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Abstract

We compare the coordination structures of agents using different types of in-
puts for their deep Q-networks (DQNs) by having agents play a distributed task
execution game. The efficiency and performance of many multi-agent systems can
be significantly affected by the coordination structures formed by agents. One im-
portant factor that may affect these structures is the information provided to an
agent’s DQN. In this study, we analyze the differences in coordination structures in
an environment involving walls to obstruct visibility and movement. Additionally,
we introduce a new DQN input, which performs better than past inputs in a dynamic
setting. Experimental results show that agents with their absolute locations in their
DQN input indicate a granular level of labor division in some settings, and that the
consistency of the starting locations of agents significantly affects the coordination
structures and performances of agents.
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Preface
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1 INTRODUCTION

1 Introduction

Although cooperation and coordination are crucial in many multi-agent systems for im-

proving overall efficiency, designing the appropriate coordination and cooperation regime

is challenging because many factors must be considered, such as the problem structure,

environmental characteristics, and agent abilities. Additionally, a change in any of these

parameters can drastically change the optimal regime for a given environment, making

the task of finding the appropriate regime a challenge.

Recently, owing to the development of deep reinforcement learning (DRL), researchers

have successfully acquired coordinated behaviors [4,5,12]. Foerster et al. [4] gave multiple

agents with deep distributed recurrent Q-networks the task of solving riddles requiring

communication and coordination to find the correct answer. The agents were successful

in finding the answer to these riddles, so effective coordination and communication was

present. Gupta et al. [5] were able to extend three single-agent DRL methods to a cooper-

ative multi-agent context. Lowe et al. [12] introduced a centralized critic in a multi-agent

deep reinforcement learning (MADRL) system to allow these agents to outperform agents

without a centralized critic.

These studies provide useful insight into how MADRL can improve performance by

enabling agents to coordinate and cooperate with one another under some circumstances.

However, the focus of these studies was improving the performance of agents and how net-

work architecture and parameter settings affected this performance, and the researchers

did not discuss the reason from the viewpoint of what kinds of coordination structures

emerged in multi-agent environments. Therefore, we cannot predict the features of emerg-

ing coordination regimes, such as robustness, tolerance, and adaptability to changes in

the environment and agents (such as the failure or upgradation of agents).

Because it is important to understand the features of the coordination regime, the

coordinated/cooperative behaviors generated by DRL, and how these features are affected

by the neural network and input structure, a few studies have attempted to identify the

coordinated behaviors learned with DRL [9, 13]. For example, Leibo et al. [9] discov-

ered that agents may learn selfish or cooperative behaviors depending on the amount

of resources available in the environment. Miyashita & Sugawara [13] focused on the

structures and information included in the input to networks and attempted to obtain a

coordination regime in a task execution game within the multi-agent system context; sub-

sequently, they analyzed coordination structures that emerged from agents by observing
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1 INTRODUCTION

different aspects of the environment. They discovered that by allowing agents to observe

their absolute locations within the environment, the agents can allocate their workload

and improve the overall performance. However, the studies were conducted in a rudimen-

tary environment. Consequently, there is not enough information to assess how agents

with these observational methods would perform in more complex environments involving

obstructions in movement and line of sight, which is critical for real world application;

hence, further studies should be performed.

Our goal is to analyze the change in the coordinated behavior of agents generated by

DRL based on input structures using a variant of a task execution game [13] in a more

complex environment that is close to a real world setting to better clarify the relation-

ship between the input structure and the generated coordination regime. To this end,

we compare the performance and coordination regimes of input structures that include

the absolute location of agents with input structures that only include an agent’s local

environment. Given the widespread usage of GPS technology, we believe the implemen-

tation of input structures involving an agent’s absolute location has a strong potential to

be feasible.

Our experiments indicate that allowing agents to observe their absolute locations

within their environments resulted in a high degree of divisional cooperation and im-

proved performance. Furthermore, we discovered that under a less consistent environ-

ment where the starting positions of agents were randomized over a designated area, the

agent’s observational method must be reconfigured to maintain an improved performance

level. However, the information provided to the agent remained nearly identical. Further

investigations were made to identify the cause of the difference in performance. Although

no conclusive evidence was acquired, we managed to rule out several possibilities leading

us to believe that the low performance originated from the structure of the input given

to the agents.
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2 RELATED STUDIES

2 Related Studies

A significant amount of research has been conducted on DRL [6–8, 10, 14, 15, 20, 21]. For

example, Mnih et al. [14] succeeded in training a DQN with convolutional layers to play

a variety of Atari games using the raw pixels shown by these games as input. Hessel

et al. [7] used Atari games as a benchmark to compare the performance of several DQN

variants including their proposed variant called "Rainbow". The researchers were able to

demonstrate that Rainbow delivered superior performance over the other DQN variants.

