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Abstract 

Point of Interest (POI) recommendation systems exploit information in location-based 
social networks to predict locations that users may be interested in. POI recommendations 
have been widely adopted in many applications, which are helpful for daily life. POI 
recommendation services receive a huge volume of visit history data generated by users’ 
daily lives with mobile devices. However, POI recommendation systems require long 
time to build a model from such a huge volume of check-in data and recommend suitable 
POIs to users. In industry, the recommendation system needs to respond quickly to user 
requests. Thus, it is indispensable to shorten the execution time of POI recommendation 
system in a big data era. 

 In this study, we propose a clustering-based method to divide the data into multiple 
subsets to accelerate the POI recommendation's execution while maintaining accuracy. 
Our proposed method can be adapted to any general POI recommendation algorithm. We 
divide the whole data, that is, users and POIs, into subsets with a tree structure to balance 
the size of subsets according to both geographical information and user check-in 
distribution. Evaluation results show that we successfully accelerate the base algorithms 
over 17 to 39 times faster while keeping the accuracy almost the same.



i 
 

Contents 

1. Introduction ............................................................................................................ 1 

2. Related Work .......................................................................................................... 3 

2.1. POI Recommendation .............................................................................................. 3 

2.2. Real-time POI Recommendation .............................................................................. 3 

2.3. POI Recommendation Models using Clustering ...................................................... 4 

2.4. Summary .................................................................................................................. 4 

3. Proposed Method ..................................................................................................... 6 

3.1. Method Overview ..................................................................................................... 6 

3.2. POI Clustering with Tree Structure ........................................................................ 8 

3.3. User Assignment and Average Coverage Ratio .......................................................10 

3.4. Social Relationship Division ...................................................................................12 

4. Evaluation ............................................................................................................ 13 

4.1. Datasets ..................................................................................................................13 

4.2. Base Algorithm ........................................................................................................13 

4.3. Metric ......................................................................................................................14 

4.4. Parameter Tuning ...................................................................................................15 

4.5. Evaluation Result and Discussion ..........................................................................15 

5. Conclusion ............................................................................................................ 20 

 

 



1 
 

1. Introduction 

Recommendation systems aiming to predict the items that users are potentially 
interested in, face information overload problems in the big data era. Point of Interest 
(POI) recommendation systems focus on advising users on locations to visit. With the 
widespread use of mobile devices, location-based social network (LBSN) services can 
collect a huge volume of check-in data generated by users. By exploiting features from 
such data, personalized potential interest locations can be recommended to the users, 
which is beneficial for both users and merchandises. Users are more satisfied if preferred 
locations can be found using POI recommendation system. 

Many researchers have adopted different techniques to improve the accuracy of the 
recommendation systems [1]. However, besides accuracy, computation cost, especially 
the execution time when training the model and recommendation, are crucial in practice 
because the LBSN service needs to generate a list of recommended POIs in a short time. 
In the industry, a real-time recommendation system is usually required to provide the 
result within one second [2]. Meanwhile, the data volume is large and keeps growing fast 
because it receives daily users’ activities. For example, Yelp1 earns 2 million new reviews 
of POIs each month. Thus, building a highly efficient POI recommendation system is 
challenging. As pointed out in [3], some POI recommendation systems lack scalability. 
Furthermore, applying deep learning to a recommendation system, which is a popular 
trend, is suspected to be extremely time-consuming [4]. Therefore, the efficiency of the 
POI recommendation systems also needs to be considered in a real scenario. 

In the POI recommendation systems, geographical information is one of the most 
influential aspects. Many users tend to visit locations near their home or active area [5], 
which could be an insight to accelerate the recommendation. For a specified user, only a 
small portion of his/her nearby POIs are possible to be visited in most cases. Because the 
recommendation execution time, which includes model training and query processing, 
can be decreased if we narrow down the number of POIs to analyze, dividing both POIs 
and users into small subsets becomes a way to speed up the recommendation process. 

In this study, we propose a novel clustering-based acceleration method to shorten the 
execution time of the POI recommendation system. The original input data are divided 
into smaller subsets and fed into the recommendation model. The POIs in a small region, 

                                                   
1 https://www.yelp-press.com/company/fast-facts/default.aspx 
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along with users who are active in such regions, are clustered into the same subset to 
reduce the information loss. The subsets are organized in a tree structure to balance the 
size of subsets to effectively shorten the execution time. Our division method can be 
adapted to any general POI recommendation algorithm. 

