

Tryoto oniversity research into matter repository	
Title	THE ROLE OF BOUNDARY HARNACK PRINCIPLE IN THE STUDY OF PICARD PRINCIPLE(POTENTIAL THEORY AND ITS APPLICATIONS)
Author(s)	Tada, Toshimasa
Citation	数理解析研究所講究録 (1983), 502: 151-160
Issue Date	1983-10
URL	http://hdl.handle.net/2433/103687
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

THE ROLE OF BOUNDARY HARNACK PRINCIPLE IN THE STUDY OF PICARD PRINCIPLE Toshimasa Tada (大同工大 多田俊政)

A nonnegative locally Hölder continuous function P on $0<|z|\leq 1$ will be referred to as a *density* on $\Omega:0<|z|<1$. A density on Ω gives rise to an elliptic operator L_p on Ω defined by

(1)
$$L_p u = \Delta u - Pu, \quad \Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2.$$

We say that the *Picard principle* (abbreviated as PP) is valid for P, rather for L_p , at z=0 if the dimension of the half module of nonnegative solutions of $L_p u=0$ on Ω with vanishing boundary values on $\partial\Omega$ - $\{z=0\}$ is 1. With the operator L_p we associate an elliptic operator \hat{L}_p on Ω , referred to as the *associate operator* to L_p , given by

(2)
$$\hat{L}_p v = \Delta v + 2\nabla \log e_p \cdot \nabla v, \quad \nabla = (\partial/\partial x, \partial/\partial y),$$

where $\mathbf{e_p}$, referred to as the P-unit on Ω , is the unique bounded solution of $\mathbf{L_p} = 0$ on Ω with boundary values 1 on $\partial \Omega - \{z=0\}$. We also say that the Riemann theorem (abbreviated as RT) is valid for $\hat{\mathbf{L_p}}$ at z=0 if the limit $\lim_{z \to 0} \mathbf{v}(z)$ exists for every bounded solution \mathbf{v} of $\hat{\mathbf{L_p}} \mathbf{v} = 0$ on Ω . Then we have the duality theorem (cf. Heins [3], Hayashi [2], Nakai [8]): The Picard principle is valid for $\mathbf{L_p}$ at z=0 if and only if the Riemann theorem is valid for $\hat{\mathbf{L_p}}$ at z=0. As a sufficient condition for the Riemann theorem for $\hat{\mathbf{L_p}}$ at z=0 we have, what we call, the boundary Harnack principle (abbreviated as BHP) for $\mathbf{L_p}$ at z=0 (Kawamura [6]):

 In fact (3) implies the boundary Harnack principle for \hat{L}_p at z=0 which is formulated in the same fashion as it is done for L_p originally considered by Kawamura [6] and then the Riemann theorem for \hat{L}_p at z=0 is deduced from the boundary Harnack principle for \hat{L}_p at z=0 ([6]). In short it has been known that the following string of implications holds:

(4) BHP for
$$L_p \implies BHP$$
 for $\hat{L}_p \implies RT$ for $\hat{L}_p \iff PP$ for L_p .

The purpose of this lecture is to show that the Picard principle for L_p conversely implies the boundary Harnack principle for L_p ([9]). Therefore we can conclude that properties appearing in (4) are in fact all equivalent to each other:

(5) BHP for
$$L_p \iff BHP$$
 for $\hat{L_p} \iff RT$ for $\hat{L_p} \iff PP$ for L_p .

We will also give an example of a density satisfying the boundary Harnack principle at z=0 ([9]): If a density P on Ω satisfies $Q(z) \leq P(z) \leq Q(z) + C/|z|^2$ for a positive constant C and a rotation free density Q on Ω , i.e. a density satisfying Q(z) = Q(|z|), for which the Picard principle is valid at z=0, then the boundary Harnack principle is valid for L_p at z=0 so that the Picard principle is valid for L_p at z=0.

1. The Harnack principle.

We will define a Harnack constant $C(K,\Omega_a,P)$ and deduce the *ordinary* Harnack principle. For a density P on Ω and a real number a in (0,1] we denote by G_p^a the P-Green's function on $\Omega_a = \{0 < |z| < a\}$, i.e. the Green's function on Ω_a with respect to the equation $L_p u = 0$. We consider a Harnack constant $C(K,\Omega_a,P)$ of a compact subset K of Ω_a defined by

$$C(K,\Omega_{a},P) = \max \left\{ \frac{\frac{\partial}{\partial n_{z}} G_{P}^{\Omega a}(z,\zeta)}{\frac{\partial}{\partial n_{z}} G_{P}^{\Omega a}(z,\xi)}; |z| = a \text{ and } \zeta,\xi \text{ are in } K \right\},$$

where $\partial/\partial n_z$ means the inner normal derivative. Then the integral representation of a bounded solution of $L_p u = 0$ in terms of the inner normal derivative of the P-Green's function yields the following Harnack principle: for any nonnegative bounded solution u of $L_p u = 0$ on $\overline{\Omega}_a$ - $\{z=0\}$ and ζ,ξ in K we have

$$u(\zeta) \leq C(K,\Omega_a,P)u(\xi)$$
.