Wang et al. [21] proposed a new neural network architecture called the "dueling network"

which provided better performance compared to state-of-the-art models when learning to

play Atari games.

Some studies have included coordination, cooperation, or communication between

agents in a multi-agent setting [2,4,5,9,12]. For example, Gupta, Egorov, and Kochender-

fer [5] compared the performances of several DRL algorithms in a cooperative multi-agent

setting, where agents must coordinate with each other to succeed. The study indicated

that one method outperformed the other methods, and that recurrent neural network

architectures delivered better performances overall compared with feedforward networks.

Lowe et al. [12] applied lenient learning to the deep Q-networks (DQNs) of agents in a

multi-agent setting, which associates state–action pairs with decaying temperature values

to avoid updating agent policies with outdated pairs. They discovered that by applying

leniency to the learning process, cooperation was facilitated in a fully cooperative envi-

ronment. Foerster, Assael, Freitas, and Whiteson [4] analyzed how multiple agents, each

using their own recurrent DQN, attempted to solve riddles that required communication

between agents to succeed. They discovered that agents successfully developed a com-

munication protocol to solve these riddles, and that the communication protocols can be

modeled in the form of a decision tree. In general, these studies involved agent coordi-

nation but focused primarily on the performance of agents rather than the coordination

regimes. Although the performance improvement of multi-agent systems is important,

more research should be performed regarding the coordination structures of agents to

acquire new information.

A few studies have focused on the analysis of coordination and cooperation regimes

formed in a multi-agent setting. To illustrate, Diallo & Sugawara [2] analyzed strategic

group formations developed using a combination of centralized and decentralized deep

Q-learning in a nonstationary and adversarial multi-agent environment. The study used
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2 RELATED STUDIES

variants of the DQN and indicated that combining a double DQN and a DuelDQN gen-

erated strategies that delivered improved performances. Leibo et al. [9] investigated co-

operative and selfish behaviors formed from multiple independently learning agents with

DQNs playing two different games in a two-dimensional grid world environment. The re-

searchers analyzed the agents’ strategies in environments with varying degrees of resource

scarcity and introduced the concept of sequential social dilemmas. Studies that focused

on the coordination regimes of multi-agent systems, such as the aforementioned, are rare.

Therefore, further research is required to investigate the coordination and cooperation

structures of agents.
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3 BACKGROUND

3 Background

3.1 Reinforcement Learning

Reinforcement learning is based on the Markov Decision Process (MDP). MDP is often

shown as a tuple < S,A, r, P, γ > where there are a set of states S and a set of actions A.

We have a probability function P which determines to probability at time t for a state-

action pair to lead to a state transition such that P (St+1|St, At). Reward r is provided

for every state-action pair and the resulting state transition such that r(St+1, St, At).

The goal in reinforcement learning is for the learning agent to learn the optimal policy

π : S → A which maximizes
∑∞

t=0 γ
trt, the cumulative discounted reward at time t where

0 ≤ γ < 1 is the discount factor.

The discount factor determines the level of influence that future rewards have on

present policy of the agent when determining an action; γ = 0 would train an agent to

learn a policy maximizing current rewards while a γ value close to 1 would train the agent

to maximize long term rewards.

3.2 Deep Q-Learning

Q-learning [22] is a form of reinforcement learning that attempts to find the optimal policy

through the use of Formula 1:

Q′(st, at)← Q(st, at) + α(rt + γmax
a
Q(st+1, a)−Q(st, at)) (1)

Formula 1 utilizes the concept of the Q-value, which is the expected reward, at time

t, for taking action at at state st, denoted as Q(st, at). A Q-value for each state-action

pair is stored in a table and updated over several iterations to eventually converge to a

value which allows agents at state st to take action at to maximize discounted cumulative

rewards. Q′(st, at) denotes the updated Q-value which will replace Q(st, at). 0 < α ≤ 1 is

the learning rate, which is the value that determines the magnitude of the changes made

to the Q-value after each iteration. rt is the observed reward after taking action at at

state st, and γ is the discount factor. maxaQ(st+1, a) is the maximum possible reward

that is expected to be obtained in state st+1.

Deep Q-learning [3, 14] replaces the Q-table with a multi-layered neural network

which is trained to approximate the optimal action for each state. With environments of

increasing complexity, Q-learning will require a larger Q-table, and thus more memory.

