

Nyoto Offiversity Nesearch Info	The action repository	
Title	On the Fixed Point Set of a Unipotent Transformation on Generalized Flag Varieties (有限群論)	
Author(s)	SHIMOMURA, NAOHISA	
Citation	数理解析研究所講究録 (1979), 344: 112-122	
Issue Date	1979-02	
URL	http://hdl.handle.net/2433/104307	
Right		
Туре	Departmental Bulletin Paper	
Textversion	publisher	

112

On the fixed point set of a unipotent transformation on generalized flag varieties

Naohisa Shimomura Hiroshima University

Introduction

Let $G=GL_n$ be the general linear group defined over a field K. Let P be a parabolic subgroup of G. For a unipotent element u of G, put

$$(G/P)_u = \{gP \in G/P \mid u \cdot gP = gP\},$$

the fixed point subvariety of u in a generalized flag variety G/P. The author [2] obtained a locally closed partition of $(G/P)_u$ into affine spaces. This is a generalization of a result of N. Spaltenstein [3]. The purpose of this report is to give an alternate proof to the result of [2]. The proof in this report is simpler than that of [2] and, it seems, applicable for other groups. Some applications (in particular, on the character theory of the finite general linear groups) of this paper are described in [1] with other results on the Springer representations of Weyl groups for reductive groups.

Notations. Let V be a vector space over a field K. If $\{x_{v} \mid v \in I\}$ is a subset of V, then we denote by $\langle x_{v} \mid v \in I \rangle$ the subspace spanned by $\{x_{v}\}$. We denote by N the set of all natural numbers. For $n \in \mathbb{N}$, let \mathbb{A}^{n} be the n-dimensional affine space over K. If $\{X_{v}\}$ is a family of subsets of a set X, then $X = \coprod_{v} X_{v}$ means the direct sum decomposition of X. A partition λ of n means a sequence $\lambda = (n_{1}, n_{2}, \cdots, n_{r})$ such that $n_{i} \in \mathbb{N}$ $(i=1,\cdots,r)$, $n_{1}+n_{2}+\cdots+n_{r}=n$ and $n_{1}\geq n_{2}\geq \cdots \geq n_{r}>0$.

§1. Preliminaries

Let G, P and u be as in the introduction. There exists $\mu = (\mu_1, \cdots, \mu_r)$ (resp. $\lambda = (\lambda_1, \cdots, \lambda_s)$), a partition of n, such that P (resp. u) is conjugate to P_μ (resp. u_λ), where P_μ is a parabolic subgroup of G whose Levi subgroup is isomorphic to $\prod_{i=1}^r \mathrm{GL}_{\mu_i}$ (resp. the unipotent element of Jordan type diag (J_1, \cdots, J_s) , $J_i = \begin{pmatrix} 1 & 1 & 1 & 1 \\ & \ddots & 1 & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & & 1 \end{pmatrix}$ Then $(G/P)_u$ is isomorphic to

 $(G/P_{\mu})_{u_{\lambda}}$.

For λ , a partition of n, we can associate the Young diagram of type λ , in the usual way.

<u>Definition</u> 1. Let λ and μ be partitions of n. Put $\mu = (\mu_1, \cdots, \mu_n)$

- (1) A μ -tableau of type λ is a Young diagram of type λ whose nodes are numbered with the figures from 1 to r such that the cardinality of the nodes with figure i is μ_1 .
 - (2) A μ -tableau is said to be semi-standard if, in each row,

the sequence of the figures on the nodes increases (may be stationary).

Example. If
$$\lambda = (3, 2, 1)$$
 and $\mu = (2, 2, 1, 1)$, then (1) $4 \ 2$ (2) $2 \ 2$

are μ -tableaus of type λ ((2) is semi-standard). If $\mu = (\mu_1, \mu_2)$, then, for simplicity, we may write \square as \square and \square as \square .

Let $\widetilde{L_{\mu}(\lambda)}$ (resp. $L_{\mu}(\lambda)$) be the set of all μ -tableaus of type λ (resp. the set of all semi-standard μ -tableaus of type λ).

