Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

Bl =
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Hardware Algorithms for Division and Square Rooting
Internally Using Redundant Binary
Representation(Mathematical Theories on Computing Schemes
and Their Applications)

Title

Author(s) | TAKAGI, Naofumi; YASUURA, Hiroto; Yajima, Shuzo

Citation O0000ODODO0ODO (1983), 494: 223-235

Issue Date | 1983-06

URL http://hdl.handle.net/2433/103562

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39234339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ooooboooao
494 0 1983 0 223-235

223

Hardware Algorithms for Division and Square Rooting

Internally Using Redundant Binary Representation

Naofumi TAKAGI, Hiroto YASUURA and Shuzo Yajima

gk B 2 LN %8 =

(Fucalty of Engineering, Kyoto University)

1.Introduction

Arithmetic operations are the most fundamental and
significant operations in computer systems and other digital
systems. Many hardware algorithms for arithmetic operations have
been proposed, and some of them have been implemented and utilized

(1)

in practical systems. Especially, with the advances of
technology of integrated circuits, high-speed hardware algorithms
for arithmetic operations and their corresponding cellular arrays
have been proposed,(Z) In this paper, we propose VLSI-Oriented
hardware algorithms for division and square rooting internally
using redundant binary representation.

(1)

Many division algorithms have been proposed. They are
classified in two large groups, namely subtract-shift methods and
multiplicative methods. Since combinational circuits for division
based on subtract-shift methods have regular cellular array
structures, they are suitable for VLSI implementation. However,
they do not operate so fast for longer operands, because of borrow

propagation in each subtraction. Multiplicative division can be

performed by repetition of multiplication. Combinational circuits

based on these methods operate rather fast. However, the amount of

224

hardware become too large. In Chapter 4, we propose a new high-
speed subtract-shift division algorithm internally wusing the
redundant binary representation. It requires the computation time
of 0(n) for n-bit division. A divider based on the algorithm has a
regular cellular array structure and 1is suitable for VLSI
implementation.

For square rooting, subtract-shift methods and multiplicative
methods have Dbeen developed, similar to the case of division.(T)
Combinational circuits based on conventional subtract-shift
methods have regular cellular array structures and are suitable
for VLSI implementation, but their computation speed is not so
fast. Combinational circuits based on multiplicative methods are
superior in computation speed, but they require a large amount of
hardware. In Chapter 5, we propose a new subtract-shift method for
square rooting internally using redundant binary representation,
It requires the computation time of 0(n) for n-bit square rooting.
A square rooting circuit based on the algorithm has a regular

cellular array structure and is suitable for VLSI implementation.

2.Preliminaries

Each hardware algorithm proposed in this paper is intended to
be implemented as a combinational circuit. A combinational circuit
is a logic circuit, which is constructed from given logic elements
and has no feed back loop in it. We assume that fan-in of each
logic element 1is restricted in a certain constant and fan-out is
not restricted. We also assume that the computation time of the
combinational circuit is linearly proportional to the depth of it.

The depth of a combinational circuit is the number of 1logic

22

elements on the maximum path in it. The size of a combinational
circuit is . the number of logic elemehts in it. We also consider
the area of a cifcuit on a VLSI chip. We assume that no logic
elements overlap with each other and at most v (v22, a constant)

(3)

wires can overlap with each other at any point on the chip.

3 Redundant Binary Representation
The redundant binary representation utilized in this chapter
is one of signed digit (SD) representations proposed by

Avizienis. ™) It has a fixed radix r=2 and a digit set {T,0,1},

Ynisp2
has the value }:?zoyi*Z'l. This is similar to a binary number.

where T denotes -1. A redundant binary number Y:[yo.y1

However, the redundant binary representation allows the existence
of redundancy. There are several redundant binary representations
to represent a number.

An unsigned binéry‘number X:[.x1"'xn]2 (xi {0,1}) and a
redundant binary number Y:[.x1"’xn]SD2 have the same value
2:2=0x1*2-i- Therefore, no computation is required to convert an
unsigned binary number into an equivalent redundant binary number,
where the equivalence implies that they have the same value. A
redundant binary number Y, which is guaranteedvto be positive, can
be converted into the equivalent unsigned binary number by adding
two binary numbers, Y" and Y, where Y* and Y~ are formed from the
positive digits and the negative digits in Y, respectively.