2. The boundary Harnack principle.

We will show that the Picard principle for L_p implies the boundary Harnack principle for L_p , and hence they are equivalent. Let P be a density on Ω such that the Picard principle is valid for L_p at z=0. Then the function $G_p^{a}(z,\zeta)/e_p(\zeta)$ in z converges uniformly on every compact subset of $\overline{\Omega}_a - \{z=0\}$ as $\zeta \to 0$, and hence the inner normal derivative $\frac{\partial}{\partial n_z} G_p^{a}(z,\zeta)/e_p(\zeta)$ converges to a positive continuous function on $\partial \Omega_a - \{z=0\}$ (cf Itô [5]). In order to show (3) we consider two cases separately: $\lim \sup_{\zeta \to 0} e_p(\zeta) = 0$ and > 0.

First we consider the case $\lim\sup_{\zeta\to 0} e_p(\zeta) = 0$, i.e. $\lim_{\zeta\to 0} e_p(\zeta) = 0$. For every λ in (0,1) let A_λ be a connected component of $\{\zeta\in\Omega; e_p(\zeta)<\lambda\}$ such that z=0 is an isolated boundary point of A_λ . Observe that $\overline{A}_\lambda + \{z=0\}$ as $\lambda\to 0$ and

$$\frac{\frac{\partial}{\partial n_{z}} G_{p}^{\Omega}(z,\zeta)}{\frac{\partial}{\partial n_{z}} G_{p}^{\Omega}(z,\xi)} = \frac{\frac{\partial}{\partial n_{z}} G_{p}^{\Omega}(z,\zeta)}{\frac{e_{p}(\zeta)}{e_{p}(\zeta)}} \frac{e_{p}(\xi)}{\frac{\partial}{\partial n_{z}} G_{p}^{\Omega}(z,\xi)}$$

for ζ, ξ in $\partial A_{\lambda} - \{z = 0\}$. Then we have

$$\lim_{\lambda \to 0} C(\partial A_{\lambda} - \{z = 0\}, \Omega_{a}, P) = 1$$

so that for every subregion U of $\{|z|<1\}$ containing z=0 we can take a_U , λ_U in (0,1) with $\Omega_{a_U} \subset U$ and $C(\partial A_{\lambda_U} - \{z=0\}, \Omega_{a_U}, P) < 2$. Therefore (3) is valid for C=2 and $V_U = A_{\lambda_U} \cup \{z=0\}$.

Assume next that $\lim\sup_{\zeta\to 0} e_p(\zeta) \equiv \delta > 0$. There exists a closed set E thin at z=0 in Ω such that $e_p(\zeta) \to \delta$ as $\zeta \to 0$ with $\zeta \not\in E$ (cf Brelot [1]). Then we can take a decreasing sequence $\{\lambda_n\}_1^\infty$ in (0,1) with E $\bigcap U_1^\infty$ $(\partial\Omega_{\lambda_n} - \{z=0\}) = \emptyset$ and $\lim \lambda_n = 0$. Observe that $e_p(\zeta) \to \delta$ as $\zeta \to 0$ with $\zeta \in U_1^\infty$ $(\partial\Omega_{\lambda_n} - \{z=0\})$ and

$$\frac{\frac{\partial}{\partial n_{z}} G_{p}^{\Omega}(z,\zeta)}{\frac{\partial}{\partial n_{z}} G_{p}^{\alpha}(z,\xi)} = \frac{\frac{\partial}{\partial n_{z}} G_{p}^{\Omega}(z,\zeta)}{\frac{\partial}{\partial n_{z}} G_{p}^{\Omega}(z,\xi)} \frac{e_{p}(\xi)}{\frac{\partial}{\partial n_{z}} G_{p}^{\alpha}(z,\xi)} \frac{e_{p}(\zeta)}{\frac{\partial}{\partial n_{z}} G_{p}^{\alpha}(z,\xi)}$$

for ζ, ξ in $\partial \Omega_{\lambda_n} - \{z = 0\}$. Then we have

$$\lim_{n\to\infty} C(\partial\Omega_{\lambda_n} - \{z=0\}, \Omega_a, P) = 1.$$

Therefore (3) is valid for C = 2 and V = Ω_{λ_n} U {z = 0} for some n depending on U.

