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EXISTENCE OF QUASTCONFORMAL MAPPINGS BETWEEN RIEMANN SURFACES

by
Mitsuru  Nakai
Department of Mathematics, Nagoya Institute of Technology

The purpose of this péper is to give a criterion for the existence of
a direct or indirect quasiconformal mapping between two given Riemann

surfaces in terms of their Royden compactifications as follows:

THEOREM. There exists a quasiconformal mapping of a Riemann surface
R onto another S <if and only if their Royden compactifications R*

and S* are homeomorphic.

Before proceeding to the proof of the-above theorem we recall the
definitioﬁ of the'Roydén compactificatioﬁ and that of the quasiconformal
mapping for Ehe convenience of the reader and we also state some of their
properties; known and new, which will be used iniour proof. We denote by
M(R) the class of bounded continuous Tonelli functions f on a Riemaﬁn
surface R with‘the finite Dirichlet integrals DR(f) = IR |grad f(z)|2 dxdy
which forms a Banach algebra equiped with the norm ||£f]|] = sup |£] +
(DR(f))l/Z. The algébra M(R) is referred to as the Royden algebra associated
with R (cf. e.g. Sario-Nakai [3; p.148]). The Royden compactification R*
of a Riemann surface R 1s a topological space with the following four

conditions (cf. e.g. [3;>p.154]): a) R* is a combact Hausdorff space;

b) R* contains R as an open and dense subspace; c) Every function in



M(R) can be continuously extended to R* so that M(R) CC(R*), the space
of continuous functionson R¥*; d) M(R) separates points of R¥*. The existence
and uniqueness of R* is seen as follows (cf. e.g. [3; p.155]): We denote

by X = X(R) the character space over M(R), i.e. X 1is the set of
multiplicative linear functionmals X on M(R) with <1, x> = 1. Since X

is a closed subset of the unit sphere of the dual space M(R)* of M(R)

with the weak star topology o(M(R)*, M(R)), X 1is a compact Hausdorff space.
For a point p in R we can define a Xp in X by «<f, Xp> = f(p). It can
be easily seen that p Xp defines a topological injection from R to X
and therefore we can view R as a topological subspace of X. It is also
easily checked that X satisfies the four conditions a)-d). Let R%* be a
Royden compactification of R. For each p in R* we can consider a Xp

in X defined by <f, xp>= f(p). Then it is seen that p & Xp defines a
homeomorphism between R* and X. Thus we have seen the existence and the
uniqueness of the Royden compactification R* of any Riemann surface R

and that R* is represented as the character space X(R) over M(R).
Needless to say R is closed if and only if R* = R. For a subset Z of

R we denote by 7 the closure of Z in R*, not in R.

Consider a sequence (An):=l of annuli An contained in a simply
P oo
connected subregion Un in R - Rh(k)’ where (Rn)n=1 is a canonical

exhaustion of an open Riemann surface R, such that ﬁ;lﬁ ﬁé =@ (n# m)
and k(n) > + « (n > + «). For convenience we call such a sequence (A.n):=1

as a distingutished sequence of annuli on R. The closed set R - A

consists of two components one of which Xn is compact and the other Yn

]

is noncompact. We call X = U f X the imside of the distinguished

n=1

sequence (An) and Y =N Yn the outside of (An)n_

n=1 n=1 -1 Clearly



XNAY=¢ in R but X n? ‘may or may not be empty in R*. The following

observation plays one of decisive roles in our proof:

LEMMA 1. The inside X and the outside Y of a distinguished

sequence (An)m_ of annuli on an open Riemann surface R have disjoint

n=1
closures in R*, i.e. X NY = @, if and only if

Lo

(1) Ly M/mod A < +e

Here mod A is the modulus log u of the annulus An’ i.e. An
is conformally equivalent to the circular ring 1 < Izl < un, so: that if
Wn is the harmonic measure of the inner boundary (BAn) n Xn of An
with reépect to A, then mod A = 2€/D_(w_), where w is‘extended ‘to

. n n R'n n
R by setting wo= 0 on Yn and "1 omn Xn. We first assume the validity

of (1). Let w = z:=1 w Then it is a continuous Tonelli function oﬁ' R
with 0 <w<1 and

DR(W)‘ = X:=l DR(wn) = 27 X:=l 1/mod An <.+ o,
Therefore w belongs to> M(R) and a fortiori w 1is continuous on R*.,
which implies that X MY = @. Conversely suppose that X Y = §. Then
there existsla function h dn C(R%*) wivth h|§ >1 and h|§ < 0. Since
M(R)‘ is dense in C(R*), we can find a g in M(R) such that gli > 1
and g[? < 0. The function f defined .by f(p) = max(min(g(p),1),0)
pointwise on R‘ again belongs to M(R) by the lattice property of M(R)
r(cf. e.g. Constantinescu-Cornea [1; p.69], or [3; p.147]). By the Dirichlet

principle, DR(wn) ;DAn(f). Therefore
2T zn=l 1/mod An = zn=1 DR(wn) < zn=l DAn(f) = DR(f) < + o,

i.e. the validity of (1) is derived from XNY =9 in R*. The proof

of Lemma 1 is herewith complete.



