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a b s t r a c t 

The establishment of a sessile community is believed to occur in a sequence of steps where genetically 

distinct bacteria can become attached to partner cells via specific molecules, in a process known as coag- 

gregation. The presence of bacteria with the ability to autoaggregate and coaggregate has been described 

for diverse aquatic systems, particularly freshwater, drinking water, wastewater, and marine water. In 

these aquatic systems, coaggregation already demonstrated a role in the development of complex mul- 

tispecies sessile communities, including biofilms. While specific molecular aspects on coaggregation in 

aquatic systems remain to be understood, clear evidence exist on the impact of this mechanism in mul- 

tispecies biofilm resilience and homeostasis. The identification of bridging bacteria among coaggregating 

consortia has potential to improve the performance of wastewater treatment plants and/or to contribute 

for the development of strategies to control undesirable biofilms. This study provides a comprehensive 

analysis on the occurrence and role of bacterial coaggregation in diverse aquatic systems. The potential 

of this mechanism in water-related biotechnology is further described, with particular emphasis on the 

role of bridging bacteria. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In natural aquatic environments bacterial cells are commonly 

ncountered in close association with wet surfaces and interfaces 

n the form of multicellular aggregates, also known as biofilms 

 Romaní et al., 2016 ). These are defined as microbial aggregates 

n which cells are embedded in a self-produced matrix of ex- 

racellular polymeric substances (EPS) and are adhered to each 

ther and/or to a surface ( Vert et al., 2012 ). Inside these well-

rganized structures the microorganisms are protected from en- 

ironmental stresses, while ecological interactions among differ- 

nt species may occur (Christensen et al., 2002; Rao et al., 2005 ; 

imões et al., 2007 ). In addition, physicochemical interactions can 

e established between microorganisms and inorganic particles 

 Evans, 20 0 0 ; Fulaz et al., 2019 ). In fact, it is recognized that envi-

onmental biofilms are efficient binding matrices of inorganic par- 

icles ( Ikuma et al., 2015 ). 

Biofilms are crucial in the homeostasis of ecosystems and 

ave an excellent ability to degrade and transform pollutants, 
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s they are involved in primary production (photosynthetic ac- 

ivity) ( Underwood et al., 2005 ), carbon and nutrient cycling 

 Davey and O’Toole, 20 0 0 ), retention of inorganic and organic nu- 

rients ( Pusch et al., 1998 ), and energy transfer in the food web

 Feckler et al., 2015 ). Biofilms are also used for cleaning polluted 

ater by removing organic material ( Lazarova and Manem, 1995 ) 

s well as in other biodegradation processes ( De Beer and Stood- 

ey, 2006 ). On the other hand, biofilms may have negative ef- 

ects, mainly in man-made systems ( Table 1 ). Such effects include 

iofouling, the harbourage of pathogens and microbial induced 

orrosion, which may affect both industrial water ( Videla and 

errera, 2005 ) and drinking water distribution systems (DWDS) 

 Simões and Simões, 2013 ). In marine systems, man-made struc- 

ures such as aquaculture nets, oil and gas installations, and ship 

ulls are also affected by biofilms ( Salta et al., 2013 ). 

Biofilms are formed through a sequence of events that have 

een extensively described in several excellent comprehensive re- 

iews ( Hall-Stoodley and Stoodley, 2002 ; Verstraeten et al., 2008 ; 

imões and Simões, 2013 ). Coaggregation is usually included in 

he biofilm formation process, being a widespread phenomenon 

lready observed within several bacterial biofilm communities 

rom diverse environments ( Katharios-Lanwermeyer et al., 2014 ; 

https://core.ac.uk/display/392356268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Table 1 

Benefits, problems and costs from biofilm formation in aquatic systems (adapted from de Carvalho, 2018 ; Mattila-Sandholm and Wirtanen, 1992 ). 

Benefits Problems Estimated cost 

Aquaculture Reduce the occurrence of pathogenic 

bacteria in culture system (e.g. nitrogen 

uptake); Minimization of water exchange 

(causes stress to some cultures) 

Fouling of both stock and infrastructures; 

Biofouling on fish cages and shellfish 

sites 

1.5–3 billion US dollars per year; 

5–10% of the industry value in Europe 

(ca. 260 million euros per year) 

Drinking water 

distribution 

systems 

Act as biocatalysts in natural systems for 

the self-purification of surface waters and 

groundwater, and in engineered 

fixed-film processes for the treatment of 

DW and wastewater 

Increase power consumption in pumped 

systems; 

Material deterioration; Detachment of 

microorganisms; 

Water quality 

Billions US dollars per year in energy 

losses, equipment damage, product 

contamination and medical infections 

Oil and gas 

industry 

Increase power consumption in pumped 

systems; 

Material deterioration; 

Biocorrosion 

20–30% of corrosion-related costs 

Maritime 

transport 

Heat transfer reduction; 

Increase fuel consumption; 

Material deterioration 

35–50% increased fuel consumption; 

1.6–4% of annual operational cost for a 

ship 

Water 

desalination 

Microbial desalination (environmentally 

friendly technology) 

Biofouling accumulation reduces 

effectiveness of ion exchange and 

membrane processes used for 

high-quality water treatment 

5–20% of operational costs for cleaning; 

Cost of biofouling ca. 30% of total 

operating costs 
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(  
tevens et al., 2015 ). Due to its highly specific mechanism of recog- 

ition and adhesion of different bacterial species to each other 

 Rickard et al., 2003a ), it facilitates structural and metabolic co- 

ependences, subsequently contributing to the development of 

omplex multispecies biofilm communities ( Elliott et al., 2006 ). 

oaggregation has been most thoroughly studied in oral biofilms 

 Kolenbrander et al., 2006 ). However, this phenomenon is also 

ecognized as relevant for aquatic microbial systems ( Dang and 

ovell, 2016 ), not only for the establishement of complex ses- 

ile communities, but also for their protection from stress condi- 

ions, including disinfection ( Simões et al., 2008 ). Several reports 

n the coaggregation ability of aquatic biofilm bacteria have been 

ublished ( Buswell et al., 1997 ; Cheng et al., 2014 ; Gilbert et al.,

0 02 ; Ishii et al., 20 05 ; Kwak et al., 2013 ; Malik et al., 2003 ;

cCormick et al., 2011 ; Min and Rickard, 2009 ; Ramalingam et al., 

013 ; Rickard et al., 2004a , 2003b , 2000 , 2004b ; Simões et al.,

008 ; Stevens et al., 2015 ; Vornhagen et al., 2013 ). However, 

he data on coaggregation in aquatic systems is scarce, particu- 

arly when compared with the dental field. In fact, while sev- 

ral reviews ( Jakubovics, 2015 ; Katharios-Lanwermeyer et al., 2014 ; 

olenbrander, 20 0 0 , 1993 , 1988 ; Rickard et al., 2003a ; Weiss et al.,

996 ) have examined the role of coaggregation among oral bac- 

eria, only three reviews have addressed aspects of coaggrega- 

ion in aquatic environments ( Katharios-Lanwermeyer et al., 2014 ; 

cCormick et al., 2011 ; Rickard et al., 2003a ). This study provides 

 comprehensive analysis on the occurrence and role of coaggrega- 

ion in aquatic systems. 

