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ABSTRACT: Natural enzymes are delicate biomolecules possess-
ing only marginal thermodynamic stability. Poorly stable,
misfolded, and aggregated proteins lead to huge economic losses
in the biotechnology and biopharmaceutical industries. Con-
sequently, there is a need to design optimized protein sequences
that maximize stability, solubility, and activity over a wide range of
temperatures and pH values in buffers of different composition
and in the presence of organic cosolvents. This has created great
interest in using computational methods to enhance biocatalysts’
robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses,
and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last
two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately
using available force fields, and the number of sequences available for phylogenetic analyses is growing. In addition, complex
computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions.
Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding
of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we
summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically
assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the
computational design of stable and soluble biocatalysts.

KEYWORDS: aggregation, computational design, force field, expressibility, machine learning, phylogenetic analysis, enzyme stability,
enzyme solubility

1. INTRODUCTION

Nature has developed a remarkable diversity of biochemical
reactions that are vital to the continuing evolution of living
organisms and the preservation of life. Enzymes are the most
prominent catalytic entities in living cells and are collectively
capable of catalyzing a vast range of biochemical reactions. The
advent of next-generation sequencing together with recent
advances in bioinformatics and molecular and structural
biology have granted ready access to these rich genetic
resources, facilitating the identification of efficient biocatalysts
for diverse applications.1−4 Moreover, the field of protein
engineering has matured to a level that allows tailoring of
native enzymes for specific practical applications.5 However,
the redesign of an enzyme sequence often imposes unintended
secondary effects, frequently reducing the solubility and
stability of the target enzyme.6−9 Strategies for mitigating or
eliminating these negative effects include chaperone buffer-
ing,10 chemical modification of the protein structure,11,12

protein immobilization,13 medium engineering,13 the addition
of fusion proteins,14,15 and the introduction of stabilizing or
solubilizing mutations by protein engineering.16−18

Of particular interest for a mutational strategy is “directed
evolution”, which refers to experimental methods that emulate
natural evolution by coupling molecular diversity generation to
a selection or screening process. However, the immensity of an
enzyme‘s sequence space prohibits global evaluation of all
possible mutational combinations,19 frequently causing opti-
mization trajectories to become stuck in evolutionary dead
ends.20,21 This restricts the scope for creating stable and
soluble biocatalysts by directed evolution alone and calls for
knowledge-guided approaches to navigate the mutational
space.22 Rational protein design strategies can dramatically
reduce the experimental effort required for successful directed
evolution by consolidating pre-existing information.23 Semira-
tional strategies that combine directed evolution with
structural and sequence data to help identify mutational
hotspots amenable to focused screening efforts have been
particularly popular recently.24−26
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This Perspective provides a thorough overview of con-
temporary data sets and computational protein redesign tools
for enhancing enzyme stability or solubility. Preservation of
enzymatic activity is of paramount importance in all protein
engineering projects.21,27 However, highly active and stable

catalysts are evolutionarily disfavored because they could
disrupt the host organism’s homeostatic balance28 or interfere
with the cell’s complicated metabolic regulatory networks.29,30

Accordingly, several studies have indicated that most natural
enzymes operate in a suboptimal regime,21,28 leaving

Table 2. Advantages and Disadvantages of Methods for the Computational Design of Stable and Soluble Biocatalysts

method advantages disadvantages

energy
calculations

• granularity of predictions can be adjusted via different force fields • high computational cost of accurate
methods

• web servers make predictions accessible to inexperienced users • dependence on high-resolution
structures

• ever-growing structural databases together with advances in homology modeling and molecular
threading

• trade-offs between stability and activity

• high accuracy for the prediction of single-point mutations • predicted stable mutants may not be
expressible

• epistatic effects are not well resolved

machine learning • very rapid predictions • lack of balanced high-quality
experimental data

• easy to implement and use • limited accuracy of current models
• wide applicability of features • risk of overtraining
• no need to understand all dependencies
• previously unknown patterns can be discovered

phylogeneticsa • rich abundance of sequence data • selection of relevant sequences is
nontrivial

• structures not needed for predictions • profound understanding of the gene
family is required

• web servers available for certain tasks • CD: epistatic effects are not considered
• CD: simple and fast • ASR: small data set size due to

computational costs
• CD: several filters are available to enhance prediction accuracies • ASR: requires technical skills and

experience
• ASR: prediction of highly thermostable variants is achievable
• ASR: sequences of extremophilic proteins are not required
• ASR: sequence context and epistasis are maintained

aCD, consensus design; ASR, ancestral sequence reconstruction.

Figure 1. Simplified energy landscape with characteristic conformational states accessible from the native-state ensemble of a folded enzyme. Each
point on the plane defined by the X axis and Y axis resembles a different conformation of the enzyme. The corresponding value on the Z axis is the
free energy of folding, which has been color-coded to depict the spectrum from less probable high-energy states (red) to more probable low-energy
states (blue). The catalytic state is readily accessible from the native-state ensemble but clearly separated by a free energy barrier. Catalysis based on
a conformational selection model is assumed, which requires a distinct set of conformations prior to substrate binding and catalysis.48 A reversible
transition from the native state to a partially unfolded state via TS1 is characterized by the free energy difference of folding ΔG1 and its free energy
barrier ΔG1

⧧. The partially unfolded state can also constitute the starting point for an irreversible unfolding transition via TS2, leading to the fully
unfolded state. Another irreversible pathway emanating from the partially unfolded state leads to an aggregated state, which is often characterized
by the interactions of several biomolecules. ΔG1 and ΔG2 relate to thermodynamic stability, while ΔG1

⧧ and ΔG2
⧧ relate to kinetic stability.
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Figure 2. Representative experimental methods to quantify (a−d) protein stability and (e, f) solubility. Curves for a hypothetical wild-type enzyme
(black) and an improved variant exhibiting higher stability or solubility (red) are shown. (a) Differential scanning calorimetry (DSC) curve. Tm is
the midpoint of the transition, ΔCp is the difference between the pre- and post-transition baselines, and ΔH is the area under the curve between the
pre- and post-transition baselines. (b) Differential scanning fluorimetry (DSF) curve. Fluorescent dyes progressively bind to exposed hydrophobic
regions of unfolding proteins, and the fluorescence signal is detected at different temperatures. Tm corresponds to the midpoint value of the stability
curve. (c) Far-UV circular dichroism (CD) curve. Following the change of molar ellipticity at a specific wavelength over a wider temperature range
monitors the change in secondary structure of an unfolding protein. The midpoint of the sigmoid curve is related to Tm of the protein. (d) Kinetic
deactivation curve. For first-order deactivations, a plot of ln(activity) vs time yields a straight line with a slope of −k. The half-life can be calculated
using the equation τ1/2 = ln(2)/k and hence corresponds to the point (τ1/2, −0.69) on the fitted line. (e) Protein precipitation experiment. The
addition of a precipitant is negatively correlated with the solubility of the folded protein. The parameter β is protein-specific and characterizes the
dependence of the solubility on the precipitant concentration. (f) Record from ultracentrifugation. In vitro translation followed by
ultracentrifugation allows quantification of protein solubility independent of the proteostatic network of a living cell (the PURE system). The
solubility percentage is calculated as the ratio of protein in the supernatant to the total protein measured by autoradiography.60 Adapted with
permission from ref 37. Copyright 2007 Elsevier.
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considerable room for further optimization (Table 1).
Unfortunately, activity enhancements often come at the cost
of reduced enzyme stability. The protein redesign tools
presented here offer ways to avoid this trade-off and also to
solubilize the polypeptides, facilitating the purposeful adapta-
tion of natural enzymes.31 Here we outline the theoretical
frameworks of methods commonly used to analyze protein
stability and solubility. We also critically review the data sets
and software tools available for predictive purposes. This
Perspective strives to evaluate the tools from the perspective of
users, who are typically interested in accuracy, reliability, user-
friendliness, and the strengths and weaknesses of the
underlying methods (Table 2). We also present a personal
perspective on existing gaps in knowledge and propose
possible directions for future development.