The fact that the Royden compactification R* of any open Riemann
surface R 1is not metrizable is usually understood as a drawback of this
compactification to develope Analysis on R¥*. This situation, however, can

be conveniently made use of in our proof. Namely, we have

LEMMA 2 (cf. e.g. [1; p.103], or [3; p.1561). A point p in R*

belongs to the Royden boundary R* - R of R <if and only if p <8 not Gs-

Since this can be derived easily from Lemma 1, we give here a proof
of this well known fact, although it is essentially the same as known ones.
Since any point in R is GG’ we only have to show that any point p in

R* ~ R 1is not G . Contrariwise suppose that p is GS' Then there exists

$

a sequence (Vn')m of open neighborhoods of p in R* such that

n=1

V.. Cv =1, 2 d N,V = {p} Tak bi
1 n n=1, 2, ...) an r]n=1 o = {p}. Take an arbitrary sequence

o . . . —
(Un)n=1 of simply connected regions Un in (Vn Vn+1) N R. Next take
an annulus A 'in each U with mod A = nz. Then (A )°° is a

n n n n'n=1
distinguished sequence of annuli and both of Xn and Yn converge to p
and therefore X NY contains p, i.e. XNY # @, which contradicts the
finiténess of the sum of 1/mod Ah for n=1, 2, ... . This completes
the proof of Lemma 2.
The maximal dilatation XK(T) of a homeomorphism T of a Riemann

surface R onto another S 1is iﬁfvﬁcl c-_l mod Q < mod TQ < ¢ mod Q,
Q €1{Q}}. Here {Q} is the family of quadrilaterals Q in R, each Q
consisting of a Jordan region Q' and four distinguished points Zys vees 2,
on 3Q'. Map Q' conformally onto a rectangle Q" such that zl; cees 2,

of
correspond to. the four verticesAQ'ﬂ Let a and b be the lengths of the

sides of Q" which correspond to 2,2, and 2,24 The ratio a/b is



determined uniquély by Q and is denoted by mod Q. A homeomorphism T
with finite K(T) is referred to as a quasiconformal mapping of R onto
S. This is called the geometric‘defihition of quasiconformality (cf. e.g.
Lehto-Virtanen [2; p.17]). Note that we also include the orientation
reveréing homeomorphisms into our class of quasiconformal mappings in
addition to the usual orientation preserving ones. We denote by A = B

if two topological spaces A and B are homeomorphic. Similarly we

denote by R & S if two Riemann surfaces R and S are quasiconformally
equivalent, i.e. if there exists a quasiconformal mapping of R onto .S.

We need the following so called analytic definition of quasiconformality:

LEMMA 3 (cf. e.g. [2; p.176]). A homeomorphism T of a Riemann
surface R onto another S 1is quasiconformal if the local expression
T(z) of T 18 a Tonelli function aﬁd there existé a constant K such
that max IBQT(z)] < Kmin laaT(z)I aZmést everywhere on R, where 3

18 the derivative at z 1in the direction eiu.

‘Suppose there exists a homeomorphism T of a Riemann surface R onto
another §. Take an arbitrary point p in R, a parametric disk U -about
p, a local parameter z on U with z(p) =0 and z(U) = {|z| < 1},

and a local parameter £ on TU with Z(Tp) = 0 and ¢(TU) = {|¢] < 1}.

In terms of-the local expression [ T(z) of T, we consider

M(x)

max!zl _

|T(z)ls

n(r) |T(z)]

mln‘zl =7
for each r in the interval (0, 1), and define the circular dilatation

§(p) of T at p by the following upper limit:

§(p) = lim sup. | ¢ M(r)/m(r).
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It is easy to see that 1 £ 8(p) <+ © and &(p) is determined only by p
not depending on the special choice of parametric disks and local parameters.
The following characterization of quasiconformality will play a decisive.

role in our proof:

LEMMA 4 (cf. e.g. [2; p.187)). A4 homeomorphism T of a Riemann
surface R onto another S <is quasiconformal if and only if the circular

dilatation §8(p) of T <is bounded on R.

