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Abstract 

The pervasiveness of “Internet-of-Things” in daily life has led to a recent surge 

in fog computing, encompassing a collaboration of cloud computing and edge 

intelligence. As a significant field of IoT, real-time detection and classification have 

a huge demand. Due to the insufficiency of computing power in mobile devices and 

the increment of network bandwidth, combination of edge devices and cloud servers 

would be an accessible orientation for real-time tasks. In this work, we present 

ECNet—an edge-cloud network system dealing with the balance between inference 

performance and time cost.  

We propose to transmit the output feature map of an exit point from the edge-

side network to the cloud-side network with an offload controller and quantizer 

deployed to minimize the transmission cost. ECNet is tested to reach a balance 

between processing time and accuracy performance with reducing transmission cost 

down to 25%. We also consider implementing an integrated feature map encoder to 

further reduce the bandwidth demand and meanwhile minimize the loss of accuracy. 

Additional achievements could be expected in our future work. 

 

Keywords—Edge-cloud system, Quantization, ECNet, model cascading, 

classification, encoding.  
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Chapter 1  

Introduction 

1.1. Background and Challenge 

As the construction of smart cities is in full swing, technical requirements for 

intelligent surveillance and other related computer vision technology are also 

increasing. As a basic task in the field of computer vision, pedestrian detection has 

attracted most attention from experts in the field of computer vision. The traditional 

pedestrian detection method is to use a manually designed feature extractor to train 

the classifier by extracting features such as Histogram of Oriented Gradients (HOG) 

[1], Local Binary Pattern (LBP) [2], etc., to realize the detection of pedestrians. 

However, the artificially designed pedestrian characteristics are difficult to adapt to 

the large changes in pedestrian behavior. Essentially, pedestrian detection is nothing 

but a special object detection. Thus, it can be achieved by learning from the general 

object detection method. At present, the mainstream object detection methods are 

mainly divided into two types: one is two-stage, and the other is one-stage. The two-

stage method mainly uses Fast Region-based with Convolutional Neural Network 

feature (Fast R-CNN) [3]and Towards Real-Time Object Detection with Region 

Proposal Networks (Faster R-CNN) [4]. The one-stage method includes unified real-

time object detection (You Only Look Once, YOLO) [5], and its upgraded version 

(YOLOv2) [6], and single shot multibox detector (SSD) [7]. Compared with the two-

stage method, the one-stage method has faster detection speed, but the detection 

quality is slightly lower. YOLOv2 has an outstanding performance in real-time 

detection and is faster, but when directly using YOLOv2 to detect pedestrians, since 

the pixels of pedestrians are relatively low, the detection effect of YOLOv2 is poor, 

and the position of pedestrians is not accurate enough. In addition, under the 
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condition of a high degree of overlap (Intersection Over Union, IOU) threshold, the 

performance of YOLOv2 is not ideal. 

CNN (Convolutional Neural Network) methods such as HyperNet [8] use 

feature fusion to improve the detection quality of small objects, while Feature 

Pyramid Network (FPN) [9] uses multi-layer feature prediction to improve the 

detection quality. Pedestrian detection methods can also fuse CNN features and 

traditional pedestrian features. The advantage of feature fusion is that the low-level 

feature semantic information is relatively small, but the target location is accurate; 

the high-level feature semantic information is relatively rich, but the target location 

is relatively rough, and the context semantic features are integrated, the high-level 

low-level features are easy to detect. However, these methods always utilized very 

deep backbone network, which causes the network parameters to be too large, 

resulting in a very slow detection speed, which affects the applicability in actual 

detection. 

In recent years, edge and cloud cooperative approach for object detection has 

been proposed [10]. Thanks to advancements in both hardware and deep learning 

technology, even deeper networks which further improve the classification 

performance have been emerged. The integration of deep neural networks can 

greatly enhance the functions of edge device, however, the rapid increase in runtime 

and power for gains in accuracy may deepen the neural network which become less 

tractable in many real-time situations where latency and energy costs are important 

factors  

The current state of deep learning systems on edge devices leaves an 

unsatisfactory result mainly because of the gap of computation power between edge 

devices and cloud servers. It is prone to sacrifice either processing time or inference 

accuracy. Besides, the step of offloading image data to a large model in the cloud 

will easily lead to associated communication costs, latency issues and privacy 

concerns [11]. When meeting a real-time task with a very high data rate, the 
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challenge lies in the demand to achieve high image throughput with a limited 

transmission bandwidth. 

