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Optimization of Injection Blow Molding: Part I - Defining Part 

Thickness Profile 
 

This paper suggests a methodology based on a neuroevolutionary approach to optimize the use of 

material in blow molding applications. This approach aims at determining the optimal thickness 

distribution for a certain blow molded product as a function of its geometry. Multiobjective search 

is performed by neuroevolution to reflect the conflicting nature of the design problem and to 

capture some possible trade-offs. During the search, each design alternative is evaluated through a 

finite element analysis. The coordinates of mesh elements are the inputs to an artificial neural 

network that is evolved and whose output determines the thickness for the corresponding location. 

The proposed approach is applied to the design of an industrial bottle. The results reveal validity 

and usefulness of the proposed technique, which were able to distribute the material along most 

critical regions to adequate mechanical properties. The approach is general and can be applied to 

products with different geometries. 

1 Introduction 

Blow molding is an important industrial process for manufacturing hollow plastic parts. The 

production of jars, bottles and similar containers are among its main applications. The costs of raw 

materials compose a significant share of the total costs of blow molded products. Thus, reducing 

costs and increasing competitiveness for manufacturing companies can be effectively achieved by 

minimizing the material usage. This requires a trade-off between the costs of production and quality 

criteria, since reduce the amount of material can deteriorate important product properties (Biglione 

et al., 2016).  
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When optimizing injection blow molding, the main issue to be addressed consists in 

defining the complete shape and thickness profile of the injected pre-form in order to get a final part 

with the desired properties (e.g., mechanical properties and weight). Therefore, the optimization of 

this process must take into account its main phases, as detailed in section 2.2 and in Figure 1.  

Figure 1 The injection blow molding process: black arrows – direction of the processing; open arrows – direction for 

optimization process

Evolutionary algorithms (EAs) allow to overcome limitations associated with traditional 

optimization methods. EAs are stochastic search methods that typically process a population of 

solution. This allows to perform global search without gradient information. In (Huang and Huang, 

2007), genetic algorithm (GA) was used to find the optimal thickness distribution for parison to 

produce a blow molded bottle with the required wall thickness distribution. The relationship 

between parison thickness distribution and the objective function (which implies to minimize the 

deviation from the target bottle distribution) was approximated by neural network. 

Some early studies showed the ability of Artificial Neural Networks (ANNs) to describe a 

blow molding process with a high degree of precision. In (Diraddo and Garcia-Rejon, 1993), a 

neural network was used to predict the wall thickness distribution from the parison thickness 

distribution. In (Huang and Liao, 2002) the diameter and thickness swells of the parison in 

extrusion blow molding were predicted from given operation parameters. In (Huang and Lu, 2005) 

neural networks were used to model a parison extrusion process in extrusion blow molding based 

on experimental data. 

This study presents a new methodology for injection blow molding optimization which 

combines several techniques into a neuroevolutional approach. ANNs are used to model wall 

thickness profile from a given mesh, multiobjective optimization and neuroevolutional algorithms 

are used to find optimal solutions in a search space and computer modelling are used to simulate the 
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injection blow process. The presented approach can be used in any of the phases of the whole 

process and can also be applied to products with different geometries. However, this paper focuses 

on the final stage of the blowing process, which forms the final molded part. Thus, the present 

approach is applied to find the optimal wall thickness distribution of an industrial plastic bottle, i.e., 

the solution which gives best trade-off between total material weight and suitable mechanical 

properties. 

2 Injection Blow Molding 

2.1 The Process 

A schematic view of the injection blow molding process is presented in Figure 1, along with the 

individual optimization steps that will be explained in section 2.2. The process phases are identified 

by letters, following the sequence indicated by black arrows. They are: 

A) Injection. This phase is performed at the injection machine, comprising a screw rotating 

inside a heated barrel at a certain speed. The aim is to melt the polymer at the ideal conditions 

considering the injection molding parameters. The molten polymer is injected into a heated preform 

cavity, which is clamped around a mandrel (the blowing rod) that forms the internal shape of the 

preform. 

