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Co-cultivation of Thermoanaerobacter strains with a
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Summary

Glycerol-rich waste streams produced by the biodie-
sel, bioethanol and oleochemical industries can be
treated and valorized by anaerobic microbial commu-
nities to produce methane. As current knowledge of
the microorganisms involved in thermophilic glycerol
conversion to methane is scarce, thermophilic glyc-
erol-degrading methanogenic communities were
enriched. A co-culture of Thermoanaerobacter and
Methanothermobacter species was obtained, pointing
to a non-obligately syntrophic glycerol degradation.
This hypothesis was further studied by incubating
Thermoanaerobacter brockii subsp. finnii and
T. wiegelii with glycerol (10 mM) in pure culture and
with different hydrogenotrophic methanogens. The
presence of the methanogen accelerated glycerol fer-
mentation by the two Thermoanaerobacter strains up
to 3.3 mM day ', corresponding to 12 times higher
volumetric glycerol depletion rates in the
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methanogenic co-cultures than in the pure bacterial
cultures. The catabolic pathways of glycerol conver-
sion were identified by genome analysis of the two
Thermoanaerobacter strains. NADH and reduced
ferredoxin formed in the pathway are linked to proton
reduction, which becomes thermodynamically favour-
able when the hydrogen partial pressure is kept low
by the hydrogenotrophic methanogenic partner.

Introduction

Worldwide demand for biodiesel increased in the last
decade, leading to a global biodiesel production of
36 x 10° | in 2016 (OECD/FAO, 2017). Glycerol is co-
produced in quantities that match approximately 10% of
the total biodiesel production, leading to a surplus of this
compound. Consequently, glycerol prices have
decreased, changing glycerol from a commodity chemical
to a surplus by-product, and even a waste product (Viana
et al., 2012; Clomburg and Gonzalez, 2013; Ciriminna
et al., 2014). Glycerol is also generated in ethanol pro-
duction by yeast (Navarrete et al., 2014) and is frequently
present in different wastes/wastewater as e.g. from the
oleochemical industry, where waste streams can contain
up to 90% glycerol (Clomburg and Gonzalez, 2013).
Anaerobic microbial processes can provide a solution for
these glycerol-rich wastes producing a wide range of valu-
able compounds (Viana et al., 2012; Clomburg and Gonza-
lez, 2013). Since glycerol is a highly reduced compound,
fermentative microorganisms must be able to dispose of
the excess reducing equivalents, which is generally accom-
plished by the production of 1,3-propanediol (1,3-PDO), a
product that is more reduced than glycerol (Clomburg and
Gonzalez, 2013; Schindler et al., 2014). Microorganisms
that lack the 1,3-PDO formation pathway generally transfer
the electrons to hydrogen or formate, as well as to pyruvate,
generating organic compounds such as ethanol, butanol or
succinate (Murarka et al, 2008; Scholten et al., 2009;
Clomburg and Gonzalez, 2013). The problem of the release
of excess electrons in glycerol fermentation has been stud-
ied with diverse mesophilic bacteria, including studies on
electron transfer to electrodes (Emde et al, 1989; Emde
and Schink, 1990) or medium sparging with inert gases for
H, removal (Dharmadi et al., 2006; Murarka et al., 2008).
The high energy content of glycerol makes it also an
interesting substrate for biogas production, individually or
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in co-digestion with different feedstocks — e.g. sewage
sludge or the organic fraction of municipal solid wastes
(Kolesarova et al., 2011; Yang et al., 2012). The gener-
ated biomethane may be stored or injected into the natu-
ral gas grid and used as biofuel (Beauchamp et al.,
2014; Hengeveld et al., 2014).

The production of biodiesel and bioethanol typically gen-
erates waste streams at temperatures between 40 to 65°C.
Therefore, thermophilic conditions are beneficial for valoriza-
tion of glycerol. Moreover, anaerobic digestion is generally
faster when performed by thermophilic than by mesophilic
microorganisms (Ho et al., 2013). Some thermophilic bacte-
ria were reported to grow with glycerol in pure culture, e.g.
Thermoanaerobacter wiegelii (Cook et al., 1996), Moorella
glycerini (Slobodkin et al., 1997) and Pseudothermotoga let-
tingae (Balk et al., 2002), but the thermophilic conversion of
glycerol by mixed communities is only scarcely studied
(Yang et al., 2008; Zhang et al., 2015).