2. EXPERIMENTAL FRAMEWORK TO DETERMINE
PROTEIN STABILITY AND SOLUBILITY

2.1. Experimental Determination of Protein Stability.
Globular proteins are known to be marginally stable, with free
energy differences between the folded and unfolded states
(Figure 1) being as low as 5 kcal/mol.32 Two key concepts in
the analysis of protein stability are thermodynamic and kinetic
stability.30,33−35 Thermodynamic stability can be defined on
the basis of equilibrium thermodynamics as the Gibbs free
energy difference of folding (ΔG). Exact quantification of
absolute ΔG values is difficult,36 so most stability predictors
and experimental procedures determine the relative change in
free energy (ΔΔG) upon mutation. A commonly used
experimental quantity related to ΔΔG is the change in melting
temperature (ΔTm). The melting temperature, Tm, is defined
as the temperature at which half of the sample is in the
unfolded state, and it can be determined using biophysical
techniques (Figure 2) such as circular dichroism spectroscopy
(CD), fluorescence spectroscopy (FS), dynamic light scatter-
ing (DLS), differential scanning microcalorimetry (DSC), or
differential scanning fluorimetry (DSF).37 The chemical
equivalent of Tm is the half-concentration (C1/2), i.e., the
concentration of denaturant at which half the sample exists in
the unfolded state. Kinetic stability, on the other hand, is a
time-dependent property that is quantified by the height of the
free energy barrier of unfolding (ΔG⧧) separating distinct
folding states (Figure 1). Predicting kinetic stability is
challenging,38 and experimentally determined biological half-
lives (t1/2) are preferred to theoretical estimates (Figure 2).
The kinetic stability is a key determinant of an enzyme’s
functional competence30 because it is related to the rate at
which the protein’s structure is irreversibly altered by
proteolysis or aggregation.29,39,40

2.2. Experimental Determination of Protein Solubil-
ity. Protein solubility is a thermodynamic parameter defined as
the concentration of folded protein in a saturated solution that
is in equilibrium with a crystalline or amorphous solid phase
under given conditions.49 Two methods can be used to
estimate protein solubility in aqueous solutions in vitro: (i)
adding lyophilized protein to the solvent and (ii) concentrating
a protein solution by ultrafiltration and then estimating the
protein fractions in the supernatant and the pellet. Both
methods require that the concentration of protein in solution is
increased until saturation is reached, which can be difficult to
achieve.49 The difficulties of measuring protein solubility can
be alleviated by adding an agenta precipitantto reduce the

protein’s solubility. Precipitants may be salts, organic solvents,
or long-chain polymers.
The term solubility can also be applied to the in vivo

observable that describes protein expression quantitatively
(expression yield) or qualitatively (soluble/insoluble). Besides
the previously given definition of solubility, these two
observables critically depend on the expressibility of a given
enzyme inside the cell.50,51 As a polypeptide is synthesized in
the ribosome, the emerging chain enters the cell’s highly
regulated proteostasis network,29,35,52 which assists the enzyme
to attain its native-state structure. Protein folding does not rely
on the random scanning of all accessible conformational states
but follows a deterministic folding pathway53,54 or multiple
folding pathways.55,56 Changes in the protein sequence can
perturb such folding pathways, frequently diminishing the
expressibility and solubility of an enzyme with a negative
impact on its aggregation propensity or the formation of
inclusion bodies.8,9,57,58 One high-throughput in vivo exper-
imental screening assay to test for properly folded enzyme
variants is the Split-GFP system.59 Besides the calculation of
the expression yields via the Bradford method and the
quantification of mRNA levels of the cells, the PURE system60

might be a valuable experimental platform to investigate
determinants of protein solubility and folding under in vitro
conditions (Figure 2).

3. THEORETICAL FRAMEWORK FOR THE DESIGN OF
ROBUST PROTEINS
3.1. Principles of Methods Based on Energy Calcu-

lations. In silico design of protein stability based on energy
calculations has taken a long way from fairly simple61,62 to
more accurate and versatile methods, facilitating reliable high-
throughput predictions of thermodynamically and kinetically
stable enzymes.41,63 A force field is a collection of bonded and
nonbonded interaction terms64,65 that are related by a set of
equations that can be used to estimate the potential energy of a
molecular system.66 For stability predictions, such potential
energy functions can be applied to a protein’s structure to
assess the energetic changes caused by the mutations. The
most accurate but also the most computationally expensive
methods are free energy methods, which rely on molecular
dynamics (MD) or Metropolis Monte Carlo simulations. Free
energy perturbation has proven to be a potent and rigorous
alchemical approach that generates the most meaningful
stability predictions, but only for a limited number of
mutations.67 Less accurate but considerably more performant
are end-point methods such as molecular mechanics
generalized Born68 or linear interaction energy.69 These free
energy methods require a high level of technical expertise and
access to supercomputing facilities, which can be challenging
for experimental groups. Over the last 20 years, simpler and
simulation-independent stability predictors have been devel-
oped. A subdivision into three categories has been proposed,
namely, (i) statistical effective energy functions (SEEFs), (ii)
empirical effective energy functions (EEEFs), and (iii) physical
effective energy functions (PEEFs).70,71

SEEFs are fast and can predict changes in stability over the
entire sequence space of an average-sized enzyme in a matter
of seconds.72,73 They are derived from curated data sets of
folded protein structures, which are projected into a number of
stability descriptors. An effective potential can be extracted for
every descriptor distribution, and these can be combined to
create an overall energy function.72,74 SEEFs do not explicitly
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model physical molecular interactions, and the exact physical
nature of statistical potentials remains obscure.71 Conse-
quently, overlapping and double counting of terms relating
to the same causative interactions should be avoided.70 EEEFs
include both physical and statistical terms, which are carefully
weighted and parametrized to match experimental data.70,71

The thermodynamic data used in their derivation typically
originate from mutational experiments conducted under
standard conditions, which can be obtained from databases
such as ProTherm.75−77 EEEFs provide a reasonable
compromise between computational cost and accuracy of the
free energy function.78 A major drawback of EEEFs and SEEFs
is that their applicability is restricted to the environmental
conditions under which the experimental data used for
parametrization were acquired.79,80 PEEFs are closely related
to classical molecular mechanics force fields81,82 and allow a
fundamental analysis of molecular interactions.66 PEEFs have
more complex mathematical formalisms71 and higher computa-
tional costs than EEEFs.70 However, they are versatile,
accurate, and capable of predicting behavior of the enzymes
under nonstandard conditions, for instance at elevated
temperature, nonphysiological pH, or nonstandard salinity.83

The accuracies of stability predictors based on such energy
functions are still suboptimal77,79,84−86 because of (i)
imbalances in the force fields,87,88 (ii) insufficient conforma-
tional sampling,85,88 (iii) the occurrence of insoluble species,8,9

and (iv) intrinsic problems with existing data sets (Table 2).
The concept of free energy change upon mutation (ΔΔG) was
introduced for a fundamental analysis of the causative factors
leading to these deficits. The computation of ΔΔG is based on
a thermodynamic cycle (Figure 3), which requires modeling of

the folded states of both the wild type and the mutant as well
as their unfolded states.36,67 Contemporary force fields
describe enthalpic interactions reasonably well, although they
are known to overestimate hydrophobicity and tend to favor
nonpolar substitutions.6,9,89 EEEFs and PEEFs generally
underestimate the stability of buried polar residues because
they overestimate the energetic cost of unsatisfied salt bridges
and hydrogen bonds in the protein core.58,90,91 The estimation

of both conformational and solvent-related entropy is
imprecise9,92 because of the necessity of using computationally
less expensive terms.83 The inability of force field methods to
account for entropy-driven contributions can be mitigated by
using hybrid methods that incorporate complementary
evolution-based approaches.45,47,92,93 Moreover, most stability
predictors have been parametrized using single-point-mutation
data sets, resulting in higher prediction errors upon application
to multiple-point mutants.69,94 Whenever epistatic effects20 are
present between two or more individual mutations, force field
predictions deviate from experimental results.
This shortcoming can be attributed to insufficient conforma-

tional sampling of the mutant’s folded state, particularly when
the introduced mutations induce large-scale backbone move-
ments.95 Tools based on EEEFs or PEEFs often apply rotamer
libraries to fixed protein backbones, thereby reducing
computational costs while providing comparable accuracies
for the prediction of single-point mutations.88 Multistate
design80,96 and flexible backbone sampling techniques84,97−99

have partly alleviated the sampling problem for multiple-point
substitutions by generating conformational ensembles and
utilizing energetically more favorable conformations. Enzymes
are intrinsically dynamic molecules and populate a high
number of heterogeneous conformational substates100 (Figure
1). Consequently, an adequate treatment of an enzyme’s
conformational plasticity96,97 in the folded states of the wild
type and mutant may be crucial for further advances of these
methods. Structures obtained by X-ray crystallography do not
essentially reflect the global energy minimum of the native
state of an enzyme in its natural environment101 and may
therefore be nonideal starting points for stability predic-
tions.80,102 Besides the folded states, ΔΔG computations rely
on sampling of the unfolded states of the wild type and the
mutant. Simplifying and less realistic models (random coil or
tetrapeptide) are frequently employed for explicit computa-
tions of the unfolded-state energies.68,69 Generally, it is
assumed that the free energy of the unfolded state does not
change much upon mutation.68,84

The aforementioned explanations primarily relate to the
prediction of thermodynamic stability. Not much work has
been anticipated to predict kinetic stability, which can mostly
be explained by the time-dependent nature30 of this property
and the time scales103 assessable by energy-based methods.
However, it is recognized that enhanced thermodynamic
stability frequently goes hand in hand with enhanced kinetic
stability.41,45 One energy-based strategy to enhance the kinetic
stability of an enzyme is to optimize solvent−solute
interactions by introducing surface charges,104 which can
affect its expressibility.105 The latter property may also be
enhanced by computational linker design,106 providing fusion
enzymes with solubilizing protein tags.