 B) Stretching pre-form. Depending on the products to be molded, this phase can be absent 

and/or can take place simultaneously with the next phase. The aim is to stretch longitudinally the 

pre-form in order to maximize the quantity of material at the bottom of the part. At the same time, 

the polymeric material will be oriented. For that purpose, the plastic must be heated until a 

temperature allowing the stretch without deforming permanently the material (or break it). Thus, the 

geometry of the blowing rod must be optimized in order to facilitate the flow of the material. 
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C) Blowing. Air at certain pressure is introduced inside the heated pre-form in order to expand 

the material up to contact and acquire the internal shape of the mold. The aim is to produce a part 

with an optimized thickness profile taking into account the original pre-form thickness profile and 

the mold geometry, but at the same time maximizing the mechanical properties required and 

minimizing the material weight. 

 D) Mold opening. The mold is opened after cooling. The time required for cooling must be 

defined carefully as the part cannot deform during the opening. Thus, a critical situation of this 

process consists in obtain a part with uniform properties, both in the part surface and in its 

thickness. 

 E) Blow-molded part. In this phase the part continues to cooling during storage. The aim is to 

obtain a part with uniform properties (which also depends of the cooling rate). However, in this 

phase the cooling rate is less critical than in the three previous steps. 

2.2 Global optimization 

As described in section 2.1, the injection blow molding is a complex process, comprising 

different phases and involving several distinct topics. The major related concerns are setting the 

parameters for operating conditions in each stage and to define the best blowing-rod and mold 

geometries in order to obtain the best final part thickness profile and properties, while minimizing 

the quantity of material required in the process. A general optimization methodology is based on 

linking computational modeling and optimization procedures. The former performs numerical 

simulations describing the underling process and evaluates the performance of a particular design in 

terms of important process parameters. The latter generates potential solutions to the problem and is 

responsible for exploring the design space. These computational procedures require a trade-off 

between simple and complex models. Simple models often omit various important details and have 
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disadvantage of possibly being unrealistic. Complex models attempt to include more details in order 

to be more realistic. However, they are more difficult to solve. Also, there are efficiency 

requirements dictated by limited computational resources.  

The design optimization of injection blow molding can be performed by breaking down the 

entire process into several tasks (decomposition approach), as shown in Figure 1. This can be 

addressed by taking into consideration a customer specification for a blow molded container and 

applying procedures in an attempt to find the optimal settings for different phases of the blow 

molding process, i.e., in the proposed methodology, the optimization starts at the end of the process. 

Figure 2 shows the framework proposed for injection blow molding optimization. There are four 

major steps composing the global optimization (see Figures 1 and 2).  

Figure 2 The global optimization approach

To perform the process optimization, it must be clear, in each step, what the objectives to be 

accomplished and the decision variables to be optimized. In the proposed methodology (Figure 2) 

the results of a given step are the objectives of the subsequent step. Each step can be summarized as 

follows: 

I) Optimization of the mechanical properties and final weight. The results in this phase are the 

thickness profile of the final part (which may result from the previous optimization step). The 

objectives are to maximize the mechanical properties and minimize the final weight. The decision 

variables are the thicknesses in the locations defined by the numerical mesh. It is also necessary to 

consider the non-isotropic nature of the mechanical properties of the part, as its different locations 

suffer different orientation and cooling rates. However, due to the high difficulty in dealing with 

this issue, in this study an isotropic condition will be considered. 
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II) Optimization of the final part thickness profile. The thickness profile used here was the one 

obtained in the previous optimization step. The results, i.e., the decision variables, are the blowing 

conditions and the pre-form thickness profile after stretching (when stretching is applied).  

III) Optimization of pre-form (after stretching) thickness profile. The decision variables are the 

stretching conditions and the injected pre-form thickness profile, to be used in the next step. 

IV) Optimization of the pre-form thickness profile. The decisions variables are the injection 

conditions and the cavity geometry. 

The relationship between the steps is indicated by open arrows in Figure 2. In any case, there is 

the possibility, when the optimization reaches a certain step, to go back to reformulate the results 

obtained in any other previous steps. This is indicated by grey arrows in Figure 2. For example, 

when doing step IV) is possible to go back to any other previous steps (which means restarts the 

optimization procedure proposed), but using other values for decision variables taking account the 

knowledge acquired about the system during previously optimization processes. 

