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Complete Integrability of Nonlinear Differential-Difference Equations

Fujio KAKO and Nobumichi MUGIBAYASHI

Department of Electrical Engineering, Kobe University, Kobe 657

 Abstract Two classes of nonlinear differential-difference
equations of evolution which have been solved by the inverse
scattering method are shown to describe completely integrable
Hamiltonian systems. Oné is associated with a linear eigenvalue

equation

Va_

+ =
#pe1 Y1 n o1 T Ay
and the other with coupled linear eigenvalue equations
= + +
vl,n+l Zv1,n ané,n Snv2,n-+l’

-1
= + r + "
V2,n+l z V2,n Rn‘l,n Tnvl,n+l

§ 1. Introduction

In recent years a large class of nonlinear differential-difference
equations have been solved by thé method of inverse scattering. The
variety of such equations now becomes comparable with that of nonlinear
differential equations, describing continuous systems, which are solvable
by the inverse scattering method. For the continuous cases it has been

well established that the system governed by an equation of evolution to
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which the inverse scattering method can be applied is a completely inte-

1)-3)

grable Hamiltonian system. The discrete counterpart of this state-

ment is believed to be correct, but so far only two relevant systems have

4),5)

been known to us ; Flaschka and McLaughlin have shown that the Toda

lattice is a completely integrable Hamiltonian system and the present

6)

authors have proved in a previous paper that the generalized Volterra
system is also completely integrable.

In this paper we want to put into this category two classes of nonlinea:
differential-difference equations solvable by the method of inverse scat-

tering. The first part deals with the complete integrability of a class

of equations generated by a linear eigenvalue equation

+ = .
a1 Y “anuh—l Xun (1.1)

and the time evolution of eigenfunctions

n
) a(lna )/atlu . (1.2)

dun/dt = ) vz A u + [B +
k: -Co

n+l ' n n+l n

el o

Here An and Bn depend in general on the 'potential' a - This class

contains among others the equation for Volterra system

da /dt = a (a ). (1.3)
n n

n+l an—l

Manakov solved this equation by the inverse scattering method.T) At this
point we remark that Eq. (1.3) is a special case of the equations for

a generalized Volterra system given by

de /dt
n

i
n
N

o
1)
o]
o
o]
o
~—r

(1.4)
dd /dt
n

1]
N
N
o
—~
[¢)

!
o
o

"
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indeed we obtain (1.3) by setting 2 = 1, c =-a,

—aZn/2 in (1.4). The latter equations were solved by the method of

n+l/2 and .dn =

inverse.scatteringS) and proved to describe a completely integrable
Hamiltonian system6) by Fujii-and the present authOrs;

Another member of the first class is a discrete Version of the K4V

equation
da /dt = 3a (a -a )+ Le [a _(a +a )
n n n-l1 n+1l 2 n nt+l nt+2- n+l
an(an+l - 8'n—l) - an—l(an—l * an—2)]’ (1.5)
which reduces to
w - 6ww +w =0
T x XXX
. 2 ., 3 ‘
if we put lne..n = - (Ax) w(x, ) with x =nAx and 7T = (Ax)”t and let

-

Ax tend to zero.

We will show that these equations and other members of the first class
all together describe completely integrable Hamiltonian systems. As usual
action-angle variables are defined in terms of scattering data and it is
verified that the inverse scattering method is a canonical transformation.
Characteristic are the facts that the Poisson brackets definéd at the
outset by the potentials and the subsequent canonical transformations are
common to all the equations of the class and that the Hamiltonian ofreach
equation is given by a certain linear combination of conserved quantities
of a nonlinear differential-difference equation derived from (1.1) and
(1.2).

The second class of nonlinear differential-differenceiequationé we
will prove their complete integrability is related to the scheme for four

potentials Qn, Rn’ Sn and Tn which was analyzed by Ablowitz and
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Laaix®) 10

Vl Sn+l

Vo,n+l

where 2z is the eigenvalue.

