
I

Real-time inference improvement on ECNet: A Lightweight Edge-

Cloud Network System based on Cascading Structure

A Thesis Submitted to the Department of Computer Science and Communications Engineering,

the Graduate School of Fundamental Science and Engineering of Waseda University

in Partial Fulfillment of the Requirements for the Degree of Master of Engineering

Submission Date: January 25th, 2021

Libo HU

 (5119FG04-4)

Advisor: Prof. Hiroshi Watanabe

Research guidance: Research on Audiovisual Information Processing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/392354842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

Acknowledgments

To begin with, I would like to express my greatly thanks to my research

supervisor Professor Hiroshi Watanabe for his continuously overall support on all

the stages of my research. He has provided an excellent laboratory circumstances

and he has always been there to give us his constructive ideas when we face any

problems.

I would like to thank the joint research group members of NTT Software

Innovation Center, Mr.Takaharu Eda, Mr.Shohei Enomoto, Mr.Akira Sakamoto, and

Ms.Xu Shi for their remarkable research advices and academic inspirations they

provided.

I also want to give my appreciation to all members of the Advanced Multimedia

Systems Lab for their support and encouragement through my two years study.

Lastly, my gratitude to my parent’s constant overall support, and my girlfriend

Miss.Guerrero Estrada Itzel Arianna, who has given me the warmest help through

my life in Japan

III

Abstract

The pervasiveness of “Internet-of-Things” in daily life has led to a recent surge

in fog computing, encompassing a collaboration of cloud computing and edge

intelligence. As a significant field of IoT, real-time detection and classification have

a huge demand. Due to the insufficiency of computing power in mobile devices and

the increment of network bandwidth, combination of edge devices and cloud servers

would be an accessible orientation for real-time tasks. In this work, we present

ECNet—an edge-cloud network system dealing with the balance between inference

performance and time cost.

We propose to transmit the output feature map of an exit point from the edge-

side network to the cloud-side network with an offload controller and quantizer

deployed to minimize the transmission cost. ECNet is tested to reach a balance

between processing time and accuracy performance with reducing transmission cost

down to 25%. We also consider implementing an integrated feature map encoder to

further reduce the bandwidth demand and meanwhile minimize the loss of accuracy.

Additional achievements could be expected in our future work.

Keywords—Edge-cloud system, Quantization, ECNet, model cascading,

classification, encoding.

IV

Contents

Acknowledgement ... IV

Abstract ... IV

Contents ... IV

List of Tables ... IV

List of Figures ... IV

Chapter 1 Introduction ... 1

1.1 Background and Challenge .. 1

1.2 Research Objective .. 3

1.3 Thesis Outline ... 4

Chapter 2 Related Technology ... 5

2.1 Efficient classification and detection network ... 5

2.1.1 BranchyNet .. 7

2.2 Model Cascading .. 9

2.3 Quantization ... 10

Chapter 3 ECNet system and model designment .. 14

3.1 Overall framework .. 14

3.2 Edge-side and cloud-side structure ... 15

Chapter 4 Offloading control & feature map compression ... 21

4.1 Measure of confidence score and offloading control ... 21

4.2 Feature map quantization ... 22

V

4.3 Further compression approach assessment ... 25

Chapter 5 Conclusion and future work ... 29

5.1 Conclusion... 29

5.2 Future work ... 30

Chapter 6 Appendix ... 31

6.1 List of academic achievements ... 31

Bibliography ... 31

VI

List of Tables

Chapter 3

Table.1. COMPARISON WITH ALTERNATIVE NETWORKS UNDER UA-DETRAC DATASET

 ... 15

Table.2. EDGE-SIDE NETWORK STRUCTURE ... 17

Table.3. CLOUD-SIDE NETWORK STRUCTURE 19

Table.4. CLASSIFICATION PERFORMANCE COMPARATION .. 20

Chapter 4

Table.5. ENTROPY OF FEATURE MAP DATA BY ALL QUANTIZATION APPROACH 25

Table.6. COMPARISON OF INFORMATION VOLUME ... 26

Table.7. COMPRESSION APPROACH EVALUATION .. 28

VII

List of Figures

Chapter 2

Fig.1. Milestones in generic object detection based on deep learning 6

Fig.2. Performance preview of several detection models on VOC 2007 7

Fig.3. A simple BranchyNet with two branches added to the baseline (original)

AlexNet ... 8

Fig.4. An overview of a cascading structure system 9

Fig.5. An example of n-bit quantization proposed by SeerNet (e.g. n=4) 12

Chapter 3

Fig.6. General framework of ECNet ... 14

Fig.7. Preview of the image data (class Haliaeetus leucocephalus) 19

Chapter 4

Fig.8. Entropy distribution of feature maps .. 21

Fig.9. Total accuracy with different quantization bits and offload control by

threshold operating ... 23

Fig.10. Visualization of feature maps at exit point by channels 25

Fig.11. Data variation of the feature map in single channel .. 26

1

Chapter 1

Introduction

1.1. Background and Challenge

As the construction of smart cities is in full swing, technical requirements for

intelligent surveillance and other related computer vision technology are also

increasing. As a basic task in the field of computer vision, pedestrian detection has

attracted most attention from experts in the field of computer vision. The traditional

pedestrian detection method is to use a manually designed feature extractor to train

the classifier by extracting features such as Histogram of Oriented Gradients (HOG)

[1], Local Binary Pattern (LBP) [2], etc., to realize the detection of pedestrians.