2.3 Proposed methodology 

The main idea of the proposed methodology consists in treating a container’s wall thickness 

as a function of its geometry, building an ANN that computes the wall thickness at any location 

based on the corresponding coordinates. It is important to point out a distinction between a 

traditional regression task that makes use of a data set with known target values of dependent 

variable and the proposed approach where such values are unavailable. The overall approach 

consists in finding the parameters for a neural network so that it produces the optimal wall thickness 

distribution for a blow molded container as a function of its geometry. 
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Figure 3 outlines the proposed neuroevolutionary approach. After reading necessary input 

parameters, the population of chromosomes encoding neural networks is randomly generated in the 

initialization procedure. 

Figure 3 Neuroevolutionary algorithm 

After completing initialization, for a predefined number of generations a steady-state variant 

of evolutionary process is performed. This means a single offspring is produced in each generation, 

with one generation consisting of selection, variation and replacement. Selection aims at selecting 

parents for producing offspring. This study uses a simple uniform selection where each population 

member has an equal chance to be selected. 

Variation is applied to parents using evolutionary operators in order to produce offspring. 

This is an important design issue as it plays a crucial role in the exploration of the search space. 

Therefore, different continuous variation operators are investigated in the in the experimental study.   

Replacement aims at forming a population of the next generation relying on the concept of 

the survival of the fittest from natural evolution. As the proposed neuroevolutionary algorithm is 

designed to deal with multiple objectives, replacement must ensure the population convergence and 

diversity. These two requirements are known as somewhat conflicting in nature and are essential for 

a proper exploration of the objective space. The adopted replacement strategy is based on the 

concept of the Pareto dominance to provide convergence and the hypervolume measure (Zitzler and 

Thiele, 1998) to ensure diversity. Such replacement strategy is popular in the field of evolutionary 

multiobjective optimization and proved to be effective in various studies (Beume et al., 2007). The 

Pareto Front of a certain population is a set of nondominated solutions, being chosen as optimal, if 

no objective can be improved without degrading other objective function values. 
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Each time a new individual is generated it is sent for evaluation, which involves the 

computation of the thickness for each element of the mesh. This is graphically illustrated in Figure 

4, where the coordinates of each mesh element are fed into the neural network to compute the 

corresponding thickness.  The resulting finite element model is submitted to perform the computer 

simulation, whose subsequent output is read to extract the mass and strain. In practice, each ANN 

represents an entire bottle, i.e., the thickness of all the x, y and z coordinates. 

Figure 4 Thickness calculation 

As multiple objectives are considered, in the end of evolutionary process a set of Pareto 

optimal neural networks is expected. The obtained solutions will suggest the design of a container 

providing different trade-offs between the mass and mechanical properties. 

3 Results and discussion 

3.1 Case study 

The geometry model of the particular industrial bottle addressed in this study is shown in 

Figure 5. The aim is to produce as new bottle able to support high pressures. Simultaneously, the 

symmetrical geometry allows to check the validity of the model. The bottle has a diameter of 45 

mm and a height of 182 mm. The material used for production is plastic with the mass density of 

1.15 g/cm3 and Poisson’s ration of 0.4. The bottle is set to experience a blowing pressure. The ratio 

between the pressure and Young’s modulus is 0.0027. The minimum and maximum allowable 

values of wall thickness are 1 and 3 mm, respectively. 

Figure 5 Geometry model of the bottle (dimensions in millimeters) 

It is important to point out that the neural network is not aware of the geometry of the final 

product since receives as input just a single coordinate. In order to obtain uniform thickness 
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distributions along the wall of final product a third objective was considered besides mass and 

strain. Figure 6 shows the bottle mesh with vertical lines highlighted. To obtain a uniform 

distribution throughout the wall, these lines should have at the end of the optimization the same 

thickness distribution as much as possible. Thus, the objectives considered in the experiments were 

to minimize: i) the total mass of final product (𝑓1), ii) the maximum strain obtained (𝑓2) and iii) the 

maximum difference between thickness distributions of each vertical line in the mesh (𝑓3). The 

difference between two vertical lines is calculated using the root-mean-square error index (RMSE): 

𝑅𝑀𝑆𝐸 =   √
1

𝑛
 ∑(𝑦𝑖̂ −  𝑦𝑖)2

𝑛

𝑖=1

 

where 𝑦𝑖̂ and 𝑦𝑖 represents the thickness points of two different vertical lines and n are the total 

number of points in each distribution. All vertical lines are compared with all the others, being 𝑓3 

the maximum calculated RMSE, that is to be minimized. 

