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Abstract: In the condensed liquid phase, both single- and multicomponent Lennard–Jones (LJ) sys-
tems obey the “hidden-scale-invariance” symmetry to a good approximation. Defining an isomorph
as a line of constant excess entropy in the thermodynamic phase diagram, the consequent approx-
imate isomorph invariance of structure and dynamics in appropriate units is well documented.
However, although all measures of the structure are predicted to be isomorph invariant, with few
exceptions only the radial distribution function (RDF) has been investigated. This paper studies the
variation along isomorphs of the nearest-neighbor geometry quantified by the occurrence of Voronoi
structures, Frank–Kasper bonds, icosahedral local order, and bond-orientational order. Data are
presented for the standard LJ system and for three binary LJ mixtures (Kob–Andersen, Wahnström,
NiY2). We find that, while the nearest-neighbor geometry generally varies significantly throughout
the phase diagram, good invariance is observed along the isomorphs. We conclude that higher-order
structural correlations are no less isomorph invariant than is the RDF.

Keywords: Lennard-Jones system; Voronoi structures; Frank-Kasper bonds; icosahedral local or-
der; bond-orientational order; density scaling; excess entropy; isomorph invariance; hidden scale
invariance

1. Introduction

While the structure of crystalline solids is well understood, the characterization of
glass structure is much more challenging [1–13]. A glass is traditionally produced by
cooling a liquid. At the glass transition temperature Tg the liquid falls out of equilibrium
and solidifies by basically freezing the atomic/molecular positions [14]. Thus, the structure
of a glass is inherited from the liquid structure at Tg (with occasional subtle exceptions [15]).
This paper investigates liquid structure with an emphasis on glass-forming mixtures.
The purpose is to illuminate how structure varies along a system’s isomorphs by using
more detailed structure characterizations than the standard radial distribution function
(RDF), which is a two-body isotropic correlation function.

If U(R) is the potential energy as a function of all N particle coordinates
R ≡ (r1, . . . , rN), Ra and Rb are two configurations at the same density, and λ is a uniform
scaling parameter, hidden scale invariance is the following property [16–19]:

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb) . (1)

In words, this logical implication says that if configurations at one density are ordered ac-
cording to their potential energy, the ordering is maintained if all configurations are scaled
uniformly to a different density. Intuitively, one expects this to have consequences for how
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equilibrium structures change with density, but what are these consequences? The answer
is that, whenever Equation (1) applies, structure and dynamics are invariant along the con-
figurational adiabats in the thermodynamic phase diagram, the so-called isomorphs [16].
This result is exact if Equation (1) applies without exceptions; this is the case only when
U(R) is an Euler homogeneous function, i.e., obeys U(λR) = λ−nU(R) for some exponent
n. In cases of relevance in experiments and simulations, hidden scale invariance applies
only for the majority of the physically relevant configurations and for λ fairly close to unity.
In such cases, structure and dynamics are not rigorously isomorph invariant. Simulations of
several different atomic and molecular models have demonstrated, however, that structure
and dynamics are still invariant along an isomorph to a good approximation [18,20–24].
In regard to the dynamics, this finding confirms Rosenfeld’s excess-entropy-scaling princi-
ple of 1977 [18,25]. In fact, it may be shown that if a system has curves in its phase diagram
along which the atoms/molecules move about each other such that the same movie would
be recorded at different state points (except for scaling of space and time), then state points
on these curves have the same excess entropy and Equation (1) must apply [18].

The degree to which Equation (1) applies varies throughout the phase diagram.
For instance, most systems do not exhibit hidden scale invariance near the critical point.
We henceforth consider only systems and regions of the phase diagram for which
Equation (1) applies to a good approximation. For any such system, an isomorph is
defined as a line of constant excess entropy Sex in the phase diagram (Sex is the entropy
minus that of an ideal gas at the same temperature and density [25–27], a quantity that
is negative because any system is more ordered than an ideal gas). A convenient way of
checking whether Equation (1) applies to a good approximation is to evaluate the virial
potential-energy Pearson correlation coefficient R [28],

R ≡ 〈∆U∆W〉√
〈(∆U)2〉〈(∆W)2〉

. (2)