However, the artificially designed pedestrian characteristics are difficult to adapt to

the large changes in pedestrian behavior. Essentially, pedestrian detection is nothing

but a special object detection. Thus, it can be achieved by learning from the general

object detection method. At present, the mainstream object detection methods are

mainly divided into two types: one is two-stage, and the other is one-stage. The two-

stage method mainly uses Fast Region-based with Convolutional Neural Network

feature (Fast R-CNN) [3]and Towards Real-Time Object Detection with Region

Proposal Networks (Faster R-CNN) [4]. The one-stage method includes unified real-

time object detection (You Only Look Once, YOLO) [5], and its upgraded version

(YOLOv2) [6], and single shot multibox detector (SSD) [7]. Compared with the two-

stage method, the one-stage method has faster detection speed, but the detection

quality is slightly lower. YOLOv2 has an outstanding performance in real-time

detection and is faster, but when directly using YOLOv2 to detect pedestrians, since

the pixels of pedestrians are relatively low, the detection effect of YOLOv2 is poor,

and the position of pedestrians is not accurate enough. In addition, under the

2

condition of a high degree of overlap (Intersection Over Union, IOU) threshold, the

performance of YOLOv2 is not ideal.

CNN (Convolutional Neural Network) methods such as HyperNet [8] use

feature fusion to improve the detection quality of small objects, while Feature

Pyramid Network (FPN) [9] uses multi-layer feature prediction to improve the

detection quality. Pedestrian detection methods can also fuse CNN features and

traditional pedestrian features. The advantage of feature fusion is that the low-level

feature semantic information is relatively small, but the target location is accurate;

the high-level feature semantic information is relatively rich, but the target location

is relatively rough, and the context semantic features are integrated, the high-level

low-level features are easy to detect. However, these methods always utilized very

deep backbone network, which causes the network parameters to be too large,

resulting in a very slow detection speed, which affects the applicability in actual

detection.

In recent years, edge and cloud cooperative approach for object detection has

been proposed [10]. Thanks to advancements in both hardware and deep learning

technology, even deeper networks which further improve the classification

performance have been emerged. The integration of deep neural networks can

greatly enhance the functions of edge device, however, the rapid increase in runtime

and power for gains in accuracy may deepen the neural network which become less

tractable in many real-time situations where latency and energy costs are important

factors

The current state of deep learning systems on edge devices leaves an

unsatisfactory result mainly because of the gap of computation power between edge

devices and cloud servers. It is prone to sacrifice either processing time or inference

accuracy. Besides, the step of offloading image data to a large model in the cloud

will easily lead to associated communication costs, latency issues and privacy

concerns [11]. When meeting a real-time task with a very high data rate, the

3

challenge lies in the demand to achieve high image throughput with a limited

transmission bandwidth.

1.2. Research Objective

To address the problems that is claimed above, we consider an edge-cloud

system based on cascade structure, which combines a lightweight neural network on

edge devices with a high-accuracy network on cloud servers. The lightweight model

at the edge-side can quickly output feature map extraction, and also complete the

inference. The offload controller takes charge of determine whether the inference

result from the edge-side network is satisfactory or not. The feature map that is

barely satisfactory should be transmitted to the cloud-side network for further

processing with more powerful DNN model and relatively sufficient computational

resources. The initial idea of our network designment is to achieve lower computing

cost than that in a DNN model, and higher accuracy performance compared with a

simple lightweight model on edge devices. Further improvement of edge-side and

cloud-side network is fulfilled for compatibility. Additionally, data extraction and

compression module are deployed to reduce communication cost and achieve real-

time nature of our proposed network system [12].

The major contributions of this thesis are:

 Designation and implementation of the edge-cloud architecture:

Specifically modified edge-side network processes majority of inference,

and exits controllable parts of the feature maps. The whole system is mean

to reduce computational costs, resulting in running time saving with

achieving substantial overall performance on deep learning tasks.

 System Regulation via offload-controller: Entropy of classification result

is set as threshold that operated by users to control the offload rate of the

feature map data, thus ensure ECNet to meet customized accuracy demand

4

 Feature data compressing and encoding: We characterize the accuracy

impact of different quantization while introducing several feature space

encoding method with time cost analysis.

1.3. Thesis Outline

The outline of this thesis is organized as follows:

Chapter 1: We describe the background of the real-time detection and

classification tasks. We briefly introduced the advantage and disadvantage of some

mainstream network and pointed out the motivation we need to propose an edge-

cloud network system.

Chapter 2: We introduced some related technology.

Chapter 3: We demonstrated the framework of the proposed ECNet system and

explained the working flow. We specifically introduced the essential idea of the

designment of the edge-side and cloud-side network with the model structure figure.

We made some simulation experiment to evaluate the classification power of the

edge-side network

Chapter 4: We designed an offloading controller to determine the task

distribution of the edge-cloud network system. We used evaluated quantization

approach to save the computing resource and proposed a regulation of the offload

operation. Further data compression ademption is described at the last part of this

chapter.

