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THE ROLE OF BOUNDARY HARNACK PRINCIPLE

IN THE STUDY OF PICARD PRINCIPLE
Toshimasa Tada (KELK % @4Z EK)

A nonnegative locally Holder continuous function P on 0< |z <1
will be referred to as a density on Q:0< |z]|<1. A density on Q gives

rise to an elliptic operator LP on  defined by

(1) Lyu = Au - Pu, A= 32/3x2 + 3-2/3y2.

We say that the Picard principle (abbreviated as PP) is valid for P,

rather for L at z=0 1if the dimension of the half module of

P’

nonnegative solutions of L_u=0 on Q with vanishing boundary values on 9§} -

P

~

{z=0} is 1. With the operator LP we associate an elliptic operator LP

on , referred to as the associate operator to LP’ given by

(2) LPv = Av + 2Vlog eP-Vv, V = (3/3x,3/3y),
where e'P, referred to as the P-unit on £, is the unique bounded solution
of LPu= 0 on Q with boundary values 1 on 3Q- {z=0}. We also say that the

~

Riemann theorem (abbreviated as RT) is valid for LP at z=0 if the limit

~

v(z) exists for every bounded solution v of L_v=0 on Q. Then we

lim P

z+0

have the duality theorem (cf. Heins [3], Hayashi [2], Nakai [8]): The

Picard principle is valid for LP at z=0 1if and only if the Riemann

~

theorem is valid for LP at z=0. As a sufficient condition for the

~

Riemann theorem for LP at z=0 we have, what we call, the boundary

Harnack principle (abbreviated as BHP) for L, at z=0 (Kawamura [6]):

r For every Jordan region U in |z| <1 containing z=0 there exists a

Jordan region VU containing z =0 such that VU < U and u(g) iCu(E) for

(3) 9§

every nonnegative bounded solution u of Lyu=0 on U- {z=0} and z,§

L in BVU’ where C is a positive constant independent of U,u,f, and §.



~

In fact (3) implies the boundary Harnack principle for L, at z=0 which

is formulated in the same fashion as it is done for LP originally

~

considered by Kawamura [6] and then the Riemann theorem for LP at z=90

is deduced from the boundary Harnack principle for LP at z=0 ([6]). In

short it has been known that the following string of implications holds:

4) BHP for LP => BHP for LP => RT for LP <> PP for LP.

The purpose of this lecture is to show that the Picard principle for
LP conversely implies the boundary Harnack principle for LP (9.

Therefore we can conclude that properties appearing in (4) are in fact all

equivalent to each other :

~

(5) BHP for LP <> BHP for L_ <=> RT for LP <> PP for LP.

P
We will also give an example of a density satisfying the boundary
Harnack principle at z=0 ([9]): If a density P on { satisfies Q(z)

<P(z) £Q(2) +C/|z[2 for a positive constant C and a rotation free

density Q on £, i.e. a density satisfying Q(z) =Q(|z|), for which the
Picard principle is valid at z=0, then the boundary Harnack principle is
valid for L, at z=0 so that the Picard principle is valid for L, at

z=0.

1. The Harnack principle.
We will define a Harnack constant C(K,Qa,P) and deduce the ordinary

Harnack principle. For a density P on § and a real number a in (0,1]
we denote by GPa the P-Green's function on Qa = {o< ]z] <al, i.e. the

Green's function on Qa with respect to the equation LPu = 0. We consider

a Harnack constant C(K,Qa,P) of a compact subset K of Qa defined by
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) Qa -
511_ GP (Z’C)
C(K,Qa,P) = max { —% a 3 ]zl =a and [, are in K},
9 a
5;; Gp (z,8)

where B/an means the inner normal derivative. Then the integral

representation of a bounded solution of LPu = 0 in terms of the inner

normal derivative of the P—Greer‘l"s function yields the following Harnack

principle : for any nonnegative bounded solution u of ‘LPu =0 omn ﬁa -

{z=0} and [,& in K we have

u(g) g C(K,Q_,P)u(g).

2. The boundary Harnack principle.

We will show that the Picard principle for LP implies the boundary

Harnack principle for L and hence they are equivalent. Let P be a

P’

density on § such that the Picard principle is valid for LP at z=0.
Q ,

Then the function GPa(z,C)/eP(Z;) in z converges uniformly on every

compact subset of 5a - {z=0} aé >0, and hence the inner normal

. . a e . ~ .
derivative 32— GP (z,l;)/eP(Z;) converges to a positive continuous function
z

on BQa - {z=0} (cf Itd [5]). In order to show (3) we consider two cases

separately : 1lim sup eP(C) =0 and > 0.

