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ABSTRACT

Genome rearrangement problems in computational biology [19, 29, 27] and zoning

algorithms in optical character recognition [14, 4] have been modeled as combi-

natorial optimization problems related to the familiar problem of sorting, namely

transforming arbitrary permutations to the identity permutation. The term per-

mutation is used for an arbitrary arrangement of the integers 1, 2, · · · , n, and the

term identity permutation for the arrangement of 1, 2, · · · , n in increasing order.

When a permutation is viewed as the string of integers from 1 through n, any

substring in it that is also a substring in the identity permutation will be called a

strip. The objective in the combinatorial optimization problems arising from the

applications is to obtain the identity permutation from an arbitrary permutation

in the least number of a particular chosen strip operation. Among the strip op-

erations which have been investigated thus far in the literature are strip moves,

transpositions, reversals, and block interchanges [16, 2, 25, 11, 34]. However, it is

important to note that most of the existing research on sorting by strip operations

has been focused on obtaining hardness results or designing approximation algo-

rithms, with little work carried out thus far on the implementation of the proposed

approximation algorithms. This research starts with implementing two existing al-

gorithms [5, 34] and as the main contributions, provides two new algorithms for

sorting by strip swaps: 1) A greedy algorithm in which each strip swap reduces

the number of strips the most, and puts maximum strips in their correct positions;

2) Another algorithm that uses the strategy of bringing closest consecutive pairs

together called the closest consecutive pair (CCP) algorithm. The approximation

ratios for the implemented algorithms are also experimentally estimated.

ix



CHAPTER 1

INTRODUCTION

Several problems in the field of comparative genomics have been modeled via com-

binatorial optimization problems related to the familiar problem of sorting, namely

transforming an arbitrary permutation to the identity permutation [19, 29, 27]. We

use the term permutation for an arbitrary arrangement of the integers 1, 2, · · · , n,

and the term identity permutation for the arrangement of 1, 2, · · · , n in increasing

order. We are particularly interested in those permutations (viewed as strings)

which may already contain substrings that are also substrings in the identity per-

mutation. Such substrings will be called strips.1 This means that the elements

of a strip within an arbitrary permutation need not be considered individually

when we try to obtain the identity permutation. Instead, sorting can be done

by operations carried out on strips (entire substrings). The objective is to obtain

the identity permutation from an arbitrary permutation in the least number of a

particular chosen strip operation, which makes all of these problems combinato-

rial optimization problems, most of which have been proven as NP-hard. Among

the strip operations which have been investigated thus far in the literature are

strip moves, transpositions, reversals, block interchanges [16, 2, 25, 11] and strip

exchanges [34, 35]. These problems have been named sorting by block moves or

block sorting [25], sorting by transpositions [2], sorting by block interchanges [11]

sorting by strip exchanges [34, 35], and others [26, 3].

It is important to note that most of the existing research on sorting with strip
1sometimes called blocks, but these terms will be differentiated later in the thesis.
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operations has been focused on obtaining computational complexity results or de-

signing approximation algorithms and establishing approximation ratios for them

theoretically. Typical proofs of these results have been based on considering rela-

tionships between different strips and the positions where they occur within the

permutations, while there has been little work carried out thus far on the imple-

mentation of the proposed approximation algorithms. We believe strongly that

practical implementation is key to identifying such relationships between strips

and their positions within permutations that might not have been theoretically

possible before. We also believe implementation will provide means for discovering

newer approaches and algorithms to tackle sorting by strip operations in general.

With this in mind, this thesis research will make the following contributions: 1)

implement two previously developed algorithms, known as sorting by block dele-

tions and sorting by strip swaps ; 2) implement an exact algorithm using brute-force

search to find the minimum number of strip moves or swaps needed (for small-sized

permutations); 3) implement a greedy algorithm newly developed in this thesis, for

sorting by strip swaps; 4) implement an algorithm newly developed in this thesis,

called the closest consecutive pair (CCP) algorithm; and 5) experimentally esti-

mate the approximation ratios for all the implemented approximation algorithms

for sorting by strip swaps using the exact algorithm as the reference. For ease of

reference, we begin by introducing the terminology, along with some basic concepts

and ideas that will be used in the rest of the thesis.

1.1 Strips in a Permutation

An arbitrary permutation of the integers 1, 2, · · · , n is denoted by π, where each

number occurs exactly once, and the identity permutation, in which the integers

1, 2, · · · , n are in increasing order is denoted by id. As previously mentioned,

substrings in π that are also substrings in id will be called strips. For example, in
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the permutation π : 8 2 5 6 3 9 1 4 7 on nine elements, there are eight strips, and

[5 6] is a strip containing more than a single element, all other strips containing

one element each. The identity permutation 1 2 3 4 5 6 7 8 9 consists of the single

strip. Figure 1.1 shows these two permutations with their strip structures.

Arbitrary permutation: 8 2 5 6 3 9 1 4 7

Identity permutation: 1 2 3 4 5 6 7 8 9

Figure 1.1: Strips in a Permutation

1.2 Sorting By Strip Moves

The operation of removing a strip from its current position and placing it elsewhere

in the permutation is called a strip move. Consider the starting permutation 8 7

2 4 5 3 6 1 9 which consists of eight strips 8, 7, 2, 4 5 , 3, 6, 1 and 9. In order

to clearly show the strip structure, we enclose each strip as a separate box and

write the permutation in the form 8 7 2 4 5 3 6 1 9 . Upon (re)moving

the strip 4 5 from its current position and placing it before the strip 6 in the

above permutation, we obtain the permutation that can be shown with its new

strip structure in the form 8 7 2 3 4 5 6 1 9 . Note that the number

of strips has been reduced from 8 to 5 after one strip move. Now, within this

new permutation, moving the strip 2 3 4 5 6 to occupy the position before the

strip 7 yields the permutation with the strip structure 8 2 3 4 5 6 7 1 9 .

Note that the second move has reduced the number of strips from 5 to 4. Next,

within the most recently obtained permutation, moving the strip 8 to the position

before the strip 9 yields 2 3 4 5 6 7 1 8 9 The third move has reduced

the number of strips from 4 to 3. Finally, moving the strip 1 before the strip

2 3 4 5 6 7 yields 1 2 3 4 5 6 7 8 9 , which is the identity permutation that
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consists of a single strip. The above-described process of transforming an arbitrary

permutation π consisting of several strips to the identity permutation id consisting

of a single strip, through a sequence of strip moves is called sorting by strip moves.

The sequence of strip moves is known as a strip move schedule. The schedule for

the above example is shown in the Figure 1.2. The length of a strip move schedule

is the number of strip moves in the schedule.

8 7 2 4 5 3 6 1 9

4 5

8 7 2 3 4 5 6 1 9

2 3 4 5 6

8 2 3 4 5 6 7 1 9

8

2 3 4 5 6 7 1 8 9

1

1 2 3 4 5 6 7 8 9

Figure 1.2: Strip Move Schedule for Sorting by Strip Moves
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1.3 Sorting By Strip Swaps

The operation of interchanging the positions of two different strips in a permutation

is called a strip swap. This process of transforming an arbitrary permutation π

consisting of several strips to the identity permutation id consisting of a single

strip, through a sequence of strip swaps is known as sorting by strip swaps. Also,

the sequence of strip swaps is known as a strip swap schedule. Figure 1.3 illustrates

a strip swap schedule for the same starting permutation, 8 7 2 4 5 3 6 1

9 consisting of 8 strips, which we used in the previous section. The length of a

strip swap schedule is the number of strip swaps in the schedule.