=zv +Q v + S

l,n n 2,n nv2,n+1’

+
2,n nvl,n Tn v1,1:1-'-1’

(1.6)

The time dependence of eigenfunctions for

Eg. (1.6) is assumed to be determined by the differential equations

dvl,n/dt

= + .
An Vl,n Bn v2,n’

+ .
Cn V1 ,0 Dn Vo .n

(1.7)

It would be possible to give a through discussion as in the first

part on the complete integrability of nonlinear differential-difference

equations generated by Egs. (1.6) and (1.7), but we have not yet

succeeded in finding a satiéfactory way to put all the equations ofv the

second class into canonical forms. What we can here say and will give a

full account in a near future is that in the special case for which Sn =

Tn = 0 the generalized Wronskian technique, discussed by Calogero and

Degasperi sll)

nonlinear discrete evolution equations,

tions in canonical form once for all.

and employed by Chiu and Ladik to generate exactly soluble

12)

enables us to write down equa-

In the second part, therefore, we

will be content with the study of the simplest of the equations generated

by Egs. (1.6)

and

(1.7),
dQn/dt
dr_/dt

n

dSn/dt

namely, a set of equations

9)

(1-RrQ)S -5 ),

n-1

(1-RrRQNT -T .),

(1-8,T)Q, -9)

(1.8)
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ar /at = (1 - s T )R ., ~R),

and prove that the- system governed by these equations is a completely

integrable Hamiltonian system. We note that on setting Qn =-—Rn = Vn'

and Sn =-Tn = In Egs (1.8) reduce to Hirota's self-dual network

equationsl3)
av /at = (1 + Vi)(In -1 .3)
, (1.9)
= 2y
dIn/dt = (1 + In)(x,n+l - vn).

It should be added that in spite of our restriction the Poisson brackets for
potentials we shall set up later are available for any set of nonlinear
differential-difference equations generated by Egs. (1.7) and (1.8)

when they are put into canonical form, and moreover that all of these sets
of equation have the same conserved quantities as (1.8) ; the Hamiltonian
for any set of equations should be provided by some iinear combination of
the conserved quantities.

We think the crucial point in the problem of the complete integrability
of nonlinear evolution equations is how to find a systematic way of ex-
pressing their Hamiltonian in terms of potentials, so in what follows we
will make a supreme effort in disclosing this point. Since we are at present—
familiar with scattering problem, conservation laws and other subjects of
the inverse scattering method, we will attempt to avoid as far as possible
the repetition of similar stories ; indeéd the scheme used for the gener-
alized Volterra system in the previous paper6) can be applied mutatis

mutandis to the inverse scattering problem in the present cases.
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Part I

§ 2. Scattering problem and conservation laws

In this section we briefly summarize the results of the scatterihg
problem of Eq. (1.1) and derive the conservation laws for nonlinear
differential-difference equations generated by Egs. (1.1) and (1.2).

By the reqirement that Egs. (1.1) and (1.2) are integrable and
the eigenvalue A 1s time-invariant, one can obtain after eliminating

Bn a nonlinear differential-difference equation

d(lna_)/dt + A2(A -A )
n n

n-1

+ ( a A + aA

an-—lAn—2 T %nn n n-1 an+lAn+l) = 0. (2.1)

To make the problem definite we determine Eq. (2.1) explicitly by

supposing that An is expressed as a polynomial of degreee M in A2:
M . .
a =227 AW 2 (2.2)
n . n
Jj=0
Then Eq. (2.1) yields
(3+1) _,(3+1) (J) (3) (3) (Dy_q .
A AL (an-lAn-2 me A e A an+1An+l) =0, 0<J M1
(2.3)
and
4 = (M) (M) (M) (M)
dtjllan - an+lAn+l * anAn - anAn— B an—lAn—Q' (2.4)

