks and datasets to ensure their versatility and adaptability to any use case. 

7.3 Final Appreciation 

The topic of the thesis delved into multiple different subjects, such as machine learning, 

neural networks, hyperparameters optimization, and feature selection, all modern and 

valuable disciplines that keep maturing every day. With this, it was possible to have an 

enriching experience on how neural networks came to be, how they function, why their 

manual configuration can be a problematic and time-consuming task, and how one can go 

about creating a solution to fix this problem. 

The framework initially envisioned for the thesis started off with its core, the optimization of 

hyperparameters and the selection of features in datasets, and then was expanded and 
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perfected through other features that improved its performance and reduced its inherent 

complexity. The undertaken state of the art study gave an overview of existing optimization 

algorithms and existing works using these algorithms applied in the optimization of 

hyperparameters in neural networks. With the design following that, critical decisions about 

the inner workings of the thesis’ system were taken, such as the chosen optimization 

algorithm and how configurations’ search spaces should be specified. Finally, the 

implementation then built upon the design guidelines to create an easy-to-use solution that 

was capable of performing its duty with minimal user intervention. 

In the evaluation stage of the system, the performed case study managed to establish a 

deeper understanding of the system and how one of its most crucial mechanisms, the 

exploration versus exploitation of configurations, can be tweaked through a single value with 

a big impact in system’s entire optimization process. Subsequently, the optimization of a 

convolutional neural network not only showed how the system can be successfully applied in 

the optimization of a different type of neural network, but also how the best configurations it 

finds can have results comparable to those of other optimization systems and of manually 

obtained configurations. 

The value of the system for users is clearly present, and with extra future research and 

developments, it can reach a level of quality and performance permitting its general usage by 

the public. To conclude, both the thesis and the system through it implemented are 

considered a success. 
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Appendix 1 – Human Fall Classification Best Configurations 

T Ax 1 Ay 1 Az 1 Ax 2 Ay 2 Az 2 Gx Gy Gz S D E TO BS NpHL HL HLAF 

✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✓ ✕ ✓ ✕ 2 RMSProp 16 1 3 ReLU 

✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✓ ✓ ✓ ✓ 2 Adam 32 1 1 Sigmoid 

✕ ✕ ✓ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 3 Adam 32 1 2 ReLU 

✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✕ ✕ 4 RMSProp 16 16 2 Sigmoid 

✕ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✓ ✕ 4 RMSProp 16 16 2 Sigmoid 

✕ ✓ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ 1 SGD 16 31 1 Sigmoid 

✕ ✓ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✓ ✕ 2 SGD 16 1 2 Sigmoid 

✕ ✕ ✕ ✕ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✓ 1 RMSProp 32 1 1 ReLU 

✕ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✕ ✓ 3 Adam 32 16 1 Sigmoid 

✕ ✓ ✓ ✓ ✕ ✓ ✕ ✓ ✕ ✓ ✕ ✓ 3 Adam 16 1 3 ReLU 

 

T – Time 
Ax 1 – Accelerometer 1 X-axis 
Ay 1 – Accelerometer 1 Y-axis 
Az 1 – Accelerometer 1 Z-axis 
Ax 2 – Accelerometer 2 X-axis 
Ay 2 – Accelerometer 2 Y-axis 

Az 2 – Accelerometer 2 Z-axis 
Gx – Gyroscope X-axis 
Gy – Gyroscope Y-axis 
Gz – Gyroscope Z-axis 
S – Sound 
D – Doppler 

E – Epochs 
TO – Training Optimizer 
BS – Batch Size 
NpHL – Nr. of Neurons per Hidden Layer 
HL – Nr. of Hidden Layers 
HLAF – Hidden Layers Activation Function  



 

 

Appendix 2 – Vibration Source Classification Best Configurations 

T Ax 1 Ay 1 Az 1 Ax 2 Ay 2 Az 2 S D E TO BS NpHL HL HLAF 

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 2 TanH 

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 2 TanH 

✕ ✓ ✓ ✕ ✓ ✕ ✕ ✓ ✕ 4 Adam 16 31 3 TanH 

✕ ✕ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 1 Adam 16 36 4 TanH 

✕ ✓ ✕ ✕ ✓ ✕ ✕ ✓ ✕ 3 RMSProp 16 36 4 TanH 

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 1 TanH 

✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕ 5 Adam 32 36 2 TanH 

✕ ✕ ✓ ✕ ✓ ✓ ✕ ✓ ✓ 2 RMSProp 32 36 5 TanH 

✕ ✕ ✓ ✕ ✓ ✓ ✕ ✓ ✓ 2 RMSProp 16 36 5 TanH 

✕ ✓ ✕ ✕ ✓ ✕ ✕ ✓ ✕ 3 RMSProp 16 36 4 TanH 

 

T – Time 
Ax 1 – Accelerometer 1 X-axis 
Ay 1 – Accelerometer 1 Y-axis 
Az 1 – Accelerometer 1 Z-axis 
Ax 2 – Accelerometer 2 X-axis 

Ay 2 – Accelerometer 2 Y-axis 
Az 2 – Accelerometer 2 Z-axis 
S – Sound 
D – Doppler 
E – Epochs 

TO – Training Optimizer 
BS – Batch Size 
NpHL – Nr. of Neurons per Hidden Layer 
HL – Nr. of Hidden Layers 
HLAF – Hidden Layers Activation Function 



 

 

Appendix 3 – Convolutional Neural Network Best Configurations 

E TO BS LR CPL KpCL CKS CAF PKS FCL NpFCL FCLAF 

15 Adagrad 16 0.01 1 4 3 Sigmoid 2 3 150 TanH 

15 Adagrad 16 0.1 1 4 3 ELU 3 1 150 ELU 

15 Adagrad 16 0.01 1 4 3 Sigmoid 2 3 150 TanH 

15 SGD 16 0.1 1 2 3 Sigmoid 2 1 150 Sigmoid 

12 SGD 16 0.1 1 3 3 ELU 2 3 200 TanH 

15 Adagrad 16 0.1 1 4 3 Sigmoid 2 3 150 TanH 

3 SGD 32 0.1 2 4 3 ELU 2 3 150 ELU 

15 SGD 64 0.1 1 2 3 Sigmoid 2 2 200 TanH 

6 Adagrad 32 0.1 1 4 2 ELU 2 2 150 TanH 

6 Adagrad 32 0.1 1 4 2 ELU 3 1 200 TanH 

 

E – Epochs 
TO – Training Optimizer 
BS – Batch Size 
LR – Learning Rate 
CPL – Nr. of Convolution and Max Pooling Layers Pairs 
KpCL – Nr. of Kernels per Convolution Layer 

CKS – Convolution Layers Kernel Size 
CAF – Convolution Layers Activation Function 
PKS – Max. Pooling Layers Kernel Size 
FCL – Nr. of Fully Connected Layers  
NpFCL – Nr. of Neurons per Fully Connected Layer 
FCLAF – Fully Connected Layers Activation Function 