3. Fundamental properties of units.

We now recall some of fundamental properties of the Q_n -unit. Let Q be a rotation free density on Ω , i.e. a density satisfying Q(z) = Q(|z|). We consider a rotation free density $Q_n(z) = Q(z) + n^2/|z|^2$ on Ω for every nonnegative integer n and the Q_n -unit $f_n(z,a)$ on Ω_a , i.e. an unique bounded solution of L_{Q_n} u=0 on Ω_a with boundary values 1 on $\partial \Omega_a - \{z=0\}$, where we follow the convention $Q_0 = Q$ and $f_0(z,1) = e_Q(z)$. Then $f_n(z,a)$ is rotation free and $f_n(r,a)$ is an unique bounded solution of

(6)
$$\ell_{\mathbf{n}}\psi(\mathbf{r}) \equiv \ell_{\mathbf{Q}_{\mathbf{n}}}\psi(\mathbf{r}) \equiv \frac{d^2}{d\mathbf{r}^2}\psi(\mathbf{r}) + \frac{1}{\mathbf{r}}\frac{d}{d\mathbf{r}}\psi(\mathbf{r}) - Q_{\mathbf{n}}(\mathbf{r})\psi(\mathbf{r}) = 0$$

on (0,a) with boundary values 1 at r=a. We have the following properties of $f_n(r,a)$ (cf Nakai [7]):

(7)
$$f_{n}(r,\rho) = \frac{f_{n}(r,a)}{f_{n}(\rho,a)} \quad (0 < r \le a, r \le \rho \le a);$$

(8)
$$f_n(r,a) > f_{n+1}(r,a) \quad (0 < r < a);$$

(9)
$$\frac{f_{n+1}(r,a)}{f_n(r,a)} \ge \frac{f_{n+2}(r,a)}{f_{n+1}(r,a)} \quad (0 < r \le a);$$

(10)
$$\left\{ \frac{f_{n+1}(r,a)}{f_{n}(r,a)} \right\}^{3} \leq \frac{f_{n+2}(r,a)}{f_{n+1}(r,a)} \quad (0 < r \leq a);$$

the Picard principle is valid for L_0 at z = 0 if and only if

(11)
$$\lim_{r \to 0} \frac{f_1(r,a)}{f_0(r,a)} = 0$$

for some a, and hence by (7) any a in (0,1]. For another rotation free density R on Ω with Q \leq R we have also (cf Imai [4])

(12)
$$\frac{f_{n+1}(r,a)}{f_n(r,a)} \le \frac{g_{n+1}(r,a)}{g_n(r,a)} \quad (0 < r \le a),$$

where $R_n(z) = R(z) + n^2/|z|^2$ and $g_n(z,a)$ is the R_n -unit on Ω_a (n = 0,1, ...).

4. Fourier coefficients of solutions.

We consider Fourier coefficients

$$\begin{cases} c_0(r,w) = \frac{1}{2\pi} \int_0^{2\pi} w(re^{i\theta}) d\theta, \\ a_n(r,w) = \frac{1}{\pi} \int_0^{2\pi} w(re^{i\theta}) \cos n\theta d\theta, \end{cases}$$

$$b_{n}(r,w) = \frac{1}{\pi} \int_{0}^{2\pi} w(re^{i\theta}) \sin n\theta \, d\theta$$

for a continuous function w(z) on $\overline{\Omega}_a$ - $\{z=0\}$. Here and hereafter let Q be a rotation free density on Ω and $f_n(z,a)$ the Q_n -unit on Ω_a . If W is further a bounded solution of $L_Q u = 0$ on Ω_a , then the Fourier coefficients of W are bounded solutions of (6):

$$\ell_0 c_0(r, w) = \ell_n a_n(r, w) = \ell_n b_n(r, w) = 0.$$

Therefore they are represented in terms of Q_n -units:

$$\begin{cases} c_0(r, w) = c_0(a, w) f_0(r, a), \\ a_n(r, w) = a_n(a, w) f_n(r, a), \\ b_n(r, w) = b_n(a, w) f_n(r, a) \end{cases}$$