Equation (2.1) or, more specifically, Eq. (2.4) for M fixed arbitrarily
is an equation which can be solved by the inverse scattering method for

Eq. (1.1). To compute the right hand side of (2.4) we define a sequence



(2),”

related to the conserved quantities for Eq. (2.L).
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of functions {Cn }2=0 recurréntly by the relations of the same form as
(2.3)
(2+1)  (a+1) (2) (2) (2) ~(R)y
y -Ch1 '+(an—lcn—2'_ahcn -+ahcn-l'—an+lcn+l> =0, (2.5)
. I (o) _ (2)
accompanied by the condition that Cn =1 for all n and Cn s 2>
approaches zero as |n| + o, If An has an asymptotic form
M . .
A ~a2 T a3 as n > -w, (2.6)
n . -
J=0
then Aéj) can be represented as
X 3 . s s
203) ) A1) (5-1)
n . - n
i=0
and Eg. (2.4%) becomes
Lina = 7 a0 c81-0) | Geag)y (2.7)
dt n . - n n-1 ' '
J=0
The early members of {Ciz)} are found to be
(0) (1)
= = + -—
Cn 1, Cn & 41 an 2,
(2) 2
= +
Cn fn+l te an+2an+l 2an+lan #n®n-1
- + -
2(an+]_ an) 2
The choice AEO) =1 for M=0 reduces Eq. (2.7) to the Volterra
. . (0) _ (1) _ -
equation (1.3), and the choice A "' =1/2 and A"’ =-2 for M=1
to the discretized KAV equation (1.5).
In the next section we shall show that functions {Ciz)} are simply

1,
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For the scattering problem of Eq. (1.1) it is more convenient to

write it in the form

exp(bn+l/2)un+l + exp(bn/2)un_l = Au, (2.8)

where we have set &, = exp(bn). In the sequel we shall often use =z
instead of X- by putting A =z + z_l.
Let u and u; be two solutions of (2.8) with eigenvalues A

and A', respectively. Then it is easy to see the relations

L B -'t L i 1
(A % A')unun = Wh+l(u, u') + Wn(u, u'), (2.9)
where
i 1. — 1 1 '
Wn(u, u”) exp(bn/2)(unun_l + un—lun)' (2.10)

The boundary condition we assume for the potential bn is that
bn -+ 0 sufficiently rapidly as In' +> o, The Jost functions ¢n(z) and
wn(z) are defined as usual as solutions of (2.8) subject to the boundary

conditions

¢n(z) ~ g as n > -,
(2.11)

wn(z) ~ g as n > ®,

The scattering data {o(z), 8(z), z , Bk} are defined as follows:

k

Through the expansion

6, (2) = alz)y (z71) + 8(2)y_(2) (2.12)

for z % *1, the functions a(z) and B(z) are given by
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af{z) 1

W (e, ¥)/(2-277),

(2.13)
1

L1}

B(z) = - W_(¢, W/ (z-2"),

where E;(z) stands for wn(z-l). It is not hard to verify that o{z)
and B(z) are both even functions of z. Under the hypothesis of the
potentials {bn} the function o(z) is analytic outside the unit circle

[z] = 1. The points z_ for which a(zk) =0, k=41, 2, ... , N,

k

on the real axis outside the unit circle correspond to the bound states -

of (2.8). Al zeros are assumed {o be simple. They appear in pairs and

are numbered so that 2 T T 2 At 2z = z, we have from (2.8)
- Y
¢n,k Bkwn,kf (2.14)
where Bk = B(;k), ¢n,k = ¢n(zk) and wn,k = wn(zk). From (2.9)
follows the relation
o -
T tn b= ad(m), (2.15)

where the dot signifies the differentiation with respect to z.