This work aims to gain insight into the different micro-
bial key players involved in glycerol degradation in mixed
thermophilic anaerobic cultures. Thermophilic glycerol-
degrading cultures were enriched, and a co-culture of
Thermoanaerobacter brockii and a methanogenic part-
ner was obtained, pointing to the possibility of faculta-
tively syntrophic glycerol degradation. The influence of
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different methanogenic partners on glycerol degradation
by two Thermoanaerobacter species was then investi-
gated.

Results
Enrichment of glycerol-degrading microbial cultures

A stable thermophilic (55°C) glycerol-degrading enrich-
ment (culture Gly(9)) was obtained through repeated
transfers to fresh medium containing glycerol as sole
substrate over a period of approximately one year
(Fig. S1 and Table S1). This culture converted
6.5+ 03mM of glycerol mainly to methane
(6.2 + 0.1 mM) and acetate (6.7 + 0.1 mM) during the
first 6 days of incubation (Fig. 1). Propionate was also
detected, but at concentrations lower than 1 mM (Fig. 1).
No other fermentation products, such as lactate, ethanol,
butanol, 1,3-PDO, 1,2-PDO or hydrogen, were detected.
Culture Gly(9) was mainly composed by microorgan-
isms of the genera Methanothermobacter, Thermoanaer-
obacter, Pseudothermotoga and Acetomicrobium, as
shown in Table 1. Taxonomic identification was not pos-
sible for approximately 25% of the retrieved sequences.
This culture was further incubated in agar-shake cul-
tures at 70 and 40°C, considering that several members
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Fig. 1. Glycerol consumption and product formation by enrichment culture Gly(9) at 55°C: glycerol concentration, experimental methane data
and fitting with the modified Gompertz equation (Equation 1, R% = 0.984) (A); volatile fatty acids (B).
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Table 1. Microbial composition of the glycerol-degrading enrichments Gly(9) and Col-Gly.

Relative abundance (%)°

Identity of 16S

Taxonomic identifica- rRNA genes
tion? Gly(9) Col-Gly Closest relatives® (%)°
Methanothermobacter 36.7 31.7 30.1 23.7 Methanothermobacter wolfeii strain SIV6 16S ribosomal RNA gene, 100
partial sequence
Thermoanaerobacter 16.9 20.1 69.8 76.2 Thermoanaerobacter brockii subsp. finnii strain Ako-1 16S ribosomal 100
RNA gene, complete sequence
Thermotoga 12.0 126 0.0 0.0 Pseudothermotoga profunda AZM34c06 DNA, complete genome 98
Acetomicrobium 96 106 0.0 0.0 Acetomicrobium mobile strain NGA 16S ribosomal RNA gene, partial 99
sequence
Other taxa® 249 251 00 00 - -

aTaxonomic identification at the genus level based on 16S rRNA genes sequences of approximately 291 bp length by lllumina MiSeq.

PResults of duplicate samples.

°Results of sequence alignment by using BLAST towards the NCBI nucleotide database.
9Taxa with relative abundance < 1% and taxa with classification above the order level were included in Other taxa.

of the Thermoanaerobacter genus and all the known
Acetomicrobium species can grow at this last tempera-
ture. A methanogenic glycerol-degrading culture desig-
nated Col-Gly was obtained at 40°C, which presented
very low diversity when examined by phase contrast
microscopy (Fig. S2). Microbial community analysis
showed the presence of only two microorganisms
belonging to Methanothermobacter and Thermoanaer-
obacter genera, with relative abundances of 24-30%
and 70-76% respectively (Table 1).

When culture Col-Gly was incubated at 65°C (the opti-
mal growth temperature for both identified microorgan-
isms), 10 mM glycerol was completely degraded within
6 days of incubation (data not shown), associated with
the formation of methane (8.0 £ 0.2 mM), acetate
(8.7 £ 1.8 mM) and lactate (2.8 + 0.3 mM) (Fig. 2).
Hydrogen was detected at residual concentrations
(< 0.01 mM) during the experiment (data not shown).
Similar glycerol consumption (i.e. glycerol was not
detectable after 7 days of incubation) and products pro-
file (Fig. S3) were obtained in the incubations at 55°C (the
original incubation temperature of the enrichment Gly(9)),
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and therefore further experiments were performed at
65°C.