 $(0 < r \le a; n = 1, 2, \cdots).$

5. Normal derivatives of Green's functions.

We expand the inner normal derivative of the Q-Green's function into its Fourier series. For any τ in $[0,2\pi)$ we denote by w_{τ} a bounded solution of $L_Q u = 0$ on Ω_a with boundary values 1 on $\{ae^{i\theta}; 0 < \theta < \tau\}$ and 0 on $\{ae^{i\theta}; \tau < \theta < 2\pi\}$. Then w_{τ} is represented in an integral form:

$$w_{\tau}(se^{i\sigma}) = \frac{1}{2\pi} \int_{0}^{\tau} \left[-\frac{\partial}{\partial r} G_{Q}^{\Omega}(re^{i\theta}, se^{i\sigma}) \right]_{r=a} ad\theta$$

for any $\,\,{\rm se}^{\,{\rm i}\sigma}\,\,$ in $\,\,\Omega_{a}^{}.\,\,$ On the other hand $\,\,{\rm w}_{_{\rm T}}^{}\,\,$ is represented in a Fourier series:

$$w_{\tau}(se^{i\sigma}) = c_{0}(a, w_{\tau})f_{0}(s, a)$$

$$+ \sum_{n=1}^{\infty} \{a_{n}(a, w_{\tau})\cos n\sigma + b_{n}(a, w_{\tau})\sin n\sigma\}f_{n}(s, a).$$

Since by (8) and (9) we have

(13)
$$\frac{f_1(s,a)}{f_0(s,a)} < 1, \quad f_n(s,a) \leq f_0(s,a) \left\{ \frac{f_1(s,a)}{f_0(s,a)} \right\}^n,$$

we obtain

$$\begin{split} \frac{\partial}{\partial \tau} \, \mathbf{w}_{\tau}(\mathbf{s} \mathbf{e}^{\mathbf{i}\sigma}) &= \frac{\partial}{\partial \tau} \, \mathbf{c}_{0}(\mathbf{a}, \mathbf{w}_{\tau}) \mathbf{f}_{0}(\mathbf{s}, \mathbf{a}) \\ &+ \sum_{n=1}^{\infty} \, \frac{\partial}{\partial \tau} \, \{ \mathbf{a}_{n}(\mathbf{a}, \mathbf{w}_{\tau}) \cos \, n\sigma \, + \, \mathbf{b}_{n}(\mathbf{a}, \mathbf{w}_{\tau}) \sin \, n\sigma \} \mathbf{f}_{n}(\mathbf{s}, \mathbf{a}). \end{split}$$

Observe that

$$\frac{\partial}{\partial \tau} c_0(a, w_\tau) = \frac{\partial}{\partial \tau} \frac{1}{2\pi} \int_0^{\tau} d\theta = \frac{1}{2\pi} ,$$

$$\frac{\partial}{\partial \tau} a_n(a, w_\tau) = \frac{\partial}{\partial \tau} \frac{1}{\pi} \int_0^{\tau} \cos n\theta d\theta = \frac{1}{\pi} \cos n\tau ,$$

and

$$\frac{\partial}{\partial \tau} b_n(a, w_{\tau}) = \frac{1}{\pi} \sin n\tau.$$

Then we expand the inner normal derivative of the Q-Green's function into the following Fourier series:

$$\left[-\frac{\partial}{\partial r} G_{Q}^{\Omega}(re^{i\tau}, se^{i\sigma})\right]_{r=a} = \frac{1}{a} \left\{f_{0}(s, a) + 2 \sum_{n=1}^{\infty} f_{n}(s, a) \cos n(\sigma - \tau)\right\}.$$

Estimating the right hand side of this equality by using (13) we have the following inequalities:

$$(14) \qquad \left[-\frac{\partial}{\partial r} G_{Q}^{\Omega}(re^{i\tau}, se^{i\sigma})\right]_{r=a} \leq \frac{1}{a} f_{0}(s, a) \left\{1 + \frac{f_{1}(s, a)}{f_{0}(s, a)}\right\} \left\{1 - \frac{f_{1}(s, a)}{f_{0}(s, a)}\right\}^{-1}$$

and

(15)
$$\left[-\frac{\partial}{\partial r} G_Q^{\Omega}(re^{i\tau}, se^{i\sigma})\right]_{r=a} \ge \frac{1}{a} f_0(s, a) \left\{1 - 3\frac{f_1(s, a)}{f_0(s, a)}\right\} \left\{1 - \frac{f_1(s, a)}{f_0(s, a)}\right\}^{-1}$$