§2. The Grassmann manifold

Let $V = \langle v_1, \cdots, v_n \rangle$ be an n-dimensional vector space over a field K with basis $\{v_1, \cdots, v_n\}$. We denote by $G_k(V)$ the Grassmann manifold defined by the set of all k-dimensional subspaces of V. Put $L_k = \{(s_1, \cdots, s_k) \in \mathbb{N}^k \mid 1 \le s_1 < s_2 < \cdots < s_k \le n\}$, a set of increasing sequence of natural numbers. For $s = (s_1, \cdots, s_k) \in L_k$, let S_s be the set of vector subspaces defined by

$$\{ < v_{S_m} + \sum_{i>S_m} a_{m_i} v_i \mid 1 \le m \le k > | a_{m_i} \in K \}.$$

We remark that we can associate to $S_{\rm S}$ the following tableau:

$$\begin{bmatrix} v_1 & v_2 & \cdots & v_s \\ v_{1,1} & \cdots & v_s \\ v_{n,1} & \cdots & v_n \end{bmatrix}$$

The next lemma gives a well-known cellular decomposition of the Grassmann manifold.

Lemma 1. (1)
$$G_k(V) = \prod_{S \in L_k} S_S$$
,

(2)
$$\langle v_{s_m} + \sum_{i>s_m} a_{mi} v_i | 1 \le m \le k > = \langle v_{s_m} + \sum_{m} a_{mi}^{\dagger} v_i | 1 \le m \le k >$$
,

where I_{m} is a condition: $i > s_{m}$, $i \neq s_{m+1}$, ..., s_{k} ,

- (3) <u>put</u> $e(s) = \sum_{m=1}^{k} \{(n-s_m) (k-m)\}, \underline{then} \underline{by} (2), \underline{we} \underline{have} \underline{an}$ $\underline{isomorphism} \quad \mathbb{A}^{e(s)} \Longrightarrow S_s \underline{under} \underline{a} \underline{mapping} : (\cdots, a_{mi}, \cdots) \mapsto \langle v_{S_m} + \sum_{m=1}^{\infty} a_{mi} v_i \mid 1 \leq m \leq k \rangle,$
- (4) S_s is a locally closed subset of $G_k(V)$ in the K-Zariski topology.

Let N be a nilpotent transformation of V. We take a Jordan basis $\{w_{\mbox{ij}_{\mbox{i}}} \mid 1 \leq \mbox{j}_{\mbox{i}} \leq \ell_{\mbox{i}} \}$ of V satisfying the following requirement:

$$\ell_1 \le \ell_2 \le \cdots \le \ell_d$$
, $Nw_{ij} = w_{i+1j}$ and $Nw_{dj} = 0$.

We remark that this basis forms a Young diagram of degree n and of type $\lambda = \lambda(N) = (d, \dots, d, \dots, 1, \dots, 1)$.

Example. Let $\dim V = 8$. If N has two Jordan blocks of dimension 3 and one Jordan block of dimension 2, then

w ₃₁	W ₂₁	w ₁₁	
₩32	₩22	W ₁₂	
₩33	₩23		

Put $u_{\lambda} = l_n + N$, l_n is the identity matrix of size n, then u_{λ} is a unipotent element of $GL_n = GL(V)$ of Jordan type λ . We place $w_{i,j}$ in the following way:

$$v_1^{=w_1}\ell_1, \dots, v_{\ell_1}^{=w_{11}}, v_{\ell_1+1}^{=w_2}\ell_2, \dots, v_{\ell_1+\ell_2}^{=w_{21}}, \dots, v_{n}^{=w_{d1}}$$

For $\overline{k} = (k, n-k)$ and $\lambda = \lambda(N)$, put

$$\widetilde{L_{\overline{k}}(\lambda)} = \{\overline{k}\text{-tableaus of type } \lambda\} = \left\{\begin{array}{c|c} & \text{the number of} \\ & \text{is } k \end{array}\right\}.$$

We have a bijective correspondence between $\widetilde{L_k}(\lambda)$ and L_k by making a sequence $(s_1,\cdots,s_k)\in L_k$ if v_{s_i} is in a node \square . Then by Lemma 1, (1), we can write $G_k(V)=\frac{1}{\ell\in \widehat{L_{l_k}(\lambda)}}S_\ell$. Put

$$G_{k}(V)^{N} = \{W \in G_{k}(V) \mid N(W) \subseteq W\},$$

$$S_{k}^{N} = S_{k} \cap G_{k}(V)^{N}.$$

Let $L_{\overline{k}}(\lambda)$ be the set of all semi-standard \overline{k} -tableau of type

$$\lambda = \lambda(N)$$
, e.g. $L_{\overline{k}}(\lambda) = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$.