Deep Q-learning has the advantage of not necessarily needing more memory with an

increased complexity of the environment.
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3.3 Multi-Agent Patrolling Problems

Finding efficient methods for multiple agents to autonomously patrol an area can be

useful in a multitude of contexts such as search and rescue operations, cleaning tasks, and

security patrols. However, coordinating multiple agents to effectively conduct a patrolling

task is complex and challenging. Many researchers have attempted to address the issue

in the past [17] and continue to do so.

Sugiyama et al. [18] is one such study where researchers attempted to address the

Continuous Cooperative Patrolling Problem (CCPP). In CCPP, multiple agents patrol an

environment where different areas have different visitation requirements. Agents are not

given instructions on how to cooperate or patrol the environment; thus, agents must learn

on their own to coordinate and cooperate. Similar to CCPP, Miyashita & Sugawara [13]

used a distributed task execution game where tasks appear at random locations within the

environment, and without any clear instructions on how to cooperate or patrol, multiple

agents learn to complete these task in some manner.

As Portugal & Rocha [17] noted, finding an effective solution to these patrol problems

offer the "potential to replace or assist human operators in tedious or dangerous real-life

scenarios" [17] and "the possibility to relieve human beings, enabling them to be occupied

in nobler tasks" [17]. As such, researching autonomous solutions to these patrolling

problems is critical.
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4 Problem Formulation

4.1 Problem and Environment

To analyze the coordinated behavior of multiple agents, we introduce a multi-agent prob-

lem called the distributed task execution game. The problem environment S can be repre-

sented as a two-dimensional grid comprising 35×20 cells. An example of this environment

is shown in Fig. 1a. In this grid, three different types of objects can occupy the cells:

agents, tasks, and walls. Each instance of an object occupies one cell. Walls are arranged

in the environment to create a 35×2 corridor spanning the environment horizontally.

Fig. 1a shows the wall locations of the environment marked as gray boxes. From the

corridor, agents can access four different rooms, each the size of 17×8 cells. Each room

has 1 entryway the size of 1 cell. Initially, a certain number of tasks were scattered in

environment S. The corridor and cells between the corridor and each room did not have

any task throughout the experiment.

Next, we introduce a time unit called a step. Let A be a set of agents; agent i ∈ A
takes one action from M = {Up, Down, Left, Right} in every step. If i moves on a cell

that is occupied by a task, then it is assumed to be executed by i, and a new task is

spawned at a randomly selected empty cell in room s ∈ S; therefore, the number of tasks

in the environment is unchanged.

Once a task is executed, the agent that executed the task receives a positive reward.

Each agent learns, using a DQN, to determine actions that maximize the reward earned

by considering other agents’ actions cooperatively. If i attempts to move to a cell con-

taining a wall or outside of the environment, i remains in the same position for that

step. We consider this event to be a wall collision. Likewise, if i attempts to move to a

cell containing another agent, i does not change its position for that step; we consider

this event to be an agent collision. After agents perform their actions and new tasks are

spawned, the next step begins. At the end of step 300, the episode ends; the DQNs of

all agents are updated independently with the rewards and observations of each agent.

Subsequently, the environment is initialized for the next episode.

As shown in Fig. 2, certain areas in the environment are marked in blue or red. The

areas marked in blue signify areas where tasks can spawn, whereas those marked in red

signify areas where agents can spawn. The areas marked in red in Fig. 2a are numbered

according to the ID of each agent, indicating that the same agent spawns in the exact

same location whenever the environment is initialized.

9



4 PROBLEM FORMULATION

(a) Actual Environment
(b)
Local View

(c) Relative View (d) Merged View

Figure 1: Comparison between actual environment and view observed by agent for each
view method

Agents can only communicate with each other by observing each other’s positions.

They may use different types of views of the environment as inputs for their DQNs;

therefore, they may view the environment differently. Regardless of the agent’s view

type, their visible area will be limited for tasks, walls, and other agents, which we refer to

as the agent’s window of observation. In this study, the agent’s window of observation is

a square of length N cells centered on the agent. For reference, Fig. 1a shows an example

of the environment with the agent’s window of observation when N = 7. The agent

performing the observation is represented by the solid red square, and the agent’s window

of observation is represented by the red square outline surrounding the agent.

4.2 View Obstruction

We assumed that the agents could not view past walls in our environment and imple-

mented a view obstruction feature for our agents. The view obstruction method employs

a form of ray casting to determine the visibility region for each agent at every step.