>0

First we consider the case 1lim supc_>0 eP(z;) =0, 1i.e. 11m2;->0 eP(c)

= 0. For every. A in (0,1) let A>\ be a connected component of {Ze€Q ;

eP(z;) <A} such that z = 0 is an isolated boundary point of A)\' Observe

that A, ¥+ {z=0} as XA > 0 and

A
94 Q
) a ] a
on_ Gp (2,8) ) on_ Gp (2,8) e, (©)
Q e (T) Q
= 6,%(2.6) ; 2 6,7 (2,E)

©on
z

for ¢,E in BA)\—{z=O}. Then we have

-3 -



154

lim C(2A

-{z=0},0 ,P) =1
X->0 a

A

so that for every subregion U of {‘zl <1} containing z=0 we can take

ays AU in (0,1) with szaU <U and C(SA)\U— {z=0},QaU,P) < 2. Therefore
(3) is valid for C=2 and V,_= A, U {z=0}.
U Xy

Assume next that lim sup eP(C) = 8§ > 0. There exists a closed set

0
E thin at z =0 in § such that éP(;)—>6 as >0 with C ¢ E (cf

Brelot {1]). Then we can take a decreasing sequence {An}; in (0,1) with

E N UT (BQX -{z=0}) = ¢ and 1lim An = 0. Observe that eP(C) + &8 as
n

L >0 with e U;j (39, -{z=0}) and
n

2 GQa(z z) 2 Gga(z z)
n_ P ) on_ P ep(8) ep(2)
Q e, (T) Q e, (&)
9 a P P a P
. % (2:8) » o0 Gp (28)
z ' z
for 7, in BQA - {z=0}. Then we have
n

lim €(3Q, -{z=0},0,P) = 1.

n->o n .

Therefore (3) is valid for C =2 and V_=Q. U {2z=0} for some n

U A
n

depending on U.

3. Fundamental properties of units.

We now recall some of fundamental properties of the Qn—unit. Let Q-
be a rotation free density on §, i.e. a demsity satisfying Q(z) = Q(|z]).
We consider avrotation free density Qn(z) = Q(z) + nz[]z|2 on € for
every nonnegative integer n and the Qn-uni; fn(z,a) on  , 1i.e. an

a

‘unique bounded solution of L_ u =0 on Qa with boundary values 1 on

Q

n
BQa - {z=0}, where we follow the convention Q0 = Q and fo(z,l) = eQ(z)-

Then fn(z,a) is rotation free and fn(r,a) is an unique bounded solution

of
-4 -



2
. _ 4 L. 1d )
(6) £ y(r) = !_an;(r)_ = O g v Q_(D)¥(x) = 0

on (0,a) with boundary values 1 at r = a. We have the following

properties of fn(r,a) (cf Nakai [71) :

~ fn(r,a) ,

7) fn(r,p)=w (Q<r§a,r§p§a);
(8) £ (r;a) > £ ,(r,a) (0<r<a);

£ .(r,a) £ (r,a)

nt+l n+2 .
® fn(r9a) 2 fn+1(r,a) '(0< ria)’

f (r,a) 3 f (r,a)

ntl n+2 .
(10) { £.(ra) } : £ 4p(T53) (0<rza);

the Picard principle is valid for L., at =z = 0 if and only if

Q

fl(r,a)
(11) lim ———— =0

for some a, and hence by (7) any a in (0,1]. For another rotation
free density R on § with Q < R we have also (cf Imai [4])

fn+l(r,a) gn+1(r,a)

fn(r,a) = gn(r,a)

(12) (0<r<a),

where Rn(z) = R(z) + n2/|z|2 and gn(z,a) is the Rn—unit on Qa (n=0,1,

cee).

4. Fourier coefficients of solutions.

We consider Fourier coefficients

2T
_ 1 10
co(r,w) = on J w(re )do,
0]
e2m .
a (r,w) = l-f w(rele)cosrﬁ)de,
n . ™ 0



E R

t 2m i6
bn(r,w) = J w(re ")sinnb db

0
for a continuous function w(z) on ﬁ; ~ {2z=0}. Here and hereafter let Q
be a rotation free density on & and fn(z,a) the Qn—unit on Qa. If w
is further a bounded solution of LQu =0 on Qa, then the Fourier

coefficients of w are bounded solutions of (6) :

Zoco(r,w) = Znan(r,w) = Knbn(r,w) = 0.
Therefore they are represented in terms of anunits:

co(r,W) = co(a,W)fO(r,a),

an(r,W) an(a,W)fn(r,a),

bn(r,w) bn(a,w)fn(r,a)

(0<rga;n=1,2,°"*).