Here W is the microscopic virial function, which for a three-dimensional pair-potential
system is given [26] by W(R) = ∑i<j rij · Fij/3 in which rij is the position vector from
particle i to particle j and Fij is the force on particle j from particle i [26], ∆ denotes the
quantity in question minus its state-point average, and the sharp brackets indicate NVT
canonical-ensemble averages. A useful rule of thumb is that if R > 0.9, the system obeys
hidden scale invariance and has, consequently, good isomorphs [20]. In that case, the
system is referred to as “strongly correlating” or “R-simple” [22,28]. The latter name makes
it possible to distinguish this class from “simple liquids”, which are traditionally defined as
systems of particles interacting via pair forces [27,29]. While many such systems have good
isomorphs, some do not; on the other hand, molecular and other more complex liquids may
well have strong virial potential-energy correlations and the consequent isomorphs [18,22].
Isomorph invariance of structure and dynamics implies that the phase diagram becomes
essentially one-dimensional wherever hidden scale invariance applies. This provides a
significant simplification for understanding and describing a given system.

Isomorph invariance of structure and dynamics applies only when these are given
in “reduced” units [20,22]. If one considers N particles in volume V at temperature T, the
(number) density is defined by ρ = N/V, and the units used for defining reduced quantities
are the length l0 ≡ ρ−1/3, the energy e0 ≡ kBT, and the time t0 ≡ ρ−1/3√m/kBT [20] in
which m is the average particle mass. These are sometimes referred to as “macroscopic”
units [25]; note that these units depend on the thermodynamic state point in question.
Reduced quantities are generally marked by a tilde, for instance r̃ ≡ r/l0 = ρ1/3r is the
reduced version of the distance r between two particles.

Isomorph invariance of reduced-unit RDFs has been reported for several different
liquid and crystalline systems [20,21,30–36]. This is investigated by plotting the RDF as
a function of r̃ for different state points along an isomorph to see whether there is data
collapse. A recent application showed how the invariance along isomorphs can be utilized
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to predict the structure of an R-simple liquid at an arbitrary state point from a single
simulation [37].

The theory predicts isomorph invariance of any structural measure, not just the RDF.
Only few studies have been carried out to check this prediction, however. Ingebrigtsen
and Tanaka demonstrated good isomorph invariance of the bond-orientational order
in polydisperse Lennard–Jones (LJ) systems of both size and energy dispersity [38,39].
On the other hand, an investigation in 2013 by Malins et al. [40] of the Kob–Andersen
(KA) binary LJ system [41] reported significant isomorph variation of the number of
11A bicapped antiprism clusters. Malins et al. concluded that “these higher-order structural
and dynamical correlations show very much larger deviations along the [KA] Lennard–
Jones isomorphs than do two-body correlations. This result is at odds with the invariance
of structure in reduced units predicted by the theory of isomorphs.” By a higher-order
structural measure is meant a quantity, the calculation of which involves the relative
positions of more than two particles. Such measures provide much more details of the
nearest-neighbor geometry than the RDF does.

To investigate the generality of the finding of Ref. [40], there is a need for more data
on higher-order structures of different R-simple systems. In this paper, we investigate dif-
ferent higher-order structural measures of four different LJ systems. The measures involve
Voronoi structures, Frank–Kasper bonds, icosahedral local order, and bond-orientational or-
der. Overall, we find a good isomorph invariance of these structural measures. The system
studied are the standard single-component LJ system (Section 2.1), as well as the binary
Kob–Andersen, Wahnström, and NiY2 LJ mixtures (Section 2.2). Computational details are
provided separately in each section and Appendix A provides isomorph state-point details.

2. Results and Discussion
2.1. Standard Lennard–Jones System

The LJ pair potential v(r) is defined [42] by

v(r) = 4ε

[( r
σ

)−12
−
( r

σ

)−6
]

. (3)

The parameter ε sets the energy scale and σ sets the length scale. The LJ pair potential is
strongly repulsive at short distances and diverges as r → 0; it has a global minimum at
r = 21/6σ at which v(21/6σ) = −ε. Simulations of LJ systems usually employ the so-called
LJ units defined by ε and σ. In tests of isomorph theory it is important, however, to report
quantities in the above-mentioned macroscopic unit system. Note that specifying the state
point itself is not possible in reduced units because ρ̃ = T̃ = 1 at all state points; thus state
points are reported in LJ units.