Lemma 2. Let $\ell \in \widetilde{L_{\overline{k}}(\lambda)}$. In order to have $S_{\ell}^{N} \neq \emptyset$, it is necessary and sufficient that $\ell \in L_{\overline{k}}(\lambda)$

Proof. We assume $S_{\ell}^{N} \neq \emptyset$. For this $\ell \in L_{\overline{k}}(\lambda)$, let $v_{k_{m}} = w_{i_{m}j_{m}} \ (m=1,2,\cdots; k_{1} < k_{2} < \cdots)$ be the w_{ij} which is in the rightest node in the m-th row from the top in the tableau obtained by extracting the nodes \square from ℓ . For example

For $W \in S_{\ell}^{N}$, there exists $a_{m,j} \in K$ such that

$$v_{k_m} + \sum_{j>k_m} a_{mj} v_j \in W$$
 (m=1,2,···).

By $N(W) \subseteq W$, we have

$$N^{h_{m}}(v_{k_{m}} + \sum_{j>k_{m}} a_{mj}v_{j}) \in W \quad (0 \le h_{m} \le d-i_{m}).$$

The set
$$\{N^{h_m}(v_{k_m} + \sum_{j>k_m} a_{mj}v_j) \mid m=1,2,\cdots,\}$$
 is linearly

independent and the number of its elements is greater than $k = \dim W$. Hence the set

$$\left\{ \mathbf{N}^{\mathbf{h}_{\mathbf{m}}}(\mathbf{v}_{\mathbf{k}_{\mathbf{m}}} + \sum\limits_{\mathbf{j} > \mathbf{k}_{\mathbf{m}}} \mathbf{a}_{\mathbf{m}} \mathbf{j} \mathbf{v}_{\mathbf{j}}) \; \middle| \; \substack{\mathbf{m} = \mathbf{1}, 2, \cdots \\ 0 \leq \mathbf{h}_{\mathbf{m}} \leq \mathbf{d} - \mathbf{i}_{\mathbf{m}}} \right\}$$

must be a basis of W, which implies, by definition,

 $W = \langle w_{ij} \text{ in } \boxtimes \rangle$. Then $W \in S_{\ell}^N$. This means that $S_{\ell}^N \neq \emptyset$. The proof of the lemma is thus completed.

Let $\ell \in L_{\overline{k}}(\lambda)$. In the tableau ℓ , let $v_{k_m} = w_{i_m j_m}$ (m=1,2,...; $k_1 < k_2 < \cdots$) be as in the proof of Lemma 2. Put

$$\mathbf{M}_{\ell} = \left\{ \begin{array}{c|c} \mathbf{h}_{m} & \text{m=1,2,\cdots,} \\ \mathbf{N}^{m} & \mathbf{v}_{k_{m}} & \mathbf{0} \leq \mathbf{h}_{m} \leq \mathbf{d-i}_{m} \end{array} \right\} = \left\{ \mathbf{w}_{i,j} \text{ in } \mathbf{\square} \right\}.$$

Lemma 3. For $\ell \in L_{\overline{k}}(\lambda)$, we have

$$\mathbf{S}_{\ell}^{N} = \left\{ \left\langle \mathbf{N}^{h_{m}} (\mathbf{v}_{k_{m}} + \sum\limits_{\mathbf{j} > k_{m}} \mathbf{a}_{\text{mi}} \mathbf{v}_{\mathbf{j}}) \mid \underset{0 \leq h_{m} \leq \mathbf{d} - \mathbf{i}_{m}}{\text{m=1,2,\cdots,}} \right\rangle \mid \underset{a_{mi} = 0 \text{ if } \mathbf{v}_{\mathbf{j}} \in \mathbf{M}_{\ell}}{\mathbf{a}_{mi}} \right\}.$$

Proof. It is obvious that S^N_{ℓ} contains the right-hand side. Apply Lemma 1 (2) to elements of S_{ℓ} . Then the proof of this lemma is similar to that of Lemma 2. Thus the lemma.

