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I. INTRODUCTION

The relaxation method, which had been originally developed by
Southwel1[1] for solving the coupled linear equétion within the framework of
the fteration (succeesive approximation) method, was applied to the
eigenvalue problem by.Cooper[Z]. Large-scale matrix eigenproblems are
familiar to quantum chemists in configuration interaction ca1¢u1ations of
electronic wavefunctions of atoms and molecules. Several quéntum chemists
[3-5] have adopted the relaxation method for diagonalization of large
Hamiltonian matrices. The original relaxatien method, i.e., coordinate
relaxation method, improves one element in the trial vector at a time based
on the 1inear (first-order) minimization of the Ray]eigh quotient
(ekpectation value of Hamiltonian, in quantum mechanics)>or the Tinear
‘vanishing of the residual. Within the coordinate relaxation algorithm,
Shavitt et al.[6] corrected the trial vector based on the quadratic (exact)
minimization of theiRayleigh quotient. Their method, which is called the
method of optima] (coordinate)’relaxations (MOR), is the most widely used
algorithm for the non-degenerate lowest eigenproblem in quantum chemistry.

Seme modification of the coordinate relaxation method has been
presented: the simultaneous improvement of several elements in the trial-
vector[7,8]. This group-coordinate relaxation method is a natural extention
of the two-by-two Ritz iteration algorithm[2], and is effective to resolve
convergence difficulties for nearly degenerate eigensolutions.

Algorithms to generate only one correction vector to improve all
elements in the trial vector at a time have also been presented. The
gradient method by Hestenes and Karush[9] is based on the two-by-two Ritz
iteration algorithm, but gives much poorer convergence than the above-

mentioned relaxation methods. In order to remedy the gradient method
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generation of a series of correction vectors (expansion vectors) is
necessary. The Lanczos method[10], which originally is a modification of
the power method based on the Krylov sequence, can be regarded as an
extention of the gradient method. The Lanczos method,has some weak points
but is widely used, especially, by the nuclear physicists.

Another algorithm to generatg only one correction vector to improve all
elements in the trial vector is hit on, in which the correction vector has
1ndiv1du§1 coordinate relaxations. This algorithm may be better than the
gradient method, but undoubtedly gives slower convergence than the
relaxation methods which update continuously a trial vector as soon as one
or several elements are corrected. In order to remedy this algorithm and
the Lanczos method, Davidson[11] proposed the use of this type of correction
vectors as expansion vectors in a Lanczos-1ike algorithm. Davidson's method,
which is also called a modified MOR (MMOR), overcomes the convergence
difficulties for nearly degenerate eigensolutions by repeating the Ritz
iteration every time to obtain a new correction vector, and is widely used
by quantum chemists as well as the MOR[6].

Sqme schemes for obtaining higher eigenso]utions have beénvproposed_
within the above-mentioned methods. In the methods adopting the Ritz
iteration, the orthogona]ity—constraint procedure[6,9] of the trial vector
to Tower eigenvectors is effective; in the other methéds, the root-shifting
procedure[2,9] to mimic the deflation is effectiVe. Against these
procedures, the origin-shift version of the MOR[6] by Feler[12] and the
root-homing version of the MMOR[11] by Butscher and‘Kammer[]3] make possible
the direct determination of higher eigensolutions without knowledge of the
exact Tower ones. |

Recently new methods to obtain several or many eigensolutions, which
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are not based on the sequential iteration algorithms to need knowledge of
the exact lower solutions in advance but on a simultaneous iteration
algorithm for all the trial solutions to be corrected, have been developed
by taking into account the computational efficiency[8,14-19]. Clint and
Jennings[14] combined the power method with a Ritz-like diagonalization
algorithm. Cheung and Bishop[8] corrected simultaneously several trial
vectors within the group-coordinate relaxation method. Raffenetti[15] and
Liu[16] (See ref.[17], too.) have proposed simultaneous versions of the MOR
by Shavitt et al.[6] and of the MMOR by Davidson[11], respectively.
Golebiewski[18] combined the power method with a new orthogoﬁa]ization
procedure, but his method is basically equivalent éo the single-
premultiplication version of the Jennings method[14]. Iwata[19] extended
the gradient method based on the two-by-two Ritz iteration algorithm[9] with
implicit incorporation of the orthogonalization among trial and correction
vectors and even previously solved eigenvectors.