. Coaggregation 

Coaggregation is a highly specific cell-cell mechanism of recog- 

ition and adhesion of genetically distinct bacteria to each other 

 Rickard et al., 2003a ), which is thought to have an essen- 

ial role in the development of multispecies biofilms ( Katharios- 

anwermeyer et al., 2014 ; Kolenbrander et al., 1999 ; Rickard et al., 

003a ). This high-level interaction is beneficial for the microorgan- 

sms involved by providing a broader habitat range, effective co- 

etabolism, increased resistance to host defenses, and enhanced 

irulence ( Mahajan et al., 2013 ). Some other advantages include: 

he facilitated exchange of chemical signals and genetic informa- 

ion, protection from adverse environmental conditions as well 

s cell differentiation in some populations ( Wimpenny and Colas- 
2 
nti, 2004 ). The close proximity between coaggregating cells may 

acilitate the exchange of signals or cues that modulate cell-cell 

ensing and gene regulation ( Mutha et al., 2019 ). For that reason, 

oaggregation has been suggested to lead profound phenotypic 

hanges in the partner cells, enabling their proliferation in biofilms 

 Hendrickson et al., 2017 ; Mohammed et al., 2018 ; Mutha et al.,

018 ). These changes may be critical for adaptation and survival 

n multispecies biofilms ( Mutha et al., 2019 ). Another advantage of 

he coaggregation mediated proximity is the possibility for extra- 

ellular electron transfer ( Ishii et al., 20 05 , 20 06 ; Summers et al.,

010 ), considered a promising strategy for diverse applications, 

ncluding bioremediation, microbial fuel cells and microbial elec- 

rosynthesis ( Kato, 2015 ; Shi et al., 2016 ). 

Coaggregation can be established between multiple bacte- 

ial species ( Buswell et al., 1997 ; Ramalingam et al., 2013 ; 

ickard et al., 2002a ), and is often strain-dependent ( Buswell et al., 

997 ; Ramalingam et al., 2013 ; Rickard et al., 2002a ; Simões et al.,

008 ; Vornhagen et al., 2013 ). Such phenomena were first rec- 

gnized for oral plaque-forming bacteria by Gibbons and Ny- 

aard (1970) . These authors found that Streptococcus sanguis (now 

treptococcus sanguinis ) and Actinomyces naeslundii (now differen- 

iated into three species – A. naeslundii, A. oris and A. johnsonii 

 Henssge et al., 2009 )) were able to coaggregate strongly. Mean- 

hile, a large number of bacterial species from the oral cavity 

ere found to have coaggregation ability ( Jakubovics and Kolen- 

rander, 2010 ; Kolenbrander et al., 2002 ). Among them, Fusobac- 

erium nucleatum presented a broad spectrum of such ability, be- 

ng capable to coaggregate with multiple bacterial species, favour- 

ng biofilm development in the oral cavity and mediating the in- 

egration of pathogens into biofilms ( Kolenbrander et al., 2002 ; 

eiss et al., 20 0 0 ) by acting as a bridging bacterium. This phe-

omenon has been observed among bacteria from aquatic environ- 

ents ( Buswell et al., 1997 ; Cheng et al., 2014 ; Ishii et al., 2005 ;

alik et al., 2003 ; Rickard et al., 20 0 0 , 20 02a ; Simões et al., 20 08 ).

uch bridging bacteria play an important role during multispecies 

iofilm development ( Cheng et al., 2014 ; Simões et al., 2008 ). 

As research progressed, techniques and systems to study co- 

ggregation have been gradually improved in sensitivity and the 

biquity of this phenomenon begun to be appreciated in many re- 

earch areas ( McCormick et al., 2011 ). It was shown to occur be-

ween bacteria isolated from biofilms in the canine dental plaque 

 Cunha et al., 2020 ; Elliott et al., 2006 ; Holcombe et al., 2014 ), the
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Fig. 1. Schematic representation of biofilm formation on a pipe surface with highlight on the occurrence of coadhesion and coaggregation. Preconditioning of the adhesion 

surface either by macromolecules present in the bulk liquid or intentionally coated on the surface (1) provides receptors for primary colonizers (2). Planktonic single cells, 

autoaggregates or coaggregates adhere directly to the surface or coadhere with primary colonizers, and can later act in the coadhesion process (3). Microcolony formation 

and EPS excretion starts to occur (4) as a consequence of active microbial growth and recruitment of secondary colonizing species (5). Formation of coaggregation/coadhesion 

bridges between early colonizers (purple and pink spheres and blue rods) and late colonizers (red long rods and yellow curved rods) (6). Coaggregation interactions between 

planktonic cells are shown: intergeneric coaggregation (pink sphere and blue rod – 2); and intrageneric coaggregation (purple and pink spheres – 4) (based on Katahrios- 

Lanwermeyer et al., 2014 ; Rickard et al., 2003a ). 
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Fig. 2. Schematic representation of typical interactions between coaggregating pairs 

of bacteria and inhibition tests to assess the surface-associated molecules involved 

in coaggregation (based on Kolenbrander and Williams, 1981 ; Cisar et al., 1979 ). 
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rop of chickens ( Aziz et al., 2019 ; Nallala and Jeevaratnam, 2018 ),

he human urogenital tract ( Ekmekci et al., 2009 ; Younes et al., 

012 ), and in the human intestine ( Ledder et al., 2008 ; Toh et al.,

019 ). In the last decades, coaggregation has also been reported 

or aquatic systems, including freshwater and wastewater biofilms 

 Buswell et al., 1997 ; Rickard et al., 20 0 0 ; Simões et al., 2008 ). 

.1. Coaggregation mechanisms 

Pre-conditioning of the adhesion surface by macromolecules 

resent in the bulk liquid or intentionally coated on the surface 

s the first step in the successional development of multispecies 

iofilms, which increases the fixation of initial colonizing bacteria 

 Simões and Simões, 2013 ). This initial cell-surface interaction is 

ediated through specific or non-specific interactions ( Marsh and 

radshaw, 1995 ). Non-specific interactions comprise physicochem- 

cal interactions between the bacterial cell envelope and mate- 

ial surfaces ( e.g., van der Waals forces, electrostatic interactions, 

nd hydrophobic effects). This is the first stage where adhesion is 

till reversible. The specific interactions contribute towards an ir- 

eversible adhesion ( Carvalho et al., 2013 ). Specific interactions of 

acteria with the colonizing surface are mediated by lectins and 

dhesins ( Niemann et al., 2004 ), which bind to specific sites on 

ost surfaces and materials ( Katsikogianni et al., 2004 ). At this 

oint, microorganisms have the ability to synthesize a variety of 

tructural components, such as EPS, that help cells to fix on the 

urface material ( Carvalho et al., 2013 ). There is a subsequent in- 

rease in biofilm cell density and species complexity due to the 

ecruitment of secondary colonizers through coadhesion and non- 

pecific aggregation interactions ( Bos et al., 1999 ; Busscher and van 

er Mei, 1997 ). Coaggregation contributes for biofilm development 

hrough the formation of networks of cell-cell interactions in sus- 

ension that will subsequently adhere on a surface by coadhesion 

 Fig. 1 ). Such interactions comprise the recognition of molecules 

n the surface of one cell by cognate surface components of ge- 

etically distinct cells. Coadhesion happens when the interaction 

ccurs between suspended cells or coaggregates and cells adhered 

n a surface ( Kolenbrander et al., 1997 ; Busscher and van der 

ei, 1995 ; Bos et al., 1996 ). 