We need one more preparation of technical nature. Let T be a hoﬁeomorphism
of a Riemann surface R onto another S so that R RS. Suppose moreover
that R and S are interiors of compact bordered surfaces R and S
whose borders OdR and oS consist of finite numbers of disjoint quasiconformal
curves (éf. [2; p.101]). We allow the‘case 9R and 39S are empty so that
R and S are closed. Such surfaces R and S wili be referred to as being
finite. Suppose moreover‘that ‘T ‘can be extended to a homeomorphism T
of R onto S such that the circular dilatation Ekp) of T is bounded
in a néighb_orhood of QR. Then we say that R and S are canonically
homeomorphic. If R and S are closed, then no additional requirment
other than R==§ is imposedvupon to conclude that R and S are

canonically homeomorphic.

LEMMA 5. If T <s a canonical homeomorphism of a finite Riemann
surface R onto another S, then there exists a quasiconformal mapping

T, of R onto S such that T =T in a neighborhood of QR. In

1 1
particular, if R and. S are closed and R =S, then RZS.

If BR‘ and 9S are not empty, then the result is well known at least

for the planar R and S (cf. e.g. [2; p.102]) and the extension to the fmesen{’
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setting is not difficult. If R and S are closed, then remove a disk U
from R and V from S and consider the conformal mapping T of U onto
V. Clearly T can be extended to a homeomorphism of R onto S such thaf
T Vis conformal in a neighborhood of U. Then R-U and S -V are
canonically homeomorphic, and R%FS can be deduced. This lemma is by any
mean simple and elementary for the two dimensional case. However we do not
know whether this is also valid for higher dimensional cases. If this is
certainly the case, then we can also extend our theorem to the case of

Riemannian manifolds. R and S of general dimensions.

We now proceed to the proof of Theorem. We will actually prove a bit
more. Consider the following three conditions for Riemann surfaces R and
S: [A] R& S; [B] M(R) = M(S) (algebraically isomorphic); [C] R* == S*.
We will show that [A] - [B], [B] » [C], and [C] + [A]. Thus, in particular,
we see that the Royden algebra is determined by its maximal ideal space (i.e.
its character space). Let T be a quasiconformal mapping of. R onto S.
By Lemma 3 we can see that foT belongs to M(R) for every f in M(S)
and f » foT gives rise to an algebraic isomorphism of M(S) onto M(R) (cf.
e.g. [3; pp.212-213]), i.e. [AI » [B]. Next suppose that thefe exists an
algebraic isomorphism t of M(S) oﬁto M(R). For each x in X(R)
define t*x in X(S) defined by <f, t*x> = <tf, x> for every f in M(S).
Then t*: X(R) > X(S) gives rise to a homeomorphism T* of R* onto 8%
(cf. e.g. [3; pp.213-214]), i.e. we have shown [B] - [C]. In passinﬂwe
remark that if tf = foT, then T* is an extension of T. Therefore we see
that any quasiconformal mapping T of a Riemann surface R onto another S
can be uniquely extended to a homeomorphism T* of R* onto S*. This, of
course, has been long known since Royden introduced the conpactification now

bearing his name.
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The essential part of our proof is to show the implication [C] - [A].
Let T* be a homeomorphism of R* onto S*. By Lemma 2, the restriction’
T of T* on R is a homeomorphism of R onto S. If R and S are
closed, then, by Lemma 5, R &2 S. Therefore, hereafter in the proof, we
assume that R and S are open. We also fix a canonical exhaustion

(Rn)m_1 of R. Consider the circular dilatation 6(p) of T on R and

5n = supp eR"_ﬁn 5(1)).

Since Gn is nonincreasing as n increases, either Sn =+ o for every
n or 1imn 5w Sn < + », We maintain that the latter is the case.

Suppose contrariwise that the former alternative occurs. Then we can

find a point P, in R - ﬁ% with
2
§(p ) > exp(n”)

for each n. We can moreover assume that P, # Py (n # m). Fix a parametric
disk Un about P contained in R - i; with its closure and a local
parameter z on U with z(p ) =0 and 2z(U) = {]z] < 1} for each

n. We can also choose Un so as to satisfy ﬁ; f\ﬁ;'= ¢ (n # m). Fix an

n and let 7 be a local parameter on TUn with c(Tpn) =0 and c(TUn)

{|z] < 1}. Using the local expression ¢ = T(z) of T on Un, we can

choose an r in the interval (0, 1) so small that
M(r d/m(x ) > exp(nz).
n n

Let Bn be the annulus in ‘TUn on S bounded by the inner circle KC:
lz] = m(rn) and the outer circle Lc:.!c[ = M(rn). Since, then; mod B,
= log(M(rn)/m(rn)), we conclude that

