
Application Software Components in
Autosar

THOR AXEL ACHIM HEINRICH JOSÉ STRUCK
outubro de 2020

Application Software Components
in AUTOSAR

Master in Electrical and Computer Engineering

Thor Axel Achim Heinrich José Struck

Guidance Teacher:
Cecília Maria Reis

Ano Letivo: 2019-2020

Instituto Superior de Engenharia do Porto
Departamento de Engenharia Eletrotécnica

Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto

Abstract

This dissertation presents a set of concepts of AUTomotive Open System AR-
chitecture, AUTOSAR, starting with how AUTOSAR is structured in differents
layers, where each layer has a specific task. The Runtime Environment, RTE, is
the most important layer when the topic is communication between AUTOSAR
layers.

The Virtual Functional Bus, VFB, is key concepts to facilitate the designing an
Automotive System, making it possible to relocate some Software Components
that belongs to the AUTOSAR Application Layer.

This dissertation will also approach, in a development way, key concepts
needed to create Software Components, such as, Data Types, the differents Soft-
ware Components types, Interfaces Types used in the communication of the dif-
ferent Software Components and where the Software Component will call the
implemented code, Runnables.

In this dissertation will be presented the key idea of reusability of the Soft-
ware Components, and the strong architecture of AUTOSAR.

Keywords: AUTomotive Open System ARchitecture, Runtime Environment,
Virtual Functional Bus, Software Components, AUTOSAR, RTE, VFB, SWC, Data
Type, Interface, Runnable

iii

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Structure of Essay . 2

2 Automotive 5
2.1 History . 5
2.2 AUTOSAR . 8

2.2.1 Establishment of AUTOSAR 9
2.2.2 AUTOSAR Standards . 12

3 AUTOSAR Concept 15
3.1 Structure of Classic AUTOSAR . 15
3.2 Conceptualization of Application Features 19
3.3 Interfaces Types of Basic Software 20

4 AUTOSAR Implementation Concepts 23
4.1 Data Types used in Communication of Software Components . . 23

4.1.1 Application Data Level . 24
4.1.2 Implementation Data Level 27
4.1.3 Base Data Level . 29

4.2 Implementation of AUTOSAR Software Components 29
4.2.1 Software Components . 30

i

ii CONTENTS

4.2.1.1 Atomic Software Component 31
4.2.1.2 Parameter Software Component 38

4.3 Communication between AUTOSAR Components 39
4.3.1 Client-Server Interface . 41
4.3.2 Sender-Receiver Interface 43
4.3.3 Mode Switch Interface . 44

4.4 Call of Implemented Code . 45
4.4.1 Access Points . 46

5 Guidance and Use Cases 49

6 Conclusion 55

A Annex 57

References 59

List of Figures

2.1 First automobile [1]. 6
2.2 Automotive Industry contribution to Europe [2]. 8
2.3 AUTOSAR Partnership graphic [3]. 9
2.4 Car features progression [4]. 10
2.5 Car features progression [4]. 11
2.6 Dependencies of AUTOSAR Standards [5]. 13
2.7 Life cycle model of a major release [6]. 13

3.1 The 3 Main Layers [7]. 16
3.2 High Level Architecture [7]. 17
3.3 Basic Software divided into functional groups [7]. 19
3.4 Overview of virtual interaction using Virtual Functional Bus [8]. . . . 20
3.5 Example of VFB to RTE mapping of SWC [9]. 21
3.6 Location of each Interface category in the architecture [8]. 22

4.1 Application data types and their relations[10]. 25
4.2 Dependency of Application and Implementation Data Type [10]. . . . 28
4.3 Software Component class diagram [10]. 31
4.4 Symbol for Application Software Component [10]. 32
4.5 Symbol for Service Software Component [10]. 33
4.6 Example of utilization of a Sensor-Actuator Software Component [10]. 34
4.7 Symbol for Sensor-Actuator Software Component [10]. 34
4.8 Symbol for ECU Abstraction Software Component [10]. 35
4.9 Symbol for Complex Device Driver Software Component [10]. 35
4.10 Virtual Functional Bus view of Service Proxy Software Component

[10]. 36
4.11 Connection diagram for the usage of Service Proxy Software Compo-

nent [10]. 36
4.12 Symbol for Service Proxy Software Component [10]. 37
4.13 Symbol for NVBlock Software Component [10]. 38

iii

iv LIST OF FIGURES

4.14 Symbol for Parameter Software Component [10]. 39
4.15 Non-deterministic sequence for SR communication [10] 44
4.16 1 Provider Software Component to N Receiver Software Component

[10] . 44
4.17 N Provider Software Component to 1 Receiver Software Component

[10] . 45
4.18 Runnable location inside a Software Component [10] 46

List of Tables

4.1 Possible ApplicationPrimitiveDataType. 26
4.2 Implementation Data Type kinds [10]. 27
4.3 Std_ReturnType Layout [10]. 29
4.4 Port Interface compatibility [10]. 41
4.5 Port accessing tags for a RunnableEntity [10]. 47

A.1 Std_ReturnType predefined error code (Part 1)[10]. 57
A.2 Std_ReturnType predefined error code (Part 2)[10]. 58

v

Glossary

Abbreviations Description

AP Adaptive Platform
API Application Programming Interface
Application Application Programming Interface
ARXML AUTOSAR XML
ASPICE Automotive SPICE
AUTOSAR AUTomotive Open System ARchitecture
BSW Basic Software
BSWM Basic Software Modules
CDD Complex Device Driver
ComSpec Communication Specification
CP Classic Platform
CS Client-Server Interface
DTC Data Trouble Code
E/E End-to-End
ECU Electronic Control Unit
ECUAL ECU Abstraction Layer
EEPROM Electrically Erasable Programmable Read-Only Mem-

ory
FIFO First In First Out
FO Foundation
HW Hardware
MCAL Microcontroller Abstraction Layer
MDS Mode Switch Interface
NVM Non-Volatile Memory
OEM Original Equipment Manufacturer
PPort Provide Port
RPort Require Port
RTE Runtime Environment
Runnable RunnableEntity
SR Sender-Receiver Interface
SW Software

vii

viii GLOSSARY

Abbreviations Description

SWC Software Component
VFB Virtual Functional Bus

Chapter 1

Introduction

The software development process has a great impact on the continuous ad-
vances in various industries, such as on mobile industries giving the possibility
to have more optimized apps, or on the automotive industry to have more reli-
able software.

The automotive industry is always in constant evolution since it is a very
competitive industry. For this reason, there are always changing requirements
that, on most of the cases, are implemented.

The changing of requirements can be seen also as new features that need to
be created in a way to keep up with the flow of the innovations of the competi-
tion.

1.1 Context

Since all companies are being more and more competitive with each other
to try to be the leaders in their respective fields and only the most innovative
companies can be successful, bringing the most innovative functionalities to the
end product.

By trying to be innovative, there could be some requirements for develop-
ment that are contradictory, for example, "supporting driver assistance systems
in critical driving manoeuvers while also improving fuel economy and conform-
ing to environmental standards" [11]. The contradiction of this type of require-
ments can happen if there is an importation process from previouses generation
of requirements without validation of their integrity.

To be able to confirm with the old requirements and the newer ones there
is a need to have a new technological approach, it could be a new Software

1

2 CHAPTER 1. INTRODUCTION

Architecture for ECU, Electronic Control Unit.

So in 2003, OEM and suppliers joined together in order to create a standard
to solve this issue, with that they created AUTOSAR.

Under the slogan “Cooperate on Standards, Compete on Implementation”
[12] all participant, that was involved to create AUTOSAR, created the neces-
saries standards for the basic functionalities leaving room for innovation and
competition.

1.2 Objectives

In this section will be present the main objectives that will be discussed in
the paper. The main objectives are:

• Referencing some of the main points of the Automotive Industry;

• Study a tool commonly used in this industry by:

– Exploring how it was created;

– How it is structured;

– Key concepts.

1.3 Structure of Essay

This essay will be structured in 4 chapters.

Chapter 1 introduces the dissertation, giving the reader a global picture. It
presents the industry that was studied, the main and secondary objectives that
this essay will try to deliver.

Chapter 2 gives a better contextualization to the industry, introduces to AU-
TOSAR explaining how it was founded and will also differentiate both types of
AUTOSAR, Classic and Adaptive.

After this, Chapter 3 will address core aspects of classic AUTOSAR like:

• The layered structure;

• How each layer interact with each other.

The following chapter, Chapter 4 will address technical aspects of Classic
AUTOSAR such as:

• Interfaces and Data Types;

1.3. STRUCTURE OF ESSAY 3

• Runnables and Functions called via RTE Tasks.

After the presenting the core and techincal topics from Classic AUTOSAR,
Chapter 5 will summarize in a structured way creating a possible guide for the
SW Development. In this chapter will also present some Use Cases.

Last but not least, Chapter 6 concludes with a summary of all the key topics
aborded on the dissertation with also the Pros and Cons about AUTOSAR.

Chapter 2

Automotive

This chapter will be presented in the first stage the history of this industry,
from the first steps to the present. The next stage will approach a more technical
level where will be explained some key concepts of this industry.

2.1 History

The first thing that comes in mind by referring Automotive Industry is cer-
tainly cars, right? So the history of this industry comes since ancient times when
was invented the wheel since it is one of the key components to the car.