This section reports results for the standard single-component LJ system. The focus is
on how the relative fractions of different Voronoi structures vary along isomorphs. To put
the findings into perspective, we also performed the same analysis along isochores, i.e., for
constant-density state points.

The simulations were carried out using the open-source Roskilde University Molecular
Dynamics software (RUMD v3.5) that runs on graphics processing units [43]
(http://rumd.org (accessed on 4 September 2020)). The LJ liquid was simulated by stan-
dard Nosé-Hoover NVT dynamics with a thermostat relaxation time of 0.2 for a system
of N = 8000 particles. A shifted-potential cutoff was employed at 2.5 σ. We studied two
isomorphs, one that is above the freezing line (“isomorph 1”, with reference state point
(ρ, T) = (1.00, 2.00)) and one that is slightly supercooled (“isomorph 2”, with reference
state point (ρ, T) = (0.85, 0.60)). Supplementing this, we also investigated the ρ = 1.00
isochore that has state points overlapping with both isomorphs, as can be seen in Figure 1a
that shows the two isomorphs in the thermodynamic phase diagram.

Isomorphs are defined as lines of constant excess entropy in the phase diagram of an
R-simple system, i.e., a system with hidden scale invariance [16,20]. Two isomorphs were

http://rumd.org
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generated by integrating Equation (4) below, which defines the density-scaling exponent γ
at a given state point [20]:

γ ≡
(

∂ ln T
∂ ln ρ

)
Sex

=
〈∆U∆W〉
〈(∆U)2〉 . (4)

The last equality is a statistical-mechanical identity, which allows for calculating γ from
canonical-ensemble constant-volume (NVT) averages [20]. If for instance γ = 3,
Equation (4) implies that when the density is increased by 1%, the temperature should be
increased by 3% in order to stay on the isomorph. To perform the integration accurately,
we used the fourth-order Runge-Kutta algorithm for density changes of 5%.

To verify that the state points of Figure 1a are indeed on isomorphs, we check in
Figure 1b,c that there is a collapse of the dynamics by plotting the mean-square displace-
ment (MSD) as a function of time in reduced units. We note that the short-time (ballistic)
collapse of the reduced MSD follows from the definition of reduced units and applies
to any system at any state point, independent of hidden scale invariance. The long-time
collapse, however, is not trivial, and demonstrates isomorph invariance of the dynamics.

The software Voro++ [44,45] was used to obtain data of the Voronoi construction
around each particle. The output was analyzed by using the number of edges, faces, etc, as
parameters to classify an environment. From this we calculated the fraction of particles
with a given local environment. We focused on the four most common environments
defined by the number of edges, vertices, and faces of the Voronoi polyhedron surrounding
a particle. This characterization allows one to include nearly 90% of the local environments
in the investigation.
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Figure 1. (a) The two LJ isomorphs studied. State points on the isomorphs were found by integrating Equation (4)
numerically. (b) Mean-square displacement (MSD) for the state points of isomorph 1 plotted in reduced units, demonstrating
good isomorph invariance of the dynamics. (c) The same for the state points of isomorph 2.

Figure 2 shows the temperature variation of Voronoi characterizations of local en-
vironments. In the upper figures, each subfigure represents a single local environment
specified by three integers giving the number of edges, vertices, and faces, respectively,
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of the Voronoi polyhedron around a given particle.. The fraction of particles with this
particular environment is shown on the y-axis as a function of the temperature. The two
lower figures give the temperature variations of the standard Voronoi indices in the form
〈n3, n4, n5, n6〉 where n3 is the number of triangles, n4 the number of rectangles, etc, of the
Voronoi polyhedra. These figures show data for the occurrence of the two most abundant
Voronoi structures; note that a star is a wildcard, thus a sum over several Voronoi structures
is represented in the lower figures.. In both the upper and lower figures, the structures are
almost invariant along the two isomorphs, but not along the ρ = 1.00 isochore.