3.2. Principles of Methods Based on Machine
Learning. Machine learning is a field of computer science
that allows computational systems to be constructed without
being explicitly programmed. Statistical techniques are used to
analyze training data sets and recognize patterns that might be
difficult to detect given the limitations of human knowledge
and cognitive abilities. Machine learning systems can be
trained with or without supervision. In supervised approaches,
the system is given a set of example inputs and the
corresponding desired outputs in the form of labels indicating
the correct classification of each input. Supervised approaches
are suitable for training predictive systems, while unsupervised

Figure 3. Thermodynamic cycle used to compute the free energy
change upon mutation (ΔΔG). ΔΔG is calculated according to the
formula ΔΔG = ΔGmut − ΔGwt = ΔGf − ΔGu. For better illustration,
the hypothetical folded and unfolded states of the wild type and a
two-point mutant are shown. The respective substitution sites have
been color-coded in black (wild type) and red (mutant). Adapted
with permission from ref 69. Copyright 2012 Wiley.
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approaches are more suitable for tasks involving data
clustering. In recent years, machine learning has become one
of the most common approaches for predicting the effects of
mutations on protein stability107−109 and solubility.57,110

Machine learning does not require full understanding of the
mechanistic principles underpinning the target function
because they are modeled during the learning process. An
important advantage of machine learning methods is that they
are very flexible because any characteristic extracted from the
data can be used as a feature if it improves the prediction
accuracy, i.e., minimizes the prediction error (Table 2).
Consequently, machine learning methods can reveal previously
unrecognized patterns, relationships, and dependencies that
are not considered in knowledge-based models. Moreover,
machine learning is much less time-intensive than other
methods because once a model has been constructed using the
available data, predictions can be obtained almost instanta-
neously.
The reliability of machine learning approaches depends on

the size and quality of the training data set. The weights
representing the relative importance of the individual features
and the relationships between them are based on experimental
observations. Consequently, it is essential to use high-quality
experimental data with high consistency when training and
testing machine learning methods. The size and balance of the
training data set must also be considered carefully. A modest
data set with only a few hundred or a few thousand cases might
be too small to identify useful descriptors during the learning
process. Additionally, lower diversity of the training data set
leads to a greater risk that the prediction tool will lose its
ability to generalize. In such cases, the weights assigned to
individual descriptors might be influenced by over-representa-
tion of some descriptors in the training data, while other
descriptors that might be very important for general predictive
ability could be omitted. Unbalanced training data sets with
large differences in the numbers of cases representing
individual categories could also lead to erroneous over-
estimations. For example, a training data set in which 80% of
the mutations are destabilizing would allow the predictor to
classify most mutations as destabilizing because of the
prevalence of such mutations during the learning process.
Methods like support vector machines and random forests are
known to be more resistant to overfitting caused by
unbalanced data sets,111−113 while standard neural networks
and decision trees are particularly sensitive to them. If the data
set is too small to be balanced, the problem can be partially
addressed by using cost-sensitive matrices,114 which penalize
the predictor more strictly for misclassifying mutations that are
sparsely represented in the training data.
In parallel to the issue of the quality and availability of

training data, one must address the problem of model
validation. Ideally, the validation data set should be balanced
and completely independent of the training set. In
bioinformatics, it has become common to use k-fold cross-
validation as a standard method for testing the performance of
newly developed tools. This method entails randomly
partitioning the original data set into k subsets. During the
learning process, one of the k subsets is used for validation,
while the remaining subsets are used as a training data set. This
process is performed for each of the k subsets. The main
reason for using cross-validation instead of splitting the data set
into independent training and validation subsets is that the
data set may be too small to support such splitting without

harming the model’s ability to learn the important predictive
patterns. However, the combination of unbalanced data sets
with the random aspect of k-fold cross-validation increases the
risk of serious overestimation. Therefore, cross-validation is
not a reliable method for measuring model accuracy when
lower-quality data sets are used.115 In conclusion, machine
learning is a powerful approach that can reveal unknown
interactions that are poorly defined in current force fields
(Table 2). However, great care must be taken when
constructing the training data set and during validation to
avoid overfitting and overestimation of the results.

3.3. Principles of Methods Based on Phylogenetic
Analysis. The two most widely used phylogeny-based
approaches for stability engineering are consensus design
(CD) and ancestral sequence reconstruction (ASR). Con-
tinuous cycles of variation and selection have created an
enormous diversity of modern-day enzyme sequences that can
be processed using phylogenetic techniques (Table 2). Over
the last two decades, the advent of next-generation sequencing
methods has revolutionized life science but has also introduced
new challenges arising from the vast amounts of sequence data
that are now available.116 When phylogenetic analyses are
performed, this results in a selection problem: one must
carefully decide which sequences to include in any analysis.
Identifying suitable homologous sequences to a given target
can be particularly challenging. Local alignment algorithms
such as the Basic Local Alignment Search Tool (BLAST)117

offer reasonable accuracy at minimal computational cost. More
complex and computationally demanding signature-based and
profile-based search algorithms118−120 have further extended
the boundaries of homology detection121 beyond the twilight
zone.122 The twilight zone is an alignment-length-dependent
pairwise sequence identity range above which homologous
sequences can reliably be distinguished. When pairwise
sequence identities fall within or below this specific range, a
large number of false negative sequences will get incorporated
into multiple sequence alignments (MSAs). Great care is
needed in the construction of biologically relevant MSAs from
distantly related homologues. The treatment of nontrivial
evolutionary artifacts such as indels, translocations, and
inversions within the coding sequence can profoundly affect
the quality of an MSA.123,124 Progressive, iterative, and
consistency-based alignment algorithms125 exclusively consider
sequence data and often introduce topological inconsistencies
that require manual correction.126 These deficiencies have
been alleviated by incorporating complementary structural or
evolutionary information, but such approaches can be
computationally demanding.25,126,127

CD starts from a set of homologous protein sequences. A
genuine MSA is generated using a small number (between a
dozen and a few hundred) of homologous sequences, which
permits the computation of the frequency distribution of every
amino acid position in the alignment.128 A user-specified
conservation threshold is then used to distinguish between
ambiguous and conserved “consensus” positions. The core
assumption of this method is that the most frequent amino
acid at a given position is more likely to be stabilizing.128−133 It
has been noted that high levels of sequence diversity in the
MSA can interfere with the preservation of catalytic activity in
consensus enzymes; this problem can be particularly acute
when the MSA incorporates both prokaryotic and eukaryotic
sequences.129,134 However, the assumption of statistical
independence is central to CD. Excessively homogeneous
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MSAs may violate this assumption, introducing phylogenetic
bias that hinders the discovery of more thermostable
proteins.133 The proportions of neutral and destabilizing
consensus mutations have been estimated to be 10 and 40%,
respectively, among all characterized variants produced using
consensus design to date, suggesting a need for a more focused
selection of substitution sites.128,132 To this end, Sullivan et
al.129 discarded mutations of residues with high statistical
correlations to other positions in the MSA, thereby increasing
the proportion of identified stabilizing mutations to 90%.
Vazquez-Figueroa et al.135 adopted a different approach,
successfully using structural information (e.g., the distance
between a possible mutation and the active site, secondary
structure data, and the total number of intramolecular
contacts) to complement traditional CD predictions. Another
example of an effective structure-based CD approach involved
the analysis of molecular fluctuations based on crystallographic
B-factors.136 Important drawbacks of CD are its inability to
account for epistatic interactions137,138 and an apparent
phylogenetic bias in cases where the MSA is dominated by a
few subfamilies.130,139

ASR is a probabilistic method for inferring primordial
enzymes and ancestral mutations, which have proven to be
very effective for thermostability engineering.43,44,46,140 ASR
explores the deep evolutionary history of homologous
sequences to reassemble a gene’s evolutionary trajectory.138,141

As a starting point, a phylogenetic gene tree can be inferred
from a manually curated MSA and a suitable evolutionary
model using either the maximum-likelihood method142,143 or
Bayesian inference.144 In the simplest case, such statistical
inference methods derive parameters from the given MSA for
the selected empirical evolutionary model, which defines the
underlying amino acid substitution process. Once the gene
phylogeny has been established, ancestral sequences corre-
sponding to specific nodes of the tree can be computed,
synthesized, overexpressed, and characterized in vitro. In
addition to the difficulty of identifying and aligning legitimate
sequences,124 a major challenge encountered in ASR is the
computation of a plausible phylogenetic tree that adequately
explains the evolutionary relationships of the given sequences.
Homogenous evolutionary models assume that amino acid
substitutions are homogeneously distributed over time and
among sites and are therefore heavily oversimplified models of
evolution.145 Maximum-likelihood methods have been shown
to systematically overestimate the thermodynamic stability of
deeper ancestors,140,146 so Bayesian inference methods have
been recommended as alternatives to account for this bias.
However, Bayesian inference computes ancestral sequences
with considerably lower posterior probabilities, sometimes
leading to the loss of the biological function.147 It is not
entirely clear why ASR is successful at identifying sequences
with improved thermostability.141 One hypothesis states that
its success is an artifact of the ancestral inference methods and
resembles a possible bias toward stabilizing consensus
sequences.140,146 Another plausible explanation is based on
the thermophilic origin of primordial life.148,149 Regardless of
the reasons for its effectiveness, ASR is clearly a very robust
and efficient method for identifying enzyme sequences with
high thermodynamic stability and elevated expression yields
(Table 2). Furthermore, increases in kinetic stability resulting
in higher τ1/2 have frequently been reported for ancestral
enzymes in comparison with their extant forms.140,150 The
sequence context is maintained in the resurrected ancestral

enzymes, enabling the conservation of historic mutations
causing functionally important epistatic effects.20,137,138 The
fundamental drawbacks of ASR are that users must have
considerable methodological skill and a good level of
knowledge about the targeted gene family.