To calculate the visibility region for an agent, we obtained the center point of the
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4 PROBLEM FORMULATION

(a) Experiment 1 Initial Environment (b) Experiment 2 Initial Environment

Figure 2: Experimental Environment

agent, selected a wall visible to the agent, and constructed two straight lines from the

agent’s center point to each end of the selected wall. These two lines serve as the agent’s

cone of vision for the selected wall. Any unit of space behind the wall and within the

agent’s cone of vision is marked as "not visible". The same procedure is repeated for every

wall within the agent’s window of observation. Because our environment is a grid, our

visibility region calculations resulted in many cases of partially visible cells. We defined

a cell to be visible to an agent if more than 50% of the area of the grid space is within

the agent’s visibility region.

An illustration of this process for 1 agent is shown in Fig. 3 where we see images

numbered 1 through 4. Before the agent’s observation is used as an input to its DQN, the

agent goes through the procedures illustrated in all 4 images to determine the cells that

the agent cannot see. The solid red box in the center of all 4 images represents the agent

at different stages of the calculation process. The red outline surrounding each image

is the window of observation for the agent, and the empty gray boxes represent walls.

We can see in image 2 that there are 2 green lines traced from the center of the agent

intersecting 2 corners of the wall on the top right. Those 2 corners are the left-most and

right-most corners of the wall from the perspective of the agent. Once the 2 green lines

are drawn, we declare the space within the 2 green lines to be the agent’s cone of vision

when looking specifically at the wall on the top right. We can then determine which cells

are behind the wall with more than 50% of the cell’s area within the agent’s cone of vision.

The 3 white cells behind the wall meet this criteria and are marked as "not visible" to

the agent. In image 3, we can see the same process being performed on a pair of walls to

the bottom right of the image. Walls next to one another can be treated as 1 unit where

the edges of the agent’s cone of vision intersects the left-most and right-most corners of

11



4 PROBLEM FORMULATION

Figure 3: Ray Casting Example

the unit. In image 4 we can see the final wall being processed, and the agent’s window of

observation can now be used as input into the agent’s DQN.
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5 PROPOSED METHOD

5 Proposed Method

5.1 Agent View Methods

Depending on the experiment, different aspects of the environment will be included in the

agents’ DQN inputs to investigate the effect of the agents’ views on their coordination

structure learned with DRL. We adopted two view methods: local view and relative

view [13]. In addition, we employed a new view method called the merged view. Fig. 1

illustrates how an agent with each view type may view the environment. Red, blue,

yellow, and white represent the observing agent, a task, another agent, and an invisible

space, respectively.

The observations of the agents were encoded as a three-dimensional matrix containing

values of either -1, 0, or 1. We call each slice of this matrix a channel. Each channel

contains a specific aspect of the agent’s observation, which can be the position of either

the agent, other agents, tasks, or areas invisible to the agent because of a wall. Within

these channels, an empty space is marked as 0, tasks and agents are marked as 1, and

invisible areas or areas outside the environment are marked as -1.

5.2 Local View

The DQN input for agents with a local view is based solely on the details within the

window of observation for each agent (Fig. 1b). The length and width of the DQN input

are the same as those of each agent’s window of observation. We divided the environment

details within the agent’s window of observation into three different channels for the

DQN input. The first, second, and third channel encodes, respectively, the locations of

other agents, tasks, and cells whose contents are invisible because the viewing agent’s

line of sight is blocked by walls. Furthermore, when an agent is near the edge of the

environment, the agent’s window of observation may overlap with a space that is outside

the environment.

5.3 Relative View

The DQN input for agents with a relative view involves the window of observation for each

agent as well as the outline of the entire environment (Fig. 1c). The length and width of

the DQN input is the same as those of the entire environment. Within this DQN input,

only the details of the environment within the viewing agent’s window of observation

are encoded. Areas outside of the viewing agent’s window of observation are encoded

13



5 PROPOSED METHOD

as an empty space. The DQN input is separated into four channels. The first channel

encodes the location of the viewing agent, the second channel encodes the locations of

other agents within the viewing agent’s window of observation, and the third channel

encodes the locations of tasks within the viewing agent’s window of observation. Finally,

the fourth channel encodes the locations of cells whose contents are invisible because the

viewing agent’s line of sight is blocked by walls.

5.4 Merged View

The merged view involves two different DQN inputs for the same network. The size of

one input is identical to that of the local view’s DQN input, whereas that of the other

input is identical to that of the relative view’s DQN input. However, both inputs have

two channels. For the local view input, the first and second channels contain information

regarding the locations of other agents and tasks, respectively. For the relative view input,

the first and second channels contain the agent’s own position within the environment and

the areas within the agent’s view range that are invisible because of walls, respectively.