1.2. Research Objective 

To address the problems that is claimed above, we consider an edge-cloud 

system based on cascade structure, which combines a lightweight neural network on 

edge devices with a high-accuracy network on cloud servers. The lightweight model 

at the edge-side can quickly output feature map extraction, and also complete the 

inference. The offload controller takes charge of determine whether the inference 

result from the edge-side network is satisfactory or not. The feature map that is 

barely satisfactory should be transmitted to the cloud-side network for further 

processing with more powerful DNN model and relatively sufficient computational 

resources. The initial idea of our network designment is to achieve lower computing 

cost than that in a DNN model, and higher accuracy performance compared with a 

simple lightweight model on edge devices. Further improvement of edge-side and 

cloud-side network is fulfilled for compatibility. Additionally, data extraction and 

compression module are deployed to reduce communication cost and achieve real-

time nature of our proposed network system [12]. 

The major contributions of this thesis are: 

 Designation and implementation of the edge-cloud architecture: 

Specifically modified edge-side network processes majority of inference, 

and exits controllable parts of the feature maps. The whole system is mean 

to reduce computational costs, resulting in running time saving with 

achieving substantial overall performance on deep learning tasks. 

 System Regulation via offload-controller: Entropy of classification result 

is set as threshold that operated by users to control the offload rate of the 

feature map data, thus ensure ECNet to meet customized accuracy demand 
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 Feature data compressing and encoding: We characterize the accuracy 

impact of different quantization while introducing several feature space 

encoding method with time cost analysis. 

1.3. Thesis Outline 

The outline of this thesis is organized as follows: 

Chapter 1: We describe the background of the real-time detection and 

classification tasks. We briefly introduced the advantage and disadvantage of some 

mainstream network and pointed out the motivation we need to propose an edge-

cloud network system. 

Chapter 2: We introduced some related technology. 

Chapter 3: We demonstrated the framework of the proposed ECNet system and 

explained the working flow. We specifically introduced the essential idea of the 

designment of the edge-side and cloud-side network with the model structure figure. 

We made some simulation experiment to evaluate the classification power of the 

edge-side network 

Chapter 4: We designed an offloading controller to determine the task 

distribution of the edge-cloud network system. We used evaluated quantization 

approach to save the computing resource and proposed a regulation of the offload 

operation. Further data compression ademption is described at the last part of this 

chapter.  

Chapter 5: The conclusion of this thesis 
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Chapter 2  

Related Technologies 

2.1. Efficient classification and detection network 

The one-stage network-based target detection and recognition architecture has 

attracted much attention due to its high computational efficiency while ensuring the 

inference performance, such as the YOLO and YOLO9000 network models 

proposed by Redmon in 2016 and 2017. Both of these network models input the 

entire image into an effective backbone network, and then output the corresponding 

detection results, and realize real-time target detection and recognition. In 2016, Liu 

Wei, etc., proposed the single-shot detector (SSD) algorithm, which uses multi-scale 

feature maps to detect and recognize target objects of different sizes in a similar 

manner to a regional proposal network (RPN). In 2019, Wang Ming, etc., set 

Resnetv2-50 network and YOLOv2 network [13], removed the last pooling layer 

and full connected layer of the Resnet network, fused the shallow and deep features 

of the image, and realized the feature extraction by adding convolutional layers 

Dimensionality reduction processing. Although these one-stage network-based 

target detection and recognition models can quickly complete target detection and 

recognition tasks, their main limitation is that their positioning accuracy and 

recognition accuracy are generally lower than those of two-level detection networks. 

Because the target detection idea based on the two-level network is coarse 

positioning + fine classification, and the target detection idea based on the single-

level network is direct positioning + classification, and there is no process of coarse 

positioning and screening. 