4. DATA SETS AND SOFTWARE TOOLS FOR
DESIGNING STABLE PROTEINS
4.1. Data Sets for Protein Stability. The accuracy and

reliability of computational methods depends strongly on the
size, structure, and quality of the chosen training and validation
data sets. The primary source of validation data for protein
stability is the ProTherm database.75 ProTherm is the most
extensive freely available database of thermodynamic param-
eters such as ΔΔG, ΔTm, and ΔCp. It currently contains almost
26 000 entries representing both single- and multiple-point
mutants of 740 unique proteins. Although ProTherm is the
most common source of stability data, it suffers from high
redundancy and serious inconsistencies. Particularly troubling
are differences in the pH values at which the thermodynamic
parameters were determined, missing values, redundancies, and
strikingly even disagreements about the signs of ΔΔG values.
ProTherm also neglects the existence of intermediate
states.57,107 To overcome the problems of the ProTherm
database, the data must be filtered and manually repaired to
construct a reliable data set.
Several subsets of the ProTherm database have been

developed (Table S1) and used widely to train and validate
new prediction tools. The most popular is the freely available
PopMuSiC data set,151 which contains 2648 mutations
extracted from the ProTherm database. The data set is
unbalanced because only 568 of its mutations are classified as
stabilizing or neutral, while 2080 are classified as destabilizing.
Furthermore, 755 of its 2648 mutations have reported ΔΔG
values in the interval ⟨−0.5, 0.5⟩. Mutations with such ΔΔG
values cannot be considered either stabilizing or destabilizing
because the average experimental error in ΔΔG measurements
is 0.48 kcal/mol.152 Additionally, the data extracted from
ProTherm are insufficiently diverse: around 20% of the
PopMuSiC data set comes from a single protein, and 10
proteins (of 131 represented in the data set) account for half of
the available data. Inspection of the data reveals that mutations
to more hydrophobic residues located on the surface of the
protein tend to be stabilizing, whereas mutations that increase
the hydrophilicity in the protein core are usually destabilizing.
Consequently, most computational tools are likely to identify
mutations that increase surface hydrophobicity as stabilizing
even though such designs often fail because of poor protein
solubility.58

Some predictive tools use alternative data sets derived from
ProTherm or PopMuSiC for training and validation. The most
common benchmarking data set utilized for independent tests
is S350,151 which contains 90 stabilizing and 260 destabilizing
mutations in 67 unique proteins. However, this data set is still
small for comprehensive evaluation and unbalanced. The
recently published PoPMuSiCsym data set153 tries to address
these issues, containing 342 mutations inserted into 15 wild-
type proteins and their inverse mutations inserted into the
mutant proteins. A comparative study conducted using this
data set showed a bias of the existing tools (Table S2) toward
destabilizing mutations, as they performed significantly worse
on the set of inverse mutations. Because of the overlaps of the
mutations in training and validation data sets, the results of the
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individual tools can be overestimated. Even the new derivatives
of the ProTherm database do not solve the problems arising
from the size and structure of the available data. Therefore,
there is an urgent need for new experimental data, particularly
on the side of stabilizing mutations. Moreover, it would be of
immense help for the future development of predictive tools to
proceed with the standardization of the stability data, e.g., a
unified definition of ΔΔG as a subtraction of the ΔG values for
the mutant and the wild type. FireProt DB, a new publicly
available database collecting carefully curated protein stability
data, is being established at https://loschmidt.chemi.muni.cz/
fireprotdb/.
Until the new unbiased data sets arise, a regular accuracy

measure considering only the number of correctly predicted
mutations from the testing set is not suitable for validation of
the predictive tools. For binary classification, the Matthews
correlation coefficient (MCC) can be utilized, as it was
designed as a balanced measure that is usable even for data sets
with a significant difference in the sizes of individual classes.113

Similarly, when binary predictions are utilized as a filtration
step in the hybrid approaches, metrics like sensitivity,
specificity, and precision might be useful. When numerical
measures are considered, the linear correlation between the
predicted and experimental values can be estimated with the
use of the Pearson correlation coefficient (PCC) and the
average error established as the root-mean-square error
(RMSE). Finally, the bias of the computational tools can be
estimated as the sum of ΔΔG for the direct and inverse
mutations according to Thiltgen and Goldstein.94 Critical
evaluation of the existing tools using the S350 data set revealed
that the PCC ranges from 0.29 to 0.81 with an average RMSE
of about 1.3 kcal/mol (Table S5).
4.2. Software Tools for Predicting Protein Stability

Based on Energy Calculations. Software tools relying on
force field calculations are based on either modeling the
physical bonds between atoms (PEEFs) or utilizing methods of
mathematical statistics (SEEFs). Rosetta88 is one of the most
versatile software suites for macromolecular modeling and
consists of several modules. Rosetta Design is a generally
applicable module for protein design experiments that
evaluates mutations and assigns them scores (in physically
detached Rosetta energy units) reflecting their predicted
stability. In its newest version, the Rosetta force field converts
Rosetta energy units into well-interpretable ΔΔG values.83

Furthermore, the stand-alone ddg_monomer module was built
on top of Rosetta Design and is parametrized specifically for
predicting ΔΔG values and protein stability. The Rosetta suite
is also supplemented by a wide variety of usable force fields
and protocols. The Eris software154 is based on the Medusa
force field and incorporates a side-chain packing algorithm and
backbone relaxation method. A similar physical approach is
adopted in the Concoord/Poisson−Boltzmann surface area
(CC/PBSA) method,155 which uses the GROMACS force
field156 to evaluate an ensemble of structures initially generated
by the Concoord program.157

Unlike the previously mentioned methods, in which the
values of the individual terms in the force field equation are
evaluated by performing calculations based on Newtonian
physics, some tools simply fit equations using values derived
from the available data. One of the main representatives of this
approach is PopMuSiC,73 whose force field equation includes
13 physical and biochemical terms with values derived from
databases of known protein structures. Similar approaches are

used by other statistical and empirical tools, including FoldX78

and Dmutant.158 Another tool in this class is HotMuSiC,159

which is based on PopMuSiC and was parametrized specifically
for estimating ΔTm, since the correlation coefficient between
ΔΔG and ΔTm is −0.7.159 HotMuSiC makes predictions using
five temperature-dependent potentials based exclusively on
data extracted from mesostable and thermostable proteins.
While PEEFs provide generally more accurate predictions of

the effect of mutations on protein stability, there is an apparent
trade-off between predictive power and computational
demands. In the majority of cases, SEEFs still perform fairly
well compared with most machine learning methods and are
orders of magnitude faster than PEEFs. Therefore, SEEFs seem
to be an acceptable compromise between accuracy and time
demands, especially when utilized as filters for prioritization of
the mutations in hybrid workflows.