Figure 6 Bottle mesh with vertical lines which are desirable to have same thickness distribution 

Computational experiments were carried out to investigate the effectiveness of different search 

operators under the proposed framework. This feature greatly affects the overall problem-solving 

capability, hence, deserves a particular attention. The results were compared using the hypervolume.  

Numerical simulations estimating the responses of particular designs were carried out by finite 

element analysis software ANSYS Workbench1. A finite element model with a mesh of 4674 

elements was defined. Due to time necessary to evaluate each solution a small population size of 50 

potential solutions was used and the process finish when 5000 evaluations were made. 

Neuroevolutionary algorithm developed for optimizing a wall thickness distribution was 

                                                 
1Version 18.1  
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investigated with two state-of-the-art variation operators for continuous optimization, namely real-

coded genetic algorithm (GA) and differential evolution (DE). Both operators were adopted with 

the polynomial mutation (PM) (Deb, 2001) that is applied with the mutation probability of 𝑝𝑚 =

1/𝑛 (where 𝒏 - is the chromosome length) and the distribution index of 𝜂𝑚 = 20.  

3.2 Study of different variants 

Figure 7 displays the evolution of the hypervolume for the two different variation operators. 

There is a clear separation between the two performance curves. The best result in terms of the 

hypervolume is obtained by GA. This operator acts on chromosomes in a gene-wise manner, which 

means each gene is treated separately. GA recombines individual genes of two parents using the 

SBX crossover method. Since correlations between the different genes are not exploited, such 

mechanism produces a disruptive effect on the coupling between the network parameters encoded 

into the chromosome. On the other hand, DE explores the search space using differences between 

genomes of distinct population members. DE operator produces an offspring by perturbing a 

particular individual with a scaled difference of randomly selected population members. 

Figure 7 Evolution of hypervolume for different variation operators (the higher the better) 

Better hypervolume values are related to a better performance in practical terms. This can be 

understood when comparing the results of GA and DE variants, whose Pareto front approximations 

are shown in Figure 8. Solutions forming both approximations lie quite close to each other in terms 

of 𝑓1 and 𝑓2. However, GA variant gives a significant difference in terms of 𝑓3, where the maximum 

error (RMSE) was 0.0094 while for DE was 0.0660. Thus, the obtained results stress the importance 

of a proper search strategy for solving the problem. From this analysis it is clear the importance of 

the studied operators in the performance of the optimization algorithm. GA operator was chosen for 

the remaining of the calculations. 
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Figure 8 Pareto optimal solutions obtained by neuroevolution with different variation operators 

3.3 Optimization results 

Figure 9 shows the obtained Pareto optimal solutions for the initial Population (randomly 

generated) and for the 100th generation in terms of mass and strain minimization (the third objective 

was not represented). At first glance, it seems that the initial population presents optimal solutions 

requiring none or minimal optimization, once many solutions of 100th generation presents the same 

(or very close) values for mass and strain when compared with the initial population. However, an 

analysis of Figure 10, which shows all objectives of both populations, it can be clearly seen that the 

optimization process had a significant impact on the RMSE values, which means that the solutions 

of the final population have better uniform thickness distributions. This can be better observed in 

Figures Figure 11 and Figure 12.  

Figure 11a) shows the Pareto optimal solutions for initial population with five solutions 

highlighted on the graph, where each of them provides different trade-offs between mass and strain. 

Figure 9 Pareto optimal solutions for mass (𝒇𝟏) and strain (𝒇𝟐) for the initial population and at 100th generation 

Figure 10 Pareto optimal solutions obtained for the initial population and at 100th generation 

For instance, solution S2 gives a certain thickness distribution which leads to a final product 

with 21g and maximum strain of 0.0028 whereas for solution S5 the maximum strain is 0.0003 but 

with 83g of mass. Figure 11b) shows the thickness distribution (at all vertical lines, from bottleneck 

towards the bottom of the bottle) for the selected solutions. Finally, Figure 11c) makes a small 

zoom at the same point and with roughly same scale for each solution of Figure 11b). Can be seen 

that all solutions do not have uniform distributions (the lines are not overlapped), which means that 

the optimization was not complete. 