(2) mod Bn > n2 (n=1, 2, ...).
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The closed region F1

under T has at least one point =z

bounded by the counter image Kz of ZC

1 in common with the circle lzl =T

and the complement F, in Un: lzl < 1 of the Jordan region bounded by

2

the counter image Lz of LC under T has at least one point z, in

common with the circle le =T . Clearly zy # Zy- We denote by An the’
annulus in Un bounded by Lz and Lz' By embedding Un: lz| <1 in the

complex plane |z| < + » and enlarging F, by adding |z| > 1, the annulus

2

An can be viewed as an annulus in the plane |z| < + « sgeparating two

points 2z, and O from two points 2z, and «. By the Teichmiiller module

1 2
theorem (cf. e.g. [2; p.58]), we obtain the following estimate of the

modulus of the annulus An:

11/2 -1/2

mod A < 2G(|zl— )

Jey] + 12,
where G(t) is the modulus of the Grdtzsch extremal region that is the
unit disk {|z| < 1} 1less the closed segment [0, t] on the real line
(0 < t <1). Since |z

=z, | = r the right hand side of the above

/

| )|

displayed inequality is 2 G(2_1 2) =7 (cf. e.g. [2; p.63]). Hence we have

the following estimates:
(3) mod A.n <7 (n=1, 2, ...).

Observe that (An)n=1

is a distinguished sequence of annuli A.n on
R and (TAn):=1 is also a distinguished sequence of annuli TA.n = Bn

on S. Let X and Y be the inside and the outside of (An):=1' Then

TX and TY are the inside and the outside of (TAn):=1. The inequalities (3)

imply that
Zn=1_l/mod A.n = 4+ o,

which, by Lemma 1, yields XMNY # # in R¥%. Similarly by the inequalities (2)
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we observe that

[ee] {eo] 00
zn__:l}l/mod TA = Zn=1 1/mod B_ Zn=1

A

1/n° < + o,
and again by Lemma 1, we conclude that Ei-rli§-= # in S*. On the other hand,
TXNTY = TFXATY = T*EXNY) + ¢

since iﬂr\§-¥ $#. This is clearly a contradiction. We have thus shown that
the sequence (Gﬁ):=l has a finite limit.

Fix an arbitrary X in the interval (1imn+m Gn, + ). Then we can

choose an n > 1 such that Sn_ =. sup §(p) < K. This means, by

1 P € R¥§£_1
Lemma 4, that T is a quasiconformal mapping of each component of R - §£—l

onto the corresponding one of § - Ti;—l with a maximal dilatation less

than K. Thus R.n and TRn are finite Riemann surfaces canonically

homeomorphic in the sense of Lemma 5. Hence T can be deformed to a

1 1

neighborhood of 3R . Let T, =T on R-R and T, =T. on R . It is
n 2 n 2 1 n

is a quasiconformal mapping of R onto 'S, and we

quasiconformal mapping T, of Rn onto TRn such that T =T, in a

readily seen that T2
have shown the implication [C] = [A].

The proof of Theorem is herewith complete.

Although RZS and R* & S* are equivalent and any homeomorphism
T* of R*¥ onto S* dis an extension of a certain homeomorphism T of R
onto S, T mneed not be a quasiconformal mapping. Such T's are characterized
as Royden mappings (cf. [3; pp.216-221]) which are generalizations of
quasiconformal mappings. As a consequence of thé proof of Theorem, we see
that a homeomorphism T of R onto S 1is a Royden mapping if and only if
T 1is a quasiconformal mapping outside a compact subset of R. In other

words, a Royden mapping is a homeomorphism which is quasiconformal in a

-10-
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neighborhood of the ideal boundary. We restate this in the following

COROLLARY. A homeomorphism T of a Riemann surface R onto another
S can be extended to a homeomorphism between their Royden compactifications

if and only if T is quasiconformal outside a compact subset of R.

In fact, if T can be extended to a homeomorphism T* of R* onto
S§*, then, as we have shown in the proof of the implication [C] - [A], T

is a quasiconformal mapping of R - ﬁ;_ onto S - Eﬁg_ for some n > 1.

1

Conversely, if T 1is quasiconformal outside a compact subset of R, then

1

T is quasiconformal from R - iﬁ—l onto S - Eﬁ;—l for some n > 1. As we
have shown in the proof of [C] - [A], there exists a quasiconformal mapping
T2 of R onto S such that T2 =T on R - Rﬁ. By the proofs of [A] =

[B] and [B] = [C], T2 can be extended to a homeomorphism T; of R* onto
S*, Let T* = T§ on R¥* - Rn and T# =T on Rn' It is seen off hand that
T* dis a homeomorphism from R* onto S* and T*]R = T. This completes the

proof of Corollary.
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