When the enriched co-culture Col-Gly was incubated
with BrES, a selective inhibitor of methane-producing
archaea (DiMarco et al., 1990), no methane was
detected in the headspace of the bottles and only vesti-
gial glycerol consumption was observed during 7 days of
incubation (Fig. 3). Hydrogen accumulated at very low
amounts (< 0.1 mM), while ethanol and lactate were not
detected (Fig. 3). No noteworthy effect of BrES could be
detected in glycerol consumption and products formation
by the T. brockii subsp. finnii type strain (Fig. S4). These
results raised the hypothesis that the presence of the
methanogen could influence the observed glycerol con-
version rates in the enriched co-culture Col-Gly.

Glycerol degradation by Thermoanaerobacter species, in
pure culture or in co-culture with methanogens

Within the Thermoanaerobacter genus, only T. wiegelii,
T. siderophilus, T. brockii subsp. finnii and T. subterra-
neus were reported to grow with glycerol (Cook et al.,
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Fig. 2. Methane (A) and organic acids (B) production by culture Col-Gly at 65°C.
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Fig. 3. Glycerol, acetate and methane concentrations measured
during the incubation of Col-Gly with BrES.

1996; Slobodkin et al., 1999; Fardeau et al., 2000; Alves
et al., 2016), although growth of T. brockii subsp. finnii
was described as poor (Alves et al., 2016). Therefore, to
further assess the possible positive effect of methano-
gens on glycerol fermentation, T. brockii subsp. finnii
DSM 3389" and T. wiegeli DSM 10319" were grown
individually in pure culture or with a methanogenic part-
ner. Methanothermobacter sp. strain GH (the culture
obtained after incubation of the enrichment Col-Gly with
H./CO, for 15 transfers) and M. marburgensis were the
selected methanogens. The results obtained are shown
in Figs 4 and 5.

After approximately 16 days of incubation, T. brockii
subsp. finnii and T. wiegelii consumed 52 + 4% and
39 + 5% of the glycerol added, respectively, with corre-
sponding volumetric substrate depletion rates (Rg) of 0.3
and 0.2 mM day~' (Figs 4A and 5A). Acetate was the
main product (around 2 mM in both cases, Figs 4B and
5B) and hydrogen, lactate and ethanol were obtained in
small amounts (0.5-1.2 mM, Figs 4C and 5C). Product
yields were calculated relatively to the amount of glycerol
consumed, and were similar for both species, i.e. around
0.5 mmol mmol~! for acetate, 0.25 mmol mmol~"' for
hydrogen and between 0.15 and 0.20 mmol mmol~" for
lactate and ethanol (Table 2). Considering the stoichiome-
try of the possible reactions involved (Table 3), the prod-
ucts measured accounted for 87% and 75% of the
glycerol consumed by T. brockii and T wiegelii, respec-
tively. When the Thermoanaerobacter type strains were
incubated in co-culture with the methanogens, glycerol
consumption rate was substantially accelerated, i.e.
all the constructed co-cultures (Thermoanaerobacter
strain + methanogen) completely degraded the added
glycerol in 4-7 days with volumetric substrate depletion
rates (Rg) 8—12 times higher than the bacterial pure cul-
tures (i.e. between 2.1 and 3.3 mM day~', Figs 4A and
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5A). Acetate and methane were the main products
obtained (Figs 4B, D and 5B, D), with respective yield
of 1.0 and 0.63-0.82 mmol mmol~' relatively to the
amount of glycerol consumed, which are close to the
theoretically expected values (Tables 2 and 3).