Figure 2. Voronoi-structure variation along the two isomorphs and along the ρ = 1.00 isochore of the single-component
LJ system. Top panels: Fraction of local environments as a function of temperature for four common occurrences of the
number of edges, vertices, and faces (marked on top of each figure). There is some variation along the isomorphs, but it is
much smaller than along the isochore. The deviations decrease with increasing temperature and the consequent increase of
R (Appendix A). Bottom panels: Fraction of the two most common Voronoi polyhedra of the conventional indexing system.
Again we find approximate isomorph invariance.

2.2. Binary Lennard–Jones Mixtures

The single-component LJ system easily crystallizes in the supercooled regime. A sim-
ple way to avoid this is to consider binary mixtures. This section gives results for higher-
order structures of the Wahnström, Kob–Andersen, and NiY2 binary LJ mixtures.

2.2.1. Wahnström Mixture

The Wahnström system is defined [46] by having an equimolar composition of two
particles, A and B, that interact via LJ potentials with σAA = 1.0, σAB = 1.1, σBB = 1.2,
and εAA = εAB = εBB = 1.0. The mass of particle B is twice that of particle A. For all
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three interactions a shifted-potential cutoff was used at rcut = 2.5 σ with the relevant σ.
Like all systems of this study, the Wahnström mixture was simulated by Nosé-Hoover NVT
dynamics in RUMD. The time step was 0.002 ρ−1/3T−1/2 (in LJ units) for the isomorph
simulations and 0.005 for the isochore simulations. Systems were equilibrated for 5 million
time steps at each state point before a data-collection run of 10 million time steps.

Isomorphs were identified using an approximate analytical formula that applies to a
good approximation for any R-simple LJ system, both single- and multicomponent systems.
According to this, the temperature variation T(ρ) as a function of the density along the
isomorph through the reference state point (ρ0, T0) is given by [47–49].

T(ρ)
T0

=
(γ0

2
− 1
)( ρ

ρ0

)4
−
(γ0

2
− 2
)( ρ

ρ0

)2
. (5)

Here γ0 is the density-scaling exponent at the reference state point, which is calculated
from equilibrium canonical (NVT) fluctuations by means of Equation (4). The first term of
Equation (5) derives from the repulsive r−12 term of the LJ pair potential and the second
term derives from the attractive r−6 term. This method for tracing out an isomorph is
convenient because it requires only a single simulation. We checked that the correct
isomorphs are traced out by also integrating Equation (4) numerically.

Figure 3 gives reduced-unit MSD data for the A particles as functions of time along an
isochore (Figure 3a) and two isomorphs (Figure 3b,c). The MSD is isomorph invariant to a
good approximation, while it varies significantly along the isochore.
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Figure 3. A particle mean-square displacement in reduced units of three different sets of simulations of the Wahnström
binary LJ mixture [46]. (a) gives MSD data along the ρ = 0.85 isochore (where density is given in AA particle units).
(b) is for the isomorph with reference state point (ρ, T) = (0.85, 1.2). (c) is for the isomorph with reference state point
(ρ, T) = (0.85, 2.0).

We proceed to the investigation of higher-order structures. Voronoi structures were
again calculated using the Voro++ library [45]. Frank–Kasper (FK) bonds [50] were deter-
mined using a “neighbor” cutoff at approximately the first minima in the RDF: 1.7 and 1.8
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for AB and BB, respectively, after a uniform rescaling of the system to ρ = 0.85. BB pairs
with six A particles (and none other) in their common neighbor list were declared to be a
FK bond [50].