8 7 2 4 5 3 6 1 9

7↔ 8

7 8 2 4 5 3 6 1 9

7 8↔ 1

1 2 4 5 3 6 7 8 9

4 5↔ 3

1 2 3 4 5 6 7 8 9

Figure 1.3: Strip Swap Schedule for Sorting by Strip Swaps

This thesis research began with the development of an implementation framework,

which was then validated by testing and verifying the results of Bein et al. [4] which
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presented a 2-Approximation algorithm for strip sorting. On the other hand, while

implementing the algorithm of Roy et al. [34, 35] for sorting by strip swaps, it

became evident that the algorithm does not take into account several scenarios

that could arise in the strip structure. This experience led to the development of

two new approaches to handle sorting by strip swaps, which constitute the main

contributions of this thesis.

The remainder of the thesis document is organized as follows. Chapter 2 gives

the background and motivation for this research as well as a summary of the pre-

vious work done. Chapter 3 discusses the existing approximation algorithms for

sorting by strip moves and sorting by strip swaps. Chapter 4 introduces the two

algorithms that have been newly developed in this thesis. These algorithms are

named: 1) the Greedy algorithm for sorting by strip swaps; and 2) the Closest

Consecutive Pairs (CCP) algorithm for sorting by strip swaps. Chapter 5 presents

the results of the experiments conducted on the existing and new algorithms com-

paring their performances. Finally, Chapter 6 provides some directions for future

research that could help expand the scope of this work.
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CHAPTER 2

BACKGROUND

The underlying application domains that lead to the sorting problems investigated

in this thesis are comparative genomics [15] and optical character recognition [14].

Of these, we explain the connection between our research and the ongoing research

related to comparative genomics, a field of biological research. A genome is the

entire DNA of a living organism, and a genome consists of chromosomes, which in

turn are made up of genes. In comparative genomics, the genes of different species

are compared to gain some insights as to how far they are separated genetically.

Research on the genomes of different species shows that pairs of different species

may have essentially the same set of genes, but the orderings of the genes in the

two species may differ [18, 31]. For instance, the study by Palmer and Herbon

indicates that cabbage and turnip are closely related to each other genetically, and

many genes of the two species are 99–99.9 percent identical [32], while the orders

in which the genes appear in the two species are different. Similarly, an article

from the National Institute of General Medical Sciences [30], indicates that “all

living things evolved from a common ancestor,” and asserts that the human and

mouse genomes are about 85 percent similar, containing the same set of genes but

in different orders. This suggests that genome rearrangement events can be used to

trace the evolutionary path among genomes. Genome rearrangement events refer

to the mutations (alterations) that affect the orderings of the genes. Each study of

genome rearrangements is actually solving a combinatorial optimization problem

to find a sequence of rearrangements that transform one genome into another [33].
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For modeling genome rearrangement problems, the order of genes in two arbitrary

organisms is represented by permutations. Thus, given two permutations that

represent the ordering of genes in the genomes of two different organisms, the

basic task involved in understanding genome rearrangement problems is to find the

shortest sequence of rearrangement operations that transforms one permutation

into another.

The mutations leading to genome rearrangements occur in many common

forms, which we refer to as primitives. Some well-defined primitives include: dele-

tion (a part of a genome is lost) [21, 24]; insertion (a part is added) [37]; dupli-

cation [36]; reversal or inversion (a part is reversed) [1]; transpositions (a part is

picked and placed elsewhere) [2]; block interchanges (where the positions of two

parts are interchanged) [10]; block moves (a special kind of transposition) [26]; pre-

fix reversals [13], and strip exchanges [35]. At times, a combination of more than

one primitive is used to determine the distance. For instance, transreversals are

combinations of transpositions and reversals [17]. Thus, the methodology to study

genome rearrangements has traditionally amounted to using a single or a combina-

tion of well-defined primitives to transform one genome into another. The number

of primitive steps needed to transform one genome into another is a measure of

the evolutionary distance between the two species.

Computer scientists model the genome rearrangement problems based on the

different primitives of reversals, transpositions, block moves, and block inter-

changes as corresponding combinatorial optimization sorting problems [1, 2, 10, 26].

The following assumptions are made in such models: i) genomes are considered as

ordered sequences (or permutations) of genes or other segments; ii) the individual

gene segments in the genomes may be represented by signed or unsigned integers

as appropriate; iii) there is no duplication or deletion of segments when transform-

ing from one genome to another; and iv) pairs of genomes which only differ in the
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order in which segments occur are considered. Under these assumptions, genome

rearrangement amounts to transforming a given permutation (starting species) to a

target permutation (target species). Additionally, we think of the starting species

as represented by an arbitrary permutation (may consist of signed or unsigned

integers), and the target species as the sorted or the identity permutation (only

consisting of unsigned integers). For instance, a segment of the human genome

may be modeled as the permutation 4 6 1 7 2 3 5 8. In order to study the evo-

lutionary distance between the human and the mouse, the corresponding segment

in the mouse may be modeled as the permutation 1 2 3 4 5 6 7 8. Similarly, a

segment of the genome of cabbage modeled permutation 1 − 5 4 − 3 2 is trans-

formed to the permutation 1 2 3 4 5 as the corresponding segment in the genome of

turnip to study the evolutionary distance between the two species. Hence, genome

rearrangement problems become sorting problems in which the goal is to sort in

such a way that the number of these special primitive operations required is mini-

mized. In other words, genome rearrangement problems translate to combinatorial

optimization sorting problems.

Before we proceed to the next section which will provide an account of previous

work related to sorting by the various primitives, we want to clarify the use of the

term block, which has been used in the literature to mean two different things by

different groups of researchers, as indicated in a footnote in the previous chapter.

The term block has been used by some researchers to refer to any substring in the

starting permutation [10, 23, 6, 2], and these works have focused on sorting by

block interchanges. The same term, block, has also been used by other researchers

to refer to maximal substrings in the starting permutation that are also substrings

in the identity permutation [3, 25, 4, 26, 28, 5, 29, 38], and these works have

focused on sorting by block moves and they also refer to the sorting problem as

block sorting. At the same time, the term strip is also used by [27, 34, 35] to refer
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to the maximal substrings in the starting permutation that are also substrings in

the identity permutation. In this thesis, we will use the term strip to refer to the

already-sorted maximal substrings in a permutation.

2.1 Previous work

Several studies relating to the design and analysis of algorithms for sorting by var-

ious primitives have been reported in the literature. Many of these combinatorial

optimization problems have been proven to be NP-hard. Specifically, Caprara et

al. [9] demonstrate that sorting by reversals is hard; Bulteau et al. prove that

sorting by transpositions [7] and sorting by prefix reversals [8] are hard; Bein et

al. [3] show that sorting by strip moves is hard. Finally, the computational com-

plexity of sorting by strip swaps still remains an open question. This implies that

there are no known efficient algorithms for solving the problem of sorting by these

primitives, and it is quite unlikely that such an algorithm exists. However, sorting

by block interchanges has been proven to be polynomially solvable, and an O(n2)

algorithm exists for solving this problem [10].

Hence, the search for approximation algorithms, for sorting by the primitives

of reversals, transpositions, and strip moves, has been an active area of research

for many years now. In computer science and operations research, approximation

algorithms are efficient algorithms that find approximate solutions to optimization

problems (in particular NP-hard problems) with provable guarantees on the dis-

tance of the returned solution to the optimal one [40]. An algorithm A is said to

be a ρ-approximation algorithm if,

approximate solution obtained by the algorithm A

the optimal solution
≤ ρ. (2.1)

A ρ-approximation algorithm guarantees that the approximate solution is no bigger
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than ρ times the optimal solution.

In terms of previous work on approximation algorithms, Bafna et al. [1], in one

of the earlier studies in the areas of genome rearrangements and sorting, describe

an approximation algorithm for sorting by reversals. Hannenhalli et al. [16] study

sorting of signed permutations by reversals, a problem that adequately models re-

arrangements in small genomes. Bafna et al. [2], in their work address the problem

of sorting by transpositions. The first nontrivial approximation algorithm to the

strip sorting problem is presented by Mahajan et al. [26], where they present a strip

merging algorithm. Few years later, they also give a 2-approximation algorithm for

sorting by strip moves [25]. Bein et al. [3] propose a 2-approximation algorithm

based on finding an optimal sequence of absolute strip deletions [14, 20, 22]. Roy

et al. [34] study the strip swaps, identify a new lower bound for the number of

strip swaps, and design a 2-approximation algorithm for the problem.