Discussion

Glycerol (1,2,3-propanetriol) can sustain growth of a
diverse microbial community, as shown by the composi-
tion and activity of culture Gly(9) enriched at 55°C
(Table 1, Fig. 1). The main bacterial genera identified
were probably involved in glycerol conversion, since
some of the characterized strains within the genera
Pseudothermotoga, Acetomicrobium and Thermoanaer-
obacter have been reported as glycerol degraders (Rees
et al., 1997; Menes and Muxi, 2002; Maru et al., 2013;
Alves et al., 2016). Acetate and methane were the main
products of glycerol conversion, indicating that methane
was produced from formate or H,/CO, (Fig. 1). This was
reinforced by the identification of Methanothermobacter
sp., a hydrogenotrophic methanogen, as the only
archaeon in this community (Table 1).

When applying a lower temperature (40°C) as selec-
tive factor, a co-culture composed by Thermoanaerobac-
ter and Methanothermobacter was enriched (culture Col-
Gly). This co-culture was capable of fast glycerol degra-
dation (< 6 days) coupled to good growth evaluated by
visual inspection. Also in the work of Zhang et al.
(2015), Thermoanaerobacter spp. and hydrogenotrophic
methanogens (mainly Methanothermobacter thermau-
fotrophicus) were the dominant microorganisms in the
community developed in a continuous bioreactor oper-
ated with glycerol at 70°C. However, as previously men-
tioned, Alves et al. (2016) reported that glycerol was
only poorly utilized by T. brockii subsp. finnii. When we
incubated pure cultures of T. brockii subsp. finnii or
T. wiegelii with glycerol at 10 mM, glycerol was hardly
fermented, i.e. more than 16 days were required to con-
vert 40-50% of the added glycerol (Figs 4 and 5). In
spite of that, these two strains easily ferment glucose in
pure culture, e.g. Alves et al. (2016) reported degrada-
tion of 20 mM of glucose by T. brockii subsp. finnii and
T. wiegelliin 7 and 3 days respectively. This difference
is probably related to the more reduced nature of glyc-
erol, which leads to the generation of twice the number
of reducing equivalents per pyruvate molecule formed,
compared with glucose (Clomburg and Gonzalez,
2013).

The two Thermoanaerobacter strains studied in this
work did not produce 1,3-PDO, and the analysis of their
genomes confirmed that these bacteria lack the genes
encoding for the enzymes involved in the pathway of
1,3-PDO formation (enzymes 1 and 2, Fig. 6). Therefore,

© 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology., Microbial

Biotechnology, 13, 962—973



966 C. P. Magalhaes et al.

) 10 .
-%-T.brockii
8 ~ {3 T.brockii + M.sp GH
*\* R; = 0.3 mM day~!
6 1 ‘*\% R?=0.9811 -@-T.brockii + M.mar

R? =0.9462

Glycerol (mM)
n

,,,,,,,,,,, R, =2.4 mM day!
R*=0.9864

0 2 4 6 8 10 12 14 16 18

(B)
-X-T.brockii
3 T.brockii + M.sp GH
g -@-T.brockii + M.mar
E
3
=
ko]
[}
<
8
© 1.2

-o-T.brockii - Lactate

g -T.brockii - Ethanol

E 08 - — T.brockii - H2

=

— 0.6 +

°©

g

S 04

-

153

g 02 -

]

<

5 0 . . .

0 2 4 6 8 10 12 14 16 18

(D) 10
-T.brockii + M.sp GH
-@-T.brockii + M.mar

Methane (mM)

0 T T T T T

0 2 4 6 8 10 12 14 16 18
Time (days)

Fig. 4. Glycerol consumption (A) and production of acetate (B) by Thermoanaerobacter brockii subsp. finnii (DSM 3389") when incubated in
pure culture or in co-culture with methanogens. Lactate, ethanol and H, production by T. brockii subsp. finnii in pure culture (C) and methane
production in co-culture with methanogens (D). M. sp. GH, culture obtained after 15 transfers of the enriched culture Col-Gly with Hy/CO;

M. mar, Methanothermobacter marburgensis DSM 21337, Ry, Volumetric glycerol depletion rate.
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Fig. 5. Glycerol consumption (A) and production of acetate (B) by Thermoanaerobacter wiegelii (DSM 10319") when incubated in pure culture
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with methanogens (D). M. sp. GH, culture obtained after 15 transfers of the enriched culture Col-Gly with H,/CO,; M. mar, Methanothermobac-
ter marburgensis DSM 2133, Ry, Volumetric glycerol depletion rate.
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Table 2. Product yields of glycerol fermentation, calculated relatively to the amount of glycerol consumed (mmol mmol~"), by T. brockii subsp.
finnii (DSM 3389") and T. wiegelii (DSM 10319"), when incubated in pure culture or in co-culture with methanogens.