Coaggregation is mediated by specific cell-surface polymers 

 Fig. 2 ) ( Rickard et al., 2003a ). These polymers are comprised of

n adhesin (protein) on one partner and a receptor (saccharide 

ontaining polymer) on the other partner, referred to as unimodal 

oaggregation. Furthermore, one partner can express both adhesin 

nd receptor, while the other partner cell expresses the respective 

ognates for the adhesin and receptor, referred to as bimodal co- 

ggregation ( Kolenbrander et al., 2010 ). In freshwater bacteria, co- 
3 
ggregation has been found to be mediated by protein-saccharide 

nd occasional protein-protein interactions ( Rickard et al., 2003a ; 

olenbrander, 20 0 0 ). The surface-associated molecules involved in 

oaggregation are typically investigated by heat and protease treat- 

ent and sugar reversal tests. The inhibition or reversal of co- 

ggregation is determined as a reduction in the coaggregation 

core ( Cisar et al., 1979 ). Heat and protease treatment allows to 

emonstrate whether heat and protease-sensitive/insensitive pro- 

eins (lectins) mediate aggregation or not ( Buswell et al., 1997 ). 

n the other hand, if coaggregation is reversed by adding one 

r more simple sugars to a suspension of coaggregating bacte- 

ia, this indicates that bacterial receptor molecules contain a car- 

ohydrate moiety and that the interaction is mediated by lectin- 

ike adhesins ( Buswell et al., 1997 ). Several membrane-bound ad- 

esins have been identified on the cell surfaces of dental plaque 

acteria ( Jakubovics and Kolenbrander, 2010 ; Kolenbrander, 20 0 0 ). 

ntil now, from a coaggregating biofilm bacterium not native to 

he oral cavity, only one coaggregation adhesin has been identi- 
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ed ( Rickard et al., 2002b ). A protein of 70 kDa with high se-

uence homology with a TonB-dependent receptor expressed by 

aulobacter crescentus was isolated from the cell surface of the co- 

ggregating freshwater biofilm bacterium Blastomonas natatoria 2.1 

 Rickard et al., 2002b ). It is suggested that this protein isolated 

rom B. natatoria 2.1 is a TonB-dependent receptor protein that is 

lso a coaggregation adhesin ( Rickard et al., 2003a ). 

.2. Methodology to study coaggregation 

Coaggregation is usually assessed using a visual scoring scheme 

ased on the size of the coaggregates and the resulting de- 

rease of the turbidity of the supernatant fluid ( Cisar et al., 1979 ;

ilbert et al., 2002 ; Vornhagen et al., 2013 ). The visual coaggrega- 

ion assay involves the mixing of equal concentration/volume of 

lanktonic bacteria (usually in pairs) followed by vigorous mix- 

ng in order to promote the contact and the recognition of mech- 

nisms between cells, resulting in the formation of aggregates. 

he ability to coaggregate is then evaluated visually and scored 

rom 0 (no coaggregation ability – absence of aggregates and tur- 

id mixture) to 4 (large settling coaggregates formed rapidly leav- 

ng a clear supernatant). However, as visual scoring is subjective 

nd only semi-quantitative, it is highly prone to inconsistency and 

ias in scoring ( Busscher and van der Mei, 1995 ), compromis- 

ng the comparison between studies. A spectrophotometric assay 

an be used to determine the percentage change in optical den- 

ity ( McIntire et al., 1978 ), which provides a quantitative assess- 

ent and greatly improves reliability and reproducibility. In this 

ethod, the absorbance of mixed planktonic bacteria is measured 

ver time (at the beginning of the experiment and at selected 

ime points). Through the absorbance values it is possible to de- 

ermine the aggregation index ( Kostelac et al., 2020 ; Malik et al., 

003 ). That method is not amenable for simultaneous screening 

f larger numbers of samples ( Arzmi et al., 2015 ; Ledder et al.,

008 ). The ability to include multiple replicates in a single ex- 

eriment is highly desirable, as there may be strain variation in 

oaggregation, requiring multiple crosses to determine if the ob- 

erved phenomenon occurs generally between two species. Bac- 

erial coaggregation is sensitive to a variety of parameters, such 

s growth phase of the cells ( Rickard et al., 20 0 0 ), temperature

 Postollec et al., 2005 ), growth media ( Min et al., 2010 ) and pH

 Min et al., 2010 ). Therefore, high-throughput methods are highly 

ttractive to improve reproducibility of results. To this direction, 

evin-Sparenberg et al. (2016) developed a quantitative method 

or high-throughput screening of coaggregation among bacterial 

pecies. The method allows a simultaneous analysis of autoaggre- 

ation and coaggregation between large panels of strains so that 

he experimental variation is reduced, and possible subjective bias 

s minimized. It involves two complementary quantitative tech- 

iques to screen for coaggregation: i) a microplate-based high- 

hroughput approach to analyze the absorbance of mixed cultures 

fter 60 minutes; ii) a FlowCam 

TM device (a flow chamber coupled 

ith an objective), which allows the determination of particle sizes 

hrough the acquisition of images throughout 10 minutes of flow 

xperiment. The microplate-based assay enables high-throughput 

creening to identify potentially coaggregating strains, whereas the 

lowCam-based assay validates and quantifies the extent of co- 

ggregation. A high-throughput screening method can provide a 

eeper knowledge on how microorganisms interact and a mixed 

ulture biofilm is formed. 

Microscopy has also played an important role on the study 

f bacterial coaggregation. Even if semi-quantitative, microscopic 

nalysis helps to understand coaggregation aspects not detected 

isually and/or and spectrophotometrically ( Fig. 3 ). The simplest 

icroscopic study of coaggregation refers to the evaluation of 

ize and shape of coaggregates through phase-contrast micro- 
4 
raphs by optical microscopy ( Malik et al., 2003 ; Younes et al., 

012 ). The use of fluorescence microscopy using different fluores- 

ence probes has also been applied to assess coaggregation be- 

ween bacteria ( Douterelo et al. 2014 ; Simões et al. 2008 ). For

xample, Simões et al. (2008) used a DNA binding stain, 4,6- 

iamino-2-phenylindole (DAPI), to determine the coaggregation of 

acteria isolated from drinking water through epifluorescence mi- 

roscopy. Fluorescent probes may also be used in confocal laser 

canning microscopy to visualize coaggregates and to identify 

ifferent spatially distributed bacteria or microbial populations. 

ukumbuzya et al . (2019) used a multicolor FISH (fluorescence in 

itu hybridization) approach to determine the spatial arrangement 

etween different bacterial populations in activated sludge. Since 

ISH is a technique that requires fixation and hybridization steps, 

garose is used to embed the cell aggregates and to reduce the im- 

act of these two steps on the structure of aggregates. The spatial 

rrangement between two distinct populations were analyzed by a 

D “inflate algorithm” that quantifies the density of one microbial 

opulation at increasing distances from the cells of another popu- 

ation, as a measure of coaggregation. Almstrand et al. (2013) also 

pplied a multicolor FISH approach in a confocal microscope to 

valuate coaggregation of microbial populations within biofilms. 

n alternative method combining FISH with multispectral imag- 

ng (combinatorial labeling and spectral imaging [CLASI]-FISH) was 

eveloped ( Almstrand et al., 2013 ; Valm et al., 2011 ) and used

or coaggregation analysis. CLASI-FISH allowed simultaneous dif- 

erentiation of up to 28 bacterial species within an oral biofilm 

 Olsen, 2018 ). Although bacterial coaggregation as well as eco- 

ogical succession has been described in great detail for an oral 

iofilm, the micrometer-scale resolution needed to study the spa- 

ial organization of individual bacterial cells in the consortia is a 

imiting aspect ( Attar, 2016 ). CLASI-FISH allowed the visualization 

f the biogeography of oral biofilms for the first time ( Olsen, 2018 ),

here it was possible to observe the specific location of particular 

acteria, and with which species they tend to associate. This pro- 

ided an analysis of the interaction and organization of microbial 

ommunities through combinational labeling and spectral imaging 

 Olsen, 2018 ). Therefore, its application in the study of coaggrega- 

ion may be promising to understand the physiology and ecology 

f aquatic biofilm communities. 