4.3. Software Tools for Predicting Protein Stability
Based on Machine Learning. Machine learning methods do
not require comprehensive knowledge of the physical forces
governing protein structure; their predictions are based
exclusively on the available data. The most popular machine
learning tools are based on the support vector machines (e.g.,
EASE-MM,107 MuStab,108 I-Mutant,160 and MuPro161) and
random forest (e.g., ProMaya162 and PROTS-RF163) methods,
which are known to be comparatively resistant to overtraining
even when used with unbalanced training data sets (Table S2).
Neural networks are rarely used for protein stability engineer-
ing because of their high sensitivity to the quality and size of
the training data set.
In recent years, several new machine learning approaches

have been applied to diverse problems in the field of
bioinformatics. Deep learning is used to predict the effects of
mutations on human health in DANN164 and to predict
protein secondary structure in SSREDNs.165 Unfortunately,
like regular neural networks, deep learning methods are prone
to overfitting because adding extra layers of abstraction
increases their ability to model rare dependencies, resulting
in a loss of generality. This shortcoming can be addressed by
using regularization methods such as Ivakhnenko’s unit
pruning.166,167 However, this does not eliminate problems
arising from inadequate training data sets because deep
learning has very stringent data requirements. Consequently,
deep-learning-based tools such as TopologyNet168 still have
very limited applicability in predicting protein stability.
The robustness and accuracy of computational tools can be

increased by combining several machine learning approaches
into a single multiagent system, as in the case of
MAESTRO.169 In MAESTRO, neural networks are combined
with support vector machines, multiple linear regression, and
statistical potentials. The outputs of the individual methods are
then averaged to provide users with a single consensus
prediction. In such tools, machine learning can be used to train
the arbiter that decides how to combine the outputs of the
individual methods and their weights, balancing the relative
strengths of each method when applied to the type of mutation
under consideration. This approach is widely used in
metapredictors.58

It is difficult to compare individual tools on the basis of the
results presented in the publications where they were first
reported because most of them were validated using different
data sets. This can bias a tool’s performance toward particular
proteins or mutation types, causing its general prediction
accuracy to be overestimated. Therefore, independent
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comparative studies are needed. The critical evaluations
reported by Kellogg et al.,88 Potapov et al.,77 and Khan and
Vihinen170 revealed that methods based on PEEF calculations
systematically outperform tools relying only on machine
learning techniques or statistical potentials in independent
tests. Furthermore, machine learning methods tend to be more
biased,153,171 and their reported accuracies are overestimated
as a result of overtraining. The PCC upper bound for the most
commonly used stabilization data sets is about 0.8, and the
lower bound of the RMSE is 1 kcal/mol.172 The applicability
of machine learning methods will increase with the size and
diversity of the available data in the future.
4.4. Software Tools for Predicting Protein Stability

Based on Phylogenetics. Phylogeny-based methods do not
require knowledge of high-resolution protein structures; they
can be applied to any protein with a known amino acid
sequence and a sufficiently high number of sequence
homologues. However, although phylogeny-based methods
often improve some protein characteristics, the influence of
individual mutations manifested during evolution is uncertain.
About 50% of all mutations identified by CD are stabilizing,
but some may affect protein solubility rather than stability.131

CD-based methods are therefore frequently utilized as filters
during core calculations of hybrid workflows or as components
of predictive tools for hotspot identification.
CD is available in several bioinformatics suits (e.g.,

EMBOSS,173 3DM,25 VectorNTI,174 and HotSpot Wizard175).
Although there are no stand-alone tools for CD, there are
several for ASR, some using maximum-likelihood methods
(e.g., RAxML,176 FastML,177 and Ancestors178) and others
using Bayesian inference (e.g., HandAlign179 and MrBayes180).
A major limitation of these methods is that most of the tools
require users to upload their own MSA and phylogenetic tree.
Constructing these input data is the most important and
demanding step of the entire process. To obtain reliable
predictions, the initial set of homologue sequences must be
filtered to identify a reasonably sized subset of biologically
relevant sequences. At present, sets of homologous sequences
obtained using BLAST,117 profile-based methods such as
position-specific iterated BLAST,118 or hidden Markov
models120,181 must be manually curated to ensure reliable
ancestral reconstructions.
4.5. Software Tools for Predicting Protein Stability

Based on Hybrid Approaches. Hybrid methods make
predictions by combining information from several fundamen-
tally different approaches. They offer greater robustness and
reliability than individual tools, allowing multiple-point
mutants to be designed while reducing the risk of combining
mutations with antagonistic effects. Consequently, several
research groups are focusing on hybrid methods in their efforts
to improve the rational design of thermostable proteins.
The Framework for Rapid Enzyme Stabilization by

Computational Libraries (FRESCO)93 is available as a set of
individual tools and scripts, and its use requires a good
knowledge of bioinformatics. FRESCO initially selects a pool
of potentially stabilizing mutations (FoldX or Rosetta energy
cutoff of −5 kJ/mol) and also filters out all residues in close
proximity (<10 Å) to active sites. Disulfide bridges are
designed by dynamic disulfide discovery using snapshots from
MD simulations and subsequently evaluated using the set of
geometric criteria. An energy criterion for the maximal
molecular mechanics energy of the disulfide bond was also
adopted. Furthermore, very short MD simulations predict

changes in backbone flexibility upon mutation to remove
designs with unreasonable features that are expected to
destabilize the protein. About a hundred of the single-point
mutants are then subjected to experimental validation to select
mutations to be included in the combined multiple-point
mutant. Experimental validation of individual mutations greatly
reduces the risk of false positives and maximizes the
stabilization effect but requires a substantial investment of
time and effort.
FireProt45,89 combines energy- and evolution-based ap-

proaches in a fully automated process for designing thermo-
stable multiple-point mutants (Figure 4). FireProt integrates

16 computational tools, utilizing both sequence and structural
information in the prediction process. When the energy-based
approach is applied, information extracted from the protein
sequences (e.g., lists of conserved and correlated residues) is
used to exclude potentially deleterious mutations, while
structural information is used to obtain estimated ΔΔG values
with both FoldX and Rosetta. The second approach is based
on back-to-consensus analysis followed by energy filtration
using FoldX. Finally, a distance-based graph algorithm is used
to create a multiple-point mutant by selecting the most
favorable mutually nonconflicting mutations from the pool of
all potentially stabilizing mutations. A stand-alone version of
FireProt45 has been implemented as an intuitive web-based
application,89 making this complex modeling workflow
accessible to a wide user community. The automation of the
whole procedure eliminates the need to select, install, and

Figure 4. Workflow of the protein thermostabilization platform
FireProt. The hybrid method combines evolutionary- and energy-
based approaches and designs stable multiple-point mutants by
fundamentally different methods.45 The user is offered three different
designs, two based solely on the energy- and evolution-based
approaches and a third combining all of the identified mutations.
FireProt has been made available as a fully automated and user-
friendly web application89 and is free of charge for academic users at
http://loschmidt.chemi.muni.cz/fireprot.
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evaluate tools, optimize their parameters, and interpret
intermediate results.
Protein Repair One-Stop Shop (PROSS)47 is another

automated web-based protein stabilization platform. The
PROSS workflow begins with a Rosetta design calculation in
which the amino acids constituting the protein’s active and
binding sites are not eligible for mutation. A position-specific
substitution matrix is analyzed to steer the design process away
from amino acids that are rarely observed in the sequence
homologues,182 and Rosetta’s computational mutation scan-
ning tool183 is used to scan the remaining pool of potential
amino acid mutations. Finally, Rosetta’s combinatorial
sequence design tool is used to find an optimal combination
of potentially stabilizing mutations, and an energy function is
applied that favors amino acid identities on the basis of their
frequency in the multiple-sequence alignment. This phylogeny-
based biasing potential allows the designed variants to
incorporate mutations found to be neutral or even slightly
destabilizing in the Rosetta calculations,35 which is desirable
because some of these mutations might positively influence
properties such as catalytic activity or protein solubility.
Hybrid methods represent a step forward in the prediction

of protein stability because of their higher reliability at a
decreased computational cost. These methods utilize evolu-
tion-based approaches as filters for removing potentially
deleterious mutations in the conserved or correlated regions
of the target protein. Furthermore, hybrid methods identify
stabilizing mutations that would be missed by using only force
field or phylogeny methods, as these two approaches are often
complementary.92 The increased robustness of the hybrid
methods allows for a safer combination of single-point
mutations into a multiple-point mutant. Hybrid methods can
be further expanded by predictions of protein solubility or
catalytic activity.