In binary number system, parallel addition of two numbers by
a combinational circuit requires computation time at least

proportional to the logarithm of the word length of operands,

because of the carry propagation.(1) However, in the redundant

226

binary number system, since carry propagation in addition can be
eliminated by wuse of the redundancy, parallel addition of two
numbers can be performed in constant. time independent of the word
length of operands.(u)(S) Parallel subtraction can . be also

performed in the constant time,.

4 Division

In this chapter; we propose a new division algorithm
internally using redundant binary representation, and consider a
combinational circuit based on the algorithm. We are concerned
with n-bit binary fraction division. We assume that the dividend X
and the divisor Y are both normalized, i.e. %§X<1,and %§Y<1. The
quotient Q satisfies %<Q<2. We compute the quotient down to the n-
th binary digit. We are not concerned with the final remainder.

Qur division algorithm is one of subtract-shift methods.
Subtract-shift divisions can -be described by the following
recursion formula;

Rj+1=2*Rj'qj*D’

where qj is the quotient digit in the j-th binary position, 2*Rj

is the partial dividend before the determination of qj, and Rj+1
is the partial remainder after the determination of qj.
In the algorithm, we represent each Rj by a redundant binary
. J L Jeeend ‘ .
representation [ro.r'1 rn]SD2’ and select qj from the digit set
{1,0,1} by examining the three most significant digits of Rj’ and

perform the computation of the recursion formula in the redundant

binary number system. The algorithm is as follows.

Algorithm 1 (Division)

22

Step 1: Convert the dividend X and the divisor Y into redundant
binary numbers RO and D.

Step 2: q0:=1,
R1:=RO-D

(compute in the redundant binary number system)

Step 3: for j:=1 step 1 until n do

begin
Tif [rlordrdlgy, <0
qj:= 0 if [rg.rgrg]SDé =0
1 if'[rg;r?rg]SDZ > 0
Ry, qi=2%R -q %D

(compute in the redundant binary number system)
end |
Step 4: Convert [qo.q1 qn]SD2 into the equivalent Dbinary

number Q.

Q is the quotient.

The conversion in Step 1 requires no computeﬁion. The
computation in Step 2 can be performed in,'eonstant time
independent of n. In Step 3, since a; iskdetermineddby examining
only the three most significant digits of Rj’ the determination of
each qj can be done in constant time independent of n. The
computation of the recursion formula also can be performed in
constant time independent of ‘n, because in the redundant binary
number system, parallel addition / subtraction can be performed in
constant time independent of the word length of operands. These
computations are performed n times, so the computation time for

Step 3 is 0(n). The conversion in Step 4 <can be performed in

226

X=10100111011,
Y=10110001011,

=1 010011101
+ 0JI000701
o, =1 001011000
4 011000101
=1 010011701
4 0131000701

=0 000100111
Shift

=1 0010011710

4 011000101
951 031010007

#) 011000101 This part has
%=1 MIOIIT]_ no effect on

+) 01000 Q] the quotient.
9= 0 MOOFoﬁ

Shift

4= 0 0.00[000110

o;u.hohilom.‘m
@ =10110011001,

Fig.l1 An Example of Division

: Dividend
o, [0
ol B *on
90— 1
Neov [&]
-]
P
5
2 " T (m]
5 =
2 ;
g 3 =k
" ~
[--]
-
&]
] l
< Y.
a -n
3 a]
2 l
: 4
g i
— & 0
l Divisor
Q] ' éﬁﬂ AN
\ Y_o
¥y =1

Fig.2 A Block Diagram of Our Divider

-6 -

229

computation time of 0(n) if a ripple carry adder is used, and in
computation time of O(log n) if é darry-look—ahead addér‘is used.
Thus, n-bit division can be performed in computation time of 0(n).

| Through the algorithm, each Rj satisfies vQD<Rj<D. ~ The
difference between the obtained quotient Q and X/Y is smaller than
271,

Fig.1 shdws,an éxample of division'in accordance with the
algorithm. Some of less significant digits in Rj,(j>%) have no
effect on the quotient,‘and the computation for theséidigits,can
be omitted.’ | :

Fig.2 shows a block diagramt ofv a divider based on thé
algorithm. [O] denotes a cell for determining a quotient digit, and
[j denotes a redundant binary add/subtract cell. The redundant
- binary / bina}y converter can be either a ripple-carry adder or a
carry-look-ahead adder. The size of the divider isJO(nZ). As shown
in Fig.1, the divider has a regular cellular array structure and
is suitable for VLSI implementation. .The chip aféétof the divider
is 0(n2).