Culture Acetate Lactate Ethanol Hy Methane

T. brockii 0.50 + 0.05 0.18 + 0.01 0.20 + 0.04 0.25 + 0.02 n.a.

T. brockii + M. sp. GH 1.00 + 0.04 n.d. n.d. n.d. 0.63 + 0.02
T. brockii + M. mar 1.00 + 0.00 n.d. n.d. n.d. 0.82 + 0.01
T. wiegelli 0.46 + 0.06 0.15 + 0.05 0.15 + 0.04 0.24 + 0.04 n.a.

T. wiegelli + M. sp. GH 1.00 + 0.04 n.d. n.d. n.d. 0.63 + 0.03
T. wiegelli + M. mar 1.00 £+ 0.04 n.d. n.d. n.d. 0.75 + 0.03

M. sp. GH, culture obtained after 15 transfers of the enriched culture Col-Gly with Ho/CO,; M. mar, Methanothermobacter marburgensis DSM

2133": n.a., not applicable. n.d., not determined.

Table 3. Possible reactions involved in glycerol degradation by the enrichment cultures Gly(9) and Col-Gly and their corresponding Gibbs free

energy changes at 25°C.

Reaction Reactant ~ Main products Equation AGP(kJ reaction™")2
(1) GlyCerOl Acetate CngOs + 2 Hgo i CgHgOg- + HCOg- +3 H2 +2 H* —73.1
(2) Hg + COg Methane 4 Hg + HCO; +H" > CH4 +3 Hzo —-135.6
(3)=(1+2) Glycerol Acetate + Methane  C3HgO3 — CoH30, + 0.75 CH4 + 0.25 HCO; + 0.25 H,O + 1.25 H  —174.7
(4) Glycerol Lactate C3HgO3 — C3Hs05 + Hy + H* —69.1
(5) Glycerol Ethanol C3HgO3 + H,O — CoH4OH + HCO3 + Hp + HT —-82.7

aGibbs free energy changes (at 25°C) calculated under standard conditions (solute concentrations of 1 mM and gas partial pressure of 10° Pa)
at pH 7. Standard free energies of formation were obtained from Thauer et al. (1977) (Thauer et al., 1977).

these bacteria are not able to easily dispose of the
excess of reducing equivalents generated from glycerol;
as lactate and ethanol (+CO,) are more oxidized than
glycerol, formation of these compounds cannot balance
the surplus of electrons formed in the conversion of glyc-
erol to acetate, and hydrogen production is constrained
by thermodynamics (Figs 4-6, Table 3). The two Ther-
moanaerobacter strains oxidize and decarboxylate pyru-
vate to acetyl-coenzyme A with ferredoxin as redox
mediator, as indicated by the presence in their genomes
of the genes coding for pyruvate:ferredoxin oxidoreduc-
tase (enzyme 11, Fig. 6), and by the absence of pyru-
vate formate lyase and formate hydrogen lyase encoding
genes (Fig. 6 — enzymes 12 and 13 respectively). Sub-
sequently, a trimeric or a monomeric hydrogenase (en-
zyme 16) oxidizes ferredoxin and, using protons as final
electron acceptors, leads to hydrogen production. In the
reoxidation of NADH" + H", electrons are transferred by
a NADH:ferredoxin oxidoreductase (enzyme 17) to a
hydrogenase (trimeric or monomeric, enzyme 16) and
thus hydrogen can also be produced (Vardar-Schara
et al., 2006; Calusinska et al., 2010).