2.2 Motivation

It is evident that a significant amount of theoretical research has been carried out

during the past few decades in this area, along with the conceptualization and

analysis of several approximation algorithms. Work related to validating the ap-

proximation algorithms by implementing the approximation algorithms proposed

has been somewhat limited. To our best knowledge, Turlapaty [38] is the only work

reported in the literature that is focused on implementation and experimental per-

formance analysis of a few algorithms for sorting by strip moves. Turlapaty [38]

also brings along a new greedy algorithm for sorting by strip moves. Our motiva-

tion for the research in this thesis is to take the theoretical research in computing

to the next level to help computational biology researchers by providing the tools

they may use in the future to study genome rearrangements. The research in this

thesis builds on the goals of 1) validating the absolute block deletion algorithm
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for sorting by strip moves [4]; 2) validating the 2-approximation algorithm of Roy

et al. [34, 35] for sorting by strip swaps; and 3) developing new approximation

algorithms for sorting by strip swaps.

2.3 Scope of the Present Work

Although several approximation algorithms for primitive operations on strips or

blocks such as transpositions [2], block interchanges [10, 23], reversals or inver-

sions [6], and strip moves [25, 26, 4], and strip swaps [34, 35] have been proposed

and analyzed theoretically, little work has been carried out thus far in implement-

ing, validating, and analyzing the proposed approximation algorithms. At this

point, we would like to mention that all permutations we will consider in this the-

sis consist only of unsigned integers, even though signed integers may be relevant

in appropriate contexts in computational biology research. Our focus in this thesis

has been on two particular strip operations, namely, strip moves and strip swaps.

An implementation framework for sorting by strip moves and sorting by strip swaps

has been developed in the Python programming language. This framework was

used to implement and analyze sorting by strip moves using the strip deletion

algorithm of [4] and sorting by strip swaps [34], along with an exact brute-force

algorithm that we have developed in order to determine the approximation ratios.

Additionally, this thesis research has also led to the development of two new algo-

rithms for sorting by strip swaps. The first algorithm strategically selects a swap

at each step such that it minimizes the number of strips in the permutation and

puts maximum elements in their correct positions. This strategy will be referred

to as the greedy algorithm for the rest of the thesis. The second algorithm suggests

a promising approach to select a good swap at every step to bring together the

pair of consecutive strips that are closest. This approach will be referred to as the

Closest Consecutive Pair (CCP) algorithm for the rest of the thesis.
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CHAPTER 3

EXISTING ALGORITHMS

In this chapter, an existing algorithm for sorting by strip moves and an existing

algorithm for sorting by strip swaps are described. The algorithm for sorting by

strip moves, developed by Bein et al. [5], which we will call the strip deletion

algorithm, is based on a sequence of strip deletions. The algorithm for sorting

strip by swaps, developed by Roy et al. [34], which we will call the cycle graph

algorithm, uses the idea of cycle graphs.

3.1 The Strip Deletion Algorithm for Sorting by Strip Moves

Bein et al. [5] provide a quadratic time, 2-approximation algorithm for sorting

by strip moves. In their work, the term block represents a strip. Their method

first finds the minimum length sequence of strip deletions to transform a list of

distinct integers (permutation) into a monotone increasing sublist, and then derives

a sequence of strip moves based on the sequence of strip deletions. For example, a

minimum length strip deletion sequence for the list (2 4 1 5 3) is ( 1 , 4 5 ). In other

words, deleting 1 first, followed by the deletion of 4 5 results in the monotone

increasing list (2 3). Related to the problem of finding the minimum length strip

deletion sequence for a list x of distinct integers is the problem of finding what is

known as the complete strip deletion sequence for x. The complete strip deletion

sequence corresponds to a sequence of strip deletions leading to an empty list. For

example, the list (4 1 5) becomes the empty list when 1 is deleted first and 4 5 is

deleted next. Thus, the complete deletion sequence for (4 1 5) is ( 1 , 4 5 ). Also,
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note that for the list (2 4 1 5 3), the complete strip deletion sequence for (4 1 5)

yields the monotone increasing list of (2 3). In general, if x = (x1 x2 · · · xn) is a

given list of distinct integers, then finding a minimum length strip deletion sequence

that results in the monotone increasing sublist (xi1 xi2 · · · xik) corresponds to

finding the complete strip deletion sequences for the sublists (x1 x2 · · · xi1−1),

(xi1+1 xi1+2 · · · xi2−1), · · · , (xik−1+1 xik−1+2 · · · xik−1). Based on this observation,

sorting by strip deletions algorithm of Bein et al. [5] can be described as consisting

of the following stages.

Stage-1: The minimum length of any complete strip deletion sequence.

With the sublist (xi xi+1 · · · xj) denoted by xi···j, the minimum length of any

complete strip deletion sequence for the sublist xi···j is calculated as ti,j for 1 ≤ i ≤

j ≤ n, where

ti,j =


min

 1 + ti+1,j,

ti+1,`−1 + t`,j

 ,
if ∃` ∈ {i + 1, · · · , j} such

that x` = xi + 1;

1 + ti+1,j, otherwise.

(3.1)

Suppose the given list is x = (2 4 1 5 3). Then, as the first stage calculates the

minimum length of any complete strip deletion sequence for the sublists xi···j for

1 ≤ i ≤ j ≤ n, it stores the results as ti,j. For instance, corresponding to i = 1, the

minimum lengths of any complete strip deletion sequence for the sublists x1···1 =

(2), x1···2 = (2 4), x1···3 = (2 4 1), x1···4 = (2 4 1 5), and x1···5 = (2 4 1 5 3) need

to be calculated. It is clear that the minimum length of a complete strip deletion

sequence for x1···1 = (2) is 1 because it just contains the single strip 2. Similarly,

the minimum length of a complete strip deletion sequence for x1···2 = (2 4) is 2

and the minimum length of a complete strip deletion sequence for x1···3 = (2 4 1)

is 3. However, for the sublist x1···4 = (2 4 1 5), the deletion of strip 1 results in the
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formation of the strip (4 5), and hence the minimum length of a complete strip

deletion sequence for x1···4 is also 3. Finally, for the sublist x1..5 = (2 4 1 5 3), the

deletion of strip (1), and the deletion of the strip (4 5) yield the final strip (2 3),

which results in the minimum length of a complete strip deletion sequence for x1···5

equal to 3 as well. These are obtained using (3.1) in the strip deletion algorithm

[5], which finally yields the matrix [ti,j] as shown below.

[ti,j] =



1 2 3 3 3

0 1 2 2 3

0 0 1 2 3

0 0 0 1 2

0 0 0 0 1


Stage-2: Finding the strip deletion sequence. With ti,j, the the minimum

length of any complete strip deletion sequence for the sublist xi···j available from the

first stage, the strip deletion sequence for the given list x can be obtained by first

constructing a directed, weighted, acyclic graph G with the following properties: 1)

there is one node in G for each i ∈ {0, 1, · · · , n+1}, with x0 = 0 and xn+1 = n+1;

2) there is an edge (i, j) from node i to node j if and only if i < j and xi < xj are

both satisfied; and 3) the weight of this edge (i, j) is ti+1,j−1. Then, stage-2 finds

the minimum-weighted path (0, i1, i2, · · · , ik, n+1) in G, whose vertices correspond

to the monotone increasing sequence (xi1 , xi2 , · · · , xik).