Two-stage network target detection and recognition architecture also plays an 

important role on image processing, such as the Fast R-CNN network model 
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proposed by Ren, etc. In 2015, based on Fast R-CNN, the Region Proposal Network 

(RPN) is introduced to generate candidate frames. The introduction of RPN has 

achieved further acceleration, and real-time detection and recognition effects have 

been achieved on the GPU. In 2017, Lin et al. introduced the Feature Pyramid 

Network (FPN) structure into the basic Fast R-CNN and proposed the Fast R-CNN 

+ FPN network structure. The fusion of FPN into Fast R-CNN greatly increases 

awareness of the full image information of the detector. In 2017, based on Fast R-

CNN, He Kaiming, etc. added a branch for segmentation tasks to support instance 

segmentation and named it as Mask R-CNN [14] network model. In Mask R-CNN, 

ROI Align is used instead of ROI Pooling in Fast R-CNN. After ROI Align is used, 

the accuracy of the mask has been significantly improved. In addition, segmentation 

tasks, positioning and classification tasks are performed simultaneously. In the 

training process of the target detection and recognition model based on the two-stage 

network, the detection performance of the detector is often limited by imbalance. In 

order to solve this problem, in 2019, Pang Jiangmiao, etc. just proposed a balanced 

learning target detection framework-Libra R-CNN [15]. Libra R-CNN uses IOU-

balanced Sampling to select representative candidate frames, uses Balanced Feature 

Pyramid to integrate feature pyramids of different sizes, and uses Balanced L1 Loss 

to balance positioning and recognition tasks. 

 

Fig. 1. Milestones in generic object detection based on deep learning 
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2.1.1. BranchyNet 

On September 2017, Surat Teerapittayanon, etc. from Harvard University 

designed a tool for students and researchers to use on their DNN model structures 

for fast inference called BranchyNet [16]. This is a greatly creative network 

architecture that use early branch exits to promote fast inference comparing with the 

running the original model.  

The essential idea of BranchyNet is that the features learnt at the earlier layers 

of most DNN network model is already sufficient for some task, which indicates that 

the later layers might have little effects on performance improvement but only bring 

unnecessary burden of the time cost and computing resources. Through proper 

branching structures and exit points, BranchyNet shows how to balance the test 

 
Fig. 2. Performance preview of several detection models on VOC 2007 
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samples to be correctly processed and reach an earlier output. It should be typically 

pointed out that Branchy net also finish the whole network layers for those test data 

that requires high confidence prediction results and less frequency. 

Branchynet executed a joint optimization with the weighted loss of all exit 

points to prevent overfit and the earlier branch exits can provide additional gradient 

back propagation in terms of improving confidence. Researcher can set one or multi 

exit points on different positions to fit the challenges of different training data. The 

 

Fig. 3. A simple BranchyNet with two branches added to the baseline (original) AlexNet. 
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measure of confidence in classification prediction is softmax entropy at all branch 

exit, which also works as an easy adjustable threshold in order to handle 

classification tasks with different test data.  

2.2. Model Cascading  

The cascading structure [17] basically infers with a lightweight model and 

offload a part to a high-accuracy model to balance the trade-off between 

accuracy and processing speed. By performing most of the inference at the 

lightweight network, it can reach a high throughput, low latency, and reduce 

data transfer volume. 

For example, when running a classification task, the image data will be 

processed by a fast lightweight network model and output a confidence score, 

when the result is not confident enough, the image data will be further 

transferred to an expensive model for better classification performance. The 

cascading structure can combine two model to reduce processing time 

significantly with the least accuracy loss. 

2.3. Quantization 

 
Fig. 4. An overview of a cascading structure system 
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Over the years, the outstanding performance of deep learning in many 

fields has made it the mainstream direction of machine learning today, but its 

huge amount of calculation is still criticized. Especially in recent years, as the 

computing power of end devices has increased, more and more intelligent 

applications based on deep neural networks have emerged in the industry. In 

order to bridge the gap between computing power demand and supply, model 

compression has become one of the hot spots in the industry in recent years [18] [19]. 

Quantification can bring many benefits: 

 Increased computational efficiency: Many processor integer calculation 

instructions are more efficient than corresponding floating-point 

calculations. Taking CPU as an example, the latency of floating-point 

arithmetic instructions will be longer on average than the corresponding 

integer arithmetic instructions, especially in early CPUs. For FPGAs, 

floating-point operations are even more troublesome. Moreover, the 

complexity of multiplication is usually proportional to the square of the 

operand bit-width, so reducing the representation accuracy can effectively 

reduce the complexity. 

 Memory and storage occupancy reduction: quantization of the 

"slimming" effect on the model can be said to be immediate. The benefits it 

brings are twofold: First, it reduces the memory footprint. In many cases, 

the bottleneck of inference performance is not the calculation but the 

memory access. In this case, increasing the calculation density will have a 

significant optimization effect on time-consuming; second, saving storage 

space, reducing the size of the application, and facilitating software upgrade. 