Flow cytometry (FCM) is a fast, robust and high-performance 

ethod for microbiological analysis ( Geng and Henry, 2011 ). Scat- 

ered light gives an indication of the size of the particle, cell, or 

ggregate, whereas fluorescence can be used to differentiate be- 

ween different microbial subpopulations ( Trunk et al., 2018 ). Over 

he past few years, FCM has also been increasingly employed to in- 

estigate bacterial autoaggregation ( Beloin et al., 2008 ; Tomich and 

ohr, 2003 ). This suggests that FCM may also be used for coaggre- 

ation studies. For instance, Corno et al . (2013) studied the interac- 

ion between strains of two aquatic bacterial species ( Arthrobacter 

gilis and Brevundimonas sp.) and a protistan predator by FCM. 

Scanning electronic microscopy (SEM) has been used to vi- 

ualize coaggregates and distinguish different bacteria in clus- 

ers ( Cheng et al., 2014 ; Malik et al., 2003 ). The introduction 

f field emission SEM (FE-SEM) has allowed to obtain cleaner, 

igh-quality and less electrostatically distorted images of samples 

 Cazaux, 2005 ). For example, Ishii et al. (2005) demonstrated that 

agellum-like filaments produced by Pelotomaculum thermopropi- 

nicum SI were involved in coaggregation with Methanothermobac- 

er thermautotrophicus �H. Atomic force microscopy (AFM) has also 

een proven useful to determine the interactive forces between 

oaggregating and non-coaggregating bacteria ( Postollec et al., 

006 ; Vanzieleghem et al., 2016 ; Younes et al., 2012 ). Furthermore, 

olecular and genetic techniques have been used in the study of 

oaggregation. The isolation of mutants defective in genes associ- 

ted with coaggregation have helped to define functions required 



A.C. Afonso, I.B. Gomes, M.J. Saavedra et al. Water Research 196 (2021) 117037 

Fig. 3. Microscopy visualizations by epifluorescence microscopy using 4 ′ ,6-diamidino-2-phenylindole (DAPI) of distinct interacting DW bacteria with and without visual 

coaggregation. × 1320; bar = 5 μm. Visual coaggregation correlates with the microscopy observation of denser clusters. The microscopy visualizations were adapted from 

Simões et al. (2008) with permission from the American Society for Microbiology. 
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or intrageneric (between bacteria of the same genus) and inter- 

eneric (between bacteria of different genera) coaggregation. These 

echniques are essential to determine bacterial structures and/or 

roteins that are crucial for the interaction between populations 

 Davey and O’Toole, 20 0 0 ). Table 2 highlights the main advantages

nd limitations of methods used to study coaggregation. 

Mathematical modelling and computational simulation have 

een playing an important role in the study of bacterial ag- 

regates ( Bondarenko et al., 2020 ; Kuan et al., 2020 ). Recently, 

uan et al. (2020) presented a theory to study the dynamics of 

acterial aggregates, proposing a relevant of rheology in the merge 

f aggregates ( Kuan et al. 2020 ). Rheological modeling approaches 

re important to provide theoretical insights to understand the 

heological behavior of aggregates under distinct environmental 

onditions ( Bondarenko et al., 2020 ). 

. Coaggregation in aquatic systems 

The understanding of coaggregation in aquatic environments 

as potential to help managing microbiological-related problems: 

rowth and retention of pathogens within biofilms in low and 

igh shear environments; microbial induced corrosion; biofouling 

n surfaces; and increased resistance of bacteria to antimicrobials 

 Kerr et al., 2003 ). Furthermore, the application of coaggregation 

s a biotechnological technique to provide tailored microbiological 
5 
ommunities has interest for the treatment of wastewater ( Jiang 

t al., 2006 ; Khan et al., 2019 ; Li et al., 2013 ; Yue et al., 2018 )

nd for aquaculture (as a probiotic) ( García-Cayuela et al., 2014 ; 

ánchez-Ortiz et al., 2015 ; Vadassery and Pillai, 2020 ; Zhang et al., 

013 ). 

.1. Freshwater 

Coaggregation studies in freshwater environments evidenced 

ts ecological role in the development and maintenance of multi- 

pecies biofilm communities ( Rickard et al., 2003a ). Coaggregation 

etween freshwater bacteria have been observed between mem- 

ers of the same species (intraspecies coaggregation), between 

embers of the same genus (intrageneric coaggregation) and be- 

ween different genera (intergeneric coaggregation) ( Rickard et al., 

0 03b , 20 02a ). Intraspecies (interstrain) coaggregation has only 

een described in freshwater, apparently related to the constantly 

hanging environmental conditions and the possibility of contact 

etween the resident biofilm bacteria with bacteria from other 

iches ( Rickard et al., 2003b ). In general, coaggregation in fresh- 

ater depends on different biotic and abiotic factors. Among the 

iotic factors, microbial growth phase ( Rickard et al., 20 0 0 ), ex- 

ression of adhesin and receptors ( Rickard et al., 20 03b , 20 0 0 )

r the production of EPS ( Hede and Khandeparker, 2020 ) were 

ound to influence coaggregation. Furthermore, the presence of 
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Table 2 

Methodologies to assess coaggregation and its main advantages and limitations. 

Methodology Results Advantages Limitations References 

Visual coaggregation Semi-quantitative Useful for initial screening Subjective; highly prone to 

inconsistency and bias in 

scoring; not amenable for a 

larger number of samples 

( Cisar et al., 1979 ; 

Gilbert et al., 2002 ; 

Vornhagen et al., 2013 ) 

Spectrophotometry Quantitative Reliable; reproducible Not amenable for a larger 

number of samples 

( McIntire et al., 1978 ) 

High throughput screening 

method for coaggregation 

Quantitative Simultaneous analysis of autoaggregation 

and coaggregation; large number of 

samples at the same time; low 

variability; determines the particle size 

Involves two complementary 

techniques 

( Levin-Sparenberg et al., 2016 ) 

Optical microscopy 

(phase-contrast micrographs) 

Semi-quantitative More sensitive than the visual and 

spectrophotometric methods 

Only for the evaluation of size 

and shape 

( Malik et al., 2003 ; 

Younes et al., 2012 ) 

FISH Quantitative High sensitivity and specificity Short lifespan of the 

fluorophore; limitations 

associated with photostability; 

lower power resolution than 

SEM; limited number of 

fluorophores 

( Almstrand et al., 2013 ; 

Lukumbuzya et al., 2019 ) 

CLASI-FISH Quantitative Quantitative analysis of microscopic 

spatial relationships; simultaneous 

differentiation of up to 28 bacterial 

species within a biofilm; different 

specific combinations of fluorophores 

Expensive equipment; available 

in few laboratories 

( Almstrand et al., 2013 ; 

Valm et al., 2011 ) 

FCM Qualitative and 

Quantitative 

High-speed process; measure of sizes of 

particles, cells, or aggregates; 

differentiation in subpopulations; can be 

used as an online monitoring tool 

Sophisticated data analysis; 

relatively high detection limit 

for certain bacteria 

( Corno et al., 2013 ) 

SEM Qualitative and 

Quantitative 

High resolution (detailed 

three-dimensional and topographical 

imaging) 

Cost; size; vacuum 

environment; artefacts are 

possible 

( Cheng et al., 2014 ; 

Malik et al., 2003 ) 

FE-SEM Qualitative and 

Quantitative 

Cleaner, high-quality, low-voltage, less 

electrostatically distorted images; spatial 

resolution down to 1 nm 

Cost; size; vacuum environment ( Ishii et al., 2005 ) 
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olutes ( Min and Rickard, 2009 ), the hydrodynamic conditions 

 Rickard et al., 2004b ) and the environmental physicochemical 

roperties ( Min et al., 2010 ) are examples of abiotic factors im- 

acting bacterial aggregation in freshwater. 