Stage-3: Strip Sorting from the Strip Deletion Sequence. Before we pro-

ceed to describe the next stage, let us see what happens at the end of Stage-2 for

our example permutation x = (2 4 1 5 3). For this permutation, in Stage-2, the

directed path of minimum weight from node 0 to node 6 (namely n+ 1 for n = 5)

in the weighted, directed acyclic graph G needs to be determined. A sampling of

the various directed paths from 0 to 6 with the corresponding weight for each path
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is shown for reference in Figure 3.1, from which it is evident that the minimum

weight path from 0 to n+ 1 is (0, 2, 4, 5, 6) with a weight of 2. Also, the nodes(or

strips) that are not present in the minimum weight path are 1 and 3 , which

provide the complete block deletion sequence A for this permutation as ( 1 , 3 ).

0 2 4 1 5 3 6
weight(0, 2, 4, 5, 6) = 2

0 2 4 1 5 3 6
weight(0, 2, 4, 6) = 3

...

0 2 4 1 5 3 6
weight(0, 5, 6) = 4

0 2 4 1 5 3 6
weight(0, 3, 6) = 3

0 2 4 1 5 3 6
weight(0, 6) = 3

Figure 3.1: Weighted paths from 0 to 6 in x = (0 2 4 1 5 3 6)

Thus, from the first two stages, the minimum length strip deletion sequence

A for the starting list x may be determined. Let the strips in the sequence be

named A1, A2, · · · , Am. Then, Bein et al [5] provide the following algorithm for

translating each member of the strip deletion sequence to a corresponding strip

move.
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Data: x: The input permutation; A1, A2, · · · , Am: strip deletion
sequence

Result: Sorted permutation
Let x0 ← x
for t← 1 to m do

Let Bt be the strip of xt−1 that contains first(At).
if first(At) 6= first(Bt) then

xt ← xt−1

else
Move Bt to the position after first(Bt)− 1

end
end

Algorithm 1: Sorting by Strip Moves via Strip Deletions

0 2 4 1 5 3 6

0 2 4 5 3 6

0 2 4 5 6

monotone

increasing

subsequence

0 2 4 1 5 3 6

0 1 2 4 5 3 6

0 1 2 3 4 5 6

sorted

permutation

Figure 3.2: Sorting (2 4 1 5 3) by Strip Deletions
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Shown in Figure 3.2 is the execution of Stage-3 of the strip deletion algorithm for

the permutation (0 2 4 1 5 3 6) under consideration. The block deletion sequence

for this permutation is ( 1 , 3 ). The deletion of 1 corresponds to moving 1 to

the position after 0 , which yields the modified permutation (0 1 2 4 5 3 6). Next,

deleting 3 corresponds to the moving 3 to the position after 0 1 2 , which yields

the identity permutation.

3.2 The Cycle Graph Algorithm for Sorting by Strip Swaps

In the work of Roy et al. [34, 35], the problem of sorting by strip swaps is treated

in a manner similar to the work of Christie [12]. Roy et al. [34, 35] present a new

lower bound for the number of strip swaps needed to sort by strip swaps and also

devise a 2-approximation algorithm using the concepts of cycle graphs [1], simple

permutations [16], and 2-moves and 0-moves [2]. A strip swap operation involves

interchanging the positions of two strips. Ordinarily the swaps are performed so

that the operation results in several strips being combined to form longer strips.

A sequence of strip swaps can then be used to transform an arbitrary permutation

that may contain several strips to the identity permutation that is just a single

strip. For ease of understanding, some of the terminology used by Roy et al. [34, 35]

is included here as presented in [34]. We assume throughout this section that π is

an arbitrary permutation of the integers 1, 2, · · · , n.

Cycle Graph. The cycle graph of π, denoted by G(π), is a directed edge color

graph with the vertex set {0, 1, 2, ..., n, n+ 1} and the edge set defined as follows;

for all 1 ≤ i ≤ n+ 1, gray edges are directed from i− 1 to i and black edges from

πi to πi−1.

Alternating Cycles. An alternating cycle of a cycle graph is a cycle where each

pair of adjacent edges are of different colors; the length of an alternating cycle is

defined to be the number of black edges in the cycle. Also, an alternating cycle
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with k black edges is referred to as a k-cycle.

As an example, the cycle graph for the permutation (3 2 1 4) is shown in Figure 3.3.

From Figure 3.3, it can be seen that this cycle graph contains three alternating

cycles, of which two are 2-cycles and one is a 1-cycle. These cycles are shown as

Figure 3.4 for ease of reference later.

Figure 3.3: Cycle graph for (3 2 1 4) [2, 34]

(0 99K 1→ 2 99K 3→ 0) (1 99K 2→ 3 99K 4→ 1) (4 99K 5→ 4)

Figure 3.4: Alternating cycles for (3 2 1 4) cycle graph [2, 34]

Figure 3.5: Cycle graph for (1 3 2 4) [2, 34]

As another example, the cycle graph for the permutation (1 3 2 4) is shown in

Figure 3.5, from which it is evident that it contains three alternating cycles, of

which two are 1-cycles and one is a 3-cycle. These cycles are shown in Figure 3.6.

Figure 3.6: Alternating cycles for (1 3 2 4) cycle graph [2, 34]

Simple Permutation. A simple permutation π is a permutation whose cycle

graph G(π) does not contain any alternating cycle of length exceeding 3 [16, 34].
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Thus, both (3 2 1 4) and (1 3 2 4) are simple permutations as their cycle graphs do

not contain any cycles of length exceeding 3. A process known as the (g, b)-split

is described in detail in Hennenhalli et al. [16] and Roy et al. [34] for transforming

permutations whose cycle graphs contain alternating cycles of length four or more.

Thus, Roy et al. [34, 35] describe an algorithm which focuses on eliminating

3-cycles and 2-cycles in a simple permutation π to transform it to the identity

permutation.

Suppose SSD(π) is the minimum number of strip swaps needed in order to

obtain the identity permutation from π. Then, Christie et al. [12] show that

SSD(π) ≥ (n+ 1− C(π))/2, (3.2)

where C(π) is the number of alternating cycles in the cycle graph of π. For example,

since the cycle graph of the permutation π = (3 2 1 4) contains three alternating

cycles, as shown in Figure 3.4, according to Christie et al. [12], at least one strip

swap will be needed to get this permutation sorted. On the other hand, Roy et al.

[34] show that

SSD(π) ≥ (n+ 1− Codd(π))/2, (3.3)

where Codd(π) is the number of odd alternating cycles (alternating cycles with an

odd number of black edges) in the cycle graph of π. Since the cycle graph of the

permutation π = (3 2 1 4) contains only one odd alternating cycle, as shown in

Figure 3.4, according to Roy et al. [34], at least two strip swaps will be needed

to get this permutation sorted. Clearly, the lower bound (3.3) due to Roy et al.

[34] is a tighter lower bound on the number of strip swaps when compared to the

lower bound (3.2) due to Christie et al. [12]. Using the above ideas, Roy et al.

[34] develop an algorithm that executes strip swaps motivated by the number of

additional odd alternating cycles that a strip swap will introduce in the cycle graph
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of the permutation being sorted.

A 0-move, carried out on a 3-cycle, breaks it into one 2-cycle and one 1-cycle,

thereby increasing the number of odd-cycles by 0 (no increase) in the cycle graph.

This is illustrated in Figure 3.7.

Figure 3.7: A 0-move leading to a 2-move [34]

A 2-move, carried out on a 2-cycle, breaks it into two 1-cycles, thereby increasing

the number of odd-cycles by 2. This is illustrated in Figure 3.8.