The wheel is supposed to be invented around 3600-3300 B.C. but there is
only record for this invention in ancient Greece Era, between 600-400 B.C [13].
At that time, it was already used as a way to simplify the workload for transport-
ing materials and at that time this item was highly-priced but the buyer would
receive their investment back within a few days since the workload was greatly
reduced.

In other records, there is evidence that the wheel existed 300 years before
but instead of being used as a way to simplify the work for transportation was
commonly used for pottery [13].

Years passed by since there wasn’t any new invention related to the usage of
the wheel until the 15th century where Leonardo da Vinci made a draw of some
theoretical plans for a motor vehicle.

Some years have passed and in 1698, an English engineer named Thomas
Savery patented the first crude steam engine [14]. The steam engine was used
mainly on trains and boats.

5

6 CHAPTER 2. AUTOMOTIVE

However, in 1769, engineer Nicolas Joseph Cugnot invented the first military
tractor [1]. Cugnot used for this vehicle a steam engine. This was already a big
step to create cars but, there was a shortcoming this vehicle had an autonomy of
10-15 min after that it needs to build again steam power. In the following year,
he built a steam-powered tricycle that could carrier 4 passengers, as shown in
Figure 2.1.

Figure 2.1: First automobile [1].

Cugnot, in 1771, was the first person to get involved in an automobile acci-
dent.

The automobile was perfected in Germany and France in the late 1800s, how-
ever, the first country that was the leader in this field was America, in the early
20th century. The first gasoline vehicle was invented in America by two bicycle
mechanics, J. Frank and Charles Duryea, in 1893 [15].

Like history as always shown America would produce cars in larger num-
bers ate lower prices, compared to European countries. In 1908 was introduced
the Model T from Henry Ford [15]. The first Model T was sold for $825. Four
years had passed and Ford was able to reduce the price of the Model T to $575
and in 1927 optimized the process to sell this same model at almost half the
price. In this time was published the Ford Model T slogan "You can have any
color as long as it’s black." [16]. This slogan happens to have logic since back at
that time they had not to have the technology to accelerate the drying process.
The black color absorbs faster the heat making it faster to dry.

While other American automobile manufacturers used Ford’s mass produc-
tion techniques European companies only adopted it around the 1930s [15]. The
numbers of automakers dropped from 253, in 1908, to 44, in 1929. Around this

2.1. HISTORY 7

time was already possible in America to get a Ford Model T at a reduced price
of $290 [15].

The automotive industry had a key time when there was a big development
process. This happened during war times, mostly on World War II. During this
war, American automobile manufacturers made 75 essential military items, be-
ing most of them related to motorized vehicles In total the material provided by
this industry was one-fifth of the American nation’s war production cost [15].

After World War II have passed other countries and nations joined also into
this industry, such as Japan and Europe.

It became questionable the aesthetics nonfunctional styling at the cost of
economy and safety issues. Around 1965 the American cars were being de-
livered with 24 defects per unit, sometimes those defects were safety-related,
things that would be unthinkable at today’s date. After this being detected it
was needed to have some way to guaranty the minimum safety standards. So it
was started to have some impositions of federal standards.

In 1966 was implemented standards for automotive safety.

In 1965 and 1970 was implemented standards regarding emission pollutants.

In 1975 was implemented standards for energy consumption.

With all these standards Japan was one of the first that could satisfy these 3
impositions, creating fuel-efficient, functionally designed, well-built small cars
[15].

After the American-made car peaked a record of 12.87 million sold cars, they
fell to almost half, as the imports increased from 17.7 to 27.9 percent. In the
meantime, in 1980, Japan became the world’s leading auto producer and still
holds this title.

In modern days, every country had already contributed to this industry area,
since financial support or for the development process.

In Europe this industry is one key industry, economically speaking, since it
links other important industries to the European Union, like for example chem-
icals, steel, information technology and others [2]. This industry provides jobs
for around 12 million people, where 3 million are involved in the manufacturing
process, 4.8 million for transport and 4.3 million for sales and maintenance.

The following Figure 2.2 is possible to summarize the outcome of this big
industry.

8 CHAPTER 2. AUTOMOTIVE

Figure 2.2: Automotive Industry contribution to Europe [2].

2.2 AUTOSAR

As the evolution of technology is going always in direction of Internet of
Things and having always more software, SW, inside each new product there
surges a need to standardize the concepts. This standard will help to guide and
assure the developer of a product that will have quality and consistency. For the
company, this will benefit the economy, safety and improvement of the quality,
since it will have more and more people joining them and correct the flaws that
are discovered.

With that as objective organizations are created, such as AUTOSAR that try
to create some standards to be used by most of the companies in the Automotive
industry.

2.2. AUTOSAR 9

2.2.1 Establishment of AUTOSAR

AUTomotive Open System ARchitecture, or AUTOSAR to abreviate, was
founded in Autumn of 2003, but kicked-off in August 2002 with BMW, Bosch,
Continental, DaimlerChrysler and Volkswagen [17]. The main objective is to
provide a reference Architecture for ECU Software Development in a way to
overcome the growing complexity of modern days software necessities since
the trend of innovation in the automotive is focusing on software.

The following Figure 2.3 presents how the AUTOSAR Organization is com-
posed.

Figure 2.3: AUTOSAR Partnership graphic [3].

This software is implemented for ECU, Electronic Control Unit, and refers to
any embedded system in automotive electronics.

In the early stages there was only needed one ECU to control the automotive
component, for example when it was presented the electronic fuel injection [4].
This feature is something that needs to be controlled by a component with some
logic connected behind it.

When a feature that could improve either the performance of the car or the
quality of driving is created, other OEM sees it like an idea to future implement
it. Without any notice these features start to be seen as a "must-have" on the
car and turns indispensable [4]. The following image, Figure 2.4, presents the
evolution of some key features that were developed and turned in most of the

10 CHAPTER 2. AUTOMOTIVE

cases indispensable to not being implemented, for legal reasons or marketing
purposes.

Figure 2.4: Car features progression [4].

With the increase of mandatory features and newer features to catch the eye
of the consumer the number of ECU is always increasing [4]. The main reason
for this increase is simply because having a lot of ECU dispersed in the vehicle is
better than having a very powerful. With this approach is ECU can focus only on
one task, receiving the values from all the sensors connected to it and provided
that information to the other ECU.

The following figure, Figure 2.5 represents how the car systems have been
evolved and the perspective that the AUTOSAR Organization has in view.

The current status is that we have complex electronics systems within the
vehicle and each vehicle as at least 100 ECU. With this high number of control
units in a product it creates some big challenges like [4]:

• Electrical/Electronic complexity is growing fast;

• Quantity of Software is exploding;

• Hardware platforms are not unique;

• Development process and data formats are not standardized.

2.2. AUTOSAR 11

Figure 2.5: Car features progression [4].

The first two points are in sync simply because the number of ECU is always
growing and with it, each ECU needs his own SW. For every new product the
hardware, HW, is changed normally to improve the performance or to maintain
it at a lower price. With this, every single new car line will create an update
in SW to bring new features and new HW to provide the required technology
needed to fulfill it.

To try to solve these issues AUTOSAR was created and it main objective is
"Improve software quality and reduce cost by re-use" [4]. This means that the
main focus would be creating software that can be re-used:

• Functions across various car manufacturers;

• Development methods and tools;

• Basic Software.

Herewith the main benefit that the car manufacturers hope to get are [12]:

• Optimize the ECU network by flexible integration, relocation and exchange
functions;

• Master over the increasing product and process complexity (Increasing the
product value and simplify the complex development process);

• Maintainability over entire product life cycles.

12 CHAPTER 2. AUTOMOTIVE

2.2.2 AUTOSAR Standards

The AUTOSAR Organization as any other organization or company delivers
a product to the market. In this case, the product is the specification of a concept
and methodologies that are being always being worked on. These specifications
are delivered to the market as standards.

AUTOSAR tries to address a wide range of use cases in automotive software
development with its product, creating the following standards [6]:

• Adaptive Platform, AP;

• Classic Platform, CP;

• Foundation, FO.

Each of the standards has its uses and normally is for a specific type of sys-
tem. Adaptive Platform is a solution for high-performance computing ECUs
and is normally used in autonomous driving [5]. Classic Platform is the solution
where hard real-time and safety constraint, for example, Instrument Clusters [6]
In meanwhile the Foundation is responsible to enforce the interoperability be-
tween both platforms, AP and CP [5][6].

An AUTOSAR standard is a consistent set of AUTOSAR deliverables. These
deliverables can be of taking form in several different formats like [5]:

• Explanation in textual format;

• Specification for textual or test;

• Source code and/or Schemas.

At the time of release, all the dependencies, in the standards, are fulfilled.
The Foundation is the standard that needs to be able to support all the depen-
dency and inter-communication between the AP and the CP. The following fig-
ure is an example of how the dependencies of AUTOSAR Standards, Figure 2.6

In AUTOSAR Standards there are two different types of release numbering:

• Internal Release Numbering;

• Platform Release Numbering.

The easy numbering system that AUTOSAR uses, Platform Release Number-
ing, is where the release is concrete in time, for example in Adaptive Platform
the numbering is like R-<YY>.<MM>, were the YY [5] corresponds to the year

2.2. AUTOSAR 13

Figure 2.6: Dependencies of AUTOSAR Standards [5].

and the MM correspond to the month. This release numbering system leads to
the discontinuation of the Internal Release Numbering.