Figure 4 shows how different higher-order measures of the local structure vary along
the reference-state-point (ρ, T) = (0.85, 1.2) isomorph as a function of the temperature
(symbols) and how they vary along the ρ = 0.85 isochore (full curves). Figure 4a gives two
measures of preferred local structures: the number of Frank–Kasper bonds [51,52] denoted
by n (normalized per large particle) and the number of small particles in an icosahedral local
order denoted by “IcoA”. Both measures are found in the optimal crystal structure MgZn2,
which is a Laves-type crystal, as well as in the supercooled liquid [52,53]. In Figure 4b we
show the number of four-, five-, and six-sided faces in the Voronoi tessellation. In Figure 4c
we report the Voronoi-structure Shannon entropy H, a standard quantity in information
theory defined by

H = −∑ pi ln pi , (6)

of the cell types of the Voronoi tessellation in which pi is the relative frequency of cell type i.
H measures the diversity of cell types in the system, with larger values of H corresponding
to a wider range of probable structures and H = 0 corresponding to a unique structure like
the crystal. H increases a lot with temperature along the isochore. This reflects the fact that
the high-temperature liquid is more diverse than the cooler liquid [13]. On the other hand,
if the system is compressed when temperature is increased to stay on the isomorph, H is
virtually constant.
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Figure 4. Different higher-order structure measures along an isomorph and along the isochore of Figure 3a, plotted as
functions of the temperature for the Wahnström binary LJ mixture. The solid lines represent values along the ρ = 0.85
isochore, while the points give values along the isomorph generated from the reference state point (ρ, T) = (0.85, 1.2)
(Figure 3b). (a) shows results for the occurrence of Frank–Kasper bonds (black, denoted by “n”) and small particles in
icosahedral local order (blue, denoted by “IcoA”). (b) shows the average number of four-, five-, and six-sided faces of the
Voronoi polyhedra. (c) shows the Shannon entropy of the cell types of the Voronoi tessellation (Equation (6)). (d) shows the
relative frequency of occurrence of the five most common Voronoi cell types. Overall, there is good isomorph invariance.

Finally, in Figure 4d we look at the five most common Voronoi structures [54,55] (iden-
tified at the (ρ, T) = (0.85, 1.2) reference state point). None of these structures dominate,
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however, with the most common one being less than 8% likely along the isomorph. In
Figure 4d the 〈n3, n4, n5, n6〉 notation is used in which ni is the number of faces with i sides
of the Voronoi polyhedron. Note the prevalence of the 〈0, 0, 12, 0〉, 〈0, 1, 10, 2〉, and 〈0, 2, 8, 2〉
structures; the first of these is the ideal dodecahedron corresponding to icosahedral local
ordering, while the two others are perturbations of the dodecahedron. These five structures
account for roughly a third of all structures.

Figure 4 shows that most local structures of the Wahnström system are close to
invariant along the isomorph while, over the same temperature range, the structures vary
considerably along the isochore. In a few cases, isomorph invariance breaks down at the
lowest temperatures, in particular for the small particle icosahedral structures (Figure 4a)
and the regular 〈0, 0, 12, 0〉 Voronoi structures (Figure 4d.) This is a reminder that isomorph
theory is only exact for unrealistic systems with an Euler homogeneous potential-energy
function. Since the 〈0, 0, 12, 0〉 Voronoi structure is that of the fcc crystal, another possibility
is that the system is slowly crystallizing

Figure 5 is similar to Figure 4, but for the isomorph generated from the reference
state point (ρ, T) = (0.85, 2.0). While many of the structural measures remain isomorph
invariant, we note a minor variation of the icosahedral local ordering with temperature
(blue points in (a)). Most likely, this influences several of the other structural measures.
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Figure 5. As in Figure 4, but for the isomorph with reference state point (ρ, T) = (0.85, 2.0), which is above the freezing
line. The isochore is given by ρ = 0.85. The structures are isomorph invariant to a good approximation, but vary along
the isochore. Note that compared to Figure 4 there are more low-probability Voronoi structures, with no dominant
structural motif.

2.2.2. Kob–Andersen Mixture

The Kob–Andersen (KA) system is a 4:1 mixture of two particles, A and B, interacting
via LJ potentials with σAA = 1.0, σAB = 0.8, σBB = 0.88, εAA = 1.0, εAB = 1.5, and
εBB = 0.5 [41]. Note that the A particle is larger than the B particle, while the opposite is
the case for the Wahnström system. The mass of particle B is equal to that of particle A.
For all three interactions a shifted-potential cutoff was used at rcut = 2.5 σ with the relevant
σ. The time step used in the simulations was 0.001ρ−1/3T−1/2 and the NVT thermostat
relaxation time was 0.2. The system was equilibrated for 5 million time steps at each
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state point before a production run of 500 million time steps. The simulations involved
4000 particles. Voronoi structures were calculated using the Voro++ library [45].

