
M.A. Álvarez-Garćıa, “Automation and evaluation of mutation testing for the
new C++ standards”. ICSE 2021 SRC - ACM Student Research Competition.

Version: Accepted Version

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://conf.researchr.org/track/icse-2021/icse-2021-ACM-Student-Research-Competition


Automation and evaluation of mutation testing for
the new C++ standards

Miguel Ángel Álvarez-Garcı́a
Department of Computer Science and Engineering

Universidad de Cádiz
Cádiz, Spain

miguelangel.alvarez@uca.es

Abstract—Mutation testing is becoming increasingly widely
used to evaluate the quality of test suites, especially to test
programs coded in widely used programming languages in the
industry. Mutation tools have arisen to automate the technique
in different languages, including C++. With the increasing use of
this technique, new mutation operators modeling possible faults
often emerge to improve its abilities and adapt the tools to
new advanced features. In this work, mutation operators for the
new C++ standards, defined in previous work, are implemented
and applied to generate and execute mutants in real programs.
With this study, the MuCPP mutation tool is updated with the
inclusion of these new operators. In addition, the improvements
suggested in the definition of those operators can be finally tested,
and conclusions about their utility in practice can be drawn.
The implemented operators are checked on a set of four C++
programs that use these advanced features. The results show
significant differences with the previous manual analysis: the
number of invalid mutants was reduced by 64%, and we found
fewer alive mutants (88%) and an increase in dead mutants
(31%). In summary, both the number of mutants incorrectly
classified in the previous manual analysis and the number of
mutants generated (particularly equivalent mutants) have been
reduced.

Index Terms—Software testing, mutation testing, C++ new
standards.

I. INTRODUCTION

Software testing is a fundamental component in the de-
velopment of any software project to evaluate and improve
the quality of the programs. The presence of faults in the
software, not detected in the testing stage, can have serious
consequences, especially in critical systems. This testing phase
can represent more than 50% of the total cost of a project [1].
Nowadays, the importance of software testing is even more
notable in the context of Industry 4.0, where enterprises are
moving towards a completely connected environment and their
software systems are increasingly complex. In this scenario,
extensive testing activities may result in higher costs if they
are carried out completely manually.

In this context, the automation of software testing can
partially solve these problems, incorporating techniques that
increase the degree of confidence that the system is free
of faults. One of the most powerful techniques in this area
is mutation testing [2], which consists of introducing small
syntactic modifications in the source code of a particular
program and observe if this change is identified, or not, with
the tests implemented. These faults are injected based on

predefined transformation rules, which simulate usual pro-
gramming errors, and are known as mutation operators.

Focusing on C++, this language has experienced a signifi-
cant transformation in the last decade with the entry of new
standards. This notable evolution of C++ requires attention
for the testing process to be effective in new programs that
adopt these characteristics. With this aim, a set of mutation
operators directly related to the new standards was defined
in a previous work [3]. However, such operators were not
implemented in a mutation tool and, therefore, they could not
be put into practice. As a consequence, a comprehensive study
of the real effectiveness of these new operators is still pending.

Developing mutation testing regarding the characteristics
of the new standards is necessary because the new C++
projects in the industry will adopt these advanced features
progressively. In this paper, we implement the previously
designed operators to sort out this issue, and apply them to
real recent projects for the first time, obtaining more precise
results of their behavior than previous manual analysis.

II. BACKGROUND AND RELATED WORK

Recently, the C++ standard committee agreed to issue a new
standard for the language each three years. As a result, C++11
was upgraded with different features in 2014, calling it C++14
[4]. Among the most important features inserted in C++11
and C++14, we can find the reserved word auto, intelligent
pointers, move semantics and lambda functions.

Different researches have been done around mutation testing
in the last few years [5]. Many tools for different languages
have been developed to apply mutation testing automatically.
In the case of C++, several tools can be found [6]–[8]. In
this paper, we focus on MuCPP [9], a tool developed at
the University of Cadiz to automate a set of traditional and
class operators (with respect to the object-oriented part). These
operators were implemented according to the C++03 standard.

The evolution of C++ through the new standards and their
increasing use in the industry led Parsai et al. [3] to define
new mutation operators for these revised versions of C++.
They presented a set of four new mutation operators that were
tested manually in their work. The four mutation operators
are: range-based “for” reference removal (FOR), lambda ref-
erence capture (LMB), forced rvalue forwarding (FWD) and
initializer list constructor (INI).



III. PROPOSED SOLUTION AND NOVELTY

In this paper, we propose the extension of the MuCPP tool
so that it can be used to test programs that make use of the new
features of C++. To illustrate this, and for the sake of brevity,
we will focus on one of those operators: the FOR operator.

A. Operator definition

The range-based reference removal operator is based on
the possible confusion between value and reference semantics
when using the new range-based for loop. This operator
modifies the sentences with the form for (T& elem: range) or
for (T&& elem: range), in which T is auto or a particular type
of the language. The operator removes the reference qualifier
from the range statement (& or &&), as shown in Table I.

TABLE I
FOR OPERATOR MUTANTS

Source code Mutants
for (auto& elem: range ){...} for (auto elem: range ){...}

for (auto&& elem: range ){...} for (auto elem: range ){...}

The implementation of FOR is achieved by searching for
this type of loops and removing the existing references in
them. In addition, the implementation of this operator has been
refined to reduce the generation of equivalents and useless
mutants, based on the indications of the authors of the operator.
This improvement consists in omitting those loops marked
as const. In this case, mutating the variable targeted by this
operator would be useless because its value could not be
modified anyway inside the loop.