Internal Release Numbering is still maintained for different purposes and it
uses a three digit numbering scheme, R<Major>.<Minor>.<Revision>, to identify
the releases [6].

A Major release is a valid specification and may contain specifications that
need to be updated due to some incompatible fixes.

A Minor release is a valid specification that only may be changed for back-
ward compatibility. Some draft parts still may be backward incompatible.

A Revision will only contain backward compatible bug fixes [6].

The following image, Figure 2.7, will illustrate how is the life cycle of an
AUTOSAR Standard release.

Figure 2.7: Life cycle model of a major release [6].

14 CHAPTER 2. AUTOMOTIVE

As represented in Figure 2.7 not all types of adaptation or documentation
improvement can be done on its Release step.

On a Major release there can be added Non-backward compatible extension,
meanwhile this type of improvement cannot be added on a Minor or Revision
release. This goes also for the other types of a fix as shown in Figure 2.7.

Chapter 3

AUTOSAR Concept

In this chapter will be presented some concepts of AUTOSAR more con-
cretely Classic AUTOSAR.

On the first point, will be illustrated how Classic AUTOSAR is structured,
after what each part of the structure represents and provide to the system.

Secondly, and to give continuity to the previous chapter, it will be presented
a key functionality that AUTOSAR could and has provided to a certain extent.
This functionality is to give an easy way to design a vehicle System.

3.1 Structure of Classic AUTOSAR

The main point in AUTOSAR is to be able to create Software that can be re-
used without any issue, meaning that it is not dependent on the HW. For this to
be archive it was decided by AUTOSAR Organization an approach of Layers.

In Classic AUTOSAR, the one that will be a boarded on this essay has 3 main
layers [10]like how described on the Figure 3.1:

• Application Layer;

• Runtime Environment;

• Basic Software Layer.

Each layer has his responsibilities and dependencies in the overall software
and is described as a top-down approach [7], where the Application Layer is the
focal point in this essay.

15

16 CHAPTER 3. AUTOSAR CONCEPT

Figure 3.1: The 3 Main Layers [7].

The Application Layer is the part where the project-specific features are im-
plemented by Software Components, SWC [10]. On this layer, all SWC commu-
nicate with each other and with the Basic Software using interfaces described on
the SWC or using some Standard interfaces, Section 4.3, via the Runtime Envi-
ronment, RTE, where this connection is independent of the hardware [10].

The Runtime Environment, or RTE, is the only connection that all the Ap-
plication Software Components should have with the Basic Software, BSW, and
others Application Software. This will bring the idealogy of Software Compo-
nents to be ECU independent into reality. The RTE is always generated with an
RTE generator from a certified company that ensures that all the standards are
being fulfilled. Each ECU has its own customized RTE implementation which is
generated during the ECU Configuration process [8].

During the code generation there will be also generated code to execute and
call each function inside the SWC. The function in each SWC are known as
RunnableEntity, topic that will be explained in Section 4.4. In order to call these
RunnableEntity, there are so call RTE Tasks that are generated during the code
generation where each event that will trigger a Runnable is linked to. The event
in order to run an extract of code that is inside an SWC is known as RTE Events,
and it there are a diverse type of possible events. The most common used RTE
Events are:

• Timing Event;

• Data Receive Event;

• Operation Invoke Event.

3.1. STRUCTURE OF CLASSIC AUTOSAR 17

The last AUTOSAR specific layer is the Basic Software. This layer is respon-
sible to provide all the connection from the microcontroller to the rest of the ECU
and needs also to provide some services, making the need to sub-divided this
layer in [7]:

• Services Layer;

• ECU Abstraction Layer;

• Microcontroller Abstraction Layer

• Complex Device Driver.

The following image, Figure 3.2, will represent AUTOSAR Classic Standard
Architecture with the Basic Software sub-divided into functional layers.

Figure 3.2: High Level Architecture [7].

As presented on Figure 3.2 and mentioned before the BSW is sub-divided
into different functional groups.

The Microcontroller Abstraction Layer is where the code is implemented ac-
cording to the microcontroller that is used for the ECU. This layer contains all
the internal drivers with direct access to the microcontroller and its internal pe-
ripherals [7].

This layer is very dependent on the HW used for the ECU and its main objec-
tive is to make for the higher layers to be independent from the HW [7], making
it in a way that the other components do not need to access directly the micro-
controller.

The ECU Abstraction Layer is an interface for the higher layered compo-
nents, such as Software Components of the Application Layer, to the drivers

18 CHAPTER 3. AUTOSAR CONCEPT

from Microcontroller Abstraction Layer [7]. Here resides all application pro-
gramming interfaces, API, to enable the interaction between the SWC or BSWM
to peripherals and devices. This applies to any component inside the ECU.

The main responsibility of this layer is to make the layers that resides above
it even more independent of the HW.

The Service Layer is the highest layer in the Basic Software which also ap-
plies that this is the layer that interacts mostly with the Application Components
[7]. While on the ECU Abstraction Layer covers the interaction with the HW the
Service Layer needs to provide those services to the Application. This includes:

• Operating System;

• ECU States such as:

– Communication States;

– ECU State Management;

– Mode Management;

• Communication, vehicle network systems and internal ECU Communca-
tion;

• Off-Board Communication;

• Diagnostic Services;

• Memory Services;

• Watchdogs Managers;

• Criptography.

With this it is possible to sub-divide further the Basic Software into their
functional groups. The following figure, Figure 3.3, shows how it is possible to
sub-divide further the Basic Software.

At last for the Basic Software there is the Complex Drivers. This a type of
component that is used for Non-AUTOSAR compatible Applications, such as
applications that needs higher timing constrains. This type of component are
abboarded also in Section 4.2.1.1.

3.2. CONCEPTUALIZATION OF APPLICATION FEATURES 19

Figure 3.3: Basic Software divided into functional groups [7].

3.2 Conceptualization of Application Features

When planning some features for a vehicle and with the complexity already
seen on Section 2.2.1, where every new vehicle has an enormous number of
ECUs, making it have also an enormous quantity of SW in it.

For these positions having a way to model the feature without expecting
where every SWC will be located will make this task easier, since the SWC needs
to be possible to import into newer or other Electronic Control Unit.

Too archive this accomplishment AUTOSAR Standard introduces architec-
tural concepts that facilitate infrastructure independence. Specifically this con-
cepts are Virtual Functional Bus, VFB, and Runtime Environment, RTE. These two
notions are closely related to each other.

From a general perspective the Virtual Functional Bus, VFB, can be described
as a system modeling and communication concept [8] making a methodology
that allows for a strict separation between the application and infrastructure
[9]. This is also a feature that AUTOSAR brings since all the SWC needs to be
independent of the communication mechanisms.

The VFB can, in a second point, be used for plausible checks in the commu-
nication of software components [9]. In the specification of Virtual Functional
Bus, it needs to provide concepts for all infrastructure services that need to be
created for an automotive application, like for example:

• Communication between SWC, actuators and sensors;

• Accessibility with the Standardized Services;

20 CHAPTER 3. AUTOSAR CONCEPT

• Behaviors for different power states

In Figure 3.4, it is illustrated a possible way of how to represent a Virtual
Functional Bus. All components are connected through the VFB which enables
the software components to be developed and maintained independently of the
ECU specifics and details [10]. In other words, all software components, com-
plex device drivers, services and ECU abstraction uses a type of interface to
communicate with the VFB.

Figure 3.4: Overview of virtual interaction using Virtual Functional Bus [8].

In contrast to the VFB, where all the connections between the SWC are an
only concept the Runtime Environment, brings it to realization [8][10].

Software Components that are mapped into the same ECU will communicate
with Intra-ECU communication such as function calls. In the case that SWC is
mapped into different an ECU, it is needed to use Inter-ECU communication
such as communication bus infrastructure, for example, CAN or FlexRay. The
RTE is responsible to create this path of communication for the Intra-ECU and
Inter-ECU since the RTE can be seen as a static implementation of specialized
communication topology [8].

In Figure 3.5, it is illustrated as an example of how a VFB concept could be
translated to the RTE and the allocation of SWC into differents ECUs.

3.3 Interfaces Types of Basic Software

In order to transfer from a VFB to a possible RTE solution, there is needed
to define which kind of interface category is necessary to implement an applica-
tion.

3.3. INTERFACES TYPES OF BASIC SOFTWARE 21

Figure 3.5: Example of VFB to RTE mapping of SWC [9].

The most common category of interface used in the Application Layer is the
AUTOSAR Interface. In the AUTOSAR Interface there are a couple of types of
interfaces, known as PortInterfaces4.3, that the developer can choose from.

In AUTOSAR there are other categories of interfaces making it in total three,
that are:

• AUTOSAR Interface;

• Standardized AUTOSAR Interface;

• Standardized Interface.

An AUTOSAR Interface defines the information exchanged between Soft-
ware Components and/or BSW Modules [10]. From the BSW Modules the only
components that might have, they are not obligatory to have, are ECU Abstrac-
tion components and Complex Device Drivers [8] [10].

22 CHAPTER 3. AUTOSAR CONCEPT

All the components that are connected to the RTE using an AUTOSAR Inter-
face can connect to ports and in that way, interact with other components [8].