Figure 6a shows four isomorphs, generated from reference state points of density 1.2
and temperatures 0.5, 0.75, 1.0, 1.2, respectively. The T = 0.5 isomorph was generated by
integrating Equation (4) numerically, while the remainder were identified by means of
Equation (5) (Appendix A gives state-point information). Figure 6b shows the reduced
A-particle MSD along the ρ = 1.20 isochore at the temperatures of the four isomorph
reference state points. Figure 6c shows both the A and B particle reduced-unit MSDs along
the lowest-temperature isomorph. Despite the fact that the temperature variation along the
isomorph is considerably larger than along the isochore, there is good isomorph invariance.
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B particles

A particles

Figure 6. Kob–Andersen (KA) binary LJ system characteristics. (a) Four isomorphs. (b) Reduced A particle MSD at four
state points of the ρ = 1.20 isochore. (c) Reduced MSD along the lowest-temperature isomorph (reference state point
(ρ, T) = (1.20, 0.50)) for the A and B particles, respectively, confirming that the state points are isomorphic by collapsing the
reduced-unit mean-square displacements as a function of the reduced time. Note that the B particles are considerably faster
than the A particles.

In Figure 7 we study the variation along the isomorph with reference state point
(ρ, T) = (1.20, 0.50) and along several isochores of two classes of Voronoi structures around
the B particles, those with < 0, 2, 8, ∗ > Voronoi indices and those with < 0, 3, 6, ∗ > indices
where ∗ is a wildcard. There is little variation along the isomorph, while the structures
become systematically less likely as temperature increases along the isochores. The latter is
because at high temperatures, more structures contribute sizably to the statistics.
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Figure 7. Two Voronoi structures of the KA system probed along the reference state point (ρ, T) = (1.20, 0.50) isomorph and
along several isochores, plotted as a function of the temperature. (a) shows results for the < 0, 2, 8, ∗ > Voronoi structure
around either an A or a B particle, and (b) shows analogous results for the < 0, 3, 6, ∗ > Voronoi structure. While there is
significant variation along the isochores, both structures are isomorph invariant to a good approximation.

We next consider the time-autocorrelation function of the bond-orientational order
parameter defined [56] by

C6(t) ≡
〈

∑
m

Q̄i
6m(t) Q̄i∗

6m(0)
〉

, (7)

in which Q̄i
6m(t) is a coarse-grained Steinhardt bond-orientational-order parameter for

particle i at time t:

Q̄i
6m(t) ≡

1
Ñb(i)

Ñb(i)

∑
k=1

Qk
6m(t) , (8)

with

Qk
6m(t) ≡

1
Nb(k)

Nb(k)

∑
j=1

Y6m(rkj(t)) . (9)

Here Y6m is the spherical harmonic function of degree l = 6 and order m = −6, . . . , 6, Nb(k)
is the number of neighbors of particle k, and Ñb(i) is the number of neighbors of particle i
including the particle i itself. “Nearest-neighbor particles” are defined using the Voronoi
construction and identified with the Voro++ package [45].

Figure 8a shows the normalized bond-orientational time-autocorrelation function of
reduced time along an isochore (Figure 8a), an isotherm (Figure 8b), and three isomorphs
(Figure 8c–e). We find good isomorph invariance.
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Figure 8. Normalized time-autocorrelation function of Q̄6(t) plotted as a function of the reduced time. (a) Results along the
ρ = 1.20 isochore. (b) Results along the T = 1.20 isotherm. (c) Results along the reference-state-point (ρ, T) = (1.20, 1.20)
isomorph. (d) Results along the reference-state-point (ρ, T) = (1.20, 0.75) isomorph. (e) Results along the reference-state-
point (ρ, T) = (1.20, 0.50) isomorph. There is good isomorph invariance.