In the rest of the paper, related work is introduced in Chapter 2. Details of the proposed 
method are described in Chapter 3. We present the experimental result in Chapter 4 and 
the conclusion in Chapter 5. 
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2. Related Work 

We briefly introduce general POI recommendation models and review recent work on 
high-speed models to achieve real-time recommendations. We also list the previous work 
applying clustering in POI recommendation systems. 

2.1. POI Recommendation 

Ye et al. [6] proposed USG, a pioneering algorithm to use geographical information in 
the POI recommendation field. Geographical information is also combined with other 
aspects to model user preferences [7][8]. Social relationship information can also be used 
because users’ check-in preferences are inferred from their friends [9][10]. Factorization-
based models [11][12] use matrix factorization to decompose user-poi check-in matrix. 
Deep neural networks (DNNs) have also proved to be effective in POI recommendations. 
Yu et al. [13] designed LSTM-based deep encoders to capture the user’s categorical 
preference and POI preference. Zhao et al. [14] proposed a variant of LSTM to capture 
the spatio-temporal relationship between POIs. However, these models focus on accuracy, 
but the efficiency is ignored, and both DNN-based models and models without DNN are 
time-consuming [4][15]. 

2.2. Real-time POI Recommendation 

Efforts have been made to speed up the execution time of POI recommendation systems, 
especially by researchers in industries. Agarwal et al. [16] proposed a two-stage approach 
to accelerate the top-k information retrieval system by approximating the scores of items 
adapted to the common recommendation system. Jiao et al. [17] proposed a real-time next 
POI recommendation system that integrates a target user’s geographical and temporal 
preferences and uses a convolutional neural network to classify target user’s personal 
reviews. The goal of the system is to recommend the next POI given current time and 
location. Fan et al. [18] adapted a Golang-based architecture to implement a real-time 
online POI recommendation system focusing on the ride-hailing transport service, and 
the goal of the system is to predict and suggest the start and end point of user’s ride. Wang 
et al. [19] leveraged a lightweight neural network to compress the model to execute the 
next POI recommendation task on mobile devices with limited computation resources. 
However, they aimed at specific tasks, such as the next POI and searching POI with names. 
To the best of our knowledge, none of the existing real-time POI recommendation systems 
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generate a list of recommended POIs for users. 

2.3. POI Recommendation Models using Clustering 

A clustering technique can also be applied to POI recommendation models to achieve 
different goals. Si et al. [20] clustered all users into active users and inactive users 
according to their behavior using k-means and used different criteria to select a similar 
user for different clusters. Zhu et al. [21] clustered users’ trust matrix using Fuzzy-C-
Means to predict POI and friendship in LBSN. Massimo et al. [22] adopted non-negative 
matrix factorization to enable a spot recommendation for tourists by clustering the 
attributes of POIs in visit history. None of the previous studies adopted clustering to 
accelerate the recommendation process. 

2.4. Summary 

In this chapter, related work about POI recommendation system is introduced. 
Specificly, we introduced researches focusing on acceleration and models using 
clustering technique, which are shown in Table 1.  
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Table 1 Summary of related work 

 

 

Research Proposal Shortcoming 

Agarwal et al. 
[16] 

A two-stage approach to accelerate 
top-k information retrieval system 

Not using POI information 
 

Jiao et al. [17] 
Integrating user’s geographical and 
temporal preference with review  

Next POI generation, not a 
recommendation list 

Fan et al. [18] 
A Golang-based architecture to 
implement real-time POI 
recommendation 

Focusing on specific task 
of ride-hailing transport 
service, not general 

Wang et al. [19] 
A light-weighted network that can 
be used on resource-constraint 
devices 

Next POI generation, not a 
recommendation list 

Si et al. [20] 
Clustering all users into active and 
inactive groups and adapting 
different strategy  

Not focusing on 
acceleration, 
Not considering 
geographical information 
 

Zhu et al. [21] 
Clustering users’ trust matrix to 
predict POI and friendship 

Massimo et al. 
[22] 