Standardized AUTOSAR Interfaces are like AUTOSAR Interfaces whose
syntax and semantics are standardized in AUTOSAR [10]. Normally they are
defined injunction with the AUTOSAR Services provided by the BSW.

A software interface is referred to as a Standardized Interface if the Applica-
tion Programming Interface, API, is defined by the AUTOSAR specification [10].
This type of interface is used in the Basic Software Modules, BSWM.

A Standardized Interface does not use the same approach as the AUTOSAR
Interfaces, this means they do not use the RTE like AUTOSAR Interfaces do [10].
These interfaces are typically defined for a specific programming language.

On a VFB model, the AUTOSAR Interfaces can be defined, for Standardized
AUTOSAR Interfaces, the definition can be derived as the AUTOSAR Interface.
However, in the case of the Standardized Interfaces, they can be not defined on
the VFB model.

The following figure, Figure 3.6, exemplifies where each category of inter-
faces locates.

Figure 3.6: Location of each Interface category in the architecture [8].

Chapter 4

AUTOSAR Implementation
Concepts

In this chapter will be presented some implementation concepts of
AUTOSAR.

First will be explained about the Data Types from AUTOSAR, this are in
other words variables used in the communication between Software Compo-
nents. After it will be showed differents Software Components, how they com-
municate which each other and how the Code implementation is called in a
System that uses AUTOSAR.

4.1 Data Types used in Communication of Software Com-
ponents

From the concept of how the system should work, as described on Chapter
3.2, and with the implementation of Standardized Interfaces defined by AU-
TOSAR, Chapter 3.3, there is a need to define how the flow of data is handled.
So using C Programming Language as an example, the normal manner to handle
the information would be by using a variable, and by creating some variables,
System Engineer will have to define:

• Space needed per variable, on RAM and EEPROM;

• Where they will be used, like on function, SWC or even on RTE.

In AUTOSAR they are known as Data Type. However, in AUTOSAR, the
data types are a bit more complex since the Application layer needs to be handle

23

24 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

independently from the others. To be able to create another abstraction layer
between the Application and the Implementation layer, in AUTOSAR 4, was
created the concept of ApplicationDataType, making it the third abstraction
level for Data Type [10].

There are 3 different abstraction levels for data types:

• Application Data Level;

• Implementation Data Level;

• Base Data Level;

The properties of an AutosarDataType, either ApplicationDataType or
ImplementationDataType, can be defined as SwDataDefProps. Some of the prop-
erties are only applicable for specific data types, being unlocked with certain
categories [10].

The SwDataDefProps can be defined by several AUTOSAR elements. In case
of differents AUTOSAR elements define the same properties, there is a need to
prioritize which has a higher criticality in the system, making in a way that there
will be cases where the properties will be overwritten by the one with higher
priority. The following enumeration is the priority list, which the lower number
means it has the higher priority:

1. McDataInstance;

2. FlatInstanceDescriptor;

3. ParameterAccess;

4. InstantiationDataDefProps;

5. AutosarDataType, Section 4.1;

6. ImplementationDataType, Section 4.1.2;

7. ApplicationDataType, Section 4.1.1.

4.1.1 Application Data Level

This is the Data Level with the highest abstraction on the System. It is on this
level where where all the ApplicationDataType and AutosarDataType needed
for the Application layer to reside. On this level there is no need to have concrete
detail of the implementation, like bit-size of data or data struct. With no concrete
definition of how it will be implemented, this type of data is commonly during

4.1. DATA TYPES USED IN COMMUNICATION OF SOFTWARE COMPONENTS 25

the system design, allowing, in a way, for the System Specifiers the liberty of
thinking what kind of data flow is done [10]. During the creation of the flow on
a higher level, like on VFB, the ApplicationDataType is used to define the type
of data that is transferred by the SWC.

During the integration process of the SWC or the updates of the same, it
is done also the mapping of the ApplicationDataType to their correspondent
ImplementationDataType [10].

The following figure, Figure 4.1, shows how are the relations between the
differents ApplicationDataTypes, showing the division of it into 2 main groups
where ApplicationCompositeDataType is divided further into 2 groups:

Figure 4.1: Application data types and their relations[10].

• ApplicationPrimitiveDataType

• ApplicationCompositeDataType

– ApplicationRecordDataType

26 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

– ApplicationArrayDataType

The ApplicationCompositeDataType, as the name suggest, it is Data Type
that is compose by differents ApplicationDataType.

Like all the learning curves for a programming language it is started with
simple variables. On Application Layer the simplest Data Type is the
ApplicationPrimitiveDataType. As in any programming language there are
some different types of variables to fulfill different needs. In AUTOSAR there is
the same concept. The ApplicationPrimitiveDataType with around 10 differ-
ent DataTypes for different uses.

The following table, Table 4.1, was created to examplefy all the possbile
ApplicationPrimitiveDataType and their correspondent maping to
ImplementationDataType.

Purpose
Category on

ApplicationDataType
Mapped to

ImplementationDataType
Calibration Parameters ApplicationDataType SwDataDefProps

Single Value VALUE VALUE
Enumeration VALUE VALUE

String STRING ARRAY/STRUCTURE
Value Blocks VAL_BLK ARRAY

Boolean BOOLEAN VALUE
Common Axis COM_AXIS ARRAY
Rescale Axis RES_AXIS ARRAY

Curve CURVE ARRAY
Map MAP ARRAY

Table 4.1: Possible ApplicationPrimitiveDataType.

As mentioned previously structures and data arrays can be defined on Ap-
plication Layer via ApplicationCompositeDataType. The corresponding types
are ApplicationRecordDataType and ApplicationArrayDataType.

The application structures,ApplicationRecordDataType, defintion can con-
tain the any of the following elements:

• ApplicationPrimitiveDataType;

• ApplicationArrayDataType;

• or other ApplicationRecordDataType.

The category of a ApplicationRecordDataType is always STRUCTURE. An
ApplicationRecordDataType is a compilation of varios elements, named
ApplicationRecordElements, which themselves are also ApplicationDataType.

4.1. DATA TYPES USED IN COMMUNICATION OF SOFTWARE COMPONENTS 27

An ApplicationArrayDataType compilation of one or more elements, named
ApplicationArrayElement. These element needs to be from the same
ApplicationDataType [10].

It is possible to create multi-dimensional arrays. These type of arrays are cre-
ated when one of the element references another ApplicationArrayDataType.

4.1.2 Implementation Data Level

Implementation Data Level, commonly known as ImplementationDataType,
is another abstraction layer that will lead to the actual code implementation [10].
The representation of the ImplementationDataType is normally represented as
typedef [10]. This Data Type is normally used for:

• interfaces and data within the BSW;

• interfaces of libraries which operate on a purely numerical level;

• interfaces between SWC and the BSW.

Compared to the ApplicationDataType this Data Type has less categories.
The ImplementationDataType can have of the following kinds represented on
table 4.2.

Implementation
Data Type

category Description

Primitive VALUE

Array ARRAY
Contains
ImplementationDataTypeElements
for each dimension of the array

Struture/String STRUCTURE
Contains
ImplementationDataTypeElements

Union UNION
Contains
ImplementationDataTypeElements

Redefinition TYPE_REFERENCE
Refers to another
ImplementationDataType

Data Pointer DATA_REFERENCE
The target is
reference to a variable

Function Pointer FUNCTION_REFERENCE
The target is
referenced to a function

Table 4.2: Implementation Data Type kinds [10].

The following image, Figure 4.2, will represent how the interfaces of two
SWC can be connected in case that they use different interfaces. For a connec-

28 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

tion of two SWC there is a need that the corresponding Data Type are compat-
ible. This means only if the ApplicationDataType from both components are
compatible their corresponding ImplementationDataType needs to be compati-
ble to establish the connection of both SWC.

Figure 4.2: Dependency of Application and Implementation Data Type [10].

There 2 special types inserted on this level of abstraction. These are the Plat-
form Types and the Standard Types.

The Platform Types are data types regarding some basic functionality. AU-
TOSAR as standalone implementation there will not be the basic variables that a
programmer is used too, for example, there are not defined in AUTOSAR what
an uint8 is. In AUTOSAR this variable are defined as Platform Types. To define a
Platform Type it needs to be implemented as a simple ImplementationDataType,
with only its name and category set to VALUE [10].

The Standard Type are some standard definition normally used for version
control of SWC or for Errors definition for the RTE Generated functions. All the
generated RTE functions will return a Std_ReturnType, this return data type is
defined as a uint8. This a Standard Type that will be used to return Error code
since RTE Error until RTE infrastructure errors.

The following table, Table 4.3 will provide the layout for the differents
Std_ReturnType. It is possible to observe that the 5 first bits are allocated for
error codes that the System Engineer can define. For Application SWC these 5
bits could be used to trigger the error codes necessary for the receiving SWC
knows that some error has occurred.

In AUTOSAR there are also some predefined Error Code. For that informa-
tion there is the following table to summarize all the predefined error codes,

4.2. IMPLEMENTATION OF AUTOSAR SOFTWARE COMPONENTS 29

Bit
Value in

Hex/Dec
Flag Description

7
0x80
128d

Immediate Infrastructure Error Flag.

6
0x40
64d

Overload Error Flag

5
0x20
32d

Available for error codes
4

0x10
16d

3
0x08
8d

2
0x04
4d

1
0x02
2d

0
0x01
1d

Table 4.3: Std_ReturnType Layout [10].