Most coaggregation studies in aquatic environments have in- 

estigated biofilm bacteria isolated from freshwater, like boreholes 

nd lakes ( Buswell et al., 1997 ; Corno et al., 2014 ; Min et al.,

010 ; Min and Rickard, 2009 ; Rickard et al., 2003b , 2000 ). In a

ioneer study, Buswell et al. (1997) demonstrated that coaggrega- 

ion occurred between 19 freshwater strains isolated from a bore- 

ole. Rickard et al. found that coaggregation between 19 strains 

as mediated by growth-phase-dependent lectin-saccharide inter- 

ctions ( Rickard et al., 20 0 0 , 20 02a ). Coaggregation did not occur

uring exponential growth, whereas this was evident using cells in 

he stationary growth phase ( Rickard et al., 20 0 0 ). Maximum ex- 

ression of coaggregation was maintained for up to 48 h, keeping 

he stationary phase, being followed by a decrease and an eventual 

oss of coaggregation ability ( Rickard et al., 20 0 0 ). This ‘on and off’

witching could indicate that the expression of coaggregation ad- 

esins and/or receptors is environmentally controlled through star- 

ation and stress. On the contrary, dental plaque bacteria do not 

ppear to exhibit such ‘on and off’ switching of the coaggregation 

henotype ( Katharios-Lanwermeyer et al., 2014 ; McCormick et al., 

011 ). Furthermore, coaggregation between freshwater bacteria 

as found to be mediated by adhesin–receptor and occasional 

dhesin–adhesin interactions ( Rickard et al., 20 03b , 20 0 0 ). For ex-

mple, Min et al. (2009) used galactosamine to determine whether 

t prevented Sphingomonas natatoria 2.1gfp cells from adhering on 

lass surfaces or on Micrococcus luteus 2.13 cells that covered glass 

urfaces. These authors suggested that galactosamine inhibits co- 

ggregation by competing against the lectin binding sites on coag- 

regation adhesins, and that galactosamine plays an important role 

n mediating coaggregation between S. natatoria 2.1 and M. luteus 
6 
.13. Min et al. (2009) proposed that S. natatoria 2.1 isolated from 

reshwater expresses coaggregation adhesins that enhanced biofilm 

ntegration and expansion, corroborating Rickard et al. (20 0 0) . 

The variability of hydrodynamic conditions in freshwater en- 

ironments can affect coaggregation and thereby contribute to- 

ards biofilm development or dispersal ( McCormick et al., 2011 ). 

ifferent shear rates select for freshwater biofilms with differ- 

nt species composition and select for different proportions of 

ntraspecies aggregating bacteria and coaggregation of bacterial 

pecies ( McCormick et al., 2011 ). Rickard et al. (2004b) demon- 

trated that the magnitude of the shear rate can affect the rela- 

ive proportion of aggregating bacteria in freshwater biofilms. The 

ighest proportion of autoaggregating bacteria (aggregation of bac- 

eria belonging to the same strain) was present at high shear rates 

198–305 s −1 ), while the highest proportion of coaggregating bac- 

eria (bacteria of different strains or even different species) were 

bserved under an intermediate shear rate 

(122 s −1 ). 

Physicochemical properties such as ionic strength, pH, temper- 

ture and viscosity can affect coaggregation between freshwater 

acteria ( Min et al., 2010 ). S. natatoria 2.1 and M. luteus 2.13 were

ound to have lower coaggregation ability in an oral bacterial co- 

ggregation buffer, saline solution and in Tris-Cl buffer than in 

istilled water ( Min et al., 2010 ). Also, coaggregation was weakly 

xpressed in standard laboratory buffers (including HBS and PBS) 

 Min et al., 2010 ). Furthermore, coaggregation occurred at a pH of 

–10, between 5 and 80 °C, and was inhibited in solutions with 

iscosity of 22.5 centipoises, at 20 °C ( Min et al., 2010 ). Therefore,

he ideal conditions for coaggregation to occur may differ signifi- 

antly between bacteria from different environments, and the use 

f buffers that resemble the environmental conditions from which 

he bacteria were isolated seems to be appropriate for the effective 

etection of coaggregation. 
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EPS also mediate the coaggregation of aquatic biofilm-forming 

acteria ( Hede and Khandeparker, 2020 ). Freshwater, estuarine 

nd marine biofilm bacteria were evaluated for aggregation, and 

heir cell-bound EPS (CB-EPS), known to play an important role 

n biofilm formation, were characterized ( Hede and Khande- 

arker, 2020 ). The biofilm forming potential via coaggregation of 

stuarine and freshwater biofilm bacteria was higher. This was at- 

ributed to CB-EPS rich in carbohydrates with distinct sugar com- 

osition, compared with that produced by the bacteria from the 

arine biofilm. Most of the biofilm bacteria lost their ability to co- 

ggregate after removal of CB-EPS. Estuarine ( Bacillus indicus and B. 

ereus ) and freshwater ( Exiguobacterium spp. and B. cereus ) bacte- 

ial pairs, retained their aggregation ability suggesting the expres- 

ion of specific biomolecules, apparently lipids and proteins, under 

tress conditions ( Hede and Khandeparker, 2020 ). 

Coaggregation has been suggested as a successful strategy for 

ntibiotic resistance in aquatic bacterial communities ( Corno et al., 

014 ). Corno et al. (2014) studied the response of a freshwater 

acterial community (isolated from European lakes) to the pres- 

nce of antibiotics under low (12.5 μg.L −1 ) and high (125 μg.L −1 ) 

oses. They observed that bacterial abundance rapidly decreased 

y 75% in the presence of antibiotics, regardless the concentration, 

nd remained constant until the end of the experiment (after 25 

ays). By investigating the phenotypic adaptation of the communi- 

ies subjected to the different treatments, these authors found that 

he presence of antibiotics significantly increased coaggregation by 

-6 fold. The complexity of the interactions within the clustered 

ells increased enormously, resulting in the formation of a specific 

icroenvironment where the resistance of the single bacterial cells 

gainst antibiotic rose, due to proximity and species interactions. 

oreover, bacteria in aggregates are surrounded by different forms 

f self-synthetized hydrated EPS, effectively reducing the diffusion 

f the antibiotic due the reduced permeability of the aggregate it- 

elf. Therefore, coaggregation can represent a survival strategy for 

lanktonic bacteria when exposed to environmental concentrations 

f antibiotics ( Corno et al., 2014 , 2013 ). Sub-inhibitory concentra- 

ions of antibiotics can act as signaling molecules, mediating a 

ide variety of cellular processes such as gene transcription and 

xpression, quorum sensing, inter or intraspecies communication, 

iofilm formation, and might accelerate horizontal gene transfer 

 Andersson and Hughes, 2014 ; Davies et al., 2006 ; Sengupta et al.,

013 ). 