The oxidation of reduced ferredoxin and especially
NADH coupled to proton reduction only becomes ther-
modynamically feasible at low hydrogen partial pressure
(Sousa et al., 2009; Stams and Plugge, 2009). There-
fore, Thermoanaerobacter strains surpass the metabolic
dilemma of redox balancing and energy acquisition when
in the presence of a methanogen, which consumes the
hydrogen produced during glycerol fermentation and

functions as biological electron acceptor (Fig. 6). In fact,
glycerol conversion to acetate becomes more exergonic
and thermodynamically more favourable if the hydrogen
produced is used by hydrogenotrophic methanogens to
produce methane, as shown by the Gibbs free energy
changes of AG” =-73.1 and —174.7 kJ reaction™"
respectively (reactions 1 and 3, Table 3). In these co-cul-
tures, ethanol production could not be detected, and only
small amounts of lactate were produced by the enriched
culture Col-Gly (Figs 4 and 5).

The positive effect of the methanogen was also exper-
imentally confirmed when the methanogenic activity in
culture Col-Gly was inhibited by BrES, which caused
glycerol degradation to proceed at a much lower rate
(Fig. 3). The relationship between the Thermoanaerobac-
ter strains and the methanogen points to a facultative
syntrophy, since glycerol fermentation can be performed
by these bacteria in pure culture but their growth and
metabolic products are directly influenced by the hydro-
gen scavenger (Stams and Plugge, 2009). This syn-
trophic relationship is energetically advantageous for the
Thermoanaerobacter bacteria, compared with glycerol
fermentation in pure culture, since it allows higher ATP
gain, i.e. 2 ATP are formed from glycerol to acetate
instead of 1 from glycerol to lactate and/or ethanol
(Fig. 6). Since syntrophic glycerol fermentation by the
two Thermoanaerobacter strains does not involve a
pyruvate formate lyase, the ability of the methanogenic
partner to consume formate is not needed for this inter-
species relationship. Only a slight delay of approximately
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EC number and genome location of the enzymes of this metabolic pathway can be found at Table S2.

2 days was observed in the incubations of T. wiegellii
and the Methanothermobacter. sp. strain GH (Fig. 5).
The importance of an external electron acceptor for
improving glycerol conversion has been previously
reported, for example in cultures of Actinobacillus suc-
cinogenes grown in the presence of dimethylsulfoxide
(DMSOQO) as external electron acceptor (Carvalho et al.,
2014; Schindler et al., 2014). Moreover, glycerol fermen-
tation by Escherichia coli was shown to be impaired by
hydrogen accumulation (Dharmadi et al., 2006; Gonzalez
et al., 2008), which could be overcome by co-cultivation
with the methanogen Methanobacterium formicicum
(Richter and Gescher, 2014; Kim et al., 2017). Likewise,
glycerol fermentation by E. coli and Propionibacterium
freudenreichii can be supported through electron transfer
to electrodes mediated by potassium ferricyanide (Emde
et al., 1989; Emde and Schink, 1990). For Thermoanaer-
obacter brockii subsp. brockii, the addition of thiosul-
phate or Methanobacterium sp. as electron acceptors
improved the oxidative deamination of aminoacids (Far-
deau et al, 1997). The consumption of glucose and
pyruvate by Thermoanaerobium brockii was enhanced
as well by using acetone as electron acceptor (Ben-Bas-
sat et al., 1981). Also, Vipotnik et al. (2016) showed inhi-
bition of glucose consumption by Thermoanaerobacter
strain AK68 when exposed to high hydrogen partial pres-
sure and that the addition of thiosulphate or co-cultiva-
tion with Methanothermobacter strain M39 (as electron
scavenger) increased the utilization of glucose and

acetate production (Vipotnik et al., 2016). In summary,
we show that the presence of a hydrogenotrophic
methanogenic partner, acting as biological electron
acceptor, enhances glycerol conversion by Ther-
moanaerobacter species, since it facilitates the redox
balance and contributes to a higher energy gain by
these bacteria. Therefore, syntrophic glycerol fermenta-
tion promotes faster anaerobic treatment of glycerol-rich
waste streams coupled to methane production.

Experimental procedures
Biomass source

Thermophilic anaerobic sludge was collected from a lab-
scale up-flow anaerobic column reactor operated at
55°C, fed with a mixture of skim milk and sodium oleate
(50:50% of the chemical oxygen demand, COD) at a
COD concentration of 10 g I™! and hydraulic retention
time of 1 day. Additional details of the reactor operation
are provided in Supporting Information. Degradation of
the substrate accumulated during the reactor operation
was promoted by incubation in batch at 55°C for
18 days, before starting the enrichments.