6. The Picard principle.

We give an example of a density on Ω satisfying the boundary Harnack

principle, and hence the Picard principle. Let P be a general and Q a rotation free density on Ω such that the Picard principle is valid for L at z=0 and

$$Q(z) \leq P(z) \leq Q(z) + \frac{C}{|z|^2}$$

for a positive constant C. We take a positive integer k with $9k^2 > C$ and consider a rotation free density $R(z) = Q(z) + 9k^2/|z|^2$ on Ω . First we evaluate the inner normal derivative of the P-Green's function in terms of Q_n -unit $f_n(z,a)$ and R_n -unit $g_n(z,a)$ on Ω_a . Since the P-Green's function satisfies

$$G_{R}^{\Omega} \leq G_{P}^{\Omega} \leq G_{Q}^{\Omega}$$

we have

$$[-\frac{\partial}{\partial r} G_{R}^{\Omega} (re^{i\tau}, se^{i\sigma})]_{r=a} \leq [-\frac{\partial}{\partial r} G_{P}^{\Omega} (re^{i\tau}, se^{i\sigma})]_{r=a}$$

$$\leq [-\frac{\partial}{\partial r} G_{Q}^{\Omega} (re^{i\tau}, se^{i\sigma})]_{r=a}$$

for every τ in $[0,2\pi)$ and $se^{i\sigma}$ in Ω_a . Then by (12), (14), and (15) we obtain

(16)
$$\frac{\left[-\frac{\partial}{\partial r} G_{P}^{\Omega}(re^{i\tau}, se^{i\alpha})\right]_{r=a}}{\left[-\frac{\partial}{\partial r} G_{P}^{\alpha}(re^{i\tau}, se^{i\beta})\right]_{r=a}} \leq \frac{f_{0}(s, a)}{g_{0}(s, a)} \frac{1 + \frac{g_{1}(s, a)}{g_{0}(s, a)}}{1 - 3 \frac{g_{1}(s, a)}{g_{0}(s, a)}}$$

for any α, β in $[0,2\pi)$ if $g_1(s,a)/g_0(s,a) < 1/3$.

Next we evaluate $f_0(s,a)/g_0(s,a)$ in terms of $g_1(s,a)/g_0(s,a)$. From (10) it follows that

(17)
$$\frac{g_{4k}(s,a)}{g_0(s,a)} \ge \left\{ \frac{g_1(s,a)}{g_0(s,a)} \right\}^{(81^k - 1)/2}$$

and

(18)
$$\frac{f_{3k}(s,a)}{f_{0}(s,a)} \ge \left\{ \frac{f_{1}(s,a)}{f_{0}(s,a)} \right\}^{(27^{k}-1)/2}.$$

Observe that $g_0 = f_{3k}$ and $g_{4k} = f_{5k}$. Then (17), (18), and

(19)
$$\frac{f_{5k}(s,a)}{f_{3k}(s,a)} \le \left\{ \frac{f_1(s,a)}{f_0(s,a)} \right\}^{2k}$$

yield an evaluation

$$\frac{f_0(s,a)}{g_0(s,a)} \leq \left\{ \frac{g_0(s,a)}{g_1(s,a)} \right\}^{\alpha_k},$$

where $\alpha_k = (81^k - 1)(27^k - 1)/8k$.

Now we show the boundary Harnack principle (3) for L_p at z=0. We have by (17) and (19)

$$\frac{g_1(s,a)}{g_0(s,a)} \le \left\{ \frac{f_1(s,a)}{f_0(s,a)} \right\}^{4k/(81^k - 1)}.$$

Then by (11) we can take s_a in (0,a) such that $g_1(s_a,a)/g_0(s_a,a) = 1/4$. Therefore by (16) we obtain

$$C(\partial \Omega_{s_a} - \{z = 0\}, \Omega_a, P) \leq 5.4^{\alpha_k}$$

Thus (3) is valid for $C=5\cdot4^{\alpha}k$ and $V_U=\Omega_s$ U $\{z=0\}$, where a is a positive number with $\Omega_a\subset U$, so that the Picard principle is valid for L_p at z=0.

References

- [1] M. Blerot: On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer, 1971.
- [2] K. Hayashi: Les solutions positives de l'équation Δu = Pu sur une surface de Riemann, Kodai Sem. Rep., 13(1961), 20-24.
- [3] M. Heins: Riemann surfaces of infinite genus, Ann. Math. 55(1952), 296-317.
- [4] H. Imai: On singular indices of rotation free densities, Pacific J.

- Math., 80(1979), 179-190.
- [5] S. Itô: Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16(1964), 307-334.
- [6] M. Kawamura: On a conjecture of Nakai on Picard principle, J. Math. Soc. Japan, 31(1979), 359-371.
- [7] M. Nakai: Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26(1974), 483-507.
- [8] M. Nakai: Picard principle and Riemann theorem, Tôhoku Math. J., 28(1976), 277-292.
- [9] T. Tada: The role of boundary Harnack principle in the study of Picard principle, J. Math. Soc. Japan, 34(1982), 445-453.