Definition 2. Let $l \in L_{\overline{k}}(\lambda)$. For $v_{k_m} = w_{\underline{i}_m} j_m$ (m=1,2,...), let $n(l)_m$ be the number of \square in l which lies in the lefthand side of the column on which v_{k_m} lies, or in the upper position than that of v_{k_m} in the column on which v_{k_m} lies. Put

$$n(\ell) = n(\ell)_1 + n(\ell)_2 + \cdots$$

We remark that $n(l) \le e(l)$, where e(l) is defined in Lemma 1 (3).

Example.
$$Vk_3$$
 O O For $\ell = Vk_2$, $n(\ell)_2$ is the number of O in ℓ .

In this case $n(l)_2 = n(l)_1 = 4$, $n(l)_3 = 0$ and

$$n(l) = n(l)_1 + n(l)_2 + n(l)_3 = 4 + 4 + 0 = 8.$$

In view of Lemma 1, (3), we have :

Corollary. For $\ell \in L_{\overline{k}}(\lambda)$, we have $S_{\ell}^{N} \simeq \mathbb{A}^{n(\ell)}.$

Put $T_{\ell} = S_{\ell}^{N}$. By Lemma 3, T_{ℓ} is a closed subset (linear subvariety) of S_{ℓ} . Summing up the above statements, we have :

Theorem 1. Let the notations be as above. We have

$$G_{k}(V)^{N} = \prod_{\ell \in L_{\overline{k}}(\lambda)} T_{\ell},$$

where T_{ℓ} is a locally closed subset of $G_k(V)^N$ and isomorphic to an $n(\ell)$ -dimensional affine space $\mathbb{A}^{n(\ell)}$.

§3. The flag manifold

Let $\mu = (\mu_1, \dots, \mu_p, \mu_{p+1})$ be a partition of n. Put $k_j = \mu_1 + \dots + \mu_j$ (j=1,2,...,p,p+1). Then $1 \le k_1 < k_2 < \dots < k_p < k_{p+1} = n$. For $j = 1,2,\dots,p$, we denote by \mathcal{H}_j the flag manifold of type (k_1,\dots,k_j) defined by

$$\{(\textbf{W}_{\texttt{l}}, \cdots, \textbf{W}_{\texttt{j}}) \in \textbf{G}_{\textbf{K}_{\texttt{l}}}(\textbf{V}) \times \cdots \times \textbf{G}_{\textbf{K}_{\texttt{j}}}(\textbf{V}) \mid \textbf{W}_{\texttt{i}} \in \textbf{W}_{\texttt{i}+\texttt{l}} \ (\texttt{l} \leq \texttt{j}-\texttt{l})\}.$$

Then, \mathcal{J}_j is isomorphic to $\mathrm{GL}_{k_{j+1}}/\mathrm{P}_{(\mu_1,\cdots,\mu_{j+1})}$, where $\mathrm{P}_{(\mu_1,\cdots,\mu_{j+1})}$ is a parabolic subgroup of $\mathrm{GL}_{k_{j+1}}$ whose Levi subgroup is isomorphic to $\mathrm{II}_{\mathrm{c}}^{\mathrm{II}}\mathrm{GL}_{\mu_i}$. In particular, if j=p, then $\mathcal{J}_p \cong \mathrm{GL}_n/\mathrm{P}_\mu$. For a nilpotent transformation N of V, put

$$\mathcal{H}_{j}^{N} = \{ (W_{i}) \in \mathcal{H}_{j} \mid N(W_{i}) \subseteq W_{i} \quad (1 \le i \le j) \}.$$

If u_{λ} = l_n + N is the corresponding unipotent element of ${\rm GL}_n$, then $\mathcal{J}_p^N \simeq ({\rm GL}_n/P_{\mu})_{u_{\lambda}}$.

We preserve the notations in §2. For $\ell \in L_{\overline{k}_p}(\lambda)$ ($\overline{k}_p = (k_p, \mu_{p+1})$), put $V_\ell = \langle w_{ij} \text{ in } \boxtimes \rangle$. We remark that V_ℓ is a element of $T_\ell = S_\ell^N$. If $W \in T_\ell$, then the projection $f : V \longrightarrow V_\ell$ induces an N-module isomorphism $f_W : W \Longrightarrow V_\ell$. By the projection

$$\pi_{p}: \mathcal{T}_{p} \longrightarrow G_{k_{p}}(V) \quad ((W_{1}, \cdots, W_{p}) \longmapsto W_{p}),$$

we have the following trivialization:

$$\pi_{\mathbf{p}}^{-1}(\mathbf{T}_{\ell}) \simeq \mathcal{J}_{\mathbf{p}-1} \times \mathbf{T}_{\ell} ((\mathbf{W}_{\mathbf{i}}) \longmapsto (\mathbf{f}_{\mathbf{W}_{\mathbf{p}}}(\mathbf{W}_{\mathbf{l}}), \cdots, \mathbf{f}_{\mathbf{W}_{\mathbf{p}}}(\mathbf{W}_{\mathbf{p}-1})), \mathbf{W}_{\mathbf{p}})).$$