Figure 3.8: 2-move [34]

As seen in Figure 3.7, suppose a 3-cycle is represented as (x, x+1, y, y+1, z, z+

1, x), then swapping the strip y with the strip z results in the formation of the

2-cycle (x, x+1, z, z+1, x) and the 1-cycle (y, y+1, y). Thus, since a 3-cycle is split
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into a 2-cycle and a 1-cycle, the number of odd cycles has not changed. Similarly,

as seen in Figure 3.8, suppose a 2-cycle is represented as (x, x+1, z, z+1, x), then

swapping the strip x+1 with the strip z+1 results in the formation of the 1-cycle

(x, x + 1) and the 1-cycle (z, z + 1). Thus, a 2-cycle (not an odd cycle), is split

into two 1-cycles, leading to a net increase of two in the number of odd cycles.

Note that from the cycle graph of the permutation (3 2 1 4) (see Figure 3.4), it is

seen that it can be sorted upon making a 2-move. Similarly, the cycle graph of the

permutation (1 3 2 4) (see Figure 3.6) shows that it can be sorted upon making a

0-move.

3.3 Findings from Implementation

We implemented the following algorithm of Roy et al. [34] which uses the concepts

we have described in the previous section.

Data: π: The input permutation
Result: Sorted permutation
Construct the cycle graph G(π)
if π is not a simple permutation then

Convert π to a simple permutation
end
while π 6= id do

while G(π) contains a 2-cycle do
Perform a 2-move

end
while G(π) does not contain a 2-cycle do

Perform a 0-move
Perform a 2-move

end
end

Algorithm 2: Sorting by Strip Swaps via Cycle Graphs

Our implementation experience confirmed our thoughts on the importance of im-

plementation and validation of the algorithms. We discovered that while the cycle

graph algorithm works for some permutations, but it fails on some others. It was
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indeed surprising to note that the algorithm failed on the small-sized permuta-

tion (4 2 1 3), which however is not a simple permutation because it contains an

alternating cycle of length that exceeds 3. In fact, as seen from Figure 3.9 and

Figure 3.10, the cycle graph for (4 2 1 3) has just one alternating 5-cycle.

Figure 3.9: Cycle graph for (4 2 1 3) [2, 34]

(0 99K 1→ 2 99K 3→ 1 99K 2→ 4 99K 5→ 3 99K 4→ 0)

Figure 3.10: Alternating cycles in the Cycle Graph of (4 2 1 3) [2, 34]

Using the (g, b)-split process [16, 34], the permutation (0 4 2 1 3 5) is converted into

a simple permutation by inserting two additional appropriately chosen numbers in

the original permutation, yielding the new, simple permutation (0 4 0.3 0.7 2 1 3).

The cycle graph for this new simple permutation is shown in Figure 3.11.

Figure 3.11: Cycle graph for (0 4 0.3 0.7 2 1 3) [2, 34]

The alternating cycles in the cycle graph of (0 4 0.3 0.7 2 1 3) are shown in

Figure 3.12. It is clear that the new permutation is a simple permutation because
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the lengths of all of the alternating cycles in the cycle graph of this permutation

do not exceed 3.

(0 99K 0.3→ 4 99K 5→ 3 99K 4→ 0) (0.3 99K 0.7→ 0.3)
(0.7 99K 1→ 2 99K 3→ 1 99K 2→ 0.7)

Figure 3.12: Alternating cycles for (0 4 0.3 0.7 2 1 3 5) cycle graph [2, 34]

According to Algorithm 2, the conversion of a non-simple permutation to a simple

one is done once and only once, and the strip swaps are carried out within this

simple permutation repeatedly until the identity permutation is obtained. How-

ever, for the simple permutation (0 4 0.3 0.7 2 1 3 5), in order to eliminate the

3-cycle (0 99K 0.3 → 4 99K 5 → 3 99K 4 → 0), a 0-move needs to be performed.

This corresponds to swapping the elements 3 and 4. Performing this swap in the

permutation yields (0 3 0.3 0.7 2 1 4 5). Next, Algorithm 2 requires a 2-move to

be performed on (0 3 0.3 0.7 2 1 4 5). This corresponds to swapping the elements

0.3 and 4, which yields the permutation (0 3 4 0.7 2 1 0.3 5). Unfortunately, this

newest permutation has a cycle graph which has an alternating cycle of length that

exceeds 3, and hence fails to be a simple permutation.

Finally, we would like to point out that the tighter lower bound of Roy et al. [34]

doesn’t hold true either. For example, for the permutation (3 2 1 4), Figure 3.4

shows that there is only one odd cycle. Therefore, with n = 4 (the number of

elements) and Codd(π) = 1, the lower bound (3.3) indicates that at least two strip

swaps are needed to sort (3 2 1 4). However, it is easy to see that with just one

swap (of 1 and 3), the permutation could be sorted. Another permutation for

which exactly the same scenario holds is (1 4 3 2), whose cycle graph contains only

one odd cycle yielding a lower bound of 2, while it could be sorted with only one

swap (or 2 and 4).

– 24 –



CHAPTER 4

NEW ALGORITHMS FOR SORTING BY STRIP SWAPS

In this chapter we present two new algorithms for sorting by strip swaps, which are

the main contributions of this thesis. The first algorithm employs a greedy strategy,

and we call it the greedy algorithm. The second algorithm tries to bring the closest

consecutive pairs together, and we call this algorithm the closest consecutive pair

(CCP) algorithm.

4.1 The Greedy Algorithm

The greedy algorithm selects the candidates for a strip swap at each step as the pair

of strips that would result in the greatest reduction in the total number of strips at

each step of advancing towards the identity permutation. In case there exists two

of more such pairs that would reduce the number of strips by the same amount,

the pair that would place a greater number of strips in their correct positions will

be selected. It is important to emphasize here that the algorithm determines by

how much the number of strips is reduced without actually performing the actual

swaps.

In order to illustrate how the greedy algorithm works, let us consider sorting

the permutation π = (5 3 1 4 2) by strip swaps. Since there are 5 strips in the given

permutation, the greedy algorithm will examine all possible
(
5

2

)
pairs of strips as

potential candidates for the initial swap. For ease of reference the pseudocode for

the greedy algorithm is shown below.
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Data: πinit: The input permutation
Result: s, the number of strip swaps needed with the greedy strategy
s← 0
π ← πinit

while π 6= id do
Find (i, j) for which πi ↔ πj will lead to the least number of strips
For breaking ties, pick (i, j) which will maximize the number of
correctly placed strips

Swap πi with πj
s← s+ 1

end

Algorithm 3: The Greedy Algorithm for Sorting by Strip Swaps

As indicated in the pseudocode above, the greedy algorithm will first try to find

the pair of positions (i, j) that will reduce the number of strips the most if the

strip at position i is swapped with the strip at position j. For clarity, we refer to

the swaps in terms of πi and πj, instead of i and j in this explanation. Thus, for

the permutation π = (5 3 1 4 2), this would mean the swaps (5 ↔ 3), (5 ↔ 1),

(5↔ 4), (5↔ 2), (3↔ 1), (3↔ 4), (3↔ 2), (1↔ 4), (1↔ 2), and (4↔ 2) need

to be examined. As it turns out, two different swaps (5 ↔ 2) and (1 ↔ 4) will

both reduce the number of strips by 2, while the other swaps reduce the number

of strips by at most 1. When ties like this occur, the swap that puts the most

number of strips in their correct positions, namely the positions at which they

occur in the identity permutation. For the two swaps under consideration at this

point, it is seen that the swap (5↔ 2) places the strip (4 5) in its correct position,

while the swap (1 ↔ 4) doesn’t place any strip in its correct position. Thus, the

swap (5 ↔ 2) will be selected as the next swap by the algorithm. As a result

of the first swap, the original permutation would have been transformed to the

permutation ( 2 3 1 4 5 ). Thus, the possible swaps for the next iteration would

be ( 2 3 ↔ 1), ( 2 3 ↔ 4 5 ) and (1 ↔ 4 5 ). The greedy algorithm will select

and carry out the swap ( 2 3 ↔ 1) as it results in the identity permutation.
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4.2 The Closest Consecutive Pair Algorithm

The greedy strategy for sorting by strip swaps is based on the idea of reducing

the number of strips by the maximum amount possible at each step. Another

perspective of sorting by strip swaps is to consider it as a rearrangement problem

with the goal of matching the position of the strips in any permutation π to their

respective positions in the identity permutation id. The Closest Consecutive Pair

(CCP) algorithm tries to achieve this goal as we will describe in this section.