Table A.1 and A.2. In these two tables it is possible to verify the AUTOSAR
name for the error, the default value and a short description of the Error Code.

4.1.3 Base Data Level

On this level, the Data Types will describe the basic level of the
ImplementationDataTypes in terms of bits and bytes. All AutosarDataTypes
are finally defined by a BasaType which will be used on the RTE generator to
create the corresponding C code implementation. For the BaseType there are
only 2 categories:

• FIXED_LENGTH;

• VARIABLE_LENGTH.

It is on this level of detail where the common used variable types, such as,
uint16 are defined.

4.2 Implementation of AUTOSAR Software Components

Everything mentioned previously, except functionalities that are allocated
to the BSWM, needs to be implemented Software Components, SWC. Thon file

30 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

type known as AUTOSAR XML files, ARXML. This is the filetype used in AU-
TOSAR and it is mainly used to deliver the configuration from OEM to the Tier
1 and other parties that are involved on the project. Never less is to say that all
the files produced by the other parties will also be available to the OEM.

These files serves for several purposes:

• Configuration of the System;

• Implementation of Data Types, Section 4.1;

• Implementation of SWC, Section 4.2.1;

• Connection of the components;

• Implementation of Interfaces, Section 4.3.

On this section of the dissertation it will approach the topic of SWC.

4.2.1 Software Components

While the standard functionality are defined and implemented on the Basic
Software Modules, all the non-standards are implemented by several Sofware
Components [10]. These components can be of several types to fulfill differents
use cases.

One concept that is very important and needs to take into account while
creating an SWC is to define its scope. This means that on the system, the System
Engineer, needs to have only a component to fulfill a task. For example, all the
Application related SWC if they need to access some data from the NVM, should
use only an SWC to fulfill this task. In AUTOSAR there is an SWC type that is
specially for the NVM access, NvBlockSwComponentType.

The communication between SWC and SWC with BSWM is always explicit.
For an SWC to communicate with other SWC it needs to have Port on its skeleton
(topic will be approach on Section 4.3).

For the Software Components there are a total of 2 main groups:

• Atomic Sofware Component, Section 4.2.1.1;

• Parameter Software Component.

Additionally for those types there is one more that is the Composite Software
Component. This SWC is compose by 2 or more SWC previously.

The following class diagram, Figure 4.3, will represent how the SWC are
connected showing all the possibles SWC defined by AUTOSAR.

4.2. IMPLEMENTATION OF AUTOSAR SOFTWARE COMPONENTS 31

Figure 4.3: Software Component class diagram [10].

4.2.1.1 Atomic Software Component

An Atomic Software Component, AtomicSwComponentType, is a SWC that
cannot be split into further SWC [10].

An AtomicSwComponentType is a specific form os SwComponentType consist-
ing of the same attributes plus one optional for the SwcInternalBehaviour and
some additional optional ones for Symbols Properties, SymbolsProps [10].

The SymbolsProps provides the ability to attach a symbolic name to
shortName of a SWC [10]. This will avoid naming inconsistency during the RTE
Generation. This property is specially useful if there are components from var-
ious suppliers that uses the same names by coincidence [10]. If that occurs the
shortName of the SWC will be overwritten by the symbolic name. However this
name will not be applied to the file names.

In terms AtomicSwComponentType there are some sub-categories. These sub-
categories are divided by their specialization such as:

• Application Software Component (ApplicationSwComponentType);

• Service Software Component (ServicesSwComponentType);

32 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

• Sensor-Actuator Software Component (SensorActuatorSwComponentType);

• ECU Abstraction Software Component (EcuAbstractionSwComponentType);

• CDD Software Component (ComplexDeviceDriverSwComponentType);

• Service Proxy Component(ServiceProxyComponentType);

• Non-Volatile Block Software Component (NvBlockSwComponentType).

An Application Software Component, ApplicationSwComponentType, is a
SWC that is hardware independent.

It implements the software application, or only a part of it, and can use all
AUTOSAR communication mechanisms and services [10]. In order for it to in-
teract with sensors and actuators, it cannot do it directly [10]. This sort of in-
teraction needs to be handled wit a Sensor-Actuator SWC. The communication
between an Application SWC with the BSWM is done via an AUTOSAR Service
interface [10].

While modeling and designing the system it is easier to distinguish all the
Software Components. The following symbol, Figure 4.4, is an example of how
an Application SWC and its Ports are represented.

Figure 4.4: Symbol for Application Software Component [10].

The Service Software Component, ServicesSwComponentType, is a Software
Component which will provide AUTOSAR Services to the Application. This
component uses Standardized AUTOSAR Interfaces and it may interact directly
with the BSWM [10].

The following symbol, Figure 4.5, is an example of how a Service SWC and
its Ports are represented.

4.2. IMPLEMENTATION OF AUTOSAR SOFTWARE COMPONENTS 33

Figure 4.5: Symbol for Service Software Component [10].

The Sensor-Actuator SWC, SensorActuatorSwComponentType, is a special
type of an AtomicSwComponentType as it depends on specific hardware making
it hardware dependent and cannot be easily moved to another ECU [10]. The
decision on where this type of SWC should be allocated, needs to be decided
on an early stage of system designing, making it crucial to be defined on the
VFB-level.

The main reason for this SWC to be HW dependent is because it need to be
able to interact with a certain type of sensor or actuator. This makes that the
implementation for this type of SWC are intended to:

• is written for a specific interaction with a specific sensor or actuator located
on a certain ECU;

• read the value via an AUTOSAR Signal provided by the
EcuAbstractionSwComponentType and transforms it to a representation of
a physical value;

• provides the physical value to other ApplicationSwComponentType.

This Software Component will act as a link between other SWC and the
EcuAbstractionSwComponentType.

In terms of implementation, this SWC normally comes with a Port that will
use the Client-Server Interface, CS, to call an operation from the
EcuAbstractionSwComponentType either to get the value from a sensor, OP_GET,
or set an output to the actuator, OP_SET.

In order to illustrate the importance of this type of component, the follow-
ing diagram, Figure 4.6, will show 3 different types of SWC interacting in or-
der to receive the data from a sensor or providing value to an actuator. Is to
note that the SensorActuatorSwComponentType can be connected to one or more
ApplicationSwComponentType.

34 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

Figure 4.6: Example of utilization of a Sensor-Actuator Software Component
[10].

The following symbol, Figure 4.7, is graphical representation of
SensorActuatorSwComponentType. This type of symbol is normally used for
designing the system in both VFB-level or Implementation-level.

Figure 4.7: Symbol for Sensor-Actuator Software Component [10].

ECU Abstraction Software Component, EcuAbstractionSwComponentType,
belongs to the ECU Abstraction Layer and it consist of one or more ECU Ab-
straction Components [10]. Since this component is part of the Basic Software
Modules it can use the Standardized Interfaces in order to communicate with
other BSWM.

This component type can interact directly with the IO from the microcon-

4.2. IMPLEMENTATION OF AUTOSAR SOFTWARE COMPONENTS 35

troller via the Sensor-Actuator Software Component [10].

The following symbol, Figure 4.8, is the graphical representation of
EcuAbstractionSwComponentType.

Figure 4.8: Symbol for ECU Abstraction Software Component [10].

Complex Device Driver (CDD) Software Component is used to model a func-
tion outside the standard AUTOSAR Basic Software stack for complex or re-
source critical sensor evaluation or actuator control [10]. This kind of component
is used mostly when the HW component is not supported by the AUTOSAR
Standard.

The CDD Component is a mix of ECU Abstraction SW Component and the
Application SW Component, since it can interact directly with both of them via
the Standardized Interface, for BSWM interaction, and AUTOSAR Interfaces for
the SWC that belong on the Application Layer [10].

The following symbol, Figure 4.9, is the graphical representation of
ComplexDeviceDriverSwComponentType.

Figure 4.9: Symbol for Complex Device Driver Software Component [10].

36 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

The Service Proxy Software Component, ServiceProxySwComponentType, is
a Component that acts as a proxy provider access to Internal Services for one or
more remote ECUs [10].

The main use case for this SWC is to distribute a service throughout the
system where a Mode Manager is part of the Basic Software.

A ServicesProxySwComponentType is similar to an
ApplicationSwComponentType, where the only difference being that the
ServiceProxySwComponentType is instantiated during the system design into
several ECUs [10]. In the System Design the Service Proxy SWC will be different
since it will be connected as a 1:n ratio where the typical Application SWC are
in a 1:1 ratio.

The following diagrams will represent how this SWC is represented in both
VFB, Figure 4.10, and Implementation, Figure 4.11.

Figure 4.10: Virtual Functional Bus view of Service Proxy Software Component
[10].

Figure 4.11: Connection diagram for the usage of Service Proxy Software Com-
ponent [10].

4.2. IMPLEMENTATION OF AUTOSAR SOFTWARE COMPONENTS 37

The following symbol, Figure 4.12, is a graphical representation of
ServicesProxySwComponentType.

Figure 4.12: Symbol for Service Proxy Software Component [10].

The NVBlock Software Component, NvBlockSwComponentType, is a compo-
nent type specially designed to allow the Application SWC to be able to interact
with the Non-Volatile Memory, NVM.