Under this trivialization, we have

$$\pi_{p}^{-1}(T_{\ell}) \cap \mathcal{J}_{p}^{N} \simeq \mathcal{J}_{p-1}^{N} \times T_{\ell},$$

and therefore $\mathcal{F}_p^N \hookrightarrow_{\ell \in L_{\overline{K}_p}(\lambda)} \mathcal{F}_{p-1}^N \times T_{\ell}$. By induction, we have

$$\mathcal{J}_{p}^{N} \simeq \underset{j=1,\cdots,p}{\underbrace{\downarrow_{j} \in L_{\overline{k}_{j}}(\lambda_{j})}} T_{\ell_{1}} \times T_{\ell_{2}} \times \cdots \times T_{\ell_{p}},$$

where λ_j is the Young tableau obtained by extracting the nodes with figure j+2,...,p+1. Therefore, we can write

$$\mathcal{J}_{p}^{N} = \prod_{\ell \in L_{u}(\lambda)} T_{\ell},$$

where $L_{\mu}(\lambda)$ is the set of all semi-standard μ -tableaus of type λ and T_{ℓ} is isomorphic to some $T_{\ell_1} \times \cdots \times T_{\ell_p} (\ell_j \in L_{\overline{k}_j}(\lambda_j), j=1,\cdots,p)$.

Remark. Similarly, we can prove that

$$\mathcal{H}_{p} = \frac{1}{\ell \in L_{\mu}(\lambda)} S_{\ell}$$

where $\widetilde{L_{\mu}(\lambda)}$ is the set of all μ -tableaus of type λ . About this decomposition, we note that $T_{\ell} = S_{\ell}^N$ and $S_{\ell}^N \neq \phi$ if and only if $\ell \in L_{\mu}(\lambda)$.

Definition 3. For $\ell \in L_{\mu}(\lambda)$, let $n(\ell)$ be a non-negative integer defined by the following recurrence rule:

- (1) If $\mu = (\mu_1, \ \mu_2)$ or (n), then n(l) is defined in Definition 2.
- (2) For $\mu=(\mu_1,\cdots,\mu_p,\mu_{p+1})$, put $\mu'=(\mu_1,\cdots,\mu_p)$ and $k_p=\mu_1+\cdots+\mu_p$. Let $\ell_1\in L_{\overline{k_p}}(\lambda)$ $(\overline{k_p}=(k_p,\mu_{p+1}))$ be the semistandard $\overline{k_p}$ -tableau obtained from ℓ by changing the figures p+1 into 2 (or \square) and figures i $(1\leq i\leq p)$ into 1 (or \square). Let ℓ_2 be the μ' -tableau obtained by extracting the nodes with figure p+1 from ℓ and by rearranging the rows in the appropriate order. Thus $\ell_2\in L_{\mu}$, (ℓ_p-1) for some partition ℓ_p-1 of ℓ_p . Then we defines

$$n(\ell) = n(\ell_1) + n(\ell_2).$$

Theorem 2. Let λ and μ be a partition of n. The variety $(GL_n/P_{\mu})_{u_{\lambda}}$ has a partition

$$(\operatorname{GL}_n/\operatorname{P}_\mu)_{u_\lambda} = \frac{1}{\ell \in \operatorname{L}_u(\lambda)} \operatorname{T}_\ell,$$

partition is defined over K.

References

- [1] R. Hotta and N. Shimomura, The Fixed Point Subvarieties of Unipotent Transformation on Generalized Flag Varieties and the Green Functions combinatorial and cohomological treatments centering GL_n . To appear.
- [2] N. Shimomura, A theorem on the fixed point set of a unipotent transformation on the flag manifold. To appear in J. Math. Soc. Japan.
- [3] N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold. Proc. Kon. Ak, v. Wet. 79(5), 452-456 (1976).