5.5 Neural Network Structure

We constructed our DQNs using the Keras library [1]. Tables 1, 2, and 3 show the layers

and dimensions used for each model of the agent’s view. We used RMSprop [19] as the

optimizer of the model, and ReLu [16] for the activation function of our fully connected

layer. The filter size was 2×2 for all convolutional and max pooling layers, and the stride

was one and two for the convolutional and max pooling layers, respectively. The reward

scheme for the agents was identical for all experiments; the agents began the episode with

a reward value of 0; each agent’s reward increased by 1 for each task executed during the

episode.

5.6 Experience Replay

We employed experience replay [11], which has been shown to improve learning in DQNs.

Experience replay is a technique that stores the experience of the agent at each step in a

container called the replay memory. The replay memory saves experiences over multiple

episodes, and when the DQN is to be updated, sections of the replay memory are selected

by some criteria to be used as samples for the updating process. In our case, we use

random sampling, which means the sections are randomly chosen.

14



5 PROPOSED METHOD

Table 1: Network Architecture (Local View)

Layer Input Activation Output

Convolutional 7× 7× 3 7× 7× 32
Max Pooling 7× 7× 32 3× 3× 32
Convolutional 3× 3× 32 3× 3× 64
Max Pooling 3× 3× 64 1× 1× 64
Flatten 1× 1× 64 64
FCN 64 ReLu 100
FCN 100 Linear 4

Table 2: Network Architecture (Relative View)

Layer Input Activation Output

Convolutional 35× 20× 4 35× 20× 32
Max Pooling 35× 20× 32 17× 10× 32
Convolutional 17× 10× 32 17× 10× 64
Max Pooling 17× 10× 64 8× 5× 64

Flatten 8× 5× 64 2560
FCN 2560 ReLu 100
FCN 100 Linear 4

5.7 Epsilon Greedy Strategy with Decay

We adopted the ε-greedy strategy with decay, which attempts to obtain more rewarding

behaviors that require investigating the environment through actions that initially appear

to be not the most rewarding. During each step, each agent must choose between taking

a random action or the action that’s expected to maximize it’s cumulative discounted

reward. The probability for the agent to take a random action is determined by the ε

value who’s range is 0 ≤ ε ≤ 1. These random actions are what allows agents to explore

the environment. The ε value decrease over time with a predetermined decay rate γε > 0,

where at the end of each episode, the new ε value for the next episode is calculated to be

εnew = εold ∗ γε.
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5 PROPOSED METHOD

Table 3: Network Architecture (Merged View)

Input No. Layer Input. Activation Output

Input 1 Convolutional 7× 7× 2 7× 7× 32
Max Pooling 7× 7× 32 3× 3× 32
Convolutional 3× 3× 32 3× 3× 32
Max Pooling 3× 3× 32 1× 1× 32
Flatten 1× 1× 32 32

Input 2 Convolutional 35× 20× 2 35× 20× 32
Max Pooling 35× 20× 32 17× 10× 32
Convolutional 17× 10× 32 17× 10× 32
Max Pooling 17× 10× 32 8× 5× 32
Flatten 8× 5× 32 1280

Output Concatenate 32, 1280 1312
FCN 1312 ReLu 100
FCN 100 Linear 4
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6 EXPERIMENT AND DISCUSSION

Table 4: Parameters
(a) Learning Parameters

Parameter Value

Discount Factor 0.90
Initial ε Value 1
ε Decay Rate 0.9998
RMSprop Learning Rate 0.0001
Memory Capacity 20,000
Mini-batch Size 32

(b) Experimental Parameters

Parameter Value

Environment Width 35
Environment Height 20
No. of Agents 8
No. of Tasks 30
Reward 1
Episode Length (Steps) 300
Simulation Length (Episodes) 25,000

6 Experiment and Discussion

6.1 Experimental Setting

We conducted two experiments to analyze the performance and coordinated behaviors

among agents using different DQN inputs in near identical simulations. Each experi-

ment involved one simulation per view method. Each simulation involved eight agents

performing a distributed task execution game for several episodes. The parameters for

each simulation within an experiment was identical except for the view method. The

parameters for these experiments are listed in Table 4.

6.2 Experiment 1: Static Spawn Location

In this experiment, we compared the behaviors and performances of agents using local

and relative views. Each agent began at the same location for every episode, as shown

in Fig. 2a. Each agent was assigned an ID number from 0 to 7. When the environ-

ment was initialized, agents spawn at the numbered location that matched with their ID.

Consequently, each agent spawned in the exact same location at the start of each episode.

Fig. 4a shows the moving mean average of the total number of tasks completed by

all agents during each episode, where the margin represents the standard deviation. As

shown in the figure, as the episodes increased, more tasks were completed on average in

the relative view compared with the agents with the local view; this may be because agents

with a relative view can possess more information regarding their absolute locations.