The main idea behind the CCP algorithm is to associate a penalty with every

strip in the permutation π on basis of how far it is from its corresponding position

in the identity permutation id, and select a pair of strips to swap such that will put

more strips in their correct place than any other swap. Also, since sorting by strip

swaps is aimed at forming progressively longer strips from one step to the next,

it is beneficial to take into account the penalties associated with the predecessor

and successor strips also to determine a score for pairs of consecutive strips. This

thought process led to the development of the CCP algorithm. The motivation for

this design comes from the field of reinforced learning [39], where software agents

are assigned cumulative rewards based on their advancement towards the optimal

solution.

Before presenting the CCP algorithm in the form of pseudocode, we will il-

lustrate how it works using the permutation π = (1 4 3 2). To each strip in the

permutation, we assign positional penalty points (PPP) based on how far the strip

is from its correct position in the identity permutation. For example, in the per-

mutation (1 4 3 2), the PPP of strip 1 is zero since strip 1 is in the same position

in π as in id. Also, since the strip 4 will need two hops to come to its expected

position in id, the PPP of 4 equals 2. This is illustrated in Figure 4.1.

Since the final goal in sorting by strip swaps is to arrive at the single strip repre-
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π: 0 1 4 3 2 5

Position of strip i in π i.e. π(i): 1 2 3 4

Positional penalty points: |1− 1| |4− 2| |3− 3| |2− 4|
0 2 0 2

Figure 4.1: Positional penalty points

senting id, the CCP algorithm works towards increasing the sizes of existing strips

at every step. Note that increasing the size of a particular strip will depend on

where the strip’s predecessor and successor are located within the permutation.

Thus, the CCP algorithm associates a score for each strip as the sum of the PPP

of the strip itself and the PPP of its predecessor and the PPP of its successor.

For example, in the permutation (1 4 3 2), the score for the strip 3 is obtained

as PPP( 3 )+PPP( 2 )+PPP( 4 ), which equals 4. We will refer to this as total

penalty points. Once the total penalty points are calculated for all of the strips in

the permutation, the CCP algorithm proceeds to find a consecutive pair of strips

that should be brought together. For the permutation of 1, 2, · · · , n, the the algo-

rithm selects the pair (i, i + 1) for which the sum of the total penalty points of i

and the total penalty points of i + 1 is the least. Such a pair is called the closest

consecutive pair, which is the reason why this algorithm has been named the CCP

algorithm. Once such a pair is determined, the CCP algorithm proceeds to decide

which strip swap will bring such a pair together, but we wish to first illustrate how

the closest consecutive pair is determined for the example permutation (1 4 3 2).

As illustrated in Figure 4.2, for the example permutation (1 4 3 2), the closest

consecutive pair is (1, 2) with 4 accumulated penalty points.

Suppose the closest consecutive pair is (i, i + 1). Three scenarios need to be con-
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π: 0 1 4 3 2 5

Position of strip i in π i.e. π(i): 1 2 3 4

Positional penalty points (PPP): 0 2 0 2

Predecessor PPP: 0 0 2 0

Successor PPP: 2 0 2 0

Total penalty points: 2 2 4 2

Consecutive pairs: (1, 2) (2, 3) (3, 4)

Consecutive pair points i.e. di + di+1: 4 6 6

min(di + di+1): 4

Closest Consecutive pair: (1, 2)

Figure 4.2: Closest consecutive pair for (1 4 3 2)

sidered in terms of strips swaps that could bring strip i and strip i+1 together: 1)

swapping strip i with strip i + 1; 2) strip i may be swapped with the predecessor

of i + 1; and 3) strip i + 1 may be swapped with the the successor of i − 1. The

CCP algorithm selects a swap among the above three possible swaps by using a

greedy strategy at this point. The algorithm chooses the swap that reduces the

most the number of strips in the permutation, and in case of ties, the algorithm

chooses the strip that puts more strips in their correct positions. For the example

permutation, the strips 1 and 2 may be brought together either by swapping

the strips 4 and 2 , or 2) by swapping the strips 1 and 3 . The swap (4 ↔ 2)

will be selected as it yields a single strip that is the identity permutation. This is

illustrated in Figure 4.3, following which we present the pseudocode for the CCP

algorithm as Algorithm 4.
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1 4 3 2

1 2 3 4

identity
permutation

1 4 3 2

3 4 1 2

Figure 4.3: Sort (1 4 3 2) using the CCP algorithm

Data: πinit: The input permutation
Result: s, the number of strip swaps needed with the closest consecutive

pair strategy
s← 0
π ← πinit

while π 6= id do
/* π(i)← position of strip i in π */
for i← 1 to n do

/* di ← positional score + Successor score +
Predecessor score */

di ← |i− π(i)|+ |(i+ 1)− π(i+ 1)|+ |(i− 1)− π(i− 1)|
end
CCP← (i, i+ 1) from min(di + di+1)
if greedy_winner(CCP) = 1 then

CCP ↔ CCP+1
else if greedy_winner(CCP) = 2 then

CCP ↔ predecessor(CCP+1)
else

CCP+1 ↔ successor(CCP-1)
end

Algorithm 4: Closest Consecutive Pair algorithm
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, we provide the details associated with the experiments we con-

ducted for the purpose of testing and validating the existing algorithms as well

as the new algorithms developed in this thesis. The chapter is divided in to four

sections. In the first section, we present the idea of kernel permutations, a concept

introduced by Mahajan et al. [26]. This section will serve as the justification for

why we chose to perform our experiments with kernel permutations of size n, when

n is the given number of strips in a permutation of an arbitrary size. In the sec-

ond section, we describe the implementation framework we have developed in the

Python programming language to represent permutations as strings of strips, as

well as to carry out strip moves and strip swaps. In the third section, we summarize

our findings from the experiments we conducted on the strip deletion algorithm.

In the last section, we present the results from the experiments we conducted on

the newly developed greedy and CCP algorithms.

5.1 Kernelized Permutations

Mahajan et al. [26] describe a process of reducing a permutation to a kernel

permutation. Any permutation π can be reduced to its kernel counterpart ker(π)

by replacing the strips in it with their ranks in the permutation. The rank of a

strip is decided by its position in the identity permutation. For example, Figure 5.1

shows the permutation π = (7 2 3 8 1 4 5 6), and its equivalent kernel permutation

ker(π) = (4 2 5 1 3).
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arbitrary permutation: 7 2 3 8 1 4 5 6

kernel permutation: 4 2 5 1 3

Figure 5.1: Kernel Permutation example

As seen in Figure 5.1, in kernel permutations each strip is of unit length. Ma-

hajan et al. [26] have also demonstrated that sorting the permutation π by strip

moves is equivalent to sorting its kernel ker(π) by strip moves. Since a strip

swap may be considered as a pair of strip moves, sorting π by strip swaps is also

equivalent to sorting ker(π) by strip swaps. Thus, for permutations of size n,

instead of considering all n! permutations, it is sufficient to consider only those

n-permutations which have n strips while evaluating the sorting algorithms con-

sidered in this thesis. We denote the number of kernelized permutations with n

strips by Kn. Table 5.1 shows the values of Kn for n = 5, 6, · · · , 10.

n 5 6 7 8 9 10
Kn 53 309 2119 16687 148329 1468457

Table 5.1: Kn – The number of Kernelized n-Permutations

Taking advantage of this observation, the experiments considered only kernel

permutations so that it was possible to test permutations of larger sizes and reduce

the number of permutations to consider for each specified n. It is important to

note that the results obtained by testing with the Kn kernelized n-permutations

will also hold for any r-permutation π with n strips, and r ≥ n.