In the present work, a new algorithm for solving one or simultaneously
several eigensolutions is presented by taking into account both advantages
of the group-coordinate relaxation method[7,8] and of the siﬁd]taneous
expansion method by Liu[16]. The present algorithm is especially suitable

for array processors equipped with recent high-speed (super) computers.

II. AN EXTENDED METHOD OF OPTIMAL RELAXATION

1. Scheme

The Ritz iteration algorithm is getting powerful as the correction-
vector space is increasing[8]. The group-coordinate relaxation method
keeps the number of correction vectors fixed in each group[7,8]. On the

other hand, Liu's method increases the number of correction vectors by the
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number of sought solutions each iteration cycle[16]. His method has the
advantage of the complete use of the Ritz iteration but‘a~disadvantage to be
1iable to suffer an overflow of the main-memory space required.

The method proposed in the present‘work keeps the number of correction
vectors fixed through the iteration cycles. Correction vectors for the
renewed trial vectors are 1ndivfdua]1y obtained in each iteration cycle
after Davidson's method[11] in the same way as in Liu's method[16], but
unimportant constituents of the correction vectors obtained in the previous
iteration cycle are neglected in the next cycle. This point is different
from the Davidson-Liu method in which the correction-vector space used in an
iteration cycle is basically always (within the 1imits of the main-memory
space admitted) included in the successive iteration cycles. The meaning to
keep cbnstituents of old correction vectors in the Ritz iteration does not
1ie in the concentration of sought solutions as in the Lanczos method[10]
but in the optimal extrapolation within the framework of the Ritz iteration
algorithm. A criterion for important constituents of correction vectors is
the contribution to the correction for the trial vectors; that is, the trial
vectors renewed in the previous iteration cycles include important
constituents of correction vectors. The_present algorithm does not keep old
correction.vectors but keeps old trial vectors in the successive iteration

cycles.

2. Procedures
A. Initialization

1. Form initial quess vectors C(O) (dimension N x n is the

solv® "solv
number of eigensolutions to be sought.) from c(o) by solving a small

(0)g(0)

eigenvalue problem: X(O)c(o) =C » where the matrix X(O) of dimension

Nguess has important elements selected from the full matrix X of dimension
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N (Nguess'< N), and E$?) is an initial guess for sought eigenvalues of X.
2. Form D(O) =X C(O), where the dimension of m(o) is N % Neolv®

3. Form the initial residual vectors {” = B(® - £P¢(?, (k =1 -

).

"solv _ )
4. Form the initial correction vectors béo) = (Xdlag - Eéo)l)-]-qéo),

where the diagonal matrix xdiag has the diagonal elements of X. If the

ber of correction i
num o] orrection vectors, ncorr’ is greater than nso]v’ scatter

(0) =1 - 0) /4: . P (0)
bk (k =1 nso]v) over b (dimension N x ncorr) by dividing bk of

dimension N into several parts.

B. Iteration (i =0, 1, ... )
5. Form the orthonormalized correction vectors Céé&r from b(i) by
: : ot ian- tm(i) @(1) y e (1) (1) y
Schmidt orthogonalization; then, (€7, Ccorr) (c -/, ccorr) 1.
1) _ (1)
6. Form Dcorr X ccorr‘
(1) _ typ(d) @) . p(i) [
7. Form H (c*’, ccorr) (D7, Dcorr)’ and solve the reduced

eigenvalue problem (Ritz iteration) of dimension n
a4+ T D (A41)