It ié an important consequence of the inverse seattering method that
a(z) 1is time-invariant, the fact which enables us to get an infinite
number of conserved quantities of Eq. {(2.7) by the-asymptotic expansion

of 1na(z) for large z:
Ina(z) = z A I. (2.16)

The first several of the conserved quantities are found to be

o]

=_1
I =-3 1 0®

> I, = - z [exp(bn) - 1]9

n’ 1

n=—0 ===
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- _ v 1 ) N
o2~ 7 n;gw[égexp(an) + exp(bn+l-+bn) 2exp(bn) + 5 1. (2.17)

§ 3. Hamiltonians, Poisson brackets and canonical transformations

Let us calculate the variation of the scattering data as the potential

changes. First we consider the case when a(z)

does not have zeros out-

side the unit circle. By Solving Eq. (2.8) for the Jost function ¢n

(or wn) iteratively towards n -+ -« (or n -+ ») and taking derivatives

of the solutions with respect to bn we have

8¢n/8bn = - ¢n/2, a¢n_l/abn = 0,
(3.1)
/b =-w /2, 3y, /3b = O.
Then, from (2.13) follow the gradients of a(z) and B(z):
3 1 +
—a(z) = ~——— W (¢, ¥),
abn 2(Z—Z-l) n
(3.2)
3 1 + -
—8(z) = ————W (¢, ¥).
abn 2(2-—2-1) n

The asymptotic behaviour of the Jost function as lzl + © can also

be seen from Eg. (2.8). It is not difficult to observe that

n
1
R A
(3.3)
- 1 hs
v (z) ~2 " exp{-= ] v}
" 2 ken#1

for large |z|. Accordingly we obtain from (2.10)
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W6, 9) ~zexp(-3 ] b} as |z > (3.4)

k=woo

Now let us define a function @n by

qsﬁ = w8, )/ Dal2)]. (3.5)

It satisfies the equation

+o ) -exp(v )(e +o_ ) = xQ(@nﬂ-@n) (3.6)

exp(b_,,) (8 4

n+2

and is normalized so that @n +1 as Iz[ + o and hence as A » =, It
is to be noted that the denominator Aa(z) in (3.5) is responsible
only for the normalization. We solve Eq. (3.6) by expanding o into

. . 2
inverse power series of A as

(0) (=2 5(1) 4 -t @ig) + oeee

n n n

(0)

with @n = 1. The substitution of the series into Eg. (3.6) enables
us to determine éiﬁ) in the following compact form :
(2) (2-1) 2
= = 7
° L le =771 = (r )11, (3.7)

where Ln[°} is a linear operator defined by

n .
Ln[f] = ] lexp(v (£, +f) - exp(b, )£, + 1 )] (3.8)

= 00

By comparing (3.7) and (2.5) we easily find that there holds
the relation

(2) (%) (2)
2c " =e o+ 0

(3.9)
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On the other hand Eq. (3.2) implies

-1
——1lng(z) = —————— 10 . (3.10)

-1

2(z=-2 ") B

"If one expands asymptotically both sides of (3.10) into inverse power
series of 22 and takes account of (2.16), (3.7) and (3.9), it is
immediate to see that Cﬁz) can be expressed by a certain finite linear

-combination of gradients of the conserved quantities {Il}' In fact we

have

(3) o
eV = (= J(e1_ - 1.) for 3 =1, 2,

n ( an abn+l o J

, (3.11)

(3) 3 3
c? = [ =+ J(LT + I, -21, -1)

n ( b " 9b o 1 2 37

(2) ')D(z) with

1

being some linear combination of Ij's, J=0,1, .c. 5 2.

and so on. In general cn takes the form (a/abn + a/abn+

D(z)
n

In this way we conclude that Eq. (2.7) which can be solved by the

inverse scattering method of Eg. (1.1) is transformed into

db /dt = 8H/®b_,, - BH/db__ (3.12)

1 1°

where

(2)

H= (3.13)

M+l
Z A(M+1-2)D

=1 "

We may interprete H as the Hamiltonian, since Eq. (3.12) can be written

in the canonical form

dbn/dt = {bn, H}, (3.1k)
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if we define the Poisson bracket of two functions F and G of bn C by

aF 3G 3G
g -2

{F, G} = } - (3.15)
abn a.bn+l 8bri—l

n= -—C0

Equations (1.3) and (1.5) written in the canonical form have the

Hamiltonians

(1) _
H=D =21 - Il
and
(1) ., 1,(2) _ 1
H=-2D + =D —-3IO+211-212,
respectively.