Chapter 5: The conclusion of this thesis

5

Chapter 2

Related Technologies

2.1. Efficient classification and detection network

The one-stage network-based target detection and recognition architecture has

attracted much attention due to its high computational efficiency while ensuring the

inference performance, such as the YOLO and YOLO9000 network models

proposed by Redmon in 2016 and 2017. Both of these network models input the

entire image into an effective backbone network, and then output the corresponding

detection results, and realize real-time target detection and recognition. In 2016, Liu

Wei, etc., proposed the single-shot detector (SSD) algorithm, which uses multi-scale

feature maps to detect and recognize target objects of different sizes in a similar

manner to a regional proposal network (RPN). In 2019, Wang Ming, etc., set

Resnetv2-50 network and YOLOv2 network [13], removed the last pooling layer

and full connected layer of the Resnet network, fused the shallow and deep features

of the image, and realized the feature extraction by adding convolutional layers

Dimensionality reduction processing. Although these one-stage network-based

target detection and recognition models can quickly complete target detection and

recognition tasks, their main limitation is that their positioning accuracy and

recognition accuracy are generally lower than those of two-level detection networks.

Because the target detection idea based on the two-level network is coarse

positioning + fine classification, and the target detection idea based on the single-

level network is direct positioning + classification, and there is no process of coarse

positioning and screening.

Two-stage network target detection and recognition architecture also plays an

important role on image processing, such as the Fast R-CNN network model

6

proposed by Ren, etc. In 2015, based on Fast R-CNN, the Region Proposal Network

(RPN) is introduced to generate candidate frames. The introduction of RPN has

achieved further acceleration, and real-time detection and recognition effects have

been achieved on the GPU. In 2017, Lin et al. introduced the Feature Pyramid

Network (FPN) structure into the basic Fast R-CNN and proposed the Fast R-CNN

+ FPN network structure. The fusion of FPN into Fast R-CNN greatly increases

awareness of the full image information of the detector. In 2017, based on Fast R-

CNN, He Kaiming, etc. added a branch for segmentation tasks to support instance

segmentation and named it as Mask R-CNN [14] network model. In Mask R-CNN,

ROI Align is used instead of ROI Pooling in Fast R-CNN. After ROI Align is used,

the accuracy of the mask has been significantly improved. In addition, segmentation

tasks, positioning and classification tasks are performed simultaneously. In the

training process of the target detection and recognition model based on the two-stage

network, the detection performance of the detector is often limited by imbalance. In

order to solve this problem, in 2019, Pang Jiangmiao, etc. just proposed a balanced

learning target detection framework-Libra R-CNN [15]. Libra R-CNN uses IOU-

balanced Sampling to select representative candidate frames, uses Balanced Feature

Pyramid to integrate feature pyramids of different sizes, and uses Balanced L1 Loss

to balance positioning and recognition tasks.

Fig. 1. Milestones in generic object detection based on deep learning

7

2.1.1. BranchyNet

On September 2017, Surat Teerapittayanon, etc. from Harvard University

designed a tool for students and researchers to use on their DNN model structures

for fast inference called BranchyNet [16]. This is a greatly creative network

architecture that use early branch exits to promote fast inference comparing with the

running the original model.

The essential idea of BranchyNet is that the features learnt at the earlier layers

of most DNN network model is already sufficient for some task, which indicates that

the later layers might have little effects on performance improvement but only bring

unnecessary burden of the time cost and computing resources. Through proper

branching structures and exit points, BranchyNet shows how to balance the test

Fig. 2. Performance preview of several detection models on VOC 2007

8

samples to be correctly processed and reach an earlier output. It should be typically

pointed out that Branchy net also finish the whole network layers for those test data

that requires high confidence prediction results and less frequency.

Branchynet executed a joint optimization with the weighted loss of all exit

points to prevent overfit and the earlier branch exits can provide additional gradient

back propagation in terms of improving confidence. Researcher can set one or multi

exit points on different positions to fit the challenges of different training data. The

Fig. 3. A simple BranchyNet with two branches added to the baseline (original) AlexNet.

9

measure of confidence in classification prediction is softmax entropy at all branch

exit, which also works as an easy adjustable threshold in order to handle

classification tasks with different test data.

2.2. Model Cascading

The cascading structure [17] basically infers with a lightweight model and

offload a part to a high-accuracy model to balance the trade-off between

accuracy and processing speed. By performing most of the inference at the

lightweight network, it can reach a high throughput, low latency, and reduce

data transfer volume.

For example, when running a classification task, the image data will be

processed by a fast lightweight network model and output a confidence score,

when the result is not confident enough, the image data will be further

transferred to an expensive model for better classification performance. The

cascading structure can combine two model to reduce processing time

significantly with the least accuracy loss.

2.3. Quantization

Fig. 4. An overview of a cascading structure system

10

Over the years, the outstanding performance of deep learning in many

fields has made it the mainstream direction of machine learning today, but its

huge amount of calculation is still criticized. Especially in recent years, as the

computing power of end devices has increased, more and more intelligent

applications based on deep neural networks have emerged in the industry. In

order to bridge the gap between computing power demand and supply, model

compression has become one of the hot spots in the industry in recent years [18] [19].

Quantification can bring many benefits:

 Increased computational efficiency: Many processor integer calculation

instructions are more efficient than corresponding floating-point

calculations. Taking CPU as an example, the latency of floating-point

arithmetic instructions will be longer on average than the corresponding

integer arithmetic instructions, especially in early CPUs. For FPGAs,

floating-point operations are even more troublesome. Moreover, the

complexity of multiplication is usually proportional to the square of the

operand bit-width, so reducing the representation accuracy can effectively

reduce the complexity.