Clustering attributes of POIs to 
recommend spot for users 
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3. Proposed Method 

3.1. Method Overview 

First, we present an overview of a common POI recommendation system with notations. 
As shown in Figure 1, the input of the POI recommendation system is a tuple 𝐷 =<
𝑃, 𝑈, 𝐶, 𝑆 >, where 𝑃 is the POI set, 𝑈 is the user set, 𝐶 is the check-in set, and 𝑆 is 
the social relationship set. For each POI 𝑝 ∈ 𝑃, the associated geographical coordinates 
< 𝑙𝑜𝑛/, 𝑙𝑎𝑡/ > represent the longitude and latitude of POI 𝑝. A check-in history 𝑐 ∈ 𝐶 
is denoted by 𝑐 =< 𝑢, 𝑝 >, which represents the user 𝑢 ∈ 𝑈 visiting POI 𝑝 ∈ 𝑃. For 
convenience, we denote 𝐶4 as all the checked-in POIs of user 𝑢. Social relationship 𝑆 
is the friendship between users 𝑆 = {(𝑢, 𝑣)|𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈, 𝑢 ≠ 𝑣}. The output of the POI 
recommendation system is the prediction 𝐶= = {< 𝑢, 𝑝 > |𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃 ∖ 𝐶4}, which 
recommends unvisited POIs to the user. 

The goal of our proposed method is dividing the original input dataset 𝐷  into 𝑛 
disjoint subsets, denoted as 𝐷? =< 𝑃?, 𝑈?, 𝐶?, 𝑆? >, followed by inputting each subset to a 
recommendation system. Because the input data size is reduced, the recommendation 
system can generate the recommendation result much faster. Specifically, each POI 𝑝 in 
set 𝑃 is assigned to one of the subsets 𝑃?. Similarly, each user 𝑢 in set 𝑈 is assigned 
to one of the subsets 𝑈? . Every POI and user are kept and mapped to a subset, i.e., 

 
Figure 1 Dataset of common POI recommendation system 
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Equation (1) holds. 

𝑃 =@ 𝑃?
A

?BC
, 𝑈 =@ 𝑈?

A

?BC
	 E1G	 

The division results in some information loss of the check-ins and social relationships. 
For subset 𝐶? , only the check-ins of users 𝑢 ∈ 𝑈?  for POI 𝑝 ∈ 𝑃?  are included, i.e., 
𝐶? = {< 𝑢, 𝑝 > |𝑢 ∈ 𝑈?, 𝑝 ∈ 𝑃?}. Namely, even if the user 𝑢 visited other POIs 𝑝 ∉ 𝑃?, 
such check-ins are not included. Similarly, only the social relationships between two users 
in the same user subset are kept in subset 𝑆? = {< 𝑢, 𝑣 > |𝑢 ∈ 𝑈?, 𝑣 ∈ 𝑈?, 𝑢 ≠ 𝑣}. 

Dataset division is achieved in multiple rounds each of which is shown below: 

1. Select the largest POI subset (initially, whole POIs) to cluster into 𝑘  small 
subsets and organize them in a tree structure;  
2. Assign each user to one of the subsets in which his check-ins are included most 
frequently; 
3. Compute the average coverage ratio, which is the average ratio of user’s checked 
POIs in his most frequently checked cluster to his all checked POIs.  

 At the end of each round, the calculated average coverage ratio is compared to the 
threshold 𝜆; if the criterion is met, the POI and user division is completed; otherwise, the 
largest subset is extracted and divided again using the procedure above.  

After finishing the POI and user division, the check-in history and social relationship 
are divided into the subsets according to the assignment of the POIs and users. The entire 
division process is shown in Algorithm 1. 
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 After the original dataset 𝐷 is divided into several subsets 𝐷?, each subset is fed into 
the POI recommendation system, and the POI recommendation system will generate the 
recommendation result.  

The POI clustering process and tree structure are introduced in Section B; the average 
coverage ratio and the rest of the processes are introduced in Section C.  