The Poisson bracket of alz) and B(z')} is calculated by the use

of (3.2) and becomes

(A2 a2 o))

{a(z), B(z')} = - a(z)g(z")
2(z—z—l)(z' —z'-l)(xg—)\'g)
i z+z—l | | »
SLEEEo(a)p(a')8(E - &) - slE 4 € - mY, (3.16)
where we have set 2z = exp(if) and 2z' = exp(if'). Similarly we have
fa(z), a(z')} = {8(z), B(z")} = 0. | (3.17)

We define a set of new variables by

i(tan ) ln[a(eig)ot(e-ig)]s

P(g)
(3.18)

L 1n[a(e*®)/a(e7E)].

ale) = 5=

Since af(z) and B(z) are even functions of z, P(£) and Q(g) are

- 13 —
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periodic functions with period m, S0 that we may restrict the range of
the variable & to the interval 0 < & < w. These variables obey the

Poisson bracket relations

{P(E)s Q(E')} - {6(6-5') - 6(5'*'5"“")}:

(3.19)
{p(g), P(g')} = {Q(g), q(g")} = 0.
When a(z) has simple zeros Z,5 k=+1, 2, ... , +tN, the
analytic continuation of (3.2) yields
5 exp(bn/z)
8bn8k= ! n,x ¥n-1,x" (3.20)
k k
The gradient of 2y is calculated by the perturbation methodé) and found
to be
azk ) exp(bn/E) ) .
30 1.- n,k ¥n-1,k° (3.21)
n (zk--zk Ya(z, )

k

Therefore the Poisson brackets of =z and Bk' are given as follows :

k
-1
z (z. +z )
_ _k 'k "k
{zys Byd = T B O * 8, kr)
2(2k - 7, )
(3.22)
{zk, zk.} = {Bk, Bk,} = 0.
If the variables are changed inte the new ones defined by
' -1
= +
Py ln(zk z, ),
(3.23)
% == 21n Bk,
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the Poisson brackets (3.22) become

tops b = = 8 4o
(3.24)
{pk, P} = {qk, qk.} = 0.

The Poisson brackets between continucus and discrete varisbles all vanish.

§ 4. Representation of Hamiltonian in action-angle variables
The function a(z) defined by

N
a(z) = a(z") TT (25 -20)/(1-2%
k=1

2
k) (4.1)

is analytic and has neither zeros nor poles inside the unit circle. The

function 1n 8(z) is analytic for |z| <1, la(z)] = ‘a(z—l)‘ for
|z| = 1, and by virtue of Schwarz's integral formula it can be represented
as
am . ig
~ 1 - +
1n a(z) = i arg o(0) + == 1nla(e 15)! T2 g, (k.2)
em 0 elg -2

Then the conserved quantities {Il} given by (2.16) are evaluated as

the integrals

1 -22-~1 -1
I, =53 % z 1nja(z"7)| dz
N 22 22
_a -22-1 N 1 -20-1 "k
= E;E'é z inla(z)| az - Py é z 1n 55 4z, (4.3)
=1 l-2 Zy

where the contour integral is taken over a clcsed path around the origin

and inside the unit circle. It follows from (Lk.2) and (L4.3) that
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2n R N : : :
1 =2LJ 1nja(e™®) ] ag - ] 1n 22 (4.1)
° “Tlo k=1

and
22 -2%

2m . . : Nz T~y

I, = 'gl—j o214t 1nja(e 1€)|2d£ - £k (4.5)
"o

k=1 L

for £ =1, 2, ...