 Memory and storage occupancy reduction: quantization of the

"slimming" effect on the model can be said to be immediate. The benefits it

brings are twofold: First, it reduces the memory footprint. In many cases,

the bottleneck of inference performance is not the calculation but the

memory access. In this case, increasing the calculation density will have a

significant optimization effect on time-consuming; second, saving storage

space, reducing the size of the application, and facilitating software upgrade.

 Reduce energy consumption: Power consumption mainly comes from two

parts: calculation and memory access. On the one hand, taking

multiplication and addition operations as an example, the energy

11

consumption of 8-bit integers and 32 floating-point types can be orders of

magnitude different. On the other hand, memory access is a major power

hungry. Assuming that the model that can only be placed in DRAM can be

quantized and placed in SRAM, it will not only improve performance, but

also reduce energy consumption.

For typical floating-point to integer quantization, it essentially maps a certain

segment in the real number domain to an integer. Noticed that different quantization

function should be applied depending on the specific tasks. If linear quantization is

used, its general form can be:

𝒒 = 𝒓𝒐𝒖𝒏𝒅(𝒔 ∗ 𝒙 + 𝒛)

Among them, 𝒙 and 𝒒 are the numbers before and after quantization, 𝒔 is

called scaling factor, and 𝒛 is called zero point which is the quantized value of 0

in the original value range. There will be a lot of 0 in weight or activation (such as

padding, or after ReLU), so we need to make the real number 0 can be accurately

represented after quantization.

The quantization approach is also divided into uniform (Uniform) quantization

and non-uniform (Non-uniform) quantization. The simplest one is to make the

distance between the quantized levels equal. This type of quantization is called

uniform quantization. But there will be more information loss, because in general,

there must be some areas in the dynamic range that are dense, and some are sparse.

Correspondingly, there is non-uniform quantization which refers to the unequal

length between quantization levels, such as log quantization. Also, through learning

to get a greater degree of freedom mapping (which can be represented by a lookup

table) is an advance approach. Intuitively, non-uniform quantization seems to be able

to achieve higher accuracy, but its disadvantage is that it is not conducive to

hardware acceleration [20].

(3.1)

12

There are many options for the number of quantization bits. It can be roughly

divided into several categories:

 Float16 quantization is a safer approach. In most cases, there is a significant

performance improvement without losing too much precision. Because they

are all floating point, it is relatively easy.

 Int8 is relatively common and relatively mature. There are many related

studies, and various mainstream frameworks are basically supported.

 There are relatively more academic circles about int8 quantization, and little

industrial support. Below 8 bits are mainly 4, 2 and 1 bit. If the accuracy is

as low as 1 bit, that is, binarization, it can be calculated by bit arithmetic.

This is very friendly to the processor. [21]

Fig. 5. An example of n-bit quantization proposed by SeerNet (e.g. n=4)

13

Chapter 3

ECNet system and model designment

3.1. Overall framework

When facing some real-time classification and detection tasks, some

mainstream DNN model that is able to fit the accuracy requirement always have

problems to be embedded on IoT devices. On the other hand, when we only rely on

light-weighted neural network, the inference performance is difficult to meet the

accuracy requirement. To solve this problem, especially when running a real-time

video data processing such as human detection on a surveillance camera video data,

we need to design a network system that can not only ensure the inference

performance, but also have low time or computing requirement. We proposed a

network system that can process relatively easy tasks on the edge-side network

which is deployed on some IoT devices, and link to a cloud-side DNN network to

solve the difficult tasks of detection and classification.

With the essential idea of cascade structure, we present a novel edge-cloud

network system：ECNet, which is augmented with additional branch exit that can

output feature maps from specific layers to be transferred to the cloud-side network.

It consists of a relatively lightweight CNN network as the edge-side network, and a

deep network as the cloud-side network for further inferring. We also designed an

offload controller to achieve a real-time offload rate optimization with the specific

threshold that can be adjusted on demand of the real-time tasks. Due to the limitation

of the network bandwidth, the feature map should be compressed before

transmission. We take the usage of quantization to accelerate our edge-cloud

network system with a dequantization module deployed.

14

3.2. Edge-side and cloud-side structure

To fit the interest of the edge-side and cloud-side network, we must make our

choice with a big number of candidate networks. The edge-side network should be

a lightweight CNN model that can be deployed on an IoT device for real-time

inference. The cloud-side network should be mainstream DNN model that can

handle most of the detection and classification tasks. Based on these essential

conditions, we have several candidates network for edge-side and cloud-side as

shown in the chart.