This is not the only approach that the Application SWC can use to store or
read data from the NVM. The other approach is to use the Services available in
the NVM Block [10].

By using this SWC Type there are two main advantages:

• it allows the modelling of the NV data at the VFB leve;

• it can be used to reduce the number of NvBlocks

– one block can be used to store different small data elements

– the same data elements can be used by different SwComponentTypes

The NvBlockSwComponentType maps indvidual non-volatile data elements to
NvBlocks and interacts with the NVRAM Manager. The implementation of this
SWC is solely generated.

An NvBlockSwComponentType can also have Ports with CS Intefaces that are
meant to interact witht the NVRAM Manager via Standardized AUTOSAR In-
terfaces [10], for the following Services:

• NvMService to send commands to the NVM.

– EraseBlock

– GetDataIndex

– GetErrorStatus

38 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

– InvalidateNvBlock

– ReadBlock

– RestoreBlockDefault

– SetDataIndex

– SetRamBlockStatus

– WriteBlock

• NvMNotifyJobFinished to notify the end of job.

– JobFinished

• NvMNotifyJobInitBlock to request the application SWC to provide the de-
fault values in the RAM mirror.

– InitBlock

• NvMAdmin to invoke some administrative operations

– SetBlockProtection

The following symbol, Figure 4.13, is the graphical representation of
a NvBlockSwComponentType.

Figure 4.13: Symbol for NVBlock Software Component [10].

4.2.1.2 Parameter Software Component

The Parameter Software Component, ParameterSwComponentType,
previously called Calibration Parameter Software Component is an SWC that
provides parameter values which can be fixed data, const and variable [10]. In
contrast to AtomicSwComponentType it can not have a Internal Behaviour and
does not support RPorts [10].

4.3. COMMUNICATION BETWEEN AUTOSAR COMPONENTS 39

A ParameterSwComponentType is simplisly a container that will provides pa-
rameters to other SWC via Parameter Ports.

The following symbol, Figure 4.14, is a graphical representation of
ParameterSwComponentType.

Figure 4.14: Symbol for Parameter Software Component [10].

4.3 Communication between AUTOSAR Components

Like in any Software project not every file will contain all the code, since
splitting the code in diverse files and creating diverse functions is a better option
to be able to organize the code implementation. This allows to group everything
that shares the same type of family into the same file or API. For this to be af-
fective there is a need to manage the communication between components. In
AUTOSAR there is already specified how the communication between Software
Component should look like.

In this section of the dissertation it will explain how the communication be-
tween SWC is done and where they are specified.

The ARXML files contains everything regarding the component, from it skele-
ton, its internal behavior, the communication type and flow of the communica-
tion.

For each component, there will be some AUTOSAR syntax that will tell to the
developer the possible inputs and outputs to the component. This information
normally is located between the tag Port.

In AUTOSAR there exist mainly two types of port types[10]:

• Provide Port;

• Require Port.

40 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

The Provide Port, or PPort to abbreviate, is the port that will output data to
the RTE. This type of port is necessary if a component needs to provide some
kind of data to another component.

The Require Port, RPort, is the input port for the component. Here is where
the component will read a determinate value from the RTE.

In rare cases, there is used a mix of these two port types. This type of port can
provide and receive data, this port has the name Provide-Require Port, released
on AUTOSAR Classic 4.3. However, the use case for this type of port is new and
often it is still not used for it possible functionality.

This type of ports are more common to be used in SWC or CDD, where they
have direct access to the RTE and the main communication is done via the RTE.

As mentioned in Section 3.3, the common interface category used for Appli-
cation SWC is AUTOSAR Interface and in some cases when there is a need to
access to a service provided by the BSW it is used the Standardized AUTOSAR
Interface.

In order for a port, either require or provider, there is a need to exist a Port
Interface, PortInterface. It defines the contract that must be fulfilled by the
ports [10]. Each Port can have only one PortInterface assigned. There are four
basic types and three subtypes as the following list [10]:

• Data Interface

– Sender-Receiver Interface

– Parameter Interface

– Nonvolatile Data Interface

• Client-Server Interface

• Trigger Interface

• Mode Switch Interface

Each of the previous types of PortInterface can be used for PPort and
RPort. In these interfaces, there is not specified whether the port communica-
tion is Queued or Non-Queued. This definition is done in the Communication
Specification, ComSpec, where the Port is created [10].

A Port can interact with any Service provided by the BSW with any of the
previously mentioned PortInterface only if the parameter isService is TRUE
[10]. To configure the type of service that the Port will interact is needed to
give a value to the attribute serviceKind [10]. When a PortInterface has the

4.3. COMMUNICATION BETWEEN AUTOSAR COMPONENTS 41

parameter isService set, makes that this interface could be inserted into the
interface category Standardized AUTOSAR Interface.

In order to be able to connect Ports is by using a SwConnector, there is needed
that the following points are met:

• PortInterfaces and AutosarDataTypes must be compatible;

• Both Ports needs either to be Service Ports or not (attribute isService).

To ease the process of search to find which kinds of interfaces are compatible
and to speed up the development process there exist tables that shows how the
different types of port interface are compatible. The following table, Table 4.4 is
one of the types that could ease up the process of development.

PortInterface
Require

Receiver Parameter
NV
Data

Client Trigger
Mode
Switch

Pr
ov

id
e

Sender Yes No Yes No No No
Parameter Yes Yes Yes No No No
NV Data Yes No Yes No No No

Server No No No Yes No No
Trigger No No No No Yes No

Mode Switch No No No No No Yes

Table 4.4: Port Interface compatibility [10].

During the implementation of SWC and during the software production,
there will be cases that some ports are not connected. This can happen if either
the provider port is not created or if the require port is not created.

To allow for the development to continue, simply because the responsible
haven’t align every single topic in advance there are there is the possibility to
use Port Communication Specification [10]. This Specification is mandatory for
the require port [10], mainly to give some init value and allow to have the imple-
mentation done in advance. Normally these Init Values should be some value
that will trigger a condition of not initialize and in that way the SWC would
know in advance not to use that value before consuming CPU resources.

Also, another particular utilization of these specifications is to define how the
data is being sent either as a Queued format or NonQueued. This is normally
used on the case of Sender-Receiver Interfaces.

4.3.1 Client-Server Interface

From all the Port Interfaces the Client-Server Interface, CS, is one of the most
used interfaces. In this interface, there is some easier way to distinguish which

42 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

is the PPort and RPort. Here all the PPort will be known also as Server and all
the RPort will be known as Clients [10].

Another particular situation using this type of interface is that it is possible
to have multiple client ports to only a server port (1:n clients) [10].

The main reason that CS Interfaces are used so often is giving to the fact of
how the interaction of the different SWC is done. This interface allows the Client
to call an operation or a function that is located on the Server [10]. It is very
useful because it allows the System Engineer to plan all the tasks corresponded
to a type of functionality to be done in a unique SWC. A simple example would
be the monitoring of error to trigger some type of Data Trouble Code that will
be saved on the memory of the ECU. Instead of having multiple components
to interact with the diagnostic stack it is possible to restrict that type of access
using one SWC that will gather all the application errors and interact with the
diagnostic stack and the memory stack.

A call to operation via CS Interface can be either blocking or non-blocking,
where synchronous communication is referent to blocking and asynchronous
for non-blocking [10]. In both cases, the client waits until the response from the
server. The type of communication is represented on the client-side, where it
turns possible that the server can be called by both synchronously and asyn-
chronously [10].

For this type of communication, the normal return-value will always be an
RTE Error Code. This means that for a client to receive any values via this inter-
face it needs to give arguments [10]. Via those arguments, the processed value
will be return, e.g. Unit Conversion SWC with a CS Interface that will receive 3
parameters value, current unit and desired unit.

On RTE Generation the generator will create a list of all the Error Codes that
are applied to that CS Interface. With this information, it is possible to create
some type of filter to invalid operation calls. This will allow the client SWC to
have a more robust implementation.

It is also possible to configure how long a queue of requests for a certain
operation. On the server-side the queue must be defined to a value higher or
equal to 1 [10]. This means to the number of asynchronous operation calls is
being done for that server operation. If the number of the queue is equal to
1 then when there are 2 clients to try to call the operation the server will only
respond to one where the other will be exited with an Error Code, normally will
be a Timeout Error. The response of the server follows the method First In First
Out, FIFO [10]. On the client-side the queue must be 1 since it is the one that
request the operation.

For details of the Synchronous and Asynchronous CS Communication see
Chapter 4.4.

4.3. COMMUNICATION BETWEEN AUTOSAR COMPONENTS 43

4.3.2 Sender-Receiver Interface

The AUTOSAR concept of Sender-Receiver Interface, SR, is used to exchange
data in an asynchronously and in one direction way between a Software Com-
ponent and another one or a Basic Software Module [10]. In this type of in-
terface the sender is not blocked and neither expects or receive any response,
from the receiver components. On the receiver side, it decide asynchronously
when it needs the data and how it will use it, making the flow of this type of
communication-based on the receiver needs.

Here the Sender Port is a PPort, providing the data to one or more receivers
[10]. The Receiver Port is an RPort, receiving the data from one or multiple
components [10].

This makes this type of interface totally different from the CS, were the CS
could only have communication 1 server to n clients, and here the same interface
can have multiple provider ports and multiple require ports.