Table .1 shows a comparison of several dividers. Table 2 shows
examples of the depth and the size of them with ﬁse of 4-input
NOR/OR's as logic elements. As shown in theSe tables, on the depth
(i.e. on the computation time), our divider is superior to most of
other dividers wexcept a multiplicative divider using multipliers
with parallel counters. On the amount of hardware, our divider is
similar to a subtract-shift divider using ripple carry adders, and
much superior to multiplicative dividers. Furthermore, since our
divider has a regular cellular array structure as shown in Fig.2,
it is more suitable for VLSI implementation, as well as a

subtract-shift divider using ripple carry adders.

Do

Computation time Size Area
(Depth)
Our divider 0(n) 0(m?) o(?)
Ripple?carry 2 2 2
O(n 0
Subtract-shift adder %) (@) 0™
method Carry-look-ahead O(n2 log n) 2
(0] 1
adder O(n log n) 0(n2) (n og n)
2 2
A ltipli O(n 1o 0 1 0
Multiplicative rray multipller ¢ g (n” log m) (n” log n)
method Multiplier using 2 2 2 2
0(log“n) 0(m* 1o (o} 1
parallel counters 8 (g n (n °g"n)
Table 1 Comparison of Dividers
n 8 16 32 64 128
36 70 136 264 522
Our divider
685 2758 10939 43435 172936
Ripple-carry 127 511 2047 8191 32767
Subtract-shift | adder ' 597 2717 11565 47693 193677
method Carry-look-ahead 64 128 320 640 1536
adder 673 3103 14361 64475 284421
87 244 625 1518 3563
Array multiplier
Multiplicative 2640 16352 88128 440704 2106624
method Multiplier using 66 96 150 204 280
parallel counters 4075 20573 89685 411653 | 1850355
4 input NOR/OR Depth
Size
Table 2 Depth and Size of Dividers
5 Square rooting
In this chapter, we propose a new subtract-shift method for

square rooting internally using redundant binary representation,

and consider a combinational circuit based on the algorithm. We

are concerned with computing the square root Q. of an n-bit

231

unsigned binary fraction X. We assume that X satisfies %§X<1.
Therefore, the square root Q satisfies %§Q<1. We compute the
square root down to the n-th binary position, |

Our square rooting algorithm is in accordance with the

following recursion formula:

(2% . .= -Jx .
Ri4e1=R579; (2 Q;. 1+qJ) (qJ 2 pJ)
5795-19y7
where p\j is the square root digit in the j-th binary position,
RJ._'_1 is the partial remainder after the determination of pj, and
Qj denotes Zl 195

In the algorithm, we represent each Rj by a redundant binary

rd eond : .
representation [rJ o j- 1 r2j]SD2’ and select Pj from the digit
set {1,0,1} by examining the three most significant digits of Rj’
and perform the computation of the recursion formula in the

redundant binary number system. The algorithm is as follows,

Algorithm 2 (Square Rooting)

Step 1: Convert X into a redundant binary number R1.

Step 2: p,:=1, qq _2-1, Qqu:=[0.11gp5
. -2
R2._R1-2
(compute in the redundant binary number system)

Step 3: for j:=2 step 1 until n do

begin
(T if [r'J o Q -1 J]SDZ <0
pyi= io if [rJ S J -1 J]SD2 = 0
1 if [rJ or g 1rj]SD2 >0
a5i=2” I,
Rj+1‘-RJ-q *(2*QJ 1+qj)

-9 -

(compute in the redundant binary number system)

Qj::Qj-1+qj
end
Step 4: Convert Qn into the equivalent binary number Q.

Q is the square root.

The conversion in Step 1 requires no computation. The
computation in Step 2 can be performed in constant time
independent of n. In Step 3, since pj is determined by examining
only the three most significant digits of Rj’ the determination of
each pj can be done in constant time independent of n. The
computétion of the recursion formula also can be performed in
constant time independent of n. These. computations are performed
n-1 times, so the computation time for Step 3 is 0(n). The
conversion in Step 4 can be performed in time of 0O(n) if a ripple-
carry adder is used, and in time of 0(log n) if a carry-look-ahead
adder 1s used. Thus, n-bit square rooting can be performed in
computation time of 0(n).