3.2. POI Clustering with Tree Structure 

The proposed division procedure mainly relies on clustering POIs according to the 
coordinates because geographical information is the most impacting aspect. However, 
simply clustering POIs into small subsets will generate imbalanced subsets, which 
contributes slightly to acceleration. Thus, we cluster the POIs for multiple rounds and 

Algorithm 1: Dataset division 

Input: <P, U, C, S>: original dataset 

    k, 𝜆: parameters of number of clusters and threshold 

Output: 𝑃?, 𝑈?, 𝐶?, 𝑆?: divided dataset 

  

1 T ← new tree (P) 

2 ratio ←1 

3 while (ratio > 𝜆) do 

4     x←ExtractLargestSubset(T) 

5     Cluster POI set x into k subsets 

6     Add cluster result (k subsets) to T 

7     𝑈? ←UserAssignment(Leaf nodes of T) 

8     ratio ← AverrageCoverageRatio (T, C) 

9 end while 
10 divide check-in set C according to 𝑃? and 𝑈? 

11 divide social relation set S to 𝑆?	according to 𝑈? 
12 return 𝑃?, 𝑈?, 𝐶? , 𝑆? 
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organize the result of each round’s clustering of POI into a tree structure to balance the 
size of subsets. 

Each node of the tree represents a set of POIs belonging to the same cluster. First, a 
single root node with all the POIs is created. In each round, the leaf node with the largest 
number of POIs is selected to be clustered. The selected set of POIs is divided into 𝑘 
subsets that become the child nodes of the selected node. After clustering the selected leaf 
node at each round, the users originally assigned to the selected node are re-assigned to 
one of the clustered nodes. The average converge ratio is then calculated, which is 
introduced in section C. If the ratio is larger than the threshold 𝜆, the next round of 
clustering is applied; otherwise, the current tree structure composes the final POI 
clustering result. Each leaf node represents one subset of all POIs. 

Figure 2 shows an example of the tree structure of dividing a dataset after three rounds 
when 𝑘 = 4. Each node represents a subset of POIs; the number of the node shows the 
size of the POI set; the edges are added from parent node to child node; the leaf nodes are 

 

        Figure 2 Example of POI clustering with tree structure (k=4) 
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Initial

1st round

2nd round

3rd round



10 
 

colored in brown; the largest subset is dotted. 

The original 32,000 POIs are divided into ten subsets after three rounds; each subset 
has less than 10,000 POIs. 

We adopted k-means, a commonly used and effective clustering algorithm, to cluster 
the POIs. We choose k-means as our clustering algorithm because of its efficiency and 
the easy specification of the number of clusters.  

3.3. User Assignment and Average Coverage Ratio 

In each round, POIs are divided into subsets. Besides, the users are divided according 
to the assignment of their checked POIs. Then the average coverage ratio is calculated 
according to the POI clustering and user assignment. The user assignment and average 
coverage ratio calculation are shown in Algorithm 2. 

As explained in section B, suppose the current tree structure has 𝑚 leaf nodes, i.e., 
the whole POI set 𝑃 is divided into disjoint subsets 𝑃C, 𝑃N, 𝑃O, … , 𝑃Q . For the user 𝑢, we 
retrieved all his checked POIs 𝑝 ∈ 𝐶4, and counted the frequency of his checked subset 
as (2):  

𝑓𝑟𝑒𝑞?4 =
|{𝑝|𝑝 ∈ (𝐶4 ∩ 𝑃?)}|

|𝐶4|
E2G 

As shown in (3), the subset that includes the user’s most frequently checked POIs is 
assigned as the user’s subset.   

𝑡𝑎𝑔4 = 𝑎𝑟𝑔𝑚𝑎𝑥?(𝑓𝑟𝑒𝑞?4) E3G 

The average coverage ratio of all users, shown in (4), indicates how much checked POI 
information is kept under the current division. A larger coverage ratio means that more 
POIs are covered for each user after division, and less information is lost.  