.2. Drinking water 

There is a significant lack of information regarding the role 

f coaggregation in DW environments, namely its role in DW 

iofilm development. A search in SCOPUS (January 2021) fil- 

ered using the keywords: “Coaggregation”; “Drinking Water”

n the title, keywords and abstract only displayed four items: 

wo describing the coaggregation phenomena in DW bacteria 

 Ramalingam et al., 2013 ; Simões et al., 2008 ), one review 

 Reuben et al., 2019 ) and another regarding coaggregation in fresh- 

ater ( Rickard et al., 2004b ). Although the lack of research regard- 

ng coaggregation in DW, there is a consensus among the exist- 

ng studies on the impact of coaggregation in biofilm development 

 Ramalingam et al., 2013 ; Simões et al., 2008 ; Vornhagen et al.,

013 ). Simões et al. (2008) described the intergeneric coaggre- 

ation of six heterotrophic bacteria isolated from DW and in- 

estigated the nature of surface molecules involved in the co- 

ggregation process. These authors presented Acinetobacter cal- 

oaceticus as a bridging bacterium, able to coaggregate with 

our ( Burkholderia cepacia, Mycobacterium mucogenicum, Sphin- 

omonas capsulata, and Staphylococcus sp.) of the five DW bac- 

eria, with the exception of Methylobacterium sp.. A. calcoaceti- 

us interactions were found to be lectin-saccharide mediated. 
7 
imões et al. (2008) also demonstrated that the bridging func- 

ion of A. calcoaceticus was positively correlated with multispecies 

iofilm formation. Ramalingam et al. (2013) investigated autoag- 

regation, coaggregation and biofilm formation of bacteria be- 

onging to four different genera ( Sphingobium, Xenophilus, Methy- 

obacterium and Rhodococcus) isolated from DW. That work high- 

ighted coaggregation of the bacteria as a result of time-dependent 

pecies-specific interactions. Additionally, the authors reported the 

trong impact of coaggregation in biofilm development by the DW 

acteria. In the work of Vornhagen et al. (2013) it was demon- 

trated that coaggregation occurred between bacteria isolated from 

omestic showerheads. They suggested coaggregation as a com- 

on feature in showerhead biofilms after identifying 31 distinct 

acterial genera per biofilm (from three distinct showerheads). 

ornhagen et al. (2013) highlighted the genera Brevundimonas, Mi- 

rococcus and Lysobacter as those with higher ability to coaggregate 

ith isolates from a different showerhead biofilm (inter-biofilm co- 

ggregation) and from the same showerhead biofilm (intra-biofilm 

oaggregation). 

In fact, a concept has emerged in the formation of multi- 

pecies DW and freshwater biofilms: the “bridging organisms”

 Buswell et al., 1997 ; Ramalingam et al., 2013 ; Rickard et al.,

002a ; Simões et al., 2008 ; Vornhagen et al., 2013 ). These typ-

cally display a broad spectrum coaggregation ability, allow- 

ng coaggregation with multiple bacterial species, enhancing the 

evelopment of multispecies biofilms, and mediating the in- 

egration of pathogens into the biofilms ( Cheng et al., 2014 ; 

amalingam et al., 2013 ). Table 3 provides details on the bacte- 

ia reported so far for their bridging behavior in DW systems. 

imões et al. (2008) demonstrated that A. calcoacticus facilitated 

he association of the other species that do not coaggregate di- 

ectly with each other, increasing the metabolic cooperation. For 

hat, biofilms were developed at different bacterial combinations 

hrough a strain exclusion process. The authors noted that biofilm 

ass over time (24h, 48h and 72h) increased for all combinations, 

xcept for multispecies biofilms without A. calcoaceticus. The pres- 

nce or the absence of A. calcoaceticus in multispecies biofilms en- 

anced or decreased, respectively, biofilm mass formation by DW- 

solated bacteria. This suggests that A. calcoaceticus may behave 

s a bridging microorganism like the oral bacterium F. nucleatum 

 Katharios-Lanwermeyer et al., 2014 ). Min et al. (2009) raised the 

uestion on whether DW or freshwater bridging bacteria, such as 

. calcoaceticus and S. natatoria , can aid the retention of pathogens 

r if the ability to coaggregate with specific species ( i.e., bridge) is 

 mechanism to outcompete other species in multispecies biofilms. 

n the case of S. natatoria 2.1gfp, the findings suggest that the 

bility to coaggregate and act as a bridge enhanced multispecies 

iofilm biomass production. However, unlike A. calcoaceticus , which 

eemingly favored the expansion of all species in the mixed com- 

unity, S. natatoria 2.1gfp numerically dominated at the expense 

f other species in the biofilm. In addition, the concept of bridging 

eems to explain the resistance of multispecies consortia to dis- 

nfection, namely to sodium hypochlorite (NaOCl) ( Simões et al., 

010 ). Simões et al. (2010) assessed the susceptibilities to NaOCl of 

ingle and multispecies biofilms formed by six DW-isolated bac- 

erial species, A. calcoaceticus, B. cepacia, Methylobacterium sp., M. 

ucogenicum, S. capsulata , and Staphylococcus sp. The authors ob- 

erved that multispecies biofilms were more resistant to inactiva- 

ion and removal than the relevant monospecies biofilms. They fur- 

her observed that biofilms containing all bacteria had the highest 

esistance to NaOCl, while those without A. calcoaceticus were the 

ost susceptible, denoting that the presence of that latter species 

n the multispecies biofilms increased resistance to disinfection. 

uch result was attributed to the the role of A. calcoaceticus as a 

ridging bacterium in the microbial community. In fact, bridging 

ay facilitate stronger EPS formation resulting in diffusion limita- 
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Table 3 

Bridging bacteria from different aquatic environments and their coaggregating pairs. 

Bridging bacteria Pairs Source Reference 

Micrococcus luteus Pseudomonas pickettii Aquatic biofilm ( Buswell et al., 1997 ) 

Methylobacterium spp. 

Brevundimonas vesicularis 

Sphingomonas natatoria 2.1 Afipia sp. 2.2 Freshwater ( Rickard et al., 2002a ) 

S. natatoria 2.3; 2.4; 2.5; 2.6 

Methylobacterium sp. 2.7; 2.9 

M. luteus 2.13 

Nocardioides sp. 2.14; 2.20 

P. marcusii 2.21 

Pseudomonas sp. 2.10; 2.11; 2.12; 2.15; 2.18 

Acinetobacter calcoaceticus Mycobacterium mucogenicum Drinking water ( Simões et al., 2008 ) 

Burkholderia cepacia 

Methylobacterium sp. 

Sphingomonas capsulata 

Staphylococcus sp. 

Acinetobacter johnsonii Xanthomonas sp. S11; S53; S54 Sewage (activated sludge) ( Malik et al., 2003 ) 

O. carboxidovorans S23; S28 

M. esteraromaticum S29; S38; S51 

A. junii S33 

Brevundimonas lenta HM006 17 unspecified strains Drinking water 

(showerheads) 

( Vornhagen et al., 2013 ) 

Micrococcus luteus AH004 17 unspecified strains 

Lysobacter gummosus HM010 14 unspecified strains 

Methylobacterium Spingobium sp. Drinking water ( Ramalingam et al., 2013 ) 

Xenophilus sp. 