Figure 11 Pareto optimal solutions for initial Population 

Figure 12 Pareto optimal solutions for 100th generation 
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Figure 12 shows the same, but now for the final population. For instance, solution S2 has a 

total mass of 9.2g and maximum strain of 0.0105 whereas solution S5 has a maximum strain of 

0.0003 but with nearly 80g of mass. Figure 12b) shows the thickness distributions for the selected 

solutions and Figure 12c) makes the same zoom (at same position and scale) as the Figure 11c). It 

can be seen that all solutions have uniform thickness distributions (lines are much closer each other, 

or even overlapped), which was expected once the values for RMSE are significant smaller when 

compared with initial population. 

The selected solutions from Figure 12a) represents different trade-offs between mass and the 

maximum strain. Considering the conflict nature of the objectives, the best relationship is usually 

located at the knee of the curve, which it might be represented by solutions S2 and S3. The 

thickness distribution of each selected solution are represented in Figure13a), 13b), 13c), 13d) and 

13e). Table 1 shows the corresponding objective function values. 

Table 1 Optimal solutions selected from Pareto front 

Solution Mass (g) Maximum strain 

S1 3.0 0.0590 

S2 9.2 0.0105 

S3 15.3 0.0047 

S4 52.1 0.0007 

S5 79.8 0.0003 

 

Figure 13 Thickness distribution of solution S1 to S5 

There are some important observations that can be made. There is a bottle of the Pareto optimal 

region where the material usage can be significantly reduced from the maxim value of 79.8g 

(solution S5) to approximately 3.0g (solution S1). This can be the most interesting bottle from a 
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practical perspective. However, a further reduction in the material results in a significant 

degradation of mechanical properties. Although such solutions are appealing from an economic 

point of view, they may be unacceptable as important quality criteria cannot be satisfied. The 

quality of solution and its relevance is greatly affected by the design parameters. The advantage of 

multiobjective optimization lies in the ability to obtain a wide range of available design alternatives 

and based on the acquired knowledge about the problem to make a decision regarding the 

implementation of a particular design. These results illustrate the importance of proper tools to 

support product development. 

Analyzing the values at Table 1, the best trade-off between mass and maximum strain is given 

by solution S3 (which is in the knee region of the Pareto front), where the total mass is 15.3g and 

maximum strain is 0.0047. Error! Reference source not found.3c show that S3 has also a better 

uniform thickness distribution along the wall of the bottle. Thus, it can be considered the optimal 

thickness distribution, i.e., which gives the best relationship between material usage and mechanical 

properties. 

4 Conclusions 

In blow molding industry, the product competitiveness can be effectively increased by reducing 

the costs of raw materials. This study suggested a methodology to optimize the material usage in 

blow molded products. This approach aims at determining the optimal distribution of material as a 

function of the product geometry. This function is approximated by neural network. The structure 

and parameters of the network are determined by neuroevolution. The search is performed by 

naturally addressing multiple objectives, such as reducing material usage and minimizing the 

resultant degradation of mechanical properties. This leads to a set of Pareto optimal networks which 
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represents different trade-offs between objectives. This allows to obtain valuable information in 

terms of available design alternatives and enables a posteriori decision making. 

The application of the proposed approach is demonstrated in a case study addressing the design 

of industrial bottle. Finite element analysis software was employed to simulate the response of the 

particular design to a static internal pressure. Different variants of neuroevolutionary algorithm 

were investigated. The obtained results indicate the importance of using proper search strategies and 

the ability of neuroevolutionary approach to optimize a thickness distribution for given conditions. 

Another major benefit of the proposed approach is its versatility, as its applicability is not 

dependent of the product geometry. 

As a future work, the proposed methodology will be applied to other phases of injection blow 

molding process, such as optimize the preform and operating conditions to obtain the final molded 

part with desired features. 
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