The difference between the obtained square root Q and X is
smaller than 277,

Fig.3 shows an example of square rooting in accordance with
the algorithm. Some of less significant digits in Rj (j)ﬁn) have
no effect on the square root, and the computation for these digits
can be omitted.

Fig.4 shows a block diagram of a square rooting circuit based
on the algorithm. [0 denotes a cell for determining a square root
digit, and L[] denotes a redundant binary add/subtract cell. The

redundant binary / binary converter can be either a.ripple-carry

3001 3xenbg

233

X=10100011011,

B -1 010001101
4 007
B =1 00100
+) 101
B =0 shee 000711
B =1 0011101
1) 11001
B -1 81170000
+) 170101
B -1 110170700 _
+) '1'1011 OI This part has
B =1 MEOOOIOO no effect on
+) Ij OITT OT the square root.

R =0 060000001

G=10110T11101g,

¥
@ =10101111101,

Fig.3 An Example of Square Rooting

Operand

9
]
a
99 5
2
=]
rt
z
&
— 4
~
2
B
—q "
<
a
3
—
a
2]
2]
o
] L2
qn

Fig.4 A Block Diagram of Our Square Rooting Circuit

Computation time Size Area
(Depth)
Our square rooting circuit 0(n) ' 0(n2) 0(n2)
Ripple-carry 2 2
: : 2
Subtract-shift adder 0™ 0% 0D
method Carry-look-ahead) ' O(n2 log n) 2
adder o(n lég n) 0(n2) 0(n” log n)
' 2 2
Maltiplicative Array multiplier O(n log n) 0(n” log n) 0(n” log n)
method Multiplier usingi 2 2
0(log“n 2 2
parallel counters §n) : 0(n” log) 0™ log"n)

Table 3 Comparison of Square Rooting Circuits

adder or a carry-look-ahead adder. The size of the square rooting
circuit is O(n2). Since the circuit has a reguiar cellular array
structure as shown 1in Fig.4, it is suitable for VLSI
implementation. The chip area of the circuit is O(nz).

Table 3 shows a comparison of several square rooting
circuits. As shown in the table, our square rooting circuit is
superior- to conventional subtract-shift ones in the depth (i.e. in
the computation time), asymptotically. By a rough estimation, the
depth of our square rooting circuit is smaller than those of
conventional subtract—shift ones for nz8. Some of multiplicative
square rooting ciréuits are superior to ours on the computation
time, asymptotically. But it seems that for practical n's, the
depth of our square rooting circuits are smaller than that of
multiplicative ones. On the amount of the hardware, our square
rooting circuit is similar to a conventional subtract-shift one
consisting of ripple carry adders and much smaller than those of

multiplicative square rooting circuits.

6 Conclusion

We proposed VLSI-oriented hardware algorithms for division
and square rooting internally - using the redundant binary
representation. A divider and a square rooting circuit based on
these algorithms are excellent in both the computation speed and
the regularity. Each of them can be also implemented as a
sequential circuit with é.redundant binéry adder/subtracter and a
shifter, and they operates rather efficiently.

The redundant Dbinary representation can be used in hardware

algorithms for other arithmetic operations.(5)

References ; o

(1) K.Hwang : "Computer Arithmetic / Principles, Architeéture and
Design", John-Wiley & Sons, 1979. ‘

(2) D.E.Agrawal : "High-Speed Arithmetic Arrays", IEEE Trans,
Comput., vol.C-28, no.3, pp.215-224, Mar. 1979, :

(3) H.Yasuura and S.Yajima : "On the Area of Logic Circuits in
VLSI", Trans. IECEJ, vol.J65-D, no.8, pp.1080;1087, Aug. 1982.
(in Japanese) : ‘ !

(4) A.Avizienis : "Signed-Digit Number Representations for Fast
Parallel Arithmetic", IRE Trans. Elec. Comput., vol.EC-10,
no.9, pp.389-400, Sept. 1961. ‘

(5) N.Takagi, H.Yasuura and S.Yajima : "A VLSI-Oriented 0(log n)
Stage High-Speed Multiplier Using a Redundant Binary Addition
Tree"™, Paper of Technical Group on Automata and -Languages,
AL82-31, Sept. 1982. (in Japanese)

- 13 -