 Reduce energy consumption: Power consumption mainly comes from two 

parts: calculation and memory access. On the one hand, taking 

multiplication and addition operations as an example, the energy 
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consumption of 8-bit integers and 32 floating-point types can be orders of 

magnitude different. On the other hand, memory access is a major power 

hungry. Assuming that the model that can only be placed in DRAM can be 

quantized and placed in SRAM, it will not only improve performance, but 

also reduce energy consumption. 

For typical floating-point to integer quantization, it essentially maps a certain 

segment in the real number domain to an integer. Noticed that different quantization 

function should be applied depending on the specific tasks. If linear quantization is 

used, its general form can be:  

𝒒 = 𝒓𝒐𝒖𝒏𝒅(𝒔 ∗ 𝒙 + 𝒛) 

Among them, 𝒙 and 𝒒 are the numbers before and after quantization, 𝒔 is 

called scaling factor, and 𝒛 is called zero point which is the quantized value of 0 

in the original value range. There will be a lot of 0 in weight or activation (such as 

padding, or after ReLU), so we need to make the real number 0 can be accurately 

represented after quantization. 

The quantization approach is also divided into uniform (Uniform) quantization 

and non-uniform (Non-uniform) quantization. The simplest one is to make the 

distance between the quantized levels equal. This type of quantization is called 

uniform quantization. But there will be more information loss, because in general, 

there must be some areas in the dynamic range that are dense, and some are sparse. 

Correspondingly, there is non-uniform quantization which refers to the unequal 

length between quantization levels, such as log quantization. Also, through learning 

to get a greater degree of freedom mapping (which can be represented by a lookup 

table) is an advance approach. Intuitively, non-uniform quantization seems to be able 

to achieve higher accuracy, but its disadvantage is that it is not conducive to 

hardware acceleration [20]. 

(3.1) 



12 

 

There are many options for the number of quantization bits. It can be roughly 

divided into several categories: 

 Float16 quantization is a safer approach. In most cases, there is a significant 

performance improvement without losing too much precision. Because they 

are all floating point, it is relatively easy. 

 Int8 is relatively common and relatively mature. There are many related 

studies, and various mainstream frameworks are basically supported. 

 There are relatively more academic circles about int8 quantization, and little 

industrial support. Below 8 bits are mainly 4, 2 and 1 bit. If the accuracy is 

as low as 1 bit, that is, binarization, it can be calculated by bit arithmetic. 

This is very friendly to the processor. [21] 

  

 
Fig. 5. An example of n-bit quantization proposed by SeerNet (e.g. n=4) 
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Chapter 3  

ECNet system and model designment 

3.1. Overall framework 

When facing some real-time classification and detection tasks, some 

mainstream DNN model that is able to fit the accuracy requirement always have 

problems to be embedded on IoT devices. On the other hand, when we only rely on 

light-weighted neural network, the inference performance is difficult to meet the 

accuracy requirement. To solve this problem, especially when running a real-time 

video data processing such as human detection on a surveillance camera video data, 

we need to design a network system that can not only ensure the inference 

performance, but also have low time or computing requirement. We proposed a 

network system that can process relatively easy tasks on the edge-side network 

which is deployed on some IoT devices, and link to a cloud-side DNN network to 

solve the difficult tasks of detection and classification. 

With the essential idea of cascade structure, we present a novel edge-cloud 

network system：ECNet, which is augmented with additional branch exit that can 

output feature maps from specific layers to be transferred to the cloud-side network. 

It consists of a relatively lightweight CNN network as the edge-side network, and a 

deep network as the cloud-side network for further inferring. We also designed an 

offload controller to achieve a real-time offload rate optimization with the specific 

threshold that can be adjusted on demand of the real-time tasks. Due to the limitation 

of the network bandwidth, the feature map should be compressed before 

transmission. We take the usage of quantization to accelerate our edge-cloud 

network system with a dequantization module deployed. 
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3.2. Edge-side and cloud-side structure 

To fit the interest of the edge-side and cloud-side network, we must make our 

choice with a big number of candidate networks. The edge-side network should be 

a lightweight CNN model that can be deployed on an IoT device for real-time 

inference. The cloud-side network should be mainstream DNN model that can 

handle most of the detection and classification tasks. Based on these essential 

conditions, we have several candidates network for edge-side and cloud-side as 

shown in the chart. 