Since IQ'S and hence the Hamiltonian H also depend only on the
action variables P(£) and Pys the canonical equation (3.114) is
completely integrable. Thus each of the nonlinear differential-difference
’equations (2.7) describes a completely integrable Hamiltonian system.

For instance the Hamiltonian of the Volterra system is

1 (", -piE T 2 o
H=-Z Jo (e - 1)P(g)dE + kzl (zk -z - hlp zk)’ (L.6)
which yields
ar(g)/at = {P(g), H} = 0,
aq()/at = {Q(8), B} = - = (2° - 279,
(4.7)
dp,/dt = {p,, H} = O,
qu/dt = {qk, H} = 2(z§ - z;f).



Part II

§ 5. Formulation of the'problem

We write simply vl to denote the column metrix (

As in the previous paper,6) in order to normalize the scattering data

we consider

n-1 . 1
u =V, T (1 - s, I, )/(1 - QR )I*

n k=—x

instead of vn and transform Egs. (1.7) into

-1
U'].,n+l [(z + Rnsn)ul,n * (Qn Tz Sn)u2,n]/An’

-1 ‘
= + +
Y2,n41 [z + QnTn)uZ,n (Rn ZTn)ul,n]/An’

_ >
where An = [(1-Qan)(l-SnTn)] .

v v
l,n 2,n

97

)T,

(5.1)

(5.2)

The Jost functions ¢n’ E;, wn’ E; are defined as solutions of

Eqs. (5.2) satisfying the boundary conditions

¢JZ)”[é]f} fﬁ“ﬂf‘[i)zm as n+—w;
wn(z) ~ [g) Z-n, E;(Z) ~ [z) zn as n‘».m.

For rapidly decaying potentials the functions z_n¢n and znwn

are

(5.3)

analytic in |z| > 1, and znan and z-ntp_n are analytic in  |z] < 1.

Two sets of functions {¢, ¢} and {v, ¥} are linearly dependent and

we have
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6,(2) = a(2)¥,(2) + 8(2)v_(2),

(5.4)

b,(2) = = alz)y (2) + B(2)y (2),

which define the scattering data a(z), B8(z), ao(z) and B(z); they

are given explicitly by

ot(z) = Wn(q)a ‘P), B(Z) = - Wn(‘b; g)s i
» (5.5)
alz) =w ($, V), B(z) = Wn(gl b)),
where
Wn(u, u') = ul,nué,n - 1.12,nui’n (5.6)

is the Wronskian of two solutions un and u& of Egs. (5.2) corre-

sponding to eigenvalues z and z', respectively. The scattering data

satisfy a relation normalized to unity owing to (5.1) :
a(z)a(z) + 8(z)B(z) = 1.

The functions o(z) and ofz) are time-invariant. The function o(z)
(E(Z)) is analytic for lz[ > 1 ([z! < 1) and assumed to have simple
zeros  z, (E#), k=1,2, ... , N (N) outside (inside) the unit circle

At z = z, We have from (5.5)

-
i

o]

<

and similarly at =z = .
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where Bk = S(Zk) ete.
We calculate the gradients of the Jost function ¢n {or wn) with
respect to the potentials by solving Egs. (5.2) iteratively towards

n+-= (or n->x) to get

a¢n a¢)n 34)n B¢n

T N R

n n - n n
awn = Rnwn + [J-) Tnwl,n+l B w2,n+l

- E]

3Q_ 2(1 Qan) 0 A
awn - ann + [ 0) Snw2,n+l B wl,n+l , (5.7)
Ty 20-9R) L h
2y T Y 27ty v

n _ nn [ ] 2,n+1

= 9
aSn 2(l"SnTn) Rn An
Q

W, - Sp¥n . [ Il] lplzn+l
3T 2(1-5.T)) -z, A

Similar expressions for the gradients of ¢n and wn are.also obtained.