2.2.3. NiY2 Mixture

The third simulated binary LJ mixture involves parameters that have been determined
by fitting to experimental data of the NiY2 (1:2 Nickel-Yttrium) metallic glass [57,58].
A particles mimic Yttrium atoms and B particles mimic Nickel atoms. The LJ interaction
parameters are: σAA = 1.0, σAB = 0.7727, σBB = 0.6957, and εAA = εAB = εBB = 1.0.
The mass of particle B is equal to that of particle A. A shifted-force cutoff was used at
rcut = 2.5 σ with the relevant σ for each of the three interactions [59]. A system of 3200
A particles and 1600 B particles was studied using standard Nosé-Hoover NVT simulations
with time step 0.001ρ−1/3T−1/2 and a thermostat relaxation time of 0.2. Most systems were
equilibrated for 3 million time steps before a data collection run of 10 million steps, but
for the T = 0.50 and T = 0.55 state points on the isochore, equilibration and production
runs were 300 and 50 million time steps, respectively. The isomorph reference state point
was (ρ, T) = (1.30, 1.00) (in A particle units). Isomorphic state points were generated from
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the reference state point using Equation (5). Voronoi structures were calculated using the
Voro++ library [45].

Figure 9 shows a snapshot of the system equilibrated at the reference state point of the
isomorph, demonstrating a homogeneous liquid state.

Figure 9. Snapshot of the NiY2 binary LJ system at (ρ, T) = (1.3, 1.0), the reference state point for the isomorph studied.
The A particles representing the Yttrium atoms are blue and the B particles representing the Nickel atoms are red. We see
that the system is homogeneous.

Isomorphs of the NiY2 model have not been studied before, so we first discuss the vari-
ation of different radial distribution functions (RDF) and the mean-square displacements
(MSD) along the isomorph. The RDF data for the AA, AB, and BB distributions (data not
shown) show good isomorph invariance in reduced units, except for the first peak of the
AB RDF that decreases significantly with increasing temperature. We also investigated the
less standard “total” A and B RDF functions defined by counting all surrounding particles
(Figure 10). These RDFs focus on the surroundings of a given particle, ignoring which
kind particles are involved. There is good invariance of the reduced total RDFs, with the
exception of the first peak of the B particle RDF.

Figure 11 gives MSD data along the isomorph and an isochore. The upper figures
give the isomorph MSD as a function of time in LJ units (left) and reduced units (right).
The lower figures give the same for the ρ = 1.30 isochore. We again remind that the short-
time ballistic-region collapse in reduced units seen for both the isomorph and the isochore
follows from the definition of reduced units (compare Figures 1, 3, and 6). The reduced-unit
A particle MSD is isomorph invariant, while the three other MSD versions are not. We take
Figures 10 and 11 as a confirmation that a proper isomorph has been identified.
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Figure 10. (a–d): RDF of central particles A or B counting all surrounding particles independent of their identity, monitored
along the isomorph, plotted in both LJ units (left) and reduced units (right). There is good isomorph invariance of the
reduced RDFs, although the first peak of the B particle RDF is visibly not isomorph invariant.
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Figure 11. A particle (Y atom) MSD of the NiY2 binary LJ mixture along the isomorph in LJ and reduced units (a,b), and
similarly along the ρ = 1.30 isochore (c,d). Only along the isomorph is the MSD invariant in reduced units.
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Having validated the standard structure and dynamics isomorph invariants for the
NiY2 mixture, we proceed in Figure 12 to investigate how the higher-order structures vary
along the isomorph, quantified by the occurrence of eight of the most common Voronoi
structures identified at the reference state point Figure 12a,b. We present in Figure 12c,d
analogous results along an isochore. The higher-order structures are approximately iso-
morph invariant, but vary significantly along the isochore.
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Figure 12. Temperature dependence of the occurrence of eight of the most abundant Voronoi structures at the reference
state point (ρ, T) = (1.30, 1.00), plotted for the NiY2 binary mixture as follows: along the isomorph as a function of the
logarithm of the temperature (a,b), along the ρ = 1.3 isochore as a function of the logarithm of the temperature (c,d). In
(a,c) the central particle is of type B, in (b,d) it is an A particle. The Voronoi structures are isomorph invariant to a good
approximation, but vary significantly along the isochore.