 
Method mAP (%) FPS 

Faster R-CNN 72.70 11.23 

YOLO 62.52 42.34 

YOLOv2 73.82 64.65 

SSD300 74.18 58.78 

SSD512 76.83 27.75 

DSSD(ResNet-101) 76.03 8.36 

R-SSD300 75.02 43.78 

R-SSD512 77.73 24.19 

RefineDet320 76.97 46.83 

RefineDet512 77.68 29.45 

SIN 77.26 10.79 

YOLOV3 88.09 51.26 

Table. 1. COMPARISON WITH ALTERNATIVE NETWORKS UNDER UA-DETRAC DATASET 

    As the most well used network for object detection tasks, YOLOv3 [22] shows 

the best accuracy performance, and the earlier version YOLOv2, shows the fastest 

 

Fig. 6. General framework of ECNet 
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processing speed. According to the comparison result of all these candidate network, 

we attempt to use Darknet19 (the backbone network of YOLOv2) as the edge-side 

network, and Darknet53 (the backbone network of YOLOv3) as the cloud-side 

network. As the principle of our network system, the further issue is the feature map 

transmission from the edge-side to the cloud, which requires the cloud-side network 

to fully accept the extracted feature maps from the edge-side. Thus, we propose to 

cut the Darknet53 into two parts: the head part and the tail part. The head part 

network ensures the tensor size of the output feature which needs to fit the size that 

the tail part network can flatly accept.  
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Type Filters Size 

Convolutional 32 3×3 

Convolutional 64 3×3/2 

Convolutional 32 1×1 

Convolutional 64 3×3 ×1 

Residual   

Convolutional 128 3×3/2 

Convolutional 64 1×1 

Convolutional 128 3×3 ×2 

Residual   Branch exit 

Maxpool  2×2/2 

Convolutional 256 3×3 

Convolutional 128 1×1 

Convolutional 256 3×3 

Maxpool  2×2/2 

Convolutional 512 3×3 

Convolutional 256 1×1 

Convolutional 512 3×3 

Convolutional 256 1×1 

Convolutional 512 3×3 

Maxpool  2×2/2 

Convolutional 1024 3×3 

Convolutional 512 1×1 

Convolutional 1024 3×3 

Convolutional 512 1×1 

Convolutional 1024 3×3 

Convolutional 1000 1×1 

Avgpool  Global 

SoftMax   

Table. 2. EDGE-SIDE NETWORK STRUCTURE 
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As is shown in the Table .2, we set up the branch exit at the layer after the third 

residual block, and the part before the branch exit is chosen to be the head part of 

the proposed edge-side and cloud side network. This kind of distributed structure is 

challenging for several consideration including: 

 The structure of DarkNet53 is built on numerous residual blocks, and each of 

residual block contains successive 3 × 3 and 1 × 1 convolutional layer connected 

by one shortcut connection [23]. This structure is aiming to solve the degradation 

problem on deep networks. Reconstructed front part of edge-side network should 

avoid dividing residual block to ensure its integrity. 

Type Filters Size 

Convolutional 32 3×3 

Convolutional 64 3×3/2 

Convolutional 32 1×1 

Convolutional 64 3×3 ×1 

Residual   

Convolutional 128 3×3/2 
Convolutional 64 1×1 

Convolutional 128 3×3 ×2 

Residual   

Convolutional 256 3×3/2 

Convolutional 128 1×1 

Convolutional 256 3×3 ×8 

Residual   

Convolutional 512 3×3/2 

Convolutional 256 1×1 

Convolutional 512 3×3 ×8 

Residual   

Convolutional 1024 3×3/2 

Convolutional 512 1×1 

Convolutional 1024 3×3 ×4 

Residual   

Avgpool  Global 

Connected  1000 

SoftMax   

Table. 3. CLOUD-SIDE NETWORK STRUCTURE 
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 In detection tasks, YOLOv3 predicts boxes at 3 different scales. The cloud-side 

network of ECNet extracts features from those scales using a similar concept as 

feature pyramid networks. It has good performance on small objects that are to 

be recognized by the detector. The location of offloading feature map to cloud-

side should be before the layer where starting extracting features. 

 To limit computing cost and processing time at edge-side, the depth of edge-side 

should not be too large. 

We provide additional simulation experiments on key aspects of the edge-side 

and cloud-side of ECNet. We use 10 classes ImageNet dataset for experiment (10000 

images for training and 3000 images for testing). For updating the weight parameters 

of the full-connected layer of CNN, image data reshape is necessary. In our 

experiment, we center crop the image data into 224×224.  