5. DATA SETS AND SOFTWARE TOOLS FOR THE
DESIGN OF SOLUBLE PROTEINS
5.1. Protein Solubility Data Sets. Protein solubility,

aggregation propensity, and expressibility are complex proper-
ties governed by several distinct biophysical and biological
mechanisms. Progress in understanding these mechanisms
depends on the availability of large, high-quality, diverse
experimental data sets. In addition, the performance of
prediction methods must be assessed with respect to the
data used during their training. It is therefore important to
recognize the strengths and limitations of the available
experimental data sets on protein solubility and expressibility.
To this end, this section presents a comprehensive review of
the data sets available at the time of writing (Table S3).
5.1.1. Protein Solubility Data Sets Based on Full-Length

Proteins. Data sources of this type contain information on the
solubility of entire proteins produced in a specific expression
system, either in vitro using a cell-free expression system or in
vivo. Solubility can be determined by separating the liquid
component of a sample by centrifugation or filtration and
measuring the protein content in a solution, which is
normalized by the protein content in the unseparated sample.
The normalization removes the relationship between the
solubility value and varying protein expression level. Alter-
natively, proteins may be simply classified as soluble or
insoluble.
The Solubility Database of E. coli Proteins (eSOL)60

contains experimentally measured solubilities for over 4000

E. coli proteins. The solubilities were determined by expressing
the proteins using the PURE cell-free expression system184 and
using ultracentrifugation to measure their solubility as the ratio
of the protein content in the supernatant to the total protein
content of the sample. The limitations of eSOL are that only a
moderate number of proteins are represented and that all of
them originate from E. coli. In addition, in vitro cell-free
expression systems cannot reproduce the post-transcriptional
molecular processes that occur during protein expression in
vivo. Interestingly, adding the three main cytosolic E. coli
chaperones (TF, DnaKJE, and GroEL/GroES) to the in vitro
cell-free expression system reduced the number of insoluble
proteins from 788 to 24.185

TargetTrack,186 formerly PepcDB or TargetDB, integrates
vast amounts of information from the Protein Structure
Initiative, a large-scale structure determination project. It
contains data from over 900 000 protein crystallization trials
using almost 300 000 unique protein sequences, which are
termed targets. The database is not focused on solubility, but
target proteins can be considered soluble if they reached a
particular state in the experimental trial. We note that strictly
speaking, this parameter reflects both the expressibility and the
solubility of the target proteins. The major drawback of this
database is the low quality of the annotations. No reason for
failure is recorded for most of the unsuccessful crystallization
attempts. Moreover, the experimental protocols are described
in free text with no common structure. Therefore, it is difficult
to automatically extract information about the expression
systems. As a result, the application of strict rules to the target
annotations dramatically reduces the number of usable records.
The Northeast Structural Consortium (NESG)187 database

is a subset of TargetTrack containing data on 9644 targets
analyzed between 2001 and 2008. The NESG database
contains explicit data on protein expression and solubility
levels based on uniform protein production in E. coli. Two
integer scores are recorded for each target, indicating the
protein’s level of expression and the recovery of the soluble
fraction. The major drawback of this data set is that it was
generated using outdated experimental methods; some of the
targets could probably be solubilized using current techniques.
Additionally, the database is too small to be used to train new
machine learning algorithms. However, it can be used as a
high-quality benchmark data set because its explicit exper-
imental observations are more trustworthy than any other data
in TargetTrack.
The Human Gene and Protein Database (HGPD)188

contains expression and solubility measurements on over
9000 human proteins expressed in E. coli, a wheat-germ cell-
free expression system, or Brevibacillus. The expression data
were obtained using the Gateway system coupled with SDS-
PAGE of C-terminal V5- or His-tagged proteins. Like the
NESG data, these results originate from a uniform high-
throughput protein production pipeline and thus constitute a
consistent data set. Moreover, the HGPD provides information
at the DNA level, so it includes codon composition data. Its
major drawback is that it is focused exclusively on human
proteins, so predictors constructed on the basis of its data will
have an implicit bias toward human proteins.
AMYPdb189 contains data on over 12 000 proteins

belonging to amyloid precursor families as well as over 6000
generalized sequence patterns useful for assigning new
sequences to poorly soluble amyloid precursor families.
These data are derived from the literature and by UniProt
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and PROSITE mining, so they are useful only as training data
and for concept verification; they are not suitable for
performance validation. This database has not been updated
since its release in 2008.
5.1.2. Protein Solubility Data Sets Based on Protein

Fragments. Fragment databases often describe properties of
short peptides and their tendency to aggregate when exposed
to solvent. This tendency does not necessarily correlate with
the peptide’s behavior when it is incorporated into a larger
globular protein, in which case it may be protected by the
formation of a hydrophobic core. Therefore, great care is
necessary when using these databases as a basis for solubility
prediction.
AmylHex and AmylFrag190 are literature-based collections of

nearly 200 short peptide sequences known to form amyloid
fibrils. The major flaws of this database are its strong over-
representation (51%) of point variants of a single amyloido-
genic hexapeptide (STVIIE) and its low content of data on
longer protein fragments.
WALTZ-DB191 integrates data obtained from the literature

and by in-house experimental verification on over 1000
hexapeptides tested for amyloidogenicity. As such, it is a
unique resource containing primary experimental data. Of the
peptides represented in the data set, 22% were found to be
amyloidogenic and 78% were found to be non-amyloidogenic.
AmyLoad192 combines data collected from WALTZ-DB,

AmylHex, AmylFrag, the AGGRESCAN and TANGO
validation data sets, and manual reviews of over 90
publications. The data set contains information on almost
1500 amyloidogenic and non-amyloidogenic protein fragments
that have been characterized experimentally or computation-
ally. About 30% of the fragments are considered amyloido-
genic.
The Human Protein Atlas (HPA)193 contains data on over

16 000 protein epitope signature tags (PrESTs) that were
produced using a uniform E. coli production pipeline. PrESTs
are substantial fragments of human proteins ranging from 20 to
150 amino acids. Their expression and solubility were
measured and are quantified using integer scores ranging
from 0 to 5.
The Curated Protein Aggregation Database (CPAD)194 is

an integrated database that includes data on almost 1700
amyloidogenic protein fragments and aggregation changes
upon mutation. The fragments represented in the database
include peptides with known and unknown structures, almost
100 verified aggregation-prone regions, and over 2300
aggregation rate changes upon mutation. The database
represents a unique resource for validating the effect of
mutations on protein aggregation. Unfortunately, it is poorly
structured, and the data are not easily downloadable in a
machine-friendly format.
5.1.3. Protein Solubility Data Sets Based on Mutants. The

existing data sets containing information on protein variants
with measured effects on protein solubility are very small and
were constructed ad hoc by the authors of prediction software
on the basis of literature data. Three representatives of this
small group of solubility data sources are OptSolMut,195

CamSol,17 and PON-Sol.57 OptSolMut contains binary
solubility data on 137 protein variants, and the amounts of
positive and negative samples are nearly balanced. CamSol
contains data on 56 protein variants, of which only three are
classified as reducing solubility. The PON-Sol data set contains

443 protein variants, of which 222 reportedly have no effect on
protein solubility.

5.2. Software Tools for Predicting Protein Solubility.
Unlike stability prediction tools, solubility prediction tools
differ in their outputs rather than their fundamental operating
principles. Almost all solubility prediction tools use some form
of machine learning, ranging from simple statistical approaches
to modern nonlinear methods such as support vector
machines, random forests, or deep neural networks. The
tools also use similar sets of features based on amino acid
composition and physicochemical properties. Their outputs
typically fall into one of three categories: (i) a single solubility
score for the entire input sequence, (ii) a solubility profile with
a unique score for each amino acid, or (iii) a score reflecting
the effect of a specific mutation on solubility. All three outputs
are expressed using arbitrary solubility scales with no physical
meaning. The following section discusses the available
predictive tools and their theoretical underpinnings and
critically assesses their reliability (Table S4). Tools that
predict single solubility scores for entire protein sequences are
most useful for genomic projects because they can help
prioritize protein sequences for laboratory production.
Conversely, algorithms that provide quantitative scores over
fixed-size sequence windows generate solubility profiles that
can be used in the rational design of soluble proteins.

5.2.1. Software Tools for Protein Solubility Based on
Primary Sequences. One of the first single-score solubility
methods was the linear prediction model proposed by
Wilkinson and Harrison,196 which was later simplified by
Davis and co-workers.197 The revised model is surprisingly
simple, using only two features (the approximate-charge
average and turn-forming residue content) that both measure
the relative abundance of specific amino acid types in the
sequence. Despite its simplicity, the model can be useful for
analyzing certain protein families. For example, it achieved a
Spearman correlation coefficient of 0.54 and outperformed
several newer tools in the same category (Table S4) when its
predictions were compared to experimental data for 20
sequences closely related to a recently characterized haloalkane
dehalogenase family.4