+ :
solv ncorr

8. Form €D = (@), ¢ (L4 py pGHD)

corr
(1) p(1) y.q(i,1i+1)
(D, Dcorr) T
9. Form q(i+l) = pli+h)_ E(i+1)ﬂ(i+l), and check convergente by
k k k k

i 2 i 2
iqlgl-l-l)l / |E|§1+l)i )

10. Form b£i+l) = (xdiag - Eéi+1)])_]-qéi+1) for unconverged Céi+l).

> -n
corr nso]v conv (nconv

(i+1) s (1) : (1)
b with C and, if necessary, ccorr’

11. Return to step 5. with i =1 + 1.

If n is the number of converged solutions), fill

3. Some Comments

The large, real-symmetric matrix X to be diagona]izedﬁshould be
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arkanged so that the diagonal elements xd1ag may be in ascending brder,

especially when the matrix X is diagonally dominant, becauée'it ié easy to
cohstruct initial trial vectors for lowest eigensolutions by solving the

small eigenvalue problem for the submatrix x(o) of dimension N (step 1).

guess
The off-diagonal elements of X need not be used in any specific sequence;
then, only nonzero elements can Se stored in auxiliary memory in arbitrary
order. | | |

The X matrix multiplication steps‘(] and 6) are extremely time-
consuming, even if Timited to nonzero multiplication, and are bound by I/0
processing. In Davidson's method and its modifications mu]fip]icatioﬁ and
accumulation per one off-diagonal element are performed only twice per
iteration cycle. The present algorithm, in which the multiplication and

accumulation are performed simultanecusly in proportion to n r

Neory?
is capable of avoiding the 1/0-binding and is suitable for the recent and

solv 0

near-future array processors which have very short vector/scalar-crossing
Toop-tlength (< 5).

In order to avoid round-off errors, explicit orthdgona1ization is
required even among trial vectors C(i) in step 5 and the procedure D(i) =
X €1 (step 6') is required before step 7. In the program EMOR1[20], the
explicit orthogonalization and step 6' are performed every iteration cycle
and every five cycle, respectively. Because the Schmidt orthogonalization
procedure is completely adapted for vector processihg and its computational
time is negligible compared with the X matrix mu]tiplication, the imp]icif
orthogonalization algorithms[10,19] will not be useful.

The computer program (named EMOR1) coded in FORTRAN 77 by the present
author is opened in the Computer Centre, the University of Tokyo[20]. The

small eigenvalue problems in steps 1 and 7 are solved with a Householder-
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bisection-QR-inverse-iteration routine modified from the original version[21]
by the present author so as to adapt for vector processing. Because the
root-homing pattern search[13] is incorporated in EMOR1, correction vectors
only for a specified trial vector(s) can be formed (but they are not
ineffective to the other solutions). In the present version of EMOR1 on the
HITAC M-280H computer with an integrated array processor of the Computer
Centre, the University of Tokyo, the maximum values for parameters are as

+n ) < (13000, 26), (20000, 17), or

follows: Ny oo < 7505 (N, ng oo corr

gues
(30000, 10). The extension to non-symmetric matrix eigenproblems and

generalized eigenproblems (X Ck = Ek Y @k) is under consideration.

IT. TEST PROBLEMS

1. Results

The program EMOR1 was applied to five test problems. Structure of five
test matrices, which are the original Nesbet[4] (matrix A) and modified
Nesbet matrices, is summarized in Table I. Eigenvalues for the test
matrices are summarizéd in Table II.

In Tables I, IV and V, test results for many sets of parameters in
the matrices A, B and € are shown, respective]y. Through the problems

N is equal to n ; therefore, the maximum value of q2 for initial

guess solv

guess vectors, qz

guess’ is rather large. We dared to solve the problems from

poof initial guesses because eigenvalue problems for matrices of dimension
~300 can be easily solved by standard direct-diagonalization algorithms.