ImageNet is an image dataset organized according to the WordNet hierarchy. 

Each meaningful concept in WordNet, possibly described by multiple words or word 

phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets 

in WordNet, majority of them are nouns (80,000+). Images of each concept are 

quality-controlled and human-annotated.  
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 The training environment is NVIDIA GeForce RTX 2070 SUPER 8G (GPU), 

and AMD Ryzen 3600 6Core (CPU).  

 

The result shows that the designed Edge-side network has considerable 

classification performance, which is better than the original Darknet 19, and the less 

processing time per frame than Darknet53. We can frankly lead to the conclusion 

that our edge-side and cloud-side network makes good contribution for the proposed 

ECNet edge-cloud system. Guided by aforementioned considerations, the structure 

of edge-cloud network is designed after several times of trials and simulations. 

  

 
Fig. 7. Preview of the image data (class Haliaeetus leucocephalus) [24] 

 Rank-1(%) Rank-5(%) 
Processing 

Time(s/frame) 

Edge-side 68.5 81.8 0.013 

Darknet19 (YOLOv2) 64.3 76.4 0.006 

Darknet53 (YOLOv3) 81.2 98.2 0.023 

Table. 4. CLASSIFICATION PERFORMANCE COMPARATION 
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Chapter 4  

Offloading control & feature map compression 

4.1. Measure of confidence score and offloading control 

The essential concept or the ECNet is to let the edge-side network handle the 

inference that is relatively easy and transfer the hard tasks to the cloud-side network 

for exacter calculation. Specifically, the edge-side work will offload the feature maps 

output from the head part network to the cloud, according to the offloading 

regulation. Setting up the offload controller remains to be the second stage of the 

proposed ECNet system. In the task of classification, we use entropy of a 

classification result (e.g., by SoftMax) as measure [25]. The entropy can work as a 

confidence score in the simulation experiment to evaluate the performance of the 

offload controller. When the classification result stands with high confidence, the 

value of entropy will be small, which indicate that the image is not hard to be classify. 

Otherwise, the value of entropy will be large and shows that the corresponding image 

data is hard to process, that should be transferred to the cloud-side network. Users 

can set up a threshold for determine the part of feature maps to be transferred to the 

cloud-side network. Entropy is defined as 

 entropy(𝒚) = − ∑ 𝒚𝒄𝐥𝐨 𝐠 𝒚𝒄

𝒄∈𝓒

 

where 𝒚 is a vector containing computed probabilities for all possible class labels 

and 𝒞 is a set of all possible labels. 

As a simulation experiment, we counted the entropy distribution of the sample 

feature map data output from the head part network branch exit. 

  

(4.1) 
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Entropy of each sample from our test dataset is counted to confirm the entropy 

distribution as shown in Fig.9. most of feature maps outputted from edge-side has 

less entropy than 0.5, which confirmed the relatively reliable classification 

performance of our designed edge-side network. The part above 0.5 tends to be 

sparse distributed, which shows better classification ability is expected on the cloud-

side network. 

4.2. Feature map quantization 

Since the feature map data is the result after convolution, the data size of the 

output feature 𝑤𝑜𝑢𝑡 can be calculate as:  

𝒘𝒐𝒖𝒕 =  
𝒘𝒊𝒏 − 𝑭 + 𝟏

𝒔𝒕𝒓𝒊𝒅𝒆
 

where 𝑤𝑖𝑛 is the size of the input feature map, F is the size of the convolution 

kernel and 𝑠𝑡𝑟𝑖𝑑𝑒 is the convolution stride. For decreasing the complexity of the 

 

Fig. 8. Entropy distribution of feature maps 

(4.2) 
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convolution, we tend to choose small size of the convolution kernel [26], which will 

expand the size of the output feature map. As a result of our simulation experiment, 

the size of the original image data from the 10-class classification ImageNet dataset 

is 147KB, but the size of the output feature map has expanded to 2.16MB. In the 

case, when the internet bandwidth is not that satisfactory, it is a huge burden to 

transfer the output feature map in such a big size to the cloud-side network. The 

unacceptable time cost will become the primary factor that affects the real-time 

nature of the proposed ECNet system. Thus, when the internet bandwidth is 

determined, we need to compress the output feature map to reduce the time cost on 

feature map transmission. On the other hand, the data compression method should 

have less affection on the inference performance. Taking all these factors into 

consideration, we propose to set up a quantization and dequantization module 

between the edge-side and cloud-side network.  