𝐴𝑣𝑔𝐶𝑜𝑣𝑅𝑎𝑡𝑖𝑜 =
∑ 𝑓𝑟𝑒𝑞_`ab

4
4∈c

|𝑈|
E4G 

 

The average coverage ratio is initialized as 1 because the original dataset is regarded 
as only one set. With more rounds of division, the ratio keeps decreasing because more 
POIs are split into small subsets. The ratio should not be too small because the accuracy  
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Algorithm 2: User assignment and average coverage ratio calculation 
Input: (𝑃C,𝑃N, … , 𝑃Q): divided POI set  
    C: check-in information 
Output: {𝑈?}: divided user set 
       ratio: average coverage ratio   
1 Initialize each 𝑈? as ∅ 
2 SumRatio = 0 
3 for 𝑢 ∈ 𝑈 do 
4     initialize freqij,tagj , MaxFreq as 0 
5     for p ∈ Cj do 
6         t ← obtain assigned cluster number of p 
7         freqoj ←  freqoj +1 
8   wfreqoj means the percentage of POIs that  
9             user 𝑢 checked in subset 𝑃_ 
10     end for 
11     for i ← 1 to m do 
12         if freqij > MaxFreq then 
13             MaxFreq ← freqij  wsave coverage ratio 
14             tagj ← i  
15             w user 𝑢 most frequently visits POIs in set  
16          													𝑃?, thus i becomes user 𝑢’s tag (assignment) 
17         end if 
18     end for 
19      Uoqrs ← Uoqrs ∪ 𝑢 
20      SumRatio ← SumRatio+MaxFreq 
21 end for 
22 ratio ← SumRatio / |U| 
23 return ratio, {𝑈?} 
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will drop owing to the loss of check-in information. Thus, we set a threshold parameter 
𝜆 to control. As shown in Algorithm 1, the division iterates until the ratio is less than 𝜆, 
i.e., the stop condition is ratio<	𝜆. 

3.4. Social Relationship Division 

After the final round, each user 𝑢 ∈ 𝑈 is assigned to one of the subsets 𝑈?. Because 
each subset will be calculated separately, the original social relationship set 𝑆 should 
also be divided into subsets according to the assignment of users. 

For one relationship < 𝑢, 𝑣 >∈ 	𝑆 between user 𝑢  and user 𝑣 , < 𝑢, 𝑣 > will be 
assigned to subset 𝑆? if 𝑢 ∈ 𝑈?  and 𝑣 ∈ 𝑈? . Otherwise, the relationship between users 
in different subsets is discarded. 
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4. Evaluation 

4.1. Datasets 

To evaluate the effectiveness of our proposed method, we chose two datasets, Gowalla1 
and Yelp2, to conduct the experiments. For each user, the earliest 70% of check-ins are 
used as a training set, the latest 20% are used as a testing set, and the remaining 10% are 
used as a tuning set. The split ordered by check-in time avoids data leakage; thus, we can 
conduct an accurate evaluation. We use the dataset cleaned and split by Liu et al. [3]. The 
details of the datasets and filtering criteria are shown in Table 2.  

Table 2 Detail of Dataset 

Dataset Size after filtering Filtering criteria 
# of POI # of user Cold POI Cold User 

Gowalla 32,510 18,737 <10 visitor <15 checked POI 
Yelp 18,995 30,877 <10 visitor <10 checked POI 

 

4.2. Base Algorithm 

As there are many different techniques used in POI recommendation systems, we 
selected four representative algorithms as base algorithms to experiment: 

1. USG [6] is a hybrid algorithm that linearly combines geographical information, 
user preference, and social relationship to recommend POIs. 

2. LFBCA [9] mainly mines social relationship information to model social 
influence. The similarity between users is computed based on the friendship 
and user preference, and user-based collaborative filtering is used to 
recommend POIs. 

3. MGMPFM [11] adapted the Poisson factor model to factorize the check-in 
matrix and combine the user's region preference. 

                                                   
1 http://snap.stanford.edu/data/loc-gowalla.html 
2 Yelp dataset challenge round 7, https://www.yelp.com/dataset challenge 
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4. iGSLR [10] is a hybrid model using social relationship and geographical 
information. User’s most frequently checked POIs are treated as residence, and 
user similarity is calculated based on distance between residences.  

We slightly altered these base algorithms' implementation from [4]; we enabled time 
measuring, feeding split data, and evaluation of the result in subsets. All the codes are 
written in Python for a fair comparison. 

4.3. Metric 

We use precision and nDCG to evaluate the quality of recommendation results in 
addition to execution time to evaluate the acceleration. 