Rhodococcus sp. 

Bacillus cereus G5 19 unspecified strains Sewage; Pond stones; 

Industrial wastewater 

( Cheng et al., 2014 ) 

Bacillus megaterium T1 17 unspecified strains 
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ions ( Sanchez-Vizuete et al., 2015 ). However, the specific mecha- 

ism for this remains unknown. A more complete picture of in- 

erspecies relationships would help to understand bacterial resis- 

ance to disinfectants and contribute to the development of inno- 

ative and effective control strategies to guarantee the microbio- 

ogical safety of DW ( Simões and Simões, 2013 ). 

.3. Wastewater 

Several technologies are used in wastewater treatment plants 

WWTPs) whose efficiency is highly dependent on bacte- 

ial coaggregation ( Malik et al., 2003 ). For instance, bacterial 

co)aggregation is a primary step towards biofilm development, 

occulation of activated sludge and aerobic granulation in WWTPs 

 these processes depend on the ability to produce granules and 

iofilms containing microorganisms able to degrade pollutants 

 Malik et al., 2003 ). The anthropogenic release of large amounts 

f nitrogen is a pervasive and serious environmental problem ( i.e. 

utrophication) ( Diaz and Rosenberg, 2008 ). Besides agriculture, 

ewage is one of the largest sources of inorganic nitrogen, in par- 

icular ammonia from urea degradation ( Lücker et al., 2015 ). Most 

WTPs exploit nitrifying and denitrifying microorganisms to ox- 

dize ammonia via nitrite to nitrate (nitrification) and to subse- 

uently reduce the produced nitrate to gaseous dinitrogen (deni- 

rification) ( Lücker et al., 2015 ). Complete nitrification depends on 

he mutualistic interaction of ammonia-oxidizing bacteria (AOB) 

nd nitrite-oxidizing bacteria (NOB) ( Gujer, 2010 ; Wagner et al., 

002 ). Coaggregation of AOB and NOB in nitrifying activated sludge 

nd biofilm samples is observed frequently for Nitrospira with 

arious AOB ( Daims et al., 2001 ; Gruber-Dorninger et al., 2015 ;

ücker et al., 2015 ). Similarly, AOB and AnAOB (anaerobic ammo- 

ium oxidizing bacteria) coaggregate in partial nitrification anam- 

ox systems ( Gizem, 2015 ). Malik et al. (2003) explored the pos- 

ibility of intergeneric coaggregation among 32 strains of non- 

occulating bacteria isolated from activated sludge from a munici- 
8 
al sewage treatment plant. They found that eight strains coaggre- 

ated with Acinetobacter johnsonii S35 while only four strains co- 

ggregated moderately with Acinetobacter junii S33. Both strains of 

hose latter species were able to coaggregate with bacteria from 

arious genera. The study suggests the possibility of developing 

ulti-generic coaggregates with Acinetobacter isolates as bridging 

icroorganisms, as proposed by Simões et al. (2008) with A. cal- 

oaceticus in DW systems. It further highlights the role of non- 

occulating bacteria for floc formation in activated sludge. 

Wastewater activated sludge is known to be composed by nat- 

rally occurring microorganisms that biodegrade a wide range 

f pollutants. However, some pollutants are not biodegradable 

 Nzila et al., 2016 ). Therefore, other technologies have been iden- 

ified as viable options for the treatment of high-strength indus- 

rial effluents, including those containing toxic and/or recalcitrant 

ompounds ( Khan et al., 2019 ). For example, the immobilization 

f degrading-bacteria in biofilms has been suggested as a strat- 

gy for maintaining efficient biodegradation in a bioaugmentation 

ystem ( Li et al., 2013 ). This strategy has advantages over tradi- 

ional approaches, such as tolerance to hostile environments, pro- 

iferation of the immobilized bacteria and the low cost for immo- 

ilization ( Cheng et al., 2014 ). Kwak et al. (2013) reported that 

phingomonas sp. 224 co-inoculated with the biofilm-forming bac- 

eria Pseudomonas sp. C7 and Bacillus sp. E5 degraded tolclofos- 

ethyl more effectively than Sphingomonas sp. 224 alone. Jiang 

t al. (2006) found that Comamonas sp. PG-08 had enhanced phe- 

ol degradation when coaggregate with Propioniferax -like PG-02. 

dditionally, the coaggregation of some Bacillus species improved 

he ability of other bacterial species to degrade specific pollutants 

 Adav et al., 2008 ; Di Gioia et al., 2004 ). For example, Bacillus

huringiensis I2 had augmented degradation of phenol when coag- 

regated with A . calcoaceticus I6 ( Adav et al., 2008 ) . Furthermore,

acillus VA160 also improved the ability of Acinetobacter BCaL1 and 

tenotrophomonas BCaL2 to degrade polyethoxylated nonyphenols 

 Di Gioia et al., 2004 ). Yue et al. (2018) proposed that bioaug- 
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entation of p -nitrophenol (PNP) degradation was as a result 

f adding a novel PNP-degrading bacterium, Methylobacterium sp. 

1, which coaggregated with two broad-spectrum coaggregating 

trains ( Bacillus megaterium T1 or Bacillus cereus G5) from WWTPs. 

hese authors found that biofilms containing coaggregating bac- 

eria ( Bacillus megaterium T1 or Bacillus cereus G5) were able to 

mmobilize degrading bacteria (such as Methylobacterium sp. C1), 

onferring them protection against external unfavorable conditions. 

uch process resulted in the formation of biofilms able to protect 

NP degrading strains from washing out, improving the overall PNP 

egradation ( Yue et al., 2018 ). 

Aerobic granulation is a technological approach alternative to 

raditional water treatment methods ( de Kreuk and van Loos- 

recht, 2006 ). Aerobic granules are auto-immobilized microspheres 

ontaining different microbial species ( Sarma and Tay, 2018 ). Aer- 

bic granulation is initiated and driven by hydraulic selection 

ressure, such as short settling time, to select and retain com- 

act microbial aggregates and wash out light and dispersed par- 

icles ( Liu et al., 2005 ). Under these selection pressures, cell ag- 

regation - including autoaggregative and coaggregative interac- 

ions, might be promoted for aerobic granules formation ( Jiang 

t al., 2006 ). Research on the occurrence of coaggregation in aer- 

bic granulation would help to uncover putative mechanisms to 

avour the granulation process, particularly the selection of spe- 

ific microorganisms. Jiang et al. (2006) investigated the effect 

f bacterial coaggregation on aerobic granulation through bioaug- 

entation by Propioniferax- like PG-02 and Comamonas sp. PG-08. 

G-02 (a phenol-degrader with a low half-saturation kinetic con- 

tant) and PG-08 (strong aggregator with poor phenol degradation 

bility) coaggregated through lectin-saccharide interactions with 

he adhesin protein on PG-02 and the complementary sugar re- 

eptor on PG-08. When incubated together, these strains cooper- 

ted in phenol degradation. These authors concluded that bioaug- 

entation with both strains simultaneously significantly improved 

henol removal and aerobic granulation in sequencing batch re- 

ctors. Adav et al. (2008) explored the intergeneric coaggrega- 

ion of A. calcoaceticus I6 and Bacillus thuringiensis I2 or Candida 

ropicalis I9 isolated from phenol-degrading aerobic granules. The 

rotease or heat treatment reduced the coaggregation ability of 

train I6, showing the presence of adhesins on its surface for 

oaggregation. The treatment using simple sugars demonstrated 

hat coaggregation between strains I6 + I2 and I6 + I9 was mediated 

y a lectin–saccharide interaction. This corroborates the study of 

iang et al. (2006) on the formation of phenol-degrading granules. 

han et al. (2019) investigated the application of aerobic gran- 

les towards degradation of the target contaminant sulfolane. Pre- 

rown acetate fed granules and microbial communities native to 

ulfolane contaminated sites were used as the basis for the cul- 

ivation of new aerobic granules. The newly formed coaggregated 

ranules had different morphological appearance in contrast to 

re-grown acetate fed granules. In particular, the surface of new 

ranules was covered with filamentous bacteria that provided pro- 

ection and stability. The new aerobic granules were shown to be 

obust and stable over prolonged exposure to various environmen- 

al conditions and displayed intact structure with good settling 

bilities. 