Quantization is the process of constraining an input from a continuous or 

otherwise large set of values (such as the real numbers) to a small set of finite 

discrete set (such as the integers). In the context of simulation and embedded 

computing, it is about approximating real-world values with a digital representation 

that introduces limits on the precision and range of a value. As an extended use 

quantization method for CNN, int8 quantization [27] has become the first choice that 

we can use here in the ECNet system. For figuring out the best way of quantization 

on our 10-class classification task, we have made experiments on all the candidate 

quantization bit, of which the formula comes: 

         𝑸 = {

𝟎
𝑶

𝑪
∗ 𝟐𝒙 

𝟐𝒙 − 𝟏

    

 

Where 𝑸 is the quantized value, 𝑶 is the original value, 𝑪 is the sample constant 

depending on the dataset (for our 10-class ImageNet dataset is 30), and 𝒙 is the 

chosen quantization bit. 

𝑸 ≤ 𝟎 

𝟎 ≤ 𝑸 ≤ 𝟐𝒙 − 𝟏 

𝟐𝒙 − 𝟏 ≤ 𝑸 

 

(4.3) 

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Integer
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We evaluated the overall accuracy of ECNet for varying entropy threshold with 

different quantization bits. As shown in Fig.10. (overlap existed between the green 

dotted line and the original result), the int8 quantization has the least accuracy drop, 

which shows that int8 quantization almost doesn’t affect the classification 

performance, for our simulation dataset. The accuracy drops with the quantization 

bit decreasing, which is reasonable because when less quantization bit means more 

lose of data information. After the int5 quantization, the compression leads to a 

serious accuracy drop, which shows that it cannot be a choice to use quantization bit 

less than 5 for our test dataset. The solid line in blue shows how operating of 

threshold affects offload rate. The threshold and offload rate satisfy negative 

correlation, more feature maps will be transferred if we set the threshold of entropy 

less. The accuracy tends to have little improvement when the offload rate reaches to 

 

Fig. 9. Total accuracy with different quantization bits and offload control by threshold operating 
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0.5. Thresholds should be chosen when it satisfies the latency requirement while 

maintaining accuracy requirement. 

To simulate making the best choice of the quantization bit when facing different 

classification tasks, we have also counted the entropy of the feature map data after 

different quantization approach. 

According to the Fig.11. and the Table.5., the entropy of the feature map shows a 

lift, and the accuracy value shows an unacceptable drop after int5 quantization bit. 

This shows that the average information amount of the feature maps under int5 

quantization is relatively less. On the other hand, it does not have a huge effect on 

the accuracy score. Thus, we should consider int5 quantization approach under this 

simulation environment 

4.3. Further compression approach assessment 

Thanks to the quantization operation and offload controlling based on threshold 

operating, we can limit the transmission burden with little accuracy loss comparing 

with the original network. Since most real-time tasks have strict transmission 

demand, we still consider the offload performance could be unsatisfactory for real 

scenario, which lead to the idea of compression on feature maps after quantization 

to further improve energy-efficiency and throughput. 

  

Quantization bit Entropy (bit) 

2 0.569 

3 1.435 

4 2.001 

5 2.388 

6 4.292 

7 5.213 

8 6.113 

Table. 5. ENTROPY OF FEATURE MAP DATA BY ALL QUANTIZATION APPROACH 
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According to the visualization of the feature maps that output from the edge-

side branch exit as Fig.11. shows, it seems to be less likely to apply differential pulse-

code modulation (DPCM) [28] solution in our task, since the degree of sparsity and 

similarity of feature data hardly meet our need, not only between channels but also 

between raw or column in channel. Besides, we analyze the data variation of the 

quantized feature maps.  

  

 

Fig. 10. Visualization of feature maps at exit point by channels 

 Raw data 
DPCM between 

channels 
DPCM in channel  

Number of 

symbol 
98.4 171.8 151.4 

Entropy 4.85 5.73 4.90 

Table. 6. COMPARISON OF INFORMATION VOLUME 
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Table.6. gives the result of data analysis of quantized feature map, feature map 

after DPCM applied between channels and feature map after DPCM applied in 

channel. We use 1200 images for calculation and applying DPCM in channel for the 

element of each column. The result shows that DPCM operation cannot lead to a 

reduction of the entropy which means it cannot help reduce the amount of information 

in feature map. We start our attemption to find out other compression approach. 