The experiments were carried out in the following phases:

1. All kernelized permutations of size n = 5, 6, 7, 8, and 9 were sorted using

the block deletion algorithm. The number of strip moves needed by this

algorithm, and the exact number of strip moves as determined using the
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exact brute-force algorithm were used to obtain the approximation ratio cor-

responding to each permutation tested. Additionally, a random collection

of 1000 kernelized 10-permutations were sorted and the approximation ra-

tios for the block deletion algorithm, was determined for each of these 1000

permutations as well using the brute-force algorithm.

2. All kernelized permutations of size n = 5, 6, 7, 8, and 9 were sorted by strip

swaps using the greedy algorithm, and the CCP algorithm. The number

of strip swaps needed by these algorithms, and the the exact number of

strip swaps as determined using an exact brute-force algorithm for sorting

by strip swaps were used to obtain the approximation ratio corresponding to

each permutation tested.

3. All kernelized 10-permutations were sorted using the greedy and CCP algo-

rithms, but a lower bound (instead of the exact minimum number of swaps

needed) was used to estimate the approximation ratios corresponding to each

permutation tested.

4. A random collection of 100 kernelized n-permutations for n = 12, 25, and

50 were sorted using the greedy and CCP algorithms. This experiment was

repeated 100 times and the averages of the results of these experiments were

recorded.

5. The execution times for the greedy and the CCP algorithms were compared

for all the experiments carried out.

5.2 Python Implementation Framework

An implementation framework has been developed in the Python programming

language to run experiments on various algorithms for sorting with strip moves
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and sorting by strip swaps. Along with the extensive use of the list and the

dictionary data structures, the following modules and libraries were used as well

in the framework.

1. Combinatoric iterators permutations and combinations from the itertools

module

2. consecutive_groups function from more_itertools library to create strips in

the permutations

3. collections, heapq and queue modules for creating and working with weighted

directed acyclic graphs

4. pool object within multiprocessing package for parallel execution of the algo-

rithms across multiple input values by distributing the input permutations

across processes

5.3 Results for Sorting by Strip Moves via Strip Deletions

Suppose bs(π) denotes the exact minimum number of strip moves needed to trans-

form an arbitrary permutation π to the identity permutation; bd(π) denotes the

length of the shortest strip deletion sequence for π; and sm(π) denotes the number

of strip moves that the strip deletion algorithm of Bein et al. [5] requires to sort

π. Then, our implementation of the strip deletion algorithm of Bein et al. [5] is

aimed at validating the results reported. Specifically, according to Bein et al. [5]:

1. The minimum number of strip moves needed to sort an arbitrary permutation

by strip deletions does not exceed the length of the shortest strip deletion

sequence. Equivalently,

sm(π) ≤ bd(π). (5.1)
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2. The strip deletion algorithm is a 2-approximation algorithm. Equivalently,

sm(π) ≤ 2 bs(π). (5.2)

In order to verify (5.1), for each permutation that was sorted by strip moves via

strip deletion, the length of the strip deletion sequence obtained in Stage-2 of

Algorithm 1 was compared to the length of the strip move sequence in Stage-3.

In order to verify (5.2), a brute-force algorithm that determines the exact value

of bs(π) for sorting by strip moves has been developed and implemented. The

pseudocode for the brute-force algorithm is presented below as Algorithm 5.

Data: πinit: The input permutation
Result: m, the least number of strip moves to sort πinit

m← 0
/* Breadth First Search */
π ← πinit

frontier ← a FIFO queue with π as the only element
explored← an empty set
ACTIONS ← all legal moves
while π 6= id do

π ← POP( frontier)/* chooses the shallowest permutation in
frontier */

Add π to explored
for each move in ACTIONS do

do the move, adding the resulting permutation to the frontier
only if not in the frontier or explored set

end
m← m+ 1

end

Algorithm 5: Brute-Force Search for the least number of strip moves

For all kernelized n-permutations π with n ∈ {5, 6, 7, 8, 9}, and for all the 1000

randomly chosen 10-permutations, the inequality (5.1) was satisfied. In other

words, the number of strip moves needed did not exceed the length of the shortest

strip deletion sequence, as was proved in Bein et al. [5]. We further subdivided

the results into two categories for each n, namely, those for which sm(π) = bd(π),
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and those for which sm(π) < bd(π) were true. These results are summarized in

Table 5.2.

n 5 6 7 8 9 10
sm(x) = bd(x) 53 309 2114 16596 144411 968
sm(x) < bd(x) 0 0 5 91 3918 32

Table 5.2: Sorting by Strip Moves via Strip Deletions Satisfies (5.1)

It is evident that sm(π) ≤ bd(π) is satisfied for allKn kernelized n-permutations for

n ∈ {5, 6, 7, 8, 9}, and for the 1000 randomly chosen 10-permutations. Additionally,

for a small fraction of the permutations for each n, the number of strips moves

was strictly smaller than the length of the shortest strip deletion sequence, or

sm(π) < bd(π); and whenever this happened, we observed that the number of

strip moves needed was one less than the length of the shortest strip deletion

sequence.

Next, in order to verify (5.2), we use the exact number of strip moves as de-

termined from the brute-force algorithm to obtain the approximation ratio cor-

responding to each permutation tested. Table 5.3 shows how the Kn kernelized

n-permutations are distributed across ranges of approximation ratios (ρ).

n ρ = 1 1 < ρ < 2
5 100.00 –
6 99.68 0.32
7 98.63 1.37
8 96.81 3.19
9 92.19 7.81
10∗ 96.20 3.80
∗1000 random 10-permutations

Table 5.3: Percent Distribution of Permutations Across Approximation Ratios
(Strip Deletion for n = 5, ..., 10)

For instance, all of the kernelized 5-permutations were sorted optimally by the

strip deletions algorithm. This means that the number of strip moves that the
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strip deletions algorithm needed matched with the exact number of strip moves as

determined by the brute-force algorithm. As another example, 92.19% of all the

kernelized 9-permutations were sorted optimally, whereas the remaining 7.81% of

the kernelized 9-permutations required no more than twice the optimal number

of strip moves. It is evident from Table 5.3 that the approximation ratios for all

permutations tested stayed under 2 as claimed in Bein et al.[5].

5.4 Results for Sorting by Strip Swaps Using the Greedy and CCP Algorithms

As the problem of sorting by strip swaps is still an open problem, there are currently

no available algorithms, to our best knowledge, with known approximation ratios

with which we could compare our experimental results. However, as was done with

sorting by strip moves we have developed a brute-force algorithm for sorting by

strip swaps as well. The pseudocode for this brute-force algorithm is shown below

as Algorithm 6.

Data: πinit: The input permutation
Result: s, the least number of strip swaps to sort πinit

s← 0
/* Breadth First Search */
π ← πinit

frontier ← a FIFO queue with π as the only element
explored← an empty set
ACTIONS ← all combinations of swaps between strips
while π 6= id do

π ← POP( frontier)/* chooses the shallowest permutation in
frontier */

Add π to explored
for each swap in ACTIONS do

do the swap, adding the resulting permutation to the frontier
only if not in the frontier or explored set

end
s← s+ 1

end

Algorithm 6: Brute-Force Search for the least number of strip swaps
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This algorithm is able to determine the exact least number of strip swaps needed

by exploring all possible swaps. Thus, it is not feasible to use it for large-sized

permutations. Lower bounds on the number of strip swaps have been given in Roy

et al. [34] and Christie [12]. A trivial lower bound for the number of swaps needed

to sort any permutation with n strips is known to be (n − 1)/4 [34]. The lower

bound given by Christie [12] to sort a permutation π with n strips is given by (3.2),

which involves determining the number of alternating cycles in the cycle graph of

π. For purposes of estimating the approximation ratios of the two newly developed

algorithms for sorting by strip swaps, we have used this lower bound for large-sized

permutations. The use of the lower bound instead of the exact number of strip

swaps needed enabled us to experiment with our algorithms on permutations as

large as those consisting of 50 strips. In the rest of this section, we present the

results we obtained with the greedy and the CCP algorithms in two subsections.