For the correct use of this interface there is the need of a clear understanding
of which Data Types are in use in this type of interface. This impacts mainly in
the way to fulfill the communication. There cannot be 2 components that will
provide the same type of data on the same interface.

On this type of interface the scheduling of when the send of data is not al-
ways on the same other as the receiver can receive. For example we can have a
component that will send 3 data structures or 3 values. Since this type of com-
munication is never done End-to-End, E/E, there is always the RTE in between
it is possible that the order of arrival of the data sent by a component can dif-
fer. The following Figure 4.15, shows the send of three differents Data Type and
their correspondent arrival order.

When it is necessary that multiple data need to be sent simultaneously they
should be combined into the composite data structure,
(ApplicationDataType Section 4.1.1). The sender will write the complete data
structure with the required data before sending it to the RTE [10].

This type of interface allows that there could be more than one data struct to
be send on it. As presented on Section 4.1.1, there are a lot of possible Data Types
that could be used. This allows flexibility on how the data can flow between
different AUTOSAR Components.

The Sender-Receiver Interface uses an RTE buffer that is generated during
the RTE Generation. This buffer is initialized with a constant and when the
Provider SWC writes on this buffer the data is updated. The buffer is created
for all SR Interfaces Data Elements, this means that every SWC could write to a
different Data Element of the same SR Interface, n:1 communication [10].

44 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

Figure 4.15: Non-deterministic sequence for SR communication [10]

The following figure, Figure 4.16, shows how two different SWC writes to
the same Data Element of an SR Interface. The example is for an SR Interface
with a Queued communication to allow that there is no loss of data.

Figure 4.16: 1 Provider Software Component to N Receiver Software Compo-
nent [10]

On the following figure, Figure 4.17, it shows how a Queued SR Communi-
cation is done using two different Queues for the two different SWC that will
receive that data.

4.3.3 Mode Switch Interface

The Mode Switch Interface, MDS, is used to notify a Software Component of
a mode switch [10] This type of interface commonly used interface to allow any

4.4. CALL OF IMPLEMENTED CODE 45

Figure 4.17: N Provider Software Component to 1 Receiver Software Compo-
nent [10]

SWC on the Application Layer to now some state transition on the ECU, like for
example on the Initialization process of an ECU. This interface can only be used
inside an ECU. In case this information is needed on different ECUs this needs
to be done by a ServiceProxySwComponentType.

This type of interface is similar do the Client-Server Interface since this can
only have a connection of type 1 to any. Other types of communication, like the
one described on the Sender-Receiver Interface, Section 4.3.2, is not allowed, for
example N:1 and N:M communication.

4.4 Call of Implemented Code

The missing part to have an SWC implementation complete is how it will
be linked with the code implementation. In order to create this link there is a
need to have a RunnableEntity, Runnable, in the SWC ARXML. On AUTOSAR
this runnable definition will create show the resources that in a specific task the
function/s, that is been called by the system via the RTE Events, will be able to
access.

In AUTOSAR, Runnables belongs to the group of Internal Behaviours of an
SWC [10].

In other words a Runnable is the implementation of code inside the Atomic
SWC. It is invoked by the RTE via the RTE Events, that could be timed based
or event as a response of something being received by the component [10]. The
resources that a specific Runnable can access is regarding the data is received
by the Software Component, like for example data received on a RPort and the
sending of data via a PPort.

The Runnables runs in the context of an RTE Task AutosarComp. The map-
ping of a Runnable into a task is done during the ECU configuration.

The following figure, Figure 4.18, shows how a Runnable is present in an
SWC. Is to note that a Software Component can only have a RunnableEntity if

46 CHAPTER 4. AUTOSAR IMPLEMENTATION CONCEPTS

there is an Internal Behaviour in the SWC [10].

Figure 4.18: Runnable location inside a Software Component [10]

4.4.1 Access Points

As mentioned previously it is defined on the Runnable which kind of data it
can interact with on the System. This is defined explicitly on the ARXML file of
the SWC Access Points.

A Runnable can basically interact, via two different ways for communica-
tion:

1. Communication via Interrunnable Variables;

2. Communicating using the data outside the SWC via Ports.

These two different ways to interact with the system is done via Access
Points.

An Access Point is simply a point of access to acquire data, invoke operations
and providing data.

The following table, Table 4.5, shows the different kinds of communication
with their respective tags.

4.4. CALL OF IMPLEMENTED CODE 47

Kind Of
Communication

Access Point
Tag

Direction

Interrunnable
readLocalVariable IN
writtenLocalVariable OUT

Receiver
dataReadAccess IN
dataReceivePointByArgument IN
dataReceivePointByValue IN

Sender
dataWriteAccess OUT
dataSendPoint OUT

Client
SynchronousServerCallPoint IN/OUT
AsynchronousServerCallPoint IN/OUT
AsynchronousServarCallResultPoint IN

Parameter ParameterAccess IN/OUT

Mode
ModeAccessPoint IN/OUT
ModeSwitchPoint IN/OUT

Trigger ExternalTriggeringPoint IN

Table 4.5: Port accessing tags for a RunnableEntity [10].

Chapter 5

Guidance and Use Cases

This chapter will provide a detailed summary the AUTOSAR Architecture
and some key points that needs to be highlighted. In this chapter, the main
focus is to give beginner guidance of which steps need to be followed to create
a Software Component or to make an analysis of an AUTOSAR layer, specially
the Application.

AUTOSAR has a complex Architecture at first glance however this concept
helps to create an Embedded System that is scalable and reusable, since appli-
cation components needs to be independent from the microcontroller. The AU-
TOSAR Architecture is based in 3 main layers where the lower the location of
the layer the more Hardware dependent it is. In a top-down approach the layers
are:

• Application Layer;

• Runtime Environment;

• Basic Software Layer.

The main point that this dissertation highlighted about AUTOSAR is its con-
cept of reusability of Software Components. This is only possible if the Appli-
cation Software Component are independent from the Hardware, making the
Application Layer as independent from the lower layers.

In some cases the Application Software Components has some particular
implementation that is heavily dependent of the configuration of either the Basic
Software or by the Hardware. This kind of situation should be minimal, to be
the most concordant to the AUTOSAR Concept, and if possible this should not
happen at all.

49

50 CHAPTER 5. GUIDANCE AND USE CASES

The Runtime Environment is generated code for a specific ECU. The code
generator needs to be certified to be seen as a trustworthy tool. This tool uses
various configuration files to generate the code. The most commonly used are
the ARXMLs Files, AUTOSAR XML. There is also possible to have other file
types that could be tool dependent, this other file serves as to configuration for
the Basic Software Modules.

The last layer, Basic Software, resides the modules that are Hardware de-
pendent. This layer provides services and libraries to higher layers in order to
facilitate the usage of the microcontroller interaction.

On the Basic Software also resides the Operating System as well as all the
standard services defined in AUTOSAR, such as Diagnostic, Memory and Com-
munication.

To recap, the previous figure, Figure 3.3, summarizes the AUTOSAR Archi-
tecture, showing all the differents types of services that the Basic Software can
provide.

The main layer approached in this dissertation is the Application Layer. It is
here where all the Project Specific Application resides in for of Software Com-
ponent, which will implement part of a functionality or even all of it.

During the implementation of Software Components in the Application Layer
there are the following key notes to take:

• Software Component type;

• Provider/Require Ports;

• Port Interfaces;

• Compatibility of Interfaces;

• Data Types used in the Interfaces;

• Trigger for the Runnable;

• Runnables.

For the types of Software Components the most used are the standard Ap-
plication Software Component and the Complex Device Driver. Both of them
are simply to use and allow all the Port types making it an easy way to interact
with other components on either Application or Basic Software layers.

The main difference of the usage of these two Software Component types is
that the Complex Device Driver will be Hardware dependent since it needs to
interact with the microcontroller. The Complex Device Driver is also used only

51

on a critical task like for example when the output needs to be executed with
higher priority or when the task needs to be executed on the precise timing.

The Application Software Component is a downgraded version of the Com-
plex Device Driver since it is restrictive in the communication. It needs to use the
Runtime Environment in order to interact with other Application Software Com-
ponents, Provider/Require Port or Basic Software Modules, via Service Ports.

All the relevant information regarding input data, output data and how a
behavior starts is available on an ARXML file. This file is the description of a
Software Component and inside this file it is possible to see the "skeleton" of the
Software Component. This "skeleton" has only the information needed in order
to generated the Runtime Environment code necessary to interact with the Com-
ponent. In this file it is possible to observe all the Ports that the component has,
the Port Interfaces that the Port has, the Data Type for some specific Interface
Types that are created on the Software Component and as well the Runnable
that it contains.

There are a couple of Port Interfaces that are commonly used and, in my
opinion, needs to be memorized what they are and their use cases. These inter-
faces are the Sender-Receiver Interface and Client-Server Interface.

To summarize the Sender-Receiver is commonly use when sending data from
one Software Component to another. Here there is not the need to evaluate how
the data is send or if the data is consume on the other receiver.

On the receiver Software Component the data can be handle by different
means. For example the receiver Software Component could only want to read
the data that it received on a context of a Runnable. Here it is only needed to
have an Access Variable point on the Runnable where the data will be consumed
and processed.

Other use case for this type of interface would be that when receiving a data
tit should trigger a Runnable. This is done with an RTE Event, namely Data
Receive Event. In this use case it is possible to start an operation or a series of
operations when the data is received.