Fig.12. shows the analysis of data variation of quantized feature maps on 100 

images. Due to the int8 quantization function and the standard attributes of the 

ImageNet datasets we use during the simulation, the symbol of ‘10’ has the highest 

amount of frequency while other symbol satisfying a Gaussian-like distribution as 

shown. According to this data distribution factor, we propose to apply lossless 

compression method on whole channels like Huffman coding and ZIP compression 

after quantization operation[29] [30]. 

  

 

Fig. 11. Data variation of the feature map in single channel 
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The improvement of optimized Huffman coding [31] is using prior Huffman 

tree which calculate sufficient samples instead of setting Huffman tree for every 

feature map. Since the operation of Huffman coding is not based on matrix operation 

which means the encoder and decoder have to run on the whole dataset at least once 

a time, the time cost is increasing dramatically. As shown in Table.7., ZIP 

compression method [32] has better performance both on compression ratio 

(compression ratio is defined as the ratio between uncompressed size and compressed 

size) and time cost factors. The ZIP compression could reach to 1.68 compression 

ratio with 0.009 second each frame, however, the time cost is still a major concern. 

 Besides the method we have mentioned, we also continuing making research on 

other compression method such as principal component analysis (PCA) [33]before 

coding, compression in neural network and JPEG compression [34] for monochrome 

images. We expect further improvement on feature map compression task and 

completely settle the problem of time cost limitation. 

  

 Origin 
Huffman 

coding 

Optimized 

Huffman coding 
ZIP 

Compression ratio 1 1.62 1.50 1.68 

Time cost(s/frame) 0.001 0.98 0.35 0.009 

Table. 7. COMPRESSION APPROACH EVALUATION 
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Chapter 5  

Conclusion and future work 

5.1. Conclusion 

In this paper, we proposed ECNet edge-cloud network system with designed 

edge-side and cloud-side network.  

The edge-side network is lightweight CNN network that is able to process most 

of the inferring tasks. An branch exit is set for transmitting quantized feature maps to 

the cloud, administrated by the offload controller with entropy as threshold. The 

improvement of ECNet is leveraged by reaching a balance between processing time 

and accuracy performance with reducing transmission cost down to 25% when using 

int8 quantization approach. This system has been evaluated on classification tasks 

and chose proper quantization bit based on experiments. We also evaluated several 

data compression method for further improving on saving the time cost and internet 

bandwidth.  

  



29 

 

 

5.2. Future work 

For further improving the accuracy performance, we believed that applying in 

transfer learning on the cloud-side network is a possible solution. Based on the 10-

class ImageNet dataset, we collected the quantized feature maps and build a new 

dataset for retraining. We are looking forward on getting a better result after 

retraining on the feature map dataset. Also we are planning to adapt the ECNet to 

detection tasks, and make evaluation in actual scenarios  
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Chapter 6  

Appendix 

6.1. List of academic achievements 

International conference: 

Libo Hu, Tao Wang, Hiroshi Watanabe, Shohei Enomoto, Xu Shi, Akira Sakamoto 

and Takeharu Eda: “ECNet: A Fast, Accurate, and Lightweight Edge-Cloud Network 

System Based on Cascading Structure”, IEEE Global Conference on Consumer 

Electronics (GCCE) 2020, pp.259-262, Sep. 2020. 

 

Domestic conference: 

Libo Hu, Tao Wang, Yucheng Zhou, Hiroshi Watanabe, Shohei Enomoto, Xu Shi, 

Akira Sakamoto, and Takeharu Eda: “Transfer Rate Estimation in Edge-Cloud 

Neural Network Solution for Object Detection”, IEICE General Conference D-11-

20, Mar. 2020 

 

Libo Hu, Tao Wang, Hiroshi Watanabe: “Two-side Network for Person Detection 

and Person Re-identification”, 2019 Picture Coding Symposium・ 2019 Image 

Media Processing Symposium (PCSJ/IMPS2019), P-4-08, Nov. 2019 

  

https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_GCCE_hu.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_GCCE_hu.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_IEICE_d_11_020.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2020_IEICE_d_11_020.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2019_PCSJ_libo.pdf
https://www.ams.giti.waseda.ac.jp/data/pdf-files/2019_PCSJ_libo.pdf
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