§ 6. Main results

Equation (1.9} can be put into a canonical form

dQn/dt = {Qn, H}, an/dt = {Rn, H}, ,
(6.1)
ds /at = {s_, H}, ar /at = {T , H},
‘n n n n
if we define the Hamiltonian by
oo

= + . - .

i Z»(Qth-l RnSn QnTn Rnsn—l) (6.2)

n=-—w
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and the Poisson bracket of two functions F and G of the potentials by

s 3F 3G 3F 3G
{F, G} = Z[(l-—RQ)(—' = - = ——]
K=o nn aRn aQn th BRn

. -9F -~ 3G _ 3F 3G
- - SnTn)[ 3T 23S 35 3T ]]' (6.3)
n n n n

At present both the Hamiltdniaﬁ and the PoiSson‘brackets are found not
so systematically as in Part I but only by intuitioﬁ. As we remarked
in the introduction, however, the Poisson brackets (6.3) are available
also for the Hamiltonian formulation of any other noﬁlinear differential-
difference equation of evolution generated by Egs. (1.6) and (1.7).

On account of (5.5)-(5.7), the Poissonrbrackets between the

logarithms of the scattering data o, B, a, §' are calculated to be

{Ina(z), InB(z")} = -X - Y,
{ina(z), 1ng(z')} = X + Y,
| (6.4)
{ina(z), 1nB(z') =X-Y,
{Inaf{z), InB(z")} = - X + ¥,
vhere
X:%Z’:Z: and Y = ws(g - £')
with & = arg z and &' = arg z'. We also have
{a(z), a(z')} = {8(z), B(z')} = O. (6.5)

- 20 —
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From these results we find a canonical set of variables

ig,—, 1
P(g) = 1nfale ®)ale™®)],
(6.6)
1 i - i
a(e) = =8(e**) /B 01,
b
whose nonvanishing Poisson bracket is
{p(g), Q(g")} = - 8(g - &"). (6.7)
The corresponding set of discrete variables is given by
pk = 1n Zk’ qk = - 1n Bk, k=1, 2, s N,
(6.8)
§k=1n'z'k, Ek=-1nEk, k=1, 2, , N,
which have the Poisson brackets
s aid == 8 oo
(6.9)
{pks qk‘} = - 6k,k'.

Two sets of infinite number of conserved quantities are obtained by
the asymptotic expansion of 1In a(z) and 1n a(z) outside and inside

the unit circle, respectively :

1n a(z)

1}
I~ 8
N
1
b
H

(6.10)

1n o(z)

il
I~ 8
N
P
)

In terms of canonical variables these conserved quantities are expressed as
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_ 1 N ﬁ'__ 1 2n
I =7 =i(-Tp + 3 +—[ p(e) agl,
o o 2 k=1 k k=1 k 2w 0
N exp(sp ) N exp(ep, ) o .
I, = - - L+ - LS 21NJ ep(e)yag, (6.11)
=1 k=1 0
_ o memln) T oen(E) R g
I, = - ) 2 + 5 P(g) dg
=1 =1 0
for 2 =1, 2, .
The Hamiltonian (6.2) of Egs. (1.8) Dbecomes
H= - Il + Il
N N _ 5 2m
=2 ] coshp, - 2 ) cosh P, - 'T'T’f sin g P(£) d&. (6.12)
k=1 k=1 -0

Since the Hamiltonian (6.12) contains only the action variables (&),

pk and 5&, the canonical equations of motion are completely integrable :

il

ap(g)/at = dp, /dt dEk/dt = 0,

aqe)/at = - = sink,

qu/dt 2 sinhp,,

d?{k/dt - esinhE{k.

The results obtained in this part constitute a counterpart in discrete

2)
systems of those for the continuous systems analyzed by Kodama and by

Flaschka and Newell.lh)
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2)
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11)
12)
13)
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