5. Normal derivatives of Green's functions.

We expand the inner normal derivative of the Q-Green's function into
its Fourier series. For any T 1in [0,2m) we denote by L& -; bounded
solution of L. u =0 on Qa with boundary values 1 on {aeie ;0<0< T}

Q

and 0 on {ae16 ; T<8<2m}. Then w_ 1is represented in an integral form:

o 1JT 5 % 48 ic

i _ 1 _9 a
wT(se = or . [ . GQ (re”,se )] adb

ioc | . . .
for any se in Qa. On the other hand w, is represented in a Fourier

series :
io
wT(se ) = co(a,wT)fo(s,a)
+ nzl {an(a,wT)cos no + bn(a,wT)51n ng}fn(s,a).

Since by (8) and (9) we have
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fl(s,a) fl(s,a) n
a3 Exon RENERCRPERCRIE e S
0 0
we obtain
9 ioy _ 9
- wT(se ) = Y co(a,WT)fO(S,a)

[e o]
+'nz -3%- {an(a,wT)cos no + bn(a,w"[)sin nO}fn(s,a).
Observe that

=1
g = -,

T
—a—a(a,w)=—-a—l cosn6d6=}-cos nT,
9T n T ot m 0 T
and
9 I
oy bn(a,wT) = = sin nT.

m
Then we expand the inner normal derivative of the Q-Green's function into
the following Fourier series :

94 o

a(reiT,seio)]'I:a =%{f0(s,a) +2 Z fn(s,ra)cos n(oc-1)}.
n=1

P
[-'5; GQ

Estimating the right hand side of this equality by using (13) we have the

following inequalities :

Q . . - f_(s,a) f (s,a)y-1
3 a, it io 1 1 17
(14) [-5;-GQ (re” ", se )]r=a < g-fo(s,a){l-kggzg;;y}{l-Egzgjgy}
and
Q . . f_(s,a) f_(s,a)y-1
) a it ic 1 1 1
(15) [——3; GQ (re” ,se )]r=a >3 fO(S,a){l— 3 fo(s,a) }{1— fO(S"a) } .

6. The Picard principle.

We give an example of a density on § satisfying the boundary Harnack

-7 -
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principle, and hence the Picard principle. Let P  be a general and Q a
rotation free density on § such that the Picard principle is valid for LC

at z=0 and

Q(z) + 02

|z

Q(z) £ P(2)

A

. L 2 '
for a positive constant C. We take a positive integer k with 9k~ > C
. . . 2 2 .
and consider a rotation free density R(z) = Q(z) + 9k“/|z] on . First
we evaluate the inner normal derivative of the P-Green's function in terms
f Q —unit f a) and R -uni ' . Si P-G !
o Qn unit n(z, ) nd R —u t gn(z,a) on Qa nce the reen's

function satisfies

Qa Qa Qa
G S G 26
we have
[ __Q_Gga( it io)] < [__jL-GQa( it ic)]
3r 'R ‘f& ®€ r=a = 3r p ‘f& S€ r=a
9 Qa it ic
S [-77 G (e hse™ D1

for every T in [0,2m) and se10 in Qa. Then by (12), (14), and (15)

we obtain

Q A . gl(s’a)
-2 6’ ,ee™™] _ £ (s,2) MY (5ra)
(16) r £ r=a < 0 0
| [_HEL 2 (r it seiB)] = go(s,a) L gl(s,a)
oar P e > r=a go(s,a)

for any a,8 in [0,2m) if gl(s,a)/go(s,a) < 1/3.
Next we evaluate fo(s,a)/go(s,a) in terms of gl(s,a)/go(s,a). From
(10) it follows that

841((593) { gl(sya) }(81k—l)/2

a7 go(s,a) go(s,a)

v

and
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f3k(s,a) { fl(s,a) }(27k-1)/2.

(18) £,(s,a) 2 £,(s»a)

f_.. Then (17), (18), and

Observe that gy = f,, and g, = fy

(19)

A

fSk(S’a) fl(s,a) 2k
f3k(s,a) 'fo(s,a)

yield an evaluation

£.(s,a) (g (s,a) \ k
0 < 0
(s,a) = | g,(s,a) ’
go b 1 b
where o, = (Slk-l)(27k-1)/8k.
Now we show the boundary Harnack principle (3) for L, at z=0. We

P
have by (17) and (19)

g, (s,2) { £,(s,a) }Ak/(81k-1)

go(s,a) < fo(s,a)

Then by (11) we can take s, in (0,a) such that gl(sa,a)/go(sa,a) = 1/4.
Therefore by (16) we obtain

%
cQ, -{z=0},0 ,P) < 54 ".
a
, Oy
Thus (3) is valid for C = 5¢4 and VU = QS U {z=0}, where a is a
a :
positive number with Qa < U, so that the Picard principle is valid for LP

at z=0.
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