Precision is the ratio of the correct recommended POI in the recommendation result 
list. Let 𝐿v4  be user 𝑢’s first 𝑘 recommended POIs in the result list, and 𝐺4 be user 
𝑢’s ground truth, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁 of user 𝑢 is calculated as (5). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁 =
|𝐿{4 ∩ 𝐺4|

𝑁
E5G 

nDCG is a common metric that evaluates the ranking quality of information retrieval 

systems, and is calculated by 𝑛𝐷𝐶𝐺@𝑁 =	 }~�@{
?}~�@{

 , and 𝐷𝐶𝐺 is calculated as (6):  

𝐷𝐶𝐺@𝑁 =�
2���� − 1
𝑙𝑜𝑔N(𝑖 + 1)

{

?BC

E6G 

, where 𝑟𝑒𝑙? is the relevance score of the i-th POI in the recommendation result list, 
and 𝑖𝐷𝐶𝐺 is the DCG of the ideal recommendation result. 

 The execution time comprises three steps: clustering the dataset, training base 
algorithm, and query processing. Shortening the query processing time is the most 
important because recommendation systems in the industry should respond to the user’s 
request in time. On the contrary, the dividing and the training processes can be executed 
offline. Here, the query processing time is shown as the execution time per user for a fair 
comparison. 

We use the time command on Linux server to obtain the execution time. The 
experiment environment was CentOS 6 on an Intel Xeon E5-2620 @2.10 GHz CPU and 
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128GB memory. Note that although these executions can be run in parallel because the 
divided subsets are independent, we report the execution time with one thread for a fair 
comparison. 

4.4. Parameter Tuning 

We have two parameters, 𝑘 and 𝜆 to tune. The main task is to tune 𝜆 because it is 
directly related to the division process (smaller 𝜆 leads to more subsets). To tune 𝜆, we 
first need to decide the value of 𝑘. According to our proposed division algorithm, large 
𝑘 leads to a drastic drop in the average coverage ratio (because POIs are clustered in 
more subsets) during the clustering and causes the missing of the optimal value of 𝜆, 
while small 𝑘 slows down the division process. Thus, we empirically choose 𝑘 = 4 to 
achieve a suitable granularity to tune 𝜆. 

 We tuned the parameter 𝜆 on the tuning set of the Gowalla and Yelp datasets. We use 
a grid search from 0.50 to 0.98 with an interval of 0.02. A smaller 𝜆 can achieve more 
acceleration, but the accuracy will decrease. We try to find the lowest possible 𝜆 while 
maintaining the accuracy. By observing the Precision@10 and execution time 
simultaneously, we choose  𝜆 = 0.80 for the Gowalla dataset and 𝜆 = 0.60 for the 
Yelp dataset. 

4.5. Evaluation Result and Discussion 

We adopted our proposed method to four base algorithms on two datasets. The results 
are shown in Table 3. In our experiment, we set 𝑁 = 10 for precision and nDCG metrics. 
The results of the original model that is without division are also listed. The better results 
(higher accuracy or shorter time) are in bold. 

We accelerated the querying of USG by 17 times for the Gowalla dataset and 28 times 
for the Yelp dataset while maintaining the accuracy. The 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10  and 
𝑛𝐷𝐶𝐺@10 are almost similar or increased slightly, which is because of the elimination 
of noise. Note that USG does not have a training process, thus N/A is shown in Table 2. 

Similarly, the querying speed of LFBCA is accelerated by 29 times for the Gowalla 
dataset and 22 times for the Yelp dataset. The training time is also reduced because the 
training time of the LFBCA is sensitive to the number of users. The accuracy is also 
increased slightly. 
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Although the accuracy and training time of MGMPFM is very close to the original 
ones, the querying of the original model is accelerated drastically, which is 18 times faster 
on the Gowalla dataset and 30 times faster on the Yelp dataset. 

 iGSLR, the slowest model among 4 base algorithms, is accelerated drastically. 
Although the precision of iGSLR is decreased very slightly (less than 0.002) for both 
datasets, the querying is over 24 and 39 times faster on Gowalla and Yelp dataset, 
respectively. iGSLR does not have a training process either, thus N/A is shown for training 
time. 

To better address the performance among base algorithms on two datasets, Figure 3~6 
are shown below for clear comparison.  