Medium composition and cultivation

All the experiments were performed using a bicarbonate-
buffered mineral salt medium (basal medium, BM) pre-
pared as described by Stams et al. (1993). BM was
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dispensed in serum bottles which were sealed with butyl
rubber septa and aluminum crimp caps. The headspace
of the bottles was flushed with a gas mixture of N, and
CO, (80:20% V/v), at a final pressure of 1.7 x 10° Pa.
Before incubation, the medium was reduced with
0.8 mM sodium sulfide and supplemented with salts and
vitamins. All inoculations and transfers were done asepti-
cally using sterile syringes and needles.

Enrichment of glycerol-degrading microbial cultures

Enrichments (coded Gly(x), where x represents the num-
ber of transfers) were started by inoculating 120 ml serum
bottles, containing 50 ml BM, with 10% (v/v) of the sludge.
Glycerol was added from a sterile stock solution to a final
concentration of 10 mM, based on the works of Fardeau
et al. (2000) and Alves et al. (2016). Successive transfers
of the cultures to new medium (10% v/v) and serial dilu-
tions were made after confirming microbial growth and
activity, based on microscopic observations and methane
measurements (more than 30% of the theoretical value
expected). All cultures were incubated at 55°C, statically
and in the dark. Schematic representation of the experi-
mental procedure applied is shown in Fig. S1.

Physiological characterization was performed after
nine successive transfers (enrichment Gly(9)), in tripli-
cate 500 ml bottles containing 250 ml BM (Fig. S1) and
glycerol (10 mM). Methane content in the headspace,
volatile fatty acids (VFA), lactate, glycerol, ethanol, buta-
nol, 1,3-PDO and 1,2-PDO were measured daily. The
final hydrogen content of the headspace was also mea-
sured. In addition, duplicate samples were collected at
the end of the incubation period for DNA extraction and
16S rBNA genes sequencing by lllumina MiSeq. The
experimental methane production data was fitted by the
modified Gompertz equation (equation 1) for estimation
of the methane production kinetics (Zwietering et al.,
1990).

M(t) = P x exp{fexp {R"I'D -+ 1] }, (1)

where M () = cumulative methane production (mM),
P = maximum methane production (mM), R,, = methane
production rate (mM day~'), e =2.7182818 and/ = lag
phase (days). The standard error for each variable and
the coefficient of determination (R?) were calculated.
Further microbial selection was then performed by
serially diluting the enrichment Gly(9) in agar-shake cul-
tures, containing 50 ml BM solidified with 1.5% (w/v)
agar. Incubations were made at 40 and 70°C, in the dark
and without agitation. Colonies were picked and trans-
ferred to the same medium without agar. Growth (veri-
fied by visual inspection of the bottles and by
microscopic observations) was only observed in the

cultures incubated at 40°C, and thus the enrichments at
70°C were not continued. At 40°C, after four successive
transfers in liquid medium, microbial community compo-
sition was analysed by sequencing of 16S rRNA genes
(Ilumina MiSeq). This culture was coded Col-Gly. lts
ability to consume glycerol (10 mM) and the products
formed (methane, hydrogen, VFA, lactate, alcohols) were
monitored in triplicate assays, incubated at two different
temperatures (55 and 65°C). Incubation with glycerol in
the presence of 20 mM of 2-bromoethanesulfonate
(BrES) was also performed in triplicate, and glycerol,
acetate, methane and hydrogen concentrations were
measured with time.

Glycerol degradation by Thermoanaerobacter species, in
pure culture or in co-culture with methanogens

Thermoanaerobacter brockii subsp. finnii (DSM 3389"),
Thermoanaerobacter wiegelii (DSM 10319") and Methan-
othermobacter marburgensis (DSM 2133") were obtained
from the Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ, Braunschweig, Germany). The two
Thermoanaerobacter strains were grown with 20 mM glu-
cose, and M. marburgensis was cultured using a gas
phase of Ho/CO, (80:20% v/v, 1.7 x 10° Pa). Enrichment
Col-Gly was also incubated with Ho/CO, (80:20% v/v,
1.7 x 10° Pa) for 15 transfers, with the aim of retrieving
the methanogen from this culture. The culture obtained
was named Methanothermobacter sp. strain GH.