In the first subsection, results relating to estimating the approximation ratios for

both the greedy and the CCP algorithms using the brute-force exact solution are

presented. In the second subsection, results relating to estimating the approxima-

tion ratios for both the greedy and the CCP algorithms using the lower bound [12]

are presented.

5.4.1 Approximation Ratios using the Optimal Brute-Force Solution

Table 5.4 shows how the Kn kernelized n-permutations are distributed across

ranges of approximation ratios for both the greedy (GR) and the CCP algorithms.

Note that an approximation ratio of 1 means that the solution obtained by the

algorithm matches with the optimal solution. Then, we see from Table 5.4 that the

greedy algorithm sorts all kernelized 5-permutations with the least number of strip

swaps, and the CCP algorithm sorts 98.1% of all kernelized 5-permutations with
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HHH
HHHn

ρ ρ = 1 ρ ∈ (1, 1.5] ρ ∈ (1.5, 2.0]
CCP GR CCP GR CCP GR

5 98.11 100.0 1.89 – – –
6 90.94 100.0 9.06 – – –
7 80.27 98.68 19.16 1.32 0.57 –
8 75.39 96.94 22.08 3.06 2.53 –
9 56.56 92.85 41.74 7.14 1.70 0.01

Table 5.4: Percent Distribution of Permutations Across Approximation Ratios
(Strip swaps for n = 5, ..., 9)

the least number of strip swaps. As the size n increases the percentage of kernelized

permutations on which both algorithms achieve the optimal solution decreases as

expected. However, for n ∈ {5, 6, 7, 8, 9}, the greedy algorithm is able to sort over

99% of all kernelized n-permutations and the CCP algorithm is able to sort over

97% of all kernelized n-permutations using no more than 1.5 times the optimal

number of strip swaps. We would also like to point out that the CCP algorithm

required 2.33 times the optimal number of strip swaps on roughly 0.003% of all

kernelized 9-permutations.

5.4.2 Approximation Ratios using the Lower Bound of Christie [12]

We experimented with the greedy (GR) and the CCP algorithms on large-sized

permutations to investigate their scalability. However, it is not practically feasible

to execute the brute-force algorithm to determine the exact number of strip swaps

needed to sort permutations of size 10 or more because of time, cost, and resource

constraints. Therefore, we used the lower bound given by (3.2) due to Christie [12].

In these experiments, we tested the algorithms on all kernelized 10-permutations

as well as 100 randomly chosen kernelized n-permutations for n = 12, 25 and 50.

As seen in Table 5.5, the greedy algorithm outperforms the CCP algorithm in

terms of the approximation ratio. For at least 97.4% of the permutations the

greedy algorithm achieves an approximation ratio not exceeding 1.5. On the other
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hand, the CCP algorithm achieves an approximation ratio not exceeding 1.75 for

at least 92.7% of the permutations. While the approximation ratios for the greedy

algorithm range from 1 to 1.81, the approximation ratios for the CCP algorithm

range from 1 to 2.33. However, it is important to note that only for about 0.035% of

the permutations the approximation ratios achieved by the CCP algorithm ranged

from 2.0 and 2.33.
HHH

HHn
ρ ρ = 1 ρ ∈ (1, 1.25] ρ ∈ (1.25, 1.5] ρ ∈ (1.5, 1.75] ρ ∈ (1.75, 2.0]

CCP GR CCP GR CCP GR CCP GR CCP GR
10∗ 47.39 80.75 37.96 17.93 12.88 1.24 1.58 0.08 0.17 –
12 28.43 70.85 40.73 27.50 24.77 1.63 5.56 0.01 0.50 0.01
25 0.07 11.37 13.68 72.88 60.20 15.64 24.71 0.11 1.34 –
50 – 0.01 0.01 26.67 13.92 70.72 78.84 2.60 7.22 –

∗for all kernelized 10-permutations

Table 5.5: Percent Distribution of Permutations Across Approximation Ratios
(Strip Swaps for n = 10, 12, 25, 50)

5.4.3 Comparison of Execution Times

As mentioned previously, the greedy algorithm outperforms the CCP algorithm in

achieving smaller approximation ratios. This means that the greedy algorithm is

able to accomplish the sort using closer to optimal number of strip swaps when

compared to the CCP algorithm for the permutation sets on which we tested both

algorithms. On the other hand, the CCP algorithm takes much less time carrying

out the sorts. Table 5.6 shows the execution times for the small-sized permutations

(n ∈ {2, 3, · · · , 9}). The times indicated in the tables are in milliseconds, and

represent the average execution time over all kernelized n-permutations tested for

each n.

n 2 3 4 5 6 7 8 9
CCP 0.82 0.67 0.64 0.66 0.76 0.87 0.97 1.09

Greedy 0.81 0.67 0.64 0.69 0.91 1.22 1.67 2.28

Table 5.6: Average Execution times in milliseconds for n = 2, .., 9
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n 10 12 25 50
CCP 1.23 1.54 4.82 18.16

Greedy 3.07 5.28 73.49 1215.24

Table 5.7: Average Execution time in milliseconds for n = 10, 12, 25, 50

Next, as seen in Table 5.7, the execution times for the greedy algorithm continue

to be considerably greater than the execution times for the CCP algorithm for the

large-sized permutations (n = 10, 12, 25, 50) as well.

We conclude this section with a plot of the execution times for both the greedy

and the CCP algorithms in the same graph for small-sized permutations (n ∈

{2, 3, · · · , 9} so that the advantage of the CCP approach as n increases is clear.
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Figure 5.2: Execution Time For n = 2, 3, · · · , 9

– 41 –



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The research described in this thesis makes the following contributions:

1. For sorting by strip moves, a previously developed algorithm, known as the

strip deletions algorithm [5] has been implemented and experimentally ver-

ified that it is a 2-approximation algorithm. For this purpose, an exact,

brute-force algorithm was developed, implemented, and tested on small-sized

permutations as part of the research in this thesis.

2. For sorting by strip swaps, through implementation of a previously developed

algorithm [34], which is called the cycle graph algorithm in this thesis, it was

discovered that

• the cycle graph algorithm fails in a few scenarios that were not pre-

viously identified in the theoretical development of the algorithm [34];

and

• the tighter lower bound for the number of strip swaps suggested in [34]

does not hold true for certain permutations.

3. A new algorithm for sorting by strip swaps that uses a greedy strategy has

been developed and implemented.

4. Another new algorithm for sorting by strip swaps that uses the strategy of
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bringing closest consecutive pairs together has been developed and imple-

mented.

5. Both the greedy algorithm and the closest consecutive pairs algorithm have

been implemented and tested. For this purpose, an exact, brute-force algo-

rithm, and another algorithm that determines the lower bound on the number

of strip swaps using cycle graphs have been implemented.

6.2 Directions for Future Research

We see the potential for further work in this area from the following perspectives:

1. During the testing of the CCP algorithm, it was discovered that its ap-

proximation ratio exceeded 2 for a small number of kernelized, large-sized

permutations (10, 12, 25, 50 initial strips). This offers the potential for fur-

ther research on the CCP algorithm for possible theoretical developments

and analyses.

2. As the CCP algorithm is new, it opens up several opportunities for further

theoretical research with regards to the approximation ratio and its complex-

ity.

3. As sorting problems using biologically-motivated primitives are modeled as

combinatorial optimization problems, it may be worthwhile to investigate

the possible use of machine learning approaches to devise new algorithms for

these problems.
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