Table 3 Evaluation Result 

Dataset 
Base 

Algorithm 
Configuration 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏@𝟏𝟎 𝒏𝑫𝑪𝑮@𝟏𝟎 

Clustering 

Time(sec) 

Querying 

Time per 

user(sec) 

Training 

Time 

(sec) 

Gowalla 

 

USG 
original 0.0483  0.0724 N/A 3.532 N/A 

proposed 0.0486 0.0734 26 0.206 N/A 

LFBCA 
original 0.0459 0.0677 N/A 0.088 1,380 

proposed 0.0466 0.0693 26 0.003 306 

MGMPFM 
original 0.0222* 0.0336 N/A 4.339 351 

proposed 0.0222 0.0326 26 0.235 408 

iGSLR 
original 0.0283 0.0403 N/A 4.766 N/A 

proposed 0.0265 0.0373 26 0.192 N/A 

Yelp 

 

USG 
original 0.0224 0.0385 N/A 1.644 N/A 

proposed 0.0240 0.0403 32 0.057 N/A 

LFBCA 
original 0.0188 0.0320 N/A 0.090 2,802 

proposed 0.0209 0.0351 32 0.004 498 

MGMPFM 
original 0.0149 0.0254 N/A 2.392 341 

proposed 0.0150 0.0253 32 0.079 337 

iGSLR 
original 0.0113 0.0177 N/A 5.239 N/A 

proposed 0.0110 0.0171 32 0.132 N/A 

* The Precision@10 of original MGMPFM is 0.02224, higher than that of proposed one 0.02220. 

(All the difference of Precision and nDCG between original and proposed method is statistically siginifcant at p<0.001) 
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Figure 3 Precision on Gowalla dataset 

 
Figure 4 Querying time on Gowalla dataset 

 

 
Figure 5 Precision on Yelp dataset 
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The acceleration effect and increase in accuracy are slightly more significant in the 
Yelp dataset. The overall performance of the proposed method is similar for two datasets 
with similar sparsity.  

Theoretically, query processing of USG, LFBCA, and MGMPFM has linear time 
complexity with respect to the number of POIs [4]. We denote 𝑁 as the number of POIs. 
USG and LFBCA have querying complexity 𝑂(𝑀𝑁), where 𝑀 is the number of users. 
The querying complexity of MGMPFM is 𝑂((𝐺4 + 𝐾)𝑁), where 𝐺4 is the number of 
user’s active centers and 𝐾 is the dimension of the latent space. Thus, the querying time 
is decreased because the number of POIs in the subset is decreased. The acceleration of 
querying is achieved best for iGSLR because the query time of iGSLR increases cubically 
with respect to the number of user’s checked POIs; thus the acceleration of querying is 
significant for iGSLR due to the decreased number of POIs.  

The acceleration of training is achieved best for LFBCA, because LFBCA used 
Bookmark-Coloring algorithm to train the model and its complexity is 𝑂(𝑀N), where 𝑀 
is the number of users. By dividing the whole dataset into small subsets, the number of 
users in each subset is much smaller. Thus, the training process of LFBCA can be 
accelerated much. 

The increase in accuracy on LFBCA is the highest because the original LFBCA only 

 
Figure 6 Querying time on Yelp dataset 
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considers user’s friendship and ignores geographical information. By clustering the POIs, 
POIs in a small area are assigned into the same subset, which essentially adds 
geographical consideration because POIs far away from user’s active area are filtered out. 
Thus, the accuracy of LFBCA can be increased much. 
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5. Conclusion 

In this study, we accelerated the POI recommendation system's execution speed by 
proposing the clustering-based method. We proposed a division method to divide the 
dataset into small subsets and feed subsets into base POI recommendation algorithms. 
The division process is based on multi-round POI clustering; each round's clustering 
result is structured to a tree, whose node represents POIs belonging to the same set. The 
division process continues until the average coverage ratio reaches the threshold. The 
average coverage ratio is the percentage of covered users’ checked POIs under a specified 
POI division. The users, check-in history, and social relationships are also divided 
according to the POI division result. The evaluation results show that our proposed 
method accelerates the base algorithms by 17 to 39 times while keeping accuracy almost 
the same. 

Our future work will include improving the POI division by altering the clustering 
algorithm or dynamically choosing the number of clusters. We are also seeking to exploit 
temporal patterns and friendship information to improve the division. 
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