An assay was then set up to study glycerol degrada-
tion by the two Thermoanaerobacter species, in pure
culture or in co-culture with methanogens. For this, the
two cultures of methanogens (Methanothermobacter sp.
strain GH and M. marburgensis) were pre-grown until
complete hydrogen consumption, after which the head-
space of the bottles was flushed and pressurized with
N./CO, (80:20% v/v, 1.7 x 10° Pa) under sterile condi-
tions. The two Thermoanaerobacter type strains were
also pre-grown with glycerol and were then transferred
(10% v/v) to bottles containing fresh medium or mixed
with the pre-grown cultures of methanogens. Glycerol
was added at 10 mM. The concentrations of glycerol,
other alcohols, VFA, lactate, methane and hydrogen
were measured over time. All tests were performed in
triplicate. Incubations were made at 65°C, statically and
in the dark.

Analytical methods

Phase contrast microscopy was performed using an
Olympus CX41 RF microscope, and micrographs were
obtained with an Olympus Altra 20 image acquisition
system. The software used with this setup was the Ana-
lySIS getlT (Olympus soft imaging solutions GmbH).
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Methane and hydrogen were quantified by gas chro-
matography. For methane quantification, a GC-2014 Shi-
madzu gas chromatograph was used with a Porapak Q
column and a flame ionization detector. N, was used as
carrier gas. Injection port, column and detector tempera-
tures were 110, 35 and 220°C respectively. Hydrogen
was analysed using a Molsieve column (MS-13x 80/100
mesh) and a thermal conductivity detector Bruker Scion
456 Chromatograph (Bruker, Billerica, MA, USA) with
argon (60 ml min~") as the carrier gas. The injector, col-
umn and detector temperatures were 100, 35 and 130°C
respectively. Volatile fatty acids (VFA), lactate, glycerol
and other alcohols were analysed by high-performance
liquid chromatography (HPLC; Jasco, Tokyo, Japan). For
organic acids quantification, an Agilent Hi-Plex H
(300 x 7.7 mm) column was used, with a mobile phase
of 2.5 mM H,SO, at a flow rate of 0.6 ml min~"'. The
column temperature was set at 60°C and spectrophoto-
metric ultraviolet (UV) detection was performed at
210 nm. Glycerol and other alcohols were analysed
using a Varian Aminex 87H (300 x 7.8 mm) with a
mobile phase of 5 mM H,SO, at a flow rate of
0.7 ml min~", with the column temperature set at 60°C
and refractive index (RI) detection.

Microbial composition of the glycerol-degrading
enrichment cultures

Aliquots of well-homogenized sludge were collected from
cultures Gly(9) and Col-Gly, and immediately frozen at
—20°C. Total genomic DNA was extracted using the
FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, OH)
and purified by ethanol precipitation. DNA amplification,
lllumina library preparation, amplicon sequencing (lllu-
mina MiSeq, Inc. San Diego, CA, USA) and bioinformat-
ics analysis of the data were performed at Research and
Testing Laboratory (Lubbock, TX, USA). Samples were
amplified for sequencing using the universal primer pair
515f and 806r (Caporaso et al, 2011), targeting the
prokaryotic 16S rRNA gene. Details on the sequencing
and bioinformatics data analysis can be found elsewhere
(Paulo et al., 2017). All sequencing reads were submit-
ted to the European Nucleotide Archive (ENA) under the
study accession number PRJEB30535 (http://www.eb
i.ac.uk/ena/data/view/PRJEB30535). A comparison of
16S rBNA gene sequences of OTU to the NCBI data-
base was also performed using the BLASTN alignment
tool (http://ncbi.nim.nih.gov/blast).

Genome analysis of Thermoanaerobacter strains

Analysis of Thermoanaerobacter brockii subsp. finnii
(DSM 3389") and Thermoanaerobacter wiegelii (DSM
10319") genomes, was performed using the Integrated

Enhanced glycerol conversion by Thermoanaerobacter 971

Microbial Genomes (IMG) (https://img.jgi.doe.gov/) and
The National Center for Biotechnology Information (NCBI)
(https://www.ncbi.nIm.nih.gov/) genomic platforms.
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