Figs. 4b and 4c are similar to Fig. 4a, except that these figures display the numbers

of times the agents collided with a wall and with each other, respectively. As shown, the

average number of wall collisions converged to approximately the same value for both
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6 EXPERIMENT AND DISCUSSION

the local and relative views; furthermore, the relative view had a slightly higher rate

of collisions compared with the local view, although the performance (the number of

completed tasks) of the latter was better than that of the former. Particularly, in Fig. 4b,

the number of wall collisions occasionally spiked (e.g., around episodes 10,000, 22,000, and

24,000 episodes), and during these spikes, the performance deteriorated significantly. In

addition, the standard deviation of agent collision numbers for the relative view increased

from around episode 17,500 onward, although the standard deviation of agent collision

numbers for the local view decreased to a small value. These results indicate that the

behaviors of agents with relative views were relatively less stable.

Additionally, we counted the number of tasks completed by each agent at each area

of the map over episodes 24001 to 25000. Figs. 5a and 5b show heatmaps of the tasks

completed by each agent. As shown, for both the local and relative views, each agent

completed tasks primarily in one room, i.e., the room closest to the agent at the start of

the episode. It is noteworthy that two agents primarily completed the tasks in each room.

Although there were two agents per room, the agents using the local view appeared to have

completed tasks more evenly across the room compared with the agents using the relative

view. Except for agents 1 and 3, agents using the relative view had one agent primarily

complete tasks on one side of the room, while the other agent primarily completed tasks

on the other side. This more detailed work division resulted in better performances when

the agents used the relative view. Furthermore, we conducted the same experiment using

the merged view; however, we discovered that the results were almost the same as those

of the relative view.

6.3 Experiment 2: Dynamic Spawn Location

In this experiment, we compared the behaviors and performances of agents using local,

relative, and merged views. Agents would begin each episode at a random position within

a 10×2 window at the center of the environment, as shown in Fig. 2b. We began this

experiment using only simulations from the local and relative views. However, we discov-

ered a significant performance loss from relative view; therefore, we introduced another

view method called the merged view, which provided a higher performance than the local

view.

Similar to Experiment 1, Figs. 6a, 6b, and 6c show the moving mean average of the

total numbers of task completions, wall collisions, and agent collisions, respectively. As

shown in the figures, in terms of task completion number, the merged view was first,
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6 EXPERIMENT AND DISCUSSION

(a) Total Task Completion Rate

(b) Total Wall Collision Rate (c) Total Agent Collision Rate

Figure 4: Experiment 1 Scalars

followed by the local and relative views. However, the performances of these views were

worse than those in Experiment 1. The number of collisions in the local view was higher

than that of the merged view, and the wall collision rate decreased steadily over time in

both view methods. Meanwhile, the wall collision numbers in the relative view fluctuated

without any clear trend toward decreasing. Likewise, the agent collision number converged

to approximately 0 for the local and merged views, whereas the agent collision rates for

the relative view remained significantly high with the standard deviation increasing over

time.

The heatmaps in Figs. 7a, 7b, and 7c show areas where each agent primarily com-

pleted their tasks in each simulation. Unlike the results from Experiment 1, the agents

of all view methods indicated less preference for a single room. Additionally, the task

completion areas within some rooms were not separated, as evident by agents using the

relative or merged view in Experiment 1.
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6 EXPERIMENT AND DISCUSSION

(a) Local View (b) Relative View

Figure 5: Experiment 1 Task Completion Heatmap.

6.4 Experiment 3: Static to Dynamic Spawn Location

In this experiment, agents started from fixed locations as shown in Fig. 2a until episode

25,000 and subsequently started at random locations as shown in Fig. 2b for 10,000

episodes to investigate whether the behaviors learned in the former spawning configuration

is applicable in the latter spawning configuration. Agents continue their episodes with

the same parameters from episode 25,001 except spawning location and epsilon values.

The epsilon value continues to decay with each episode, making its value lower than what

it was before.

In like manner to past experiments, Figs. 8a, 8b, and 8c show the moving mean

average of the total numbers of task completions, wall collisions, and agent collisions,

respectively. We can see a drop in the amount of tasks completed and a rise in collisions

shortly after episode 25,000 due to the sudden change in spawning locations for agents.

Subsequently, we see total task completion and total collisions recover to a level similar

to agents in Experiment 2; the only exceptions were the agents using relative views which

showed a lower total task completion rate, a higher total wall collision rate, and a higher

total agent collision rate.