SOLpro,198 PROSO II,199 ccSOL omics,200 and DeepSol201

use the TargetTrack database as the source of training data.
Consequently, although they use different features and
machine learning models, they are quite similar to one another
and have many shared strengths and weaknesses. Their most
significant drawback is that they do not focus on any one
expression system because it is hard to automatically extract
expression system data from TargetTrack. Therefore, when
validating these tools on a set of proteins expressed in a single
expression system (e.g., E. coli), the observed prediction
performance might differ significantly from that reported by
the tools’ creators. Published results suggest that DeepSol
should have the highest prediction accuracy in general.
However, this algorithm was created by using deep learning
with a moderately sized training set and was validated against a
data set representing protein families similar to those included
in the training set. Moreover, although good performance is
commonly claimed for tools based on TargetTrack, these
claims have been strongly questioned.199,201 In conclusion, the
validation of these tools should be evaluated carefully, and
further external validation using test sets independent of
TargetTrack is needed. Unfortunately, the limitations of the
TargetTrack database, from which solubility data can be
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extracted only via automated parsing, impose a strong
performance limit on any tool that relies heavily on its data.
Periscope202 attempts to predict soluble protein expression

in the periplasm of E. coli rather than the cytosol. Although it
was trained on a small data set, it was validated against an
independent set of proteins and thus might be useful for
predicting periplasmatic expression in E. coli.
ESPRESSO203 estimates protein expression and solubility in

both cell-free (wheat germ) and in vivo (E. coli) expression
systems. The system has three unique aspects. First, it is based
on measured expression and solubility levels of human proteins
from the HGPD and thus may be useful for production of
human proteins in either of the two relevant expression
systems. Second, it offers two types of prediction: property-
based and motif-based. The former type resembles the
predictions offered by the other machine learning tools in
this category. In contrast, motif-based predictions identify
positive and negative solubility motifs extracted from the
training data. For each negative motif, ESPRESSO suggests
point mutations that should turn the negative motif into a
positive one, so the tool can be used for the rational design of
soluble proteins. Third, ESPRESSO also uses DNA-level
features in its property-based method. However, direct
verification of its reported performance is currently compli-
cated because the original training and testing data are
unavailable.
SoluProt204 is one of the latest additions to the family of

solubility predictors. Its training set is based on the
TargetTrack database,186 which was carefully filtered to keep
only targets expressed in E. coli. The negative and positive
samples were balanced and equalized with respect to protein
length. The independent validation set was derived from the
NESG data set.187 The current version of the tool uses a
predictor based on a random forest regression model that
employs 36 sequence-based features, including amino acid
content, predicted disorder, α-helix and β-sheet content,
sequence identity to the Protein Data Bank (PDB), and
several aggregated physicochemical properties. SoluProt
currently achieves a prediction accuracy of 58.2%, which
exceeds that of other currently available tools, and is under
active development. An intuitive web interface to the tool will
soon be made available to the community at https://
loschmidt.chemi.muni.cz/soluprot/.
5.2.2. Software Tools for Predicting Protein Solubility

Based on Sequence Profiles. A solubility profile is an abstract
construct in which each residue of a given protein sequence is
assigned a solubility score that contextually describes its
relative contribution to the solubility of the protein as a whole.
The solubility scores within a profile may represent
aggregation rates or values on an arbitrary scale with no
corresponding physical units. In either case, the highest scores
represent solubility hotspots. Predictions based on such
profiles must be interpreted with care because they rest on a
hidden assumption: most profile-predicting methods are
trained with data on short linear and unstructured peptides
(Table S4), so there is an inherent assumption that the protein
of interest is also at least partially unstructured. Therefore,
these tools lack specificity when applied to natively folded
globular proteins, in which many predicted low-solubility (or
aggregation-prone) segments are stabilized by the interactions
that maintain the protein’s secondary and tertiary structure. If
the protein’s structure or a reasonable homology model is

available, it is possible to compensate for these problems by
applying structural corrections.
There are several profile-based tools, most of which share at

least some concepts and/or training data sets. Zyggrega-
tor205,206 uses a model fitted to the measured aggregation rates
of nearly 100 variants of 15 proteins mined from the scientific
literature. AGGRESCAN207 is based on data from a single-
codon saturation mutagenesis study of amyloid β 42 protein, in
which aggregation rates were measured for 20 protein variants.
Because both methods are based on very small data sets, the
authors took care to bolster their credibility by applying the
models in several case studies.
TANGO,208 WALTZ,209 and PASTA210 predict amyloid

plaque formation propensity on the basis of data for short
experimentally characterized peptides (mostly hexapeptides).
TANGO is the most famous of these tools and has been cited
hundreds of times. However, the models used by the newer
tools WALTZ and PASTA were inferred from larger
experimental data sets, so they are claimed to outperform
TANGO. A common concern is that the data sets of
amyloidogenic peptides are unbalanced, containing too few
non-amyloidogenic fragments (Table S3), which limits the
generalizability of predictions obtained with these tools.
BETASCAN,211 FoldAmyloid,212 ZipperDB,213 and Arch-

Candy214 learn from experimentally determined structures of
amyloidogenic proteins and apply the discovered general
concepts at the sequence level. BETASCAN calculates
likelihood scores for potential β-strands and strand pairs in
sequences based on correlations observed in parallel β-sheets
of experimental structures. FoldAmyloid uses the number of
contacts per residue and statistics on hydrogen bonds in nearly
4000 PDB structures. In ZipperDB, the input protein is
threaded onto a template cross-β spine structure, and the
relative threading energy is used to predict amyloidogenicity.
ArchCandy evaluates whether a protein segment can fold into
β-arcade structures, which are often disease-related, and uses
an empirical scoring function to evaluate interactions that
disrupt β-arcade formation. These structure-based tools are
expected to be inherently more specific than sensitive because
structure-derived criteria tend to be relatively strict. When a
high sensitivity is required and a structure is available, methods
based on short peptides are expected to be more sensitive than
structure-based alternatives. It is possible to compensate for
false positives by checking the tool’s output against known
structures.
Because individual solubility prediction tools have different

strengths and weaknesses, efforts have been made to create
consensus-based methods that combine multiple tools to
mitigate against the weaknesses of individual tools while
preserving their strengths. The advantages of consensus
methods have been proven both theoretically215 and
empirically.216 Both AmylPred2217 and MetAmyl218 imple-
ment 11 individual methods, including AGGRESCAN,
TANGO, and WALTZ. Although the primary publication on
AmylPred2 claims superior performance to all of the individual
methods, these results should be treated with care because the
consensus threshold was validated using the entire data set
chosen by the developers. Consequently, there was no
independent validation set, and the claimed performance is
very likely to be overestimated. MetAmyl uses a specially
developed peptide set derived from the WALTZ data set to
establish a logistic regression model that integrates the outputs
of the individual tools. An evaluation using the AmylPred2 data
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set indicated that MetAmyl outperformed AmylPred2 despite
having been optimized with a different data set.218 This
strongly suggests that MetAmyl performs better than
AmylPred2 in general.
5.2.3. Software Tools for Protein Solubility Based on

Mutations. While the profile-based tools discussed above can
be used to design solubilizing mutations, the methods
described in this section are tailored for this purpose and
therefore are easier to use. Importantly, most of the methods
discussed here require a protein structure as an additional
input (Table S4).
OptSolMut195 uses the concepts from computational

geometry to define a scoring function reflecting the changes
in solubility due to mutations. The scoring function was
optimized using linear programming on the basis of a set of
protein variants extracted from the literature. The reported
81% overall accuracy should be taken with care, as the training
set was small and the model might not generalize well. In
contrast to other tools in this section, OptSolMut is able to
predict the effect of multiple-point mutations.
Several tools for predicting the effect of mutations on

solubility have been developed from tools for predicting
solubility profiles. For example, CamSol,17 AGGRES-
CAN3D,219 SolubiS,220,221 and SODA110 are based on the
previously published profile-based methods Zyggregator,
AGGRESCAN, TANGO, and PASTA, respectively. The
workflows of these tools are all very similar: first a solubility
profile is predicted, then a correction based on knowledge of
the protein’s structure is applied, and finally solubility hotspots
are identified and specific mutations targeting low-solubility
regions are suggested. CamSol, AGGRESCAN3D, and SODA
use structural corrections to refine the predicted solubility
profiles by averaging physicochemical properties over residues
proximal in three-dimensional space or on the basis of solvent
exposure of individual residues. SolubiS uses free energy
calculations based on the FoldX force field to avoid potentially
destabilizing mutations in aggregation-prone regions and can
thus be classified as a hybrid method (Figure 5). CamSol and
SODA can make predictions even without structural data.

However, this necessarily eliminates the potential to exploit
structure-based corrections and thus tends to reduce the
prediction accuracy. The main issue with all of these tools is in
the difficulty of validating their output. The data sets available
for both training and testing are small, and they have only been
validated using data for a small number of experimentally
characterized protein variants.
PON-Sol57 uses a machine learning algorithm designed from

scratch for solubility prediction of protein variants from
protein sequences without structure-based corrections. The
reported accuracy of this three-class classification method is
43%. The training data set was rather limited, representing a
few tens of proteins.

6. PERSPECTIVES
Protein Structures from Cryoelectron Microscopy

and Hardware-Accelerated Calculations. Access to large
and diverse data sets is a key factor in the development of new
predictive methods and tools. Therefore, the applicability of
force field methods to stability prediction is limited by the
availability of relevant tertiary structures. At present, the PDB
contains over 77 000 unique protein structures, and around
10 000 new structures are added each year. Advances in
structural genomics will provide access to an additional large
pool of protein structures, including previously unattainable
structures of membrane-bound proteins that will be solved by
cryogenic electron microscopy. A tertiary structure of a
biomolecule of interest is typically required for predictions
employing energy calculations. The general applicability of
these methods is also hindered by their computational cost,
which imposes a trade-off between accuracy and throughput.
The most precise alchemical free energy calculations rely on
MD simulations in which both the solute and solvent are
modeled atomistically. Such calculations are too costly to be
used in systematic mutagenesis campaigns with currently
available computational resources. However, they could be
selectively used to design mutations whose effects are poorly
predicted by otherwise reliable Rosetta or FoldX calculations
(e.g., substitutions that change the charge at the protein
surface). Their high computational cost could be alleviated by
adopting computing employing graphics processing units
(GPUs), which has not yet been implemented in a number
of software tools. Wider use of GPUs will enable predictions of
structures and complexes that are currently too large to process
using computationally demanding physical force fields.