B. Programs

For this work, we used four of the programs (listed in
Table II) indicated in the previous work, which make use
of the feature that FOR focuses on. We used the test suites
implemented by their developers for each of these programs.

TABLE II
PROGRAMS TO BE USED IN THE EXPERIMENT

Project Commit Code lines Commits number
Corrade ff3b351 6500 1898
EntityX 6389b1f 9000 296

Json a09193e 8000 1973
Antonie 59deb0d 9000 306

• Corrade [11] is a C++11/14 utility library.
• EntityX [12] is an Entity Component System that uses

C++11 features.
• Json [13] is a C++ library to work with JSON.
• Antonie [14] is a processor of DNA reads.

C. Mutant classification

In their paper, Parsai et al. [3] manually counted the
number of mutants that these new operators would produce
in those programs. They also reasoned about the nature of
those mutants, classifying them into dead (when they thought

that a test case could be designed to detect the mutant) or
equivalent (when they thought there was no way to detect
it). In our paper, however, we actually automate the operators,
generate the mutants and execute them against a real test suite.
As a result, our classification of mutants is different from the
one in the previous paper:

• A dead mutant is the one detected by the tests.
• An alive mutant is the one that is not detected, including

possible equivalent mutants.

IV. RESULTS

This operator is executed using the MuCPP tool, which
generates one mutant per each mutation location found. Later,
each project is compiled —invalid mutants are then detected—
and the tests included in each project are run —alive and
dead mutants are then identified. We can observe in Table
III the results obtained from the application of FOR on the
aforementioned programs and the execution of their respective
tests on the resulting mutants. We show both, our automated
results (A) and the results of the manual analysis in the
previous paper (M), for their comparison. As can be seen in
all cases, the number of invalid mutants in our execution is
far fewer than the number of valid ones. It seems that the
improvement incorporated helps avoid the generation of some
invalid mutants. The mutants of two of the four chosen projects
(EntityX and Json) remained alive after the test execution,
which may indicate that these projects probably need the
design of particular tests to kill these type of mutants. On the
contrary, the test suites for the Corrade and Antonie projects
are adequate with respect to the mutants generated since all
of them have been killed. It should be noted that, as can be
seen, there is a notable difference between the results of the
automated and the manual analysis. This gives evidence of the
importance of automating mutation operators to more precisely
know about their behavior in real projects.

TABLE III
RESULTS OBTAINED

Project Total Invalid Alive Killed
M A M A M A M A

Corrade 24 15 1 1 13 0 10 14
EntityX 2 2 0 0 2 2 0 0

Json 1 2 0 0 0 2 1 0
Antonie 39 18 10 3 18 0 11 15

V. CONTRIBUTIONS

This work allows covering the new C++ standards in real
projects with the extension of the MuCPP mutation testing
tool. This is a timely contribution because industrial software
projects will soon completely embrace these advanced features
and, therefore, the automation of mutation operators focused
on these standards should not be longer postponed. Thanks
to this, a mechanism is established to carry out large-scale
studies on the usefulness of these operators.



REFERENCES

[1] G. J. Myers, T. Badgett, and C. Sandler, “The Art of Software Testing”
Wiley , Hoboken , 2011.

[2] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: an analysis and survey,” in Advances in
Computers, vol. 112, Elsevier, 2019, pp. 275–378.

[3] A. Parsai, S. Demeyer, and S. De Busser, “C++11/14 Mutation Operators
Based on Common Fault Patterns” Testing Software and Systems.
Springer International Publishing, Cham, pp. 102–118, 2018.

[4] S. Meyers, “Effective Modern C++: 42 Specific Ways to Improve Your
Use of C++11 and C++14” O’Reilly Media, Incorporated, Sebastopol,
2014.

[5] Y. Jia and M. Harman, “An Analysis and Survey of the Development
of Mutation Testing,” IEEE Transactions on Software Engineering, vol.
37, (5), pp. 649-678, 2011.

[6] “Mutate++ - A C++ Mutation Test Environment” https://github.com/
nlohmann/mutate cpp (accessed Jan. 20, 2021).

[7] “Dextool Mutate” https://github.com/joakim-brannstrom/dextool/tree/
master/plugin/mutate (accessed Jan. 20, 2021).

[8] A. Denisov and S. Pankevich, “Mull It Over: Mutation Testing Based
on LLVM,” 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Västerås, Sweden,
2018, pp. 25-31, doi: 10.1109/ICSTW.2018.00024..

[9] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. Garcı́a-
Domı́nguez, and J. J. Domı́nguez-Jiménez, “Assessment of class mu-
tation operators for C++ with the MuCPP mutation system”, Inf. Softw.
Technol., vol. 81, pp. 169–184, 2017.

[10] L. Lampropoulos, M. Hicks and B. C. Pierce, “Coverage guided, prop-
erty based testing,” Proceedings of ACM on Programming Languages,
vol. 3, (OOPSLA), pp. 1-29, 2019.

[11] “Corrade: C++11/C++14 multiplatform utility library.”
https://github.com/mosra/corrade (accessed Jan. 20, 2021).

[12] “EntityX: A fast, type-safe C++ Entity-Component system.”
https://github.com/alecthomas/entityx (accessed Jan. 20, 2021).

[13] “JSON for Modern C++.” https://github.com/nlohmann/json (accessed
Jan. 20, 2021).

[14] “Antonie: an integrated, robust, reliable and fast processor of DNA
reads.” https://github.com/beaumontlab/antonie (accessed Jan. 20, 2021).