The other commonly used Port Interface is the Client-Server. This type of
interface serves to call a functionality or an operation from another Software
Component. The Client Software Component is responsible to request action to
the Server Software Component. On this request there could be the passed a
variable in case that there is needed to pass some type of data to the Server. The
variable that is passed could also serve as an output of the operation run on the
Server Software Component.

A possible use case for this type of Port Interface would be the interaction
with Data Trouble Code, DTC. There could be a Software Component that act as

52 CHAPTER 5. GUIDANCE AND USE CASES

a Server to all Application Software Components. On this Server there could be
various operations such as:

• Read state of DTC;

• Set state of DTC;

• Clear DTC;

This approach simplifies how the analysis of a certain type of functionality
of a System. In a way having Software Component specialized on only a type
of task is always better and turns the System more modular and so complying
with the AUTOSAR concept.

Another key point to take into consideration is the interface compatibility.
This one key notice needed to know if the two different Ports can be connected
in order to interact with each other.

As explained previously, in Section 4.3, some different interface types can
still interact with each other.

Another topic to take into consideration is the Data Type used on the inter-
faces. This small topic can also help to identify if the interfaces are compatibles,
since each interface needs to be able to receive and send the same type of data.

A use case for the Interface compatibility could be seen as having three Soft-
ware Component, sharing three Ports with the same Interface. In the interface
definition it is possible to see two Data Types. Two of the three Software Com-
ponents will have a Provider Port using the same interface however each one of
them will send a different Data Type. The last Software Component will have a
Required Port. This is a valid scenario if and only if the Data Types are alligned
as per the definition of the Interface.

This type of information is already sufficient to start designing the commu-
nication flow of a feature. However this is only possible if the starting point is
already known, for example we could use a CAN Message to start the analysis.

This way of system analysis inside an ECU is something that needs to be
done with calmly and it will take some time to get used to. This process helps
to understand most of the AUTOSAR concepts in the Application Layer.

For an analysis of the system the point that I suggest, after writing this dis-
sertation, are:

1. Communication flow via the Port and Port Interfaces;

2. Trigger point for the Runnable (RTE Events);

53

3. Usage of the data inside the Runnable (Access Variable);

4. Function that is called by the Runnable.

Chapter 6

Conclusion

This chapter will conclude this dissertation revealing some difficulties while
writing this dissertation and some possible improvements for this dissertation.

The main struggle with this theme is that it is very complex having a lot of
topics that could be referred to, like for example the Basic Software components
and if wanted to go to a certain detail even it might have been possible to ex-
plain only a Basic Software Stack. AUTOSAR is one methodology that is in a
constant evolution where most of the new concepts are still being improved and
discussed with all parties that uses and improves AUTOSAR, starting by Car
OEM and Tier 1 to IT Companies.

The other struggle faced during the investigation and the writing is the con-
fidentiality topics. Here it ended up not possible to provide any concrete func-
tional example simply because all the projects that has AUTOSAR as a method-
ology used are extremely classified, making in the end this dissertation mostly
theoretically.

Considering this points and thinking the only point that could be improved
would be trying to create some Software Components using AUTOSAR for some
theoretical functionality. This was not possible giving the time constraint.

Other than coming up with an example like state before the other point that
could be improved would be the scope of the dissertation. With this, the scope
could be more detailed in certain topics, like for example, Run Time Environ-
ment and/or Basic Software and their stack.

However, this dissertation presents a summary of AUTOSAR for those who
are starting with software development in the Automotive Industry. It also
presents a guide and use cases that could be an asset for new developers.

55

Chapter A

Annex

RTE Return
Error Codes

Value Hex
Value Dec

Description

RTE_E_OK
0x00
0d

No Error

RTE_E_LOST_DATA
0x40
64d

If new data is received and the
queue is already full, then the
RTE discards the new data and
sets an error flag. For the next
read on the queue, the
Rte_Receive call returns the
available data together with
a status where the flag
RTE_E_LOST_DATA is set.

RTE_E_MAX_AGE_EXCEEDED
0x40
64d

An Rte_Read or Rte_IStatus
call indicates that the available
data has exceeded the
aliveTimeout limit.

RTE_E_COM_STOPPED
0x80
128d

An IPDU group was disabled
while the application was
waiting for the transmission
acknowledgment. No value is
available. This is not necessarily
considered a fault.

Table A.1: Std_ReturnType predefined error code (Part 1)[10].

57

58 CHAPTER A. ANNEX

RTE Return
Error Codes

Value Hex
Value Dec

Description

RTE_E_TIMEOUT
0x81
129d

A blocking API call
(Rte_Receive, Rte_Call,
Rte_SwitchAck) returned due to
expiry of a local timeout. OUT
buffers are not modified.

RTE_E_LIMIT
0x82
130d

An internal RTE limit (like queue
size) has been exceeded (e.g. for
Rte_Send, Rte_Call, Rte_Switch,
Rte_Trigger, Rte_IrTrigger).
OUT buffers are not modified.

RTE_E_NO_DATA
0x83
131d

No data was available for the
API call. This is not (necessarily)
to be considered as an error.
OUT buffers are not modified.

RTE_E_TRANSMIT_ACK
0x84
132d

Transmission acknowledgment
received.

RTE_E_NEVER_RECEIVED
0x85
133d

No data received since system
start or Partition restart.

RTE_UNCONNECTED
0x85
133d

The corresponding Port used for
communication is not connected.

RTE_E_IN_EXCLUSIVE_AREA
0x87
135d

The RunnableEntity could not
enter a wait state because of
another RunnableEntity of the
current Task call stack is running
in an ExclusiveArea.

RTE_E_SEG_FAULT
0x88
136d

The parameters contain a direct
or indirect reference to memory
that is not accessible from the
caller’s Partition.

Table A.2: Std_ReturnType predefined error code (Part 2)[10].

References

[1] S. D. A. Museum. Automotive history. https://sdautomuseum.org/
automotive-history. Accessed: 2019-04-28. [Quoted on p. iii, 6]

[2] P. Goverment. Automotive industry. http://www.portugalin.gov.pt/
automotive-industry/. Accessed: 2019-07-27. [Quoted on p. iii, 7, 8]

[3] V. I. GmbH. The autosar development partnership. https://www.
vector.com/int/en/know-how/technologies/autosar/autosar-classic/.
Accessed: 2020-01-26. [Quoted on p. iii, 9]

[4] O. G. Stephen Waldron. Introduction to autosar. https://bit.ly/2MQLcEY.
Assited the Webinar on 2019-08-31. [Quoted on p. iii, 9, 10, 11]

[5] A. Organization. Adaptive platform release overview r19-11.
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/
19-11/AUTOSAR_TR_AdaptivePlatformReleaseOverview.pdf. Accessed:
2020-01-11. [Quoted on p. iii, 12, 13]

[6] ——. Classic platform release overview r19-11. https://www.autosar.
org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TR_
ClassicPlatformReleaseOverview.pdf. Accessed: 2020-01-11. [Quoted on p. iii,

12, 13]

[7] ——. Layered software architecture. https://www.autosar.org/
fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_
LayeredSoftwareArchitecture.pdf. Accessed: 2019-12-27. [Quoted on p. iii,

15, 16, 17, 18, 19]

[8] N. Naumann. Autosar runtime environment and virtual function
bus. https://hpi.de/fileadmin/user_upload/fachgebiete/giese/
Ausarbeitungen_AUTOSAR0809/NicoNaumann_RTE_VFB.pdf. Ac-
cessed: 2020-02-22. [Quoted on p. iii, 16, 19, 20, 21, 22]

59

60 REFERENCES

[9] A. Organization. (2017) Virtual funtional bus. https://www.autosar.org/
fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_VFB.
pdf. Accessed: 2020-02-22. [Quoted on p. iii, 19, 21]

[10] O. Sheid, AUTOSAR Compendium - Application and RTE, Bruchsal, DE, De-
cember 2015. [Quoted on p. iii, iv, v, 15, 16, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 57, 58]

[11] V. I. GmbH. Introduction to autosar | autosar motivation. https://
elearning.vector.com/mod/page/view.php?id=438. Accessed: 2020-01-26.
[Quoted on p. 1]

[12] ——. Introduction to autosar | autosar initiative. https://elearning.vector.
com/mod/page/view.php?id=439. Accessed: 2019-09-29. [Quoted on p. 2, 11]

[13] I. Engineering. The history and evolution of the wheel. https:
//interestingengineering.com/history-and-evolution-wheel. Accessed:
2019-04-28. [Quoted on p. 5]

[14] M. Bellis. How do steam engines work? https://www.thoughtco.com/
steam-engines-history-1991933. Accessed: 2019-04-28. [Quoted on p. 5]

[15] H. Editors. Automobile history. https://www.history.com/topics/
inventions/automobiles. Accessed: 2019-05-05. [Quoted on p. 6, 7]

[16] D. T. Kurylko. Model t had many shades black dried fastest.
https://www.autonews.com/article/20030616/SUB/306160713/
model-t-had-many-shades-black-dried-fastest/. Accessed: 2020-03-01.
[Quoted on p. 6]

[17] A. Organization. History. https://www.autosar.org/about/history/. Ac-
cessed: 2019-09-28. [Quoted on p. 9]