3. Summary

This paper has demonstrated good isomorph invariance of different measures of
higher-order structure in four LJ systems. The measures studied are the occurrence of
Voronoi structures, the number of Frank–Kasper bonds, the icosahedral local order, and
the time-autocorrelation function of the bond-orientational order. Our findings confirm the
isomorph-theory prediction that structure is approximately isomorph invariant in reduced
units, thus demonstrating that this property is not limited to the RDF [18,20,22]. On this
background, the poor isomorph invariance of the bicapped 11A structure of the KA system
reported in Ref. [40] represents an interesting exception. With isomorph theory in mind, the
finding that this particular structure is not isomorph invariant indicates that its prevalence
may not be important for the dynamics of the KA system, which is isomorph invariant.
This argument illustrates that a breakdown of an isomorph-theory prediction can provide
important information about a system.
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Appendix A. Isomorph State-Point Data

We here give density ρ, temperature T, virial potential-energy correlation coefficient
R, and density-scaling exponent γ of the state points studied on isomorphs.

Table A1. Selected LJ state points of isomorph 1 (top) and isomorph 2 (bottom) (Figures 1 and 2).

ρ T R γ

1.000 2.000 0.994 5.021
1.050 2.545 0.995 4.881
1.100 3.186 0.997 4.768
1.150 3.930 0.997 4.676
1.200 4.788 0.998 4.608
1.250 5.772 0.998 4.544

0.850 0.600 0.956 5.895
0.900 0.832 0.979 5.564
0.950 1.116 0.987 5.293
1.000 1.458 0.993 5.114
1.050 1.864 0.995 4.957
1.100 2.340 0.996 4.827
1.150 2.894 0.997 4.733
1.200 3.534 0.998 4.653

Table A2. Selected Wahnström state points of the (ρ, T) = (0.85, 1.2) reference-state-point isomorph
(top) and the (ρ, T) = (0.85, 2.0) reference-state-point isomorph (bottom) (Figures 3–5).

ρ T R γ

0.75 0.646 0.982 5.050
0.80 0.893 0.990 4.911
0.85 1.200 0.994 4.785
0.90 1.572 0.996 4.681
0.95 2.018 0.997 4.596
1.00 2.549 0.998 4.525
1.50 14.738 0.999 4.205
2.00 48.610 0.999 4.110

0.65 0.493 0.936 5.600
0.70 0.748 0.977 5.364
0.75 1.076 0.988 5.106
0.80 1.489 0.993 4.912
0.85 2.000 0.995 4.772
0.90 2.620 0.997 4.659
0.95 3.364 0.998 4.573
1.00 4.248 0.998 4.505
1.50 24.564 0.999 4.197
2.00 81.016 0.999 4.105
2.50 201.615 0.999 4.066
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Table A3. Selected KA state points of the four isomorphs (Figures 6–8).

ρ T R γ

1.200 0.500 0.939 5.158
1.403 1.091 0.983 4.784
1.607 2.058 0.993 4.568
1.810 3.520 0.997 4.424
2.001 5.461 0.998 4.339

1.200 0.750 0.958 5.149
1.400 1.601 0.988 4.774
1.600 2.966 0.995 4.552
1.800 5.009 0.997 4.415
2.000 7.916 0.999 4.324

1.200 1.000 0.968 5.111
1.400 2.126 0.990 4.743
1.600 3.929 0.996 4.530
1.800 6.625 0.998 4.399
2.000 10.459 0.999 4.311

1.200 1.200 0.973 5.081
1.400 2.542 0.992 4.721
1.600 4.689 0.996 4.514
1.800 7.897 0.998 4.387
2.000 12.459 0.999 4.303

Table A4. Selected NiY2 mixture state points of the isomorph (Figures 9–12).

ρ T R γ

1.30 1.000 0.959 5.270
1.40 1.461 0.980 5.083
1.50 2.050 0.988 4.889
1.70 3.689 0.995 4.645
2.00 7.640 0.998 4.430
2.50 19.965 0.999 4.253
3.00 42.877 0.999 4.173
3.50 81.086 0.999 4.123
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