Unlike in Experiment 1, we included agents using merged views in an environment
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(a) Total Task Completion Rate

(b) Total Wall Collision Rate (c) Total Agent Collision Rate

Figure 6: Experiment 2 Scalars

with a static starting position. Given this new information, we can compare the perfor-

mance of agents using relative views with agents using merged views. Looking at Fig. 8a,

we can see that while agents were in the environment with static starting positions, the

performance provided by merged views was near identical to that of relative views. More-

over, upon closer examination of episodes before 7,500, we can see that agents using

merged views had a slightly higher total task completion rate, suggesting a small but

noticeable performance superiority in the early stages of training. We also see that agents

using merged views do not have the brief drops in performance and spikes in wall collision

present in agents using relative views. This indicates a higher level of stability for agents

using merged views.

Fig. 9 shows heatmaps of the areas where agents using merged views completed their

tasks. We counted tasks over the same episodes (24,001 - 25,000) as Figs. 5a and 5b

of Experiment 1. We can see that agents using merged views complete tasks primarily

on one side of the room, although to a less significant degree compared to agents using

relative views in Fig. 5b.
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6 EXPERIMENT AND DISCUSSION

(a) Local View (b) Relative View

Figure 7: Experiment 2: Task Completion Heatmap

6.5 Experiment 4: Static Spawn Location With Four Agents

The aim of this experiment was to investigate the possible cause for the unstable perfor-

mance of agents using relative views. To this end, the number of agents was reduced from

8 to 4. The 4 agents start from fixed locations in the spaces numbered 2, 3, 4, and 5 of

Fig. 2a for the duration of 25,000 episodes.

Figs. 10a, 10b, and 10c show the moving mean average of the total numbers of task

completions, wall collisions, and agent collisions, respectively. We can see that agents

using local view and merged view increased in total task completion rate and decreased in

total wall collision rate overtime while agents using relative view dropped in performance

from around episode 17,500.

6.6 Discussion

6.6.1 Divisional Cooperation and Improved Performance

Several key insights can be inferred from the results regarding the behavior of agents using

different view methods. First, based on the heatmaps from Experiment 1, we observed

a form of divisional cooperation occurring among agents with local, relative, and merged

views in terms of room selection. The agents would allocate the workload evenly by having
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6 EXPERIMENT AND DISCUSSION

(c) Merged View

Figure 7: Experiment 2 Task Completion Heatmap (cont.)

two agents visit each room. However, the relative view adds another level of divisional

cooperation to the regime by having each pair of agents divide the room into halves.

These findings are similar to those of Miyashita & Sugawara [13], where agents with a

relative view would divide their 20×20 grid environment into different territories, but

agents with a local view would not. When comparing our results with theirs, we can see

that using local and relative view affects the agents’ learned behaviors, i.e., because their

environment consisted of a single room, agents with local views worked in only one or two

specific rooms but did not divide a room into a number of subareas. On the other hand,

agents with relative views worked in a room separately. This implication is consistent in

both results. In addition to room separation, the relative view offers a considerably better

performance than the local view in terms of task completion.

Furthermore, the heatmaps of Experiments 1 and 2 (Figs. 5 and 7, respectively) show

that agents can provide significantly different behavioral outcomes in terms of divisional

cooperation and room preference when spawning occurs in the same location as opposed

to a different location at the start of each episode. Moreover, the line graphs of Figs. 4a

and Fig. 6a suggest that the relative view’s task completion numbers can be hindered

significantly by the variable spawn location and high number of collisions. However,

the high task completion numbers of the merged view suggest that it is not caused by
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(a) Total Task Completion Rate

(b) Total Wall Collision Rate (c) Total Agent Collision Rate

Figure 8: Experiment 3 Scalars

the agents observing their absolute location in the environment. This is because the

agents using the merged and relative views observe the tasks, walls, and agents around

themselves as well as their absolute locations in the environment. The only noticeable

difference between the view methods is the method by which the observational information

is input into the DQN, which may have contributed to the difference in the task completion

number.

The difference in efficiency between these experiments can be explained partially

using the heatmaps in Figs. 5 and 7. In Experiment 1, the same number of agents

were in charge of each room, and a fairly adjusted coordination structure was obtained

as a result of learning. Hence, the agents operated individually in the almost same-sized

rooms. By contrast, in Experiment 2, the rooms to be visited were selected based on their

initial locations; hence, the work became unbalanced. For example, three agents often

operated in one room, while one or zero agents operated in another room, resulting in a

decreased overall efficiency.
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6 EXPERIMENT AND DISCUSSION

Figure 9: Experiment 3 Task Completion Heatmap (Merged View)

6.6.2 Robustness of the Merged View

Data from Experiment 3 adds to the findings of Experiments 1 and 2 in several ways.