Method mAP (%) FPS

Faster R-CNN 72.70 11.23

YOLO 62.52 42.34

YOLOv2 73.82 64.65

SSD300 74.18 58.78

SSD512 76.83 27.75

DSSD(ResNet-101) 76.03 8.36

R-SSD300 75.02 43.78

R-SSD512 77.73 24.19

RefineDet320 76.97 46.83

RefineDet512 77.68 29.45

SIN 77.26 10.79

YOLOV3 88.09 51.26

Table. 1. COMPARISON WITH ALTERNATIVE NETWORKS UNDER UA-DETRAC DATASET

 As the most well used network for object detection tasks, YOLOv3 [22] shows

the best accuracy performance, and the earlier version YOLOv2, shows the fastest

Fig. 6. General framework of ECNet

15

processing speed. According to the comparison result of all these candidate network,

we attempt to use Darknet19 (the backbone network of YOLOv2) as the edge-side

network, and Darknet53 (the backbone network of YOLOv3) as the cloud-side

network. As the principle of our network system, the further issue is the feature map

transmission from the edge-side to the cloud, which requires the cloud-side network

to fully accept the extracted feature maps from the edge-side. Thus, we propose to

cut the Darknet53 into two parts: the head part and the tail part. The head part

network ensures the tensor size of the output feature which needs to fit the size that

the tail part network can flatly accept.

16

Type Filters Size

Convolutional 32 3×3

Convolutional 64 3×3/2

Convolutional 32 1×1

Convolutional 64 3×3 ×1

Residual

Convolutional 128 3×3/2

Convolutional 64 1×1

Convolutional 128 3×3 ×2

Residual Branch exit

Maxpool 2×2/2

Convolutional 256 3×3

Convolutional 128 1×1

Convolutional 256 3×3

Maxpool 2×2/2

Convolutional 512 3×3

Convolutional 256 1×1

Convolutional 512 3×3

Convolutional 256 1×1

Convolutional 512 3×3

Maxpool 2×2/2

Convolutional 1024 3×3

Convolutional 512 1×1

Convolutional 1024 3×3

Convolutional 512 1×1

Convolutional 1024 3×3

Convolutional 1000 1×1

Avgpool Global

SoftMax

Table. 2. EDGE-SIDE NETWORK STRUCTURE

17

As is shown in the Table .2, we set up the branch exit at the layer after the third

residual block, and the part before the branch exit is chosen to be the head part of

the proposed edge-side and cloud side network. This kind of distributed structure is

challenging for several consideration including:

 The structure of DarkNet53 is built on numerous residual blocks, and each of

residual block contains successive 3 × 3 and 1 × 1 convolutional layer connected

by one shortcut connection [23]. This structure is aiming to solve the degradation

problem on deep networks. Reconstructed front part of edge-side network should

avoid dividing residual block to ensure its integrity.

Type Filters Size

Convolutional 32 3×3

Convolutional 64 3×3/2

Convolutional 32 1×1

Convolutional 64 3×3 ×1

Residual

Convolutional 128 3×3/2
Convolutional 64 1×1

Convolutional 128 3×3 ×2

Residual

Convolutional 256 3×3/2

Convolutional 128 1×1

Convolutional 256 3×3 ×8

Residual

Convolutional 512 3×3/2

Convolutional 256 1×1

Convolutional 512 3×3 ×8

Residual

Convolutional 1024 3×3/2

Convolutional 512 1×1

Convolutional 1024 3×3 ×4

Residual

Avgpool Global

Connected 1000

SoftMax

Table. 3. CLOUD-SIDE NETWORK STRUCTURE

18

 In detection tasks, YOLOv3 predicts boxes at 3 different scales. The cloud-side

network of ECNet extracts features from those scales using a similar concept as

feature pyramid networks. It has good performance on small objects that are to

be recognized by the detector. The location of offloading feature map to cloud-

side should be before the layer where starting extracting features.

 To limit computing cost and processing time at edge-side, the depth of edge-side

should not be too large.

We provide additional simulation experiments on key aspects of the edge-side

and cloud-side of ECNet. We use 10 classes ImageNet dataset for experiment (10000

images for training and 3000 images for testing). For updating the weight parameters

of the full-connected layer of CNN, image data reshape is necessary. In our

experiment, we center crop the image data into 224×224.

ImageNet is an image dataset organized according to the WordNet hierarchy.

Each meaningful concept in WordNet, possibly described by multiple words or word

phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets

in WordNet, majority of them are nouns (80,000+). Images of each concept are

quality-controlled and human-annotated.

19

 The training environment is NVIDIA GeForce RTX 2070 SUPER 8G (GPU),

and AMD Ryzen 3600 6Core (CPU).

The result shows that the designed Edge-side network has considerable

classification performance, which is better than the original Darknet 19, and the less

processing time per frame than Darknet53. We can frankly lead to the conclusion

that our edge-side and cloud-side network makes good contribution for the proposed

ECNet edge-cloud system. Guided by aforementioned considerations, the structure

of edge-cloud network is designed after several times of trials and simulations.

Fig. 7. Preview of the image data (class Haliaeetus leucocephalus) [24]

 Rank-1(%) Rank-5(%)
Processing

Time(s/frame)

Edge-side 68.5 81.8 0.013

Darknet19 (YOLOv2) 64.3 76.4 0.006

Darknet53 (YOLOv3) 81.2 98.2 0.023

Table. 4. CLASSIFICATION PERFORMANCE COMPARATION

20

Chapter 4

Offloading control & feature map compression

4.1. Measure of confidence score and offloading control

The essential concept or the ECNet is to let the edge-side network handle the

inference that is relatively easy and transfer the hard tasks to the cloud-side network

for exacter calculation. Specifically, the edge-side work will offload the feature maps

output from the head part network to the cloud, according to the offloading

regulation. Setting up the offload controller remains to be the second stage of the

proposed ECNet system. In the task of classification, we use entropy of a

classification result (e.g., by SoftMax) as measure [25]. The entropy can work as a

confidence score in the simulation experiment to evaluate the performance of the

offload controller. When the classification result stands with high confidence, the

value of entropy will be small, which indicate that the image is not hard to be classify.