Consistent and Balanced Stability Data Sets Are
Urgently Needed. Machine learning techniques are faster
than force field methods and less dependent on the availability
of tertiary structures because many features used in machine-
learning-based predictors can be extracted from primary
sequences. However, machine learning methods are very
sensitive to the size and quality of the experimental data sets
available for training and validation. At present, there is a
serious lack of reliable experimental data suitable for use in
protein stabilization efforts. The only available database
ProThermis burdened by errors and contains data on fewer
than 2000 single-point mutations after rigorous filtering. This
number is insufficient to train reliable machine learning
systems without introducing a risk of overfitting. Moreover,
the ProTherm database was most recently updated in February
2013, and several protein stabilization projects have been
conducted since then. Systematic mining of the scientific
literature to incorporate the stability data from these projects

Figure 5. Workflow of the protein solubilization platform SolubiS.
The platform uses free energy calculations performed with FoldX to
avoid potentially destabilizing mutations in aggregation-prone regions
identified by TANGO. The results are presented in form of a mutant
aggregation and stability spectrum plot.220 The web server is free of
charge for academic users at http://solubis.switchlab.org/.
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could provide valuable data resources for the training and
validation of stability predictors. A new database, FireProt DB,
is being established for this purpose at https://loschmidt.
chemi.muni.cz/fireprotdb/. The research community should
make an effort to establish validation procedures to assess the
quality of predictions of protein stability and solubility. This
could be done by releasing design challenges, but not
experimental data, as in the well-known Critical Assessment
of Protein Structure Prediction. Such a community-wide
assessment is one of the most efficient ways to compare
individual tools.
The Shift from Scores to Profiles and Specific

Mutations in Solubility Predictions. The problem of
unbalanced data sets also affects solubility predictors based
on machine learning, especially those that use k-mer content
and physicochemical properties as dominant features. The
imbalance of the training data sets containing a larger number
of negative samples and low diversity of protein structures limit
the predictive performance and generalizability to unseen
protein families. Over the short history of solubility prediction,
there has been a significant and positive shift away from
methods that provide single solubility scores toward
alternatives that offer more detailed solubility profile
predictions and even suggest mutations predicted to enhance
protein solubility. However, this trend also poses problems
because the quantity of relevant high-quality data decreases as
the detail of the predictions increases. For single solubility
score predictions, the TargetTrack database (which contains
information on tens of thousands of samples) is large enough
to support the development of machine learning models. For
solubility profile predictions, the number of relevant samples
decreases to hundreds or thousands, most of which are
amyloidogenic peptides. Matters are worse still for attempts to
predict the effect of mutations on protein solubility; in this
case, the amount of relevant experimental data is arguably
below the minimum needed to make adequate predictions.
Therefore, mathematical models developed by machine
learning frequently incorporate empirical components such as
structure-based corrections. A mechanistic understanding of
protein solubility justified by robust statistical analysis can only
be expected once larger sets of experimental data become
available.
High-Throughput Techniques for Highly Consistent

Data Sets. We envisage that the lack of appropriate data for
solubility prediction will be partially addressed by studies using
novel high-throughput characterization techniques such as
droplet microfluidics, fluorescence-activated cell sorting,
fluorescence resonance energy transfer, deep sequencing, and
deep mutational scanning. Experiments should be conducted
under strictly controlled conditions to produce robust data and
could employ one or more of the biomolecular and cellular
systems that have recently been developed to monitor protein
solubility and aggregation inside living cells. Additional high-
quality data could be obtained from projects conducted by
companies and other private organizations. The data generated
under defined conditions need to be properly annotated, for
example to report vectors, host organisms, buffers, laboratory
conditions, and procedures used for protein expression,
purification, and characterization. Proper controls should
always be included and the statistics reported to allow a
quantitative assessment of data variation. Collected data should
be structured to allow processing using computers, which is for
example not the case for the largest database of protein

solubility data, TargetTrack. The data should be curated and
stored in publicly accessible databases following the FAIR
principles: Findable, Accessible, Interoperable, and Reusable.
New data sets will enable the use of more sophisticated and
data-intensive methods such as deep learning and allow proper
external validation to be performed. Moreover, because
solubility depends largely on the properties of the protein’s
surface, corrections based on protein structure and the
inclusion of structural data in predictive tools could improve
the prediction accuracy. Enhanced-sampling MD simulations
of simplified molecular systems might reveal residue
interactions that are important for protein folding, while
advances in homology modeling and threading can comple-
ment sequence-based descriptors by providing structural
information at a reasonable computational cost.

Robust Scaffolds for Directed Evolution by Phyloge-
netic Analyses. Whereas force field and machine learning
methods are limited by a lack of data, the problem for
phylogenetic approaches is different: high-throughput sequenc-
ing has made vast numbers of sequences available, allowing
evolutionary analyses to be performed for the vast majority of
protein families. The genomes of organisms living under
extreme conditions are also becoming available, providing
essential information for wider use of CD. This rapid
expansion of the accessible sequence space has a downside
for the ASR method, which can only use a limited number of
homologous sequences for reconstruction. Therefore, large
pools of potential homologues make sequence selection a
challenging task. Homologue selection can be guided by
annotation ontologies (e.g., molecular function, cellular
component, and biological process) and other information
from bioinformatics and biophysical databases. Furthermore,
with increasing numbers of solved protein structures, structure-
guided MSAs may displace sequence-based alternatives, and
ASR may be more commonly used to generate robust scaffolds
for directed evolution campaigns and de novo enzyme design.
The degree of uncertainty in ASR increases the further back we
go in evolutionary history. Therefore, the reliability of
inference methods should be increased to more accurately
predict folded, stable, and soluble ancestral proteins.

Addressing Stability−Activity Trade-Offs Using Meta-
data and Negative and Multistate Designs. The
predictive power of computational methods has improved in
recent years, with a positive impact mainly in the area of
protein stabilization. A very challenging but important task is
to predict thermodynamic as well as kinetic stability. There are
several spectacular examples illustrating the improvement in
kinetic stability by only a few mutations, but to the best of our
knowledge, methods specifically targeting kinetic stability have
not been developed. Connecting the design of kinetic stability
with solubility within a single method could be particularly
powerful. Stability−activity trade-offs are intrinsic to protein
structures. Buried polar catalytic residues are suboptimal with
respect to protein stability, and structural optimization of these
functionally relevant regions is likely to also affect the
biological activity. Mutations that stabilize regions whose
conformational dynamics are important for enzyme activity can
similarly be expected to negatively affect the catalytic
performance. The incorporation of metadata and smart filters
into engineering workflows will help preserve protein activity
by enabling the identification of structurally and functionally
important residues, which should be systematically excluded
from mutagenesis. The incorporation of such negative designs
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will suppress misfolding and protein aggregation. Furthermore,
prediction accuracy is sometimes compromised by using a
single structure in calculations. Increasing computational
power and the use of GPU hardware will allow the adoption
of multistate designs. Extracting multiple representative
conformations and averaging results over the ensemble will
further improve the robustness and accuracy of predictions.
Enhancing Accuracy by Using Metapredictors, Con-

sensual Force Fields, and Hybrid Methods. There is a
clear trend toward combining multiple fundamentally different
methods within single predictors, leading to the development
of metapredictors, consensual force fields, and hybrid methods.
Hybrid methods offer several advantages: (i) even a simple
majority voting approach over several methods yields better
results than any individual method, each of which has its own
strengths and weaknesses; (ii) smart filtering out of
“untouchable” residues reduces the time required for
calculations to a degree that permits very thorough analysis
of the designable residues; (iii) the phylogenetic components
of hybrid methods can incorporate both positive and negative
design elements; and (iv) the availability of reliable predictions
will enable the combination of substitutions to create multiple-
point mutants without risking the introduction of destabilizing
or antagonistic effects. Hybrid methods represent a natural step
forward in the rapidly evolving field of protein stability
prediction because improvements in machine learning models
are limited by the availability of adequate data sets, while the
application of advanced force field methods is restrained by
their computational cost. It was recently demonstrated that
combining phylogenetic methods and atomistic force fields can
effectively optimize stability−activity trade-offs. We also
envisage the future enrichment of protein stabilization
methods addressing both thermodynamic and kinetic stability
with tools for predicting protein solubility, aggregation
propensity, and expressibility, eventually yielding all-in-one
software suites capable of designing “ideal” biocatalysts.
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