Firstly, we can see in Fig. 8 that the performance of agents using merged views in a static

spawn environment is near identical to that of agents using relative views. However, there

is one key difference; agents using merged views have no performance drops and wall

collision spikes that agents with relative views exhibit. Given that the only significant

difference between the relative view and the merged view is the input structure, we can

attribute the difference in input structure as the most plausible explanation for why the

performance drops in one view method and not the other.

Secondly, when looking at Figs. 5a, 5b, and 9, we can see that room separation

was also present in merged view when agents had a static spawn location, albeit to a

lesser degree. The presence of territorial separation in the relative view and the merged

view and lack thereof in the local view suggests that territorial separation can be present

in view methods outside of the specific input structure of the relative view as long as

information about the absolute locations of the agents is provided.

Finally, can see from how the agents adapted to the change in environment in Fig. 8

that the overall performance and number of collisions were almost identical to those in

Experiment 2 except for the relative view, which performed worse overall. At least with
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(a) Total Task Completion Rate

(b) Total Wall Collision Rate (c) Total Agent Collision Rate

Figure 10: Experiment 4 Scalars
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6 EXPERIMENT AND DISCUSSION

the local view and the merged view, their performance similarity to Fig. 6 of Experiment

2 indicates that the spawn locations significantly affected the agents’ behaviors learned

so far, and the agents reconstructed another coordination regime. In actual applications,

both fixed and random spawn locations may be possible. Agents often have charging

bases or storage locations. Thus, we think that fixed spawn locations are more likely to

be present as the environmental setting.

6.6.3 Starvation by Other Agents

Although the difference in input structure between the relative view and the merged

view appears to be the culprit behind the differences in performance, we attempted to

investigate whether there were other factors contributing to the low performance exhibited

by the relative view in Experiment 4. Given there were usually 2 agents for each room

in past experiments, we considered the possibility that one agent may be completing too

many tasks and starving the other agent in the same room of rewards. The starved agent

may fail to learn to consistently visit one room, causing an imbalance in room occupancy,

which may in turn lead to a decrease in overall performance. This may also explain the

spikes in wall collisions because we have observed agents with learning issues repeatedly

colliding with walls in the past. We can infer from 10 that having multiple agents in

the same room may not be a significant factor contributing to the low performance of

relative view. Given that there are only 4 agents, there must be 1 agent per room to

avoid a build-up of tasks in any of the rooms. We can see that agents with relative views

exhibited low performance and high wall collision starting from roughly episode 17,500.

This finding strengthens the idea that the input structure of relative view may be the

reason for the low performance, and not any environmental factors.

By understanding the coordination structures that we focused on in this paper, we

have the advantage of being able to easily infer the impact on changes in the system. For

example, since agents in Experiment 1 consistently visited one room, one room will be

neglected in the event of an agent malfunction allowing identification of the malfunctioning

agent. It is also easy to predict which rooms will be neglected due to a failure of a certain

agent, which is especially useful in security patrol contexts where identifying areas with

loose security is critical. Furthermore, we can see that the different starting positions

between Experiment 1 and Experiment 2 result in different coordination regimes. This

difference suggests that the starting positions of agents can have a significant impact on

how they will behave. For this reason, we believe careful consideration should be taken
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6 EXPERIMENT AND DISCUSSION

to the starting position when increasing the number of agents within an environment.

Finally, we can see that although the same environmental information is provided, the

input structure can have a significant impact on the performance and stability of agents.

For this reason, we recommend thought and deliberation should be taken when designing

the input structure for an agent.
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7 CONCLUSION

7 Conclusion

We analyzed the coordination structures observed in a multi-agent DRL setting, where 8

agents learned to play a task execution game in a four-room environment. We observed

the effects of allowing agents to view their absolute locations within their environments on

the manner in which they coordinated with one another as well as the differences arising

from a consistent or inconsistent starting location for each episode. We also examined

whether there was any transfer of learned behaviors between a consistent to inconsistent

starting location for each episode, and we analyzed the performance when there were 4

agents in the environment.

Our experimental results indicated that with a consistent starting location, agents

that can view their absolute location had highest task execution rates and territory divi-

sions among agents sharing the same room. Furthermore, compared with agents with a

consistent starting location, we discovered that agents with an inconsistent starting loca-

tion behaved considerably differently in terms of performance and coordination. Finally,

we introduced a new method to observe an environment that mitigated the performance

loss from an inconsistent starting location while maintaining the agent’s ability to view

their absolute location in the environment.

Future studies may involve performing similar experiments with modified environ-

mental parameters, such as the agent’s view range, task spawn frequency, environment

size, and asymmetrical environmental conditions. Further investigations could be made

regarding the behavioral characteristics of agents using different input structures with the

same environmental information.
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