Otherwise, the value of entropy will be large and shows that the corresponding image

data is hard to process, that should be transferred to the cloud-side network. Users

can set up a threshold for determine the part of feature maps to be transferred to the

cloud-side network. Entropy is defined as

 entropy(𝒚) = − ∑ 𝒚𝒄𝐥𝐨 𝐠 𝒚𝒄

𝒄∈𝓒

where 𝒚 is a vector containing computed probabilities for all possible class labels

and 𝒞 is a set of all possible labels.

As a simulation experiment, we counted the entropy distribution of the sample

feature map data output from the head part network branch exit.

(4.1)

21

Entropy of each sample from our test dataset is counted to confirm the entropy

distribution as shown in Fig.9. most of feature maps outputted from edge-side has

less entropy than 0.5, which confirmed the relatively reliable classification

performance of our designed edge-side network. The part above 0.5 tends to be

sparse distributed, which shows better classification ability is expected on the cloud-

side network.

4.2. Feature map quantization

Since the feature map data is the result after convolution, the data size of the

output feature 𝑤𝑜𝑢𝑡 can be calculate as:

𝒘𝒐𝒖𝒕 =
𝒘𝒊𝒏 − 𝑭 + 𝟏

𝒔𝒕𝒓𝒊𝒅𝒆

where 𝑤𝑖𝑛 is the size of the input feature map, F is the size of the convolution

kernel and 𝑠𝑡𝑟𝑖𝑑𝑒 is the convolution stride. For decreasing the complexity of the

Fig. 8. Entropy distribution of feature maps

(4.2)

22

convolution, we tend to choose small size of the convolution kernel [26], which will

expand the size of the output feature map. As a result of our simulation experiment,

the size of the original image data from the 10-class classification ImageNet dataset

is 147KB, but the size of the output feature map has expanded to 2.16MB. In the

case, when the internet bandwidth is not that satisfactory, it is a huge burden to

transfer the output feature map in such a big size to the cloud-side network. The

unacceptable time cost will become the primary factor that affects the real-time

nature of the proposed ECNet system. Thus, when the internet bandwidth is

determined, we need to compress the output feature map to reduce the time cost on

feature map transmission. On the other hand, the data compression method should

have less affection on the inference performance. Taking all these factors into

consideration, we propose to set up a quantization and dequantization module

between the edge-side and cloud-side network.

Quantization is the process of constraining an input from a continuous or

otherwise large set of values (such as the real numbers) to a small set of finite

discrete set (such as the integers). In the context of simulation and embedded

computing, it is about approximating real-world values with a digital representation

that introduces limits on the precision and range of a value. As an extended use

quantization method for CNN, int8 quantization [27] has become the first choice that

we can use here in the ECNet system. For figuring out the best way of quantization

on our 10-class classification task, we have made experiments on all the candidate

quantization bit, of which the formula comes:

 𝑸 = {

𝟎
𝑶

𝑪
∗ 𝟐𝒙

𝟐𝒙 − 𝟏

Where 𝑸 is the quantized value, 𝑶 is the original value, 𝑪 is the sample constant

depending on the dataset (for our 10-class ImageNet dataset is 30), and 𝒙 is the

chosen quantization bit.

𝑸 ≤ 𝟎

𝟎 ≤ 𝑸 ≤ 𝟐𝒙 − 𝟏

𝟐𝒙 − 𝟏 ≤ 𝑸

(4.3)

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Integer

23

We evaluated the overall accuracy of ECNet for varying entropy threshold with

different quantization bits. As shown in Fig.10. (overlap existed between the green

dotted line and the original result), the int8 quantization has the least accuracy drop,

which shows that int8 quantization almost doesn’t affect the classification

performance, for our simulation dataset. The accuracy drops with the quantization

bit decreasing, which is reasonable because when less quantization bit means more

lose of data information. After the int5 quantization, the compression leads to a

serious accuracy drop, which shows that it cannot be a choice to use quantization bit

less than 5 for our test dataset. The solid line in blue shows how operating of

threshold affects offload rate. The threshold and offload rate satisfy negative

correlation, more feature maps will be transferred if we set the threshold of entropy

less. The accuracy tends to have little improvement when the offload rate reaches to

Fig. 9. Total accuracy with different quantization bits and offload control by threshold operating

24

0.5. Thresholds should be chosen when it satisfies the latency requirement while

maintaining accuracy requirement.

To simulate making the best choice of the quantization bit when facing different

classification tasks, we have also counted the entropy of the feature map data after

different quantization approach.

According to the Fig.11. and the Table.5., the entropy of the feature map shows a

lift, and the accuracy value shows an unacceptable drop after int5 quantization bit.

This shows that the average information amount of the feature maps under int5

quantization is relatively less. On the other hand, it does not have a huge effect on

the accuracy score. Thus, we should consider int5 quantization approach under this

simulation environment

4.3. Further compression approach assessment

Thanks to the quantization operation and offload controlling based on threshold

operating, we can limit the transmission burden with little accuracy loss comparing

with the original network. Since most real-time tasks have strict transmission

demand, we still consider the offload performance could be unsatisfactory for real

scenario, which lead to the idea of compression on feature maps after quantization

to further improve energy-efficiency and throughput.