.4. Marine waters 

Although research of coaggregation partnerships have scarcely 

een undertaken with marine bacteria ( Ishii et al., 2005 ; Sánchez- 

rtiz et al., 2015 ; Zhang et al., 2013 ), coaggregation-based cell- 

ell interactions seem to play an important role in biofilm for- 

ation in marine environments as in freshwater ones ( Katharios- 

anwermeyer et al., 2014 ; McCormick et al., 2011 ). Coaggregation 
9 
n marine environments was reported as dependent on the growth 

ubstrate ( Ishii et al., 2005 ) - bacteria can coaggregate due to 

etabolic advantage. Ishii et al. (2005) observed that Pelotomac- 

lum thermopropionicum SI and M. thermautotrophicus �H coag- 

regated when in a syntrophic coculture, and coaggregation was 

ependent on the growth substrate (propionate, ethanol or 1- 

ropanol). These authors suggested that coaggregation was estab- 

ished to achieve an efficient H 2 flow between species, favoring 

nergetically the syntrophic oxidation of propionate. Furthermore, 

shii et al. (2005) demonstrated that flagellum-like filaments pro- 

uced by strain SI were involved in coaggregation. 

Aquaculture, probably the fastest growing part of agriculture 

orldwide, accounts for nearly 50 percent of the world’s food 

sh ( FAO, 2017 ). Because of the rapid and enormous expansion 

f that industry, methods for culture have become more intensive 

 Rico et al., 2012 ). However, huge losses of production in aqua- 

ulture are microbiological-related. Infectious diseases in aquacul- 

ure are the most serious constraint causing multibillion-dollar 

oss annually while potentially endangering the consumers’ health 

 Assefa and Abunna, 2018 ). Microbial interactions can provide a re- 

iable strategy to control pathogens. In particular, lactic acid bac- 

eria (LAB) are generally used as the probiotics in aquaculture 

 Verschuere et al., 20 0 0 ). LAB are characterized for their abil-

ty to coaggregate and autoaggregate, an inhibition effect on the 

rowth of pathogens and a reduced antibiotic resistance (to pre- 

ent lateral spread of resistance) ( Giaouris, 2020 ; Vadassery and 

illai, 2020 ). The ability for a probiotic to aggregate within the 

astrointestinal (GI) tract is a desirable characteristic and can be 

sed for initial evaluation and selection of the best probiotic strain 

 García-Cayuela et al., 2014 ; Vadassery and Pillai, 2020 ). Such ad- 

esion ability may result in the formation of a barrier to pre- 

ent later colonization by pathogens ( Del Re et al., 20 0 0 ), and

onstitute an important host defense mechanism ( Rickard et al., 

003a ). Also, when probiotics coaggregate with pathogens, a facil- 

tated removal of pathogens from the GI environment is likely to 

ccur ( García-Cayuela et al., 2014 ). Diverse studies examined the 

ossibility of coaggregation between marine pathogens and LAB 

 Sánchez-Ortiz et al., 2015 ; Vadassery and Pillai, 2020 ; Zhang et al.,

013 ). Zhang et al. (2013) isolated and identified a LAB strain 

 Leuconostoc lactis ) from the intestine of the black porgy fish. 

hat strain was able to coaggregate with diverse fish pathogens: 

ibrio parahaemolyticus, Listeria monocytogenes, Shigella, Staphylo- 

occus aureus, Proteus vulgaris, Escherichia coli and Salmonella Ty- 

himurium . In vitro tests demonstrated an inhibitory effect on the 

rowth of pathogens, low antibiotic resistance and ability to co- 

ggregate with pathogens. Sánchez-Ortiz et al. (2015) character- 

zed the probiotic action of LAB strains isolated from the bivalve 

nadara tuberculosa as suitable for shrimp farming. The highest 

oaggregation with the fish pathogens was found for Staphylococ- 

us sp. followed by Bacillus licheniformis and B. subtilis ssp. subtilis . 

lso, in order to prove the probiotic potential of the selected bac- 

eria, the authors performed an in vivo assay by introducing the 

trains in the whiteleg shrimp ( Litopenaeus vannamei ) diet. In gen- 

ral, LAB strains demonstrated beneficial effects on the growth and 

mmune response of L. vannamei. Vadassery & Pillai (2020) iso- 

ated Enterococcus faecium QQ12 from the GI tract of Nile tilapia 

 Oreochromis niloticus ) and assessed their ability as a probiotic to 

ontrol Aeromonas hydrophila infection in the goldfish Carassius au- 

atus . Here, the main objective of the study was to assess the dis- 

uption of quorum sensing signaling molecules by quorum quench- 

ng (QQ), as an effective strategy to control virulence. However, 

ther probiotic properties were assessed, and the capability of E. 

aecium QQ12 to adhere on the intestinal cell wall was evaluated 

y autoaggregation and coaggregation assays. The results showed 

hat, in addition to excellent QQ properties, E. faecium exhibited 

ery good co-aggregation ability after 5 h of incubation with A. 
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ydrophila , during which more than 50% of E. faecium population 

o-aggregated with A. hydrophlila . 

. Conclusions 

The resurgent role of multispecies microbial communities in 

everal research fields and the recent advances in multidisciplinary 

pproaches for their study provide an increased interest on un- 

erstanding the role of coaggregation in the establishment and 

ehavior of sessile communities. While the ubiquitous presence 

f biofilms in aquatic systems is widely recognized, autoaggrega- 

ion and coaggregation have also been described for bacteria from 

reshwater, drinking water, wastewater and marine water. The cur- 

ent knowledge on coaggregation in these aquatic systems pro- 

oses that this mechanism may provide selective advantages to 

he bacteria over the non-coaggregating counterparts, playing an 

mportant ecological role in the development and maintenance of 

ultispecies biofilms, including their resistance to antimicrobials. 

oaggregation is strain specific, i.e. depends on the strain ability to 

xpress specific cell surface molecules, and relies on the existence 

f adequate physiological and environmental conditions to occur. 

owever, the molecular mechanisms of coaggregation by bacte- 

ia grown in aquatic systems remain to be explored. The study 

f coaggregation and the identification of bridging bacteria will 

ontribute to further understand the robust establishment of ses- 

ile communities. Bridging bacteria, with broad-spectrum coaggre- 

ation ability, appear to play an important role in multispecies 

iofilm development and behavior. The exploitation of bridging 

acteria for biotechnological applications in aquatic systems has 

otential to improve the performance of wastewater treatment 

lants using activated sludge/flocs, granules and biofilm-based re- 

ctors as well as for the development of refined strategies targeting 

hese key microorganisms for an efficient control of pathogens and 

ndesirable biofilms. 
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