Quantization bit Entropy (bit)

2 0.569

3 1.435

4 2.001

5 2.388

6 4.292

7 5.213

8 6.113

Table. 5. ENTROPY OF FEATURE MAP DATA BY ALL QUANTIZATION APPROACH

25

According to the visualization of the feature maps that output from the edge-

side branch exit as Fig.11. shows, it seems to be less likely to apply differential pulse-

code modulation (DPCM) [28] solution in our task, since the degree of sparsity and

similarity of feature data hardly meet our need, not only between channels but also

between raw or column in channel. Besides, we analyze the data variation of the

quantized feature maps.

Fig. 10. Visualization of feature maps at exit point by channels

 Raw data
DPCM between

channels
DPCM in channel

Number of

symbol
98.4 171.8 151.4

Entropy 4.85 5.73 4.90

Table. 6. COMPARISON OF INFORMATION VOLUME

26

Table.6. gives the result of data analysis of quantized feature map, feature map

after DPCM applied between channels and feature map after DPCM applied in

channel. We use 1200 images for calculation and applying DPCM in channel for the

element of each column. The result shows that DPCM operation cannot lead to a

reduction of the entropy which means it cannot help reduce the amount of information

in feature map. We start our attemption to find out other compression approach.

Fig.12. shows the analysis of data variation of quantized feature maps on 100

images. Due to the int8 quantization function and the standard attributes of the

ImageNet datasets we use during the simulation, the symbol of ‘10’ has the highest

amount of frequency while other symbol satisfying a Gaussian-like distribution as

shown. According to this data distribution factor, we propose to apply lossless

compression method on whole channels like Huffman coding and ZIP compression

after quantization operation[29] [30].

Fig. 11. Data variation of the feature map in single channel

27

The improvement of optimized Huffman coding [31] is using prior Huffman

tree which calculate sufficient samples instead of setting Huffman tree for every

feature map. Since the operation of Huffman coding is not based on matrix operation

which means the encoder and decoder have to run on the whole dataset at least once

a time, the time cost is increasing dramatically. As shown in Table.7., ZIP

compression method [32] has better performance both on compression ratio

(compression ratio is defined as the ratio between uncompressed size and compressed

size) and time cost factors. The ZIP compression could reach to 1.68 compression

ratio with 0.009 second each frame, however, the time cost is still a major concern.

 Besides the method we have mentioned, we also continuing making research on

other compression method such as principal component analysis (PCA) [33]before

coding, compression in neural network and JPEG compression [34] for monochrome

images. We expect further improvement on feature map compression task and

completely settle the problem of time cost limitation.

 Origin
Huffman

coding

Optimized

Huffman coding
ZIP

Compression ratio 1 1.62 1.50 1.68

Time cost(s/frame) 0.001 0.98 0.35 0.009

Table. 7. COMPRESSION APPROACH EVALUATION

28

Chapter 5

Conclusion and future work

5.1. Conclusion

In this paper, we proposed ECNet edge-cloud network system with designed

edge-side and cloud-side network.

The edge-side network is lightweight CNN network that is able to process most

of the inferring tasks. An branch exit is set for transmitting quantized feature maps to

the cloud, administrated by the offload controller with entropy as threshold. The

improvement of ECNet is leveraged by reaching a balance between processing time

and accuracy performance with reducing transmission cost down to 25% when using

int8 quantization approach. This system has been evaluated on classification tasks

and chose proper quantization bit based on experiments. We also evaluated several

data compression method for further improving on saving the time cost and internet

bandwidth.

29

5.2. Future work

For further improving the accuracy performance, we believed that applying in

transfer learning on the cloud-side network is a possible solution. Based on the 10-

class ImageNet dataset, we collected the quantized feature maps and build a new

dataset for retraining. We are looking forward on getting a better result after

retraining on the feature map dataset. Also we are planning to adapt the ECNet to

detection tasks, and make evaluation in actual scenarios

30

Chapter 6

Appendix

6.1. List of academic achievements

International conference:

Libo Hu, Tao Wang, Hiroshi Watanabe, Shohei Enomoto, Xu Shi, Akira Sakamoto

and Takeharu Eda: “ECNet: A Fast, Accurate, and Lightweight Edge-Cloud Network

System Based on Cascading Structure”, IEEE Global Conference on Consumer

Electronics (GCCE) 2020, pp.259-262, Sep. 2020.

Domestic conference:

Libo Hu, Tao Wang, Yucheng Zhou, Hiroshi Watanabe, Shohei Enomoto, Xu Shi,

Akira Sakamoto, and Takeharu Eda: “Transfer Rate Estimation in Edge-Cloud

Neural Network Solution for Object Detection”, IEICE General Conference D-11-

20, Mar. 2020

Libo Hu, Tao Wang, Hiroshi Watanabe: “Two-side Network for Person Detection

and Person Re-identification”, 2019 Picture Coding Symposium・ 2019 Image

Media Processing Symposium (PCSJ/IMPS2019), P-4-08, Nov. 2019

https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_GCCE_hu.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_GCCE_hu.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_IEICE_d_11_020.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_IEICE_d_11_020.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2019_PCSJ_libo.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2019_PCSJ_libo.pdf

31

Bibliography

[1]. Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE

computer society conference on computer vision and pattern recognition (CVPR'05), pp.

886-893, Jan.2005

[2]. Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion

handling[C]//2009 IEEE 12th international conference on computer vision. IEEE pp. 32-39,

2009

[3]. Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer

vision.pp. 1440-1448, 2015

[4]. Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region

proposal networks[J]. arXiv preprint arXiv:1506.01497, 2015.

[5]. Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object

detection[C]//Proceedings of the IEEE conference on computer vision and pattern

recognition.pp. 779-788, 2016

[6]. Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE

conference on computer vision and pattern recognition. pp.7263-7271, 2017

[7]. Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//European

conference on computer vision. Springer, Cham, pp. 21-37, 2016

[8]. Kong T, Yao A, Chen Y, et al. Hypernet: Towards accurate region proposal generation and

joint object detection[C]//Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 845-853, 2016

[9]. Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object

detection[C]//Proceedings of the IEEE conference on computer vision and pattern

recognition. pp. 2117-2125, 2017

[10]. Choi, H., & Bajić, I. V. Deep feature compression for collaborative object detection. In 2018

25th IEEE International Conference on Image Processing (ICIP) pp. 3743-3747, Oct. 2018

[11]. S. P. Chinchali, E. Cidon, E. Pergament, T. Chu, and S. Katti: “Neural Networks Meet

Physical Networks: Distributed Inference Between Edge Devices and the Cloud,” ACM

Workshop on Hot Topics in Networks (HotNets2018), pp.50-56, Nov. 2018

32

[12]. Ko, J. H., Na, T., Amir, M. F., & Mukhopadhyay, S. Edge-host partitioning of deep neural

networks with feature space encoding for resource-constrained internet-of-things platforms.

In 2018 15th IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS) pp. 1-6, Nov. 2018

[13]. Wang L, Yang S, Yang S, et al. Automatic thyroid nodule recognition and diagnosis in

ultrasound imaging with the YOLOv2 neural network[J]. World journal of surgical oncology,

pp. 1-9, 2019

[14]. He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international

conference on computer vision. pp. 2961-2969, 2017

[15]. Pang J, Chen K, Shi J, et al. Libra r-cnn: Towards balanced learning for object

detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. pp. 821-830, 2019

[16]. Teerapittayanon S, McDanel B, Kung H T. Branchynet: Fast inference via early exiting from

deep neural networks[C]//2016 23rd International Conference on Pattern Recognition

(ICPR). IEEE, pp. 2464-2469, 2016

[17]. Li H, Lin Z, Shen X, et al. A convolutional neural network cascade for face

detection[C]//Proceedings of the IEEE conference on computer vision and pattern

recognition. pp. 5325-5334, 2015

[18]. Gray R M, Neuhoff D L. Quantization[J]. IEEE transactions on information theory, pp. 2325-

2383, 1998

[19]. Gray R. Vector quantization[J]. IEEE Assp Magazine, pp. 4-29, 1984

[20]. Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding[J]. arXiv preprint arXiv:1510.00149, 2015.

[21]. Cao S, Ma L, Xiao W, et al. Seernet: Predicting convolutional neural network feature-map

sparsity through low-bit quantization[C]//Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. pp. 11216-11225, 2019

[22]. Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint

arXiv:1804.02767, 2018.

[23]. He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 770-

33

778, 2016

[24]. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional

neural networks[J]. Advances in neural information processing systems, pp. 1097-1105,

2012

[25]. Rényi A. On measures of entropy and information[C]//Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the

Theory of Statistics. The Regents of the University of California, 1961.

[26]. Haussler D. Convolution kernels on discrete structures[R]. Technical report, Department of

Computer Science, University of California at Santa Cruz, 1999.

[27]. Jacob B, Kligys S, Chen B, et al. Quantization and training of neural networks for efficient

integer-arithmetic-only inference[C]//Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. pp. 2704-2713, 2018

[28]. Schniter P. An Introduction to Source-Coding: Quantization, DPCM, Transform Coding, and

Sub-band Coding[M]. Connexions, Rice University, 2009.

[29]. Chmiel, B., Baskin, C., Banner, R., Zheltonozhskii, E., Yermolin, Y., Karbachevsky, A., ...

& Mendelson, A. Feature map transform coding for energy-efficient cnn inference. arXiv

preprint arXiv:1905.10830. 2019

[30]. Cavigelli, L., Rutishauser, G., & Benini, L. EBPC: Extended bit-plane compression for deep

neural network inference and training accelerators. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 9(4), pp. 723-734, 2019

[31]. Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding[J]. arXiv preprint arXiv:1510.00149, 2015.

[32]. Boopathi G, Arockiasamy S. An image compression approach using wavelet transform and

modified self organizing map[J]. International Journal of Computer Science Issues (IJCSI),

pp. 323, 2011

[33]. Abdi H, Williams L J. Principal component analysis[J]. Wiley interdisciplinary reviews:

computational statistics, pp. 433-459, 2010

[34]. Rabbani M, Joshi R. An overview of the JPEG 2000 still image compression standard[J].

Signal processing: Image communication, pp. 3-48, 2002

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	Chapter 2
	Related Technologies
	Chapter 3
	ECNet system and model designment
	Chapter 4
	Offloading control & feature map compression
	Chapter 5
	Conclusion and future work
	Chapter 6
	Appendix
	Bibliography