For the matrix A the condition n is quite ehoughkexcept that -

=n
corr solv

n = 1. The diti =
soly 1 condition Neorr nso]v

the other hand, the condition Neorr = Nsoly

solv 28. On

is not sufficient when n

/2 is sufficient when n

soly © 6

= 10 for €. For C the parameter n’ rr»should be

co

for B and even when nso1v
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( < 2) and about 12 (nsolv > 4); that is,

chosen to be at Teast 4-n Mooty S

solv

the number of effective correction vectors does not depend on n when

solv

be .
Ngo1y PECOMES large

Results of eigenvalue problems for the matrices D and E are shown in

Tables VI and VI, respectively. Through the problems, the parameter n

solv
is fixed to 10; the parameters Nguess and Neorr 278 varied. For the matrix
D when N =.10, the conditions n = 20 and 30 give the same result.

guess corr

The reason is that nearly linear dependence among correction vectors is

encountered when n > 20. The condition that (N ) = (50, 20)

corr ~ guess’ Ncorr

or (100, .10) is sufficient. When Nguess = 200, the problem is nearly solved

within the initial guess. For the matrix E, lowest two eigenvalues are

unusual(Table I). The parameter Nguess should be chosen to be at least

~100 and in practice ~300.

2. Discussion

Choice of the parameters Nguess and Neorr 1S quite important for

efficiently solving eigenproblems. The Targer is Nguess’ the better is

convergence; on the other hand, when n is too large convergence is il1l1-

corr
behaved, because nearly linear dependence is encountered. An optimum value

for the parameter n is strongly dependent on structure of a matrix in

corr
2 . . _ .

problem. The value qguess is a criterion in determining an optimum Neorr®

When Neoly 19 greater than ~10, we may choose Neorr to be nearly constant

(1ess than "so]v)' This feature might originate in a similar principle as
in the group-coordinate relaxation method[7,8].
Even when only the lowest eigensolution is desired, it is preferred to

choose n v to be greater than 1; here, correction vectors of number n

sol corr

are all for the lowest solution. Trial vectors for the other solutions will

work in order to exclude constituents of the other solutions from a trial

-9 -
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vector for the lowest one. This discussion is also valid for cases that
only an eigensolution except the lowest one or some interior eigensolutions
are desired. The present algorithm for directly determining higher -
eigensolutions are superior to the method proposed by Butscher and Kammer[13].

If the number n of eigensolutions to be sought is too large to

solv

store all the vectors of néolv + Neopp 1N the main-memory space admitted,

the partition such as n is required and the

= .+ + ...
solv - "solvi Nsolve

problem is solved for n 9 and so on, sequentially from the Tower

solvi® "solv
solutions. Solved eigenvectors are saved in auxiliary memory,and are read
out and used only at Schmidt orthogonalization among them and initial guess
vectors and among them and current trial and correction vectors (step 5).

Considering the above test reSu]ts,‘the number Nsolv should be partitioned

so as to include as many vectors (n ) as possible.

.+ n .
solvi corri

As shown in the above test results, the Ritz iteration algorithm to
use the "trial" and “correction" vectors is powerful for many types of

eigenvalue problems.

- 10 -
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TABLE I
Structure of Test Matricesa
matrix dimension matrix elements No. of diagonal density
non-zero dominance
X N Xii Xij(=xji) elements [%] [%]
A 300 2i-1 1 45150 100 100
B 300 1.0+0.1%(2i-1) 1 45150 9.0 100
C 300 1.00+0.01%(2i-1) 1 45150 68.8 100
D 1000 2i-1 O,li-jlzﬁo 48775 100 9.75
E 1000 1.0+0.1%(21-1) 1,]i-j]<50 48775 98.8 9.75

a diagonal dominance = ratio of the case which satisfies that lXijl<}Xij-
ijl; density = ratio of non-zero elements

TABLE I
Lowest Eigenvalues of Test Matrices

n A B C D E

1 0.2355346  0.1296170  0.01303906 0.2791881 -4.456670

2 2.262109  0.3336875 0.03346562  2.316219  -2.594780
3 4.278451  0.5362786 0.05373813  4.339914  0.07319100
4 6.290699 = 0.738259 0.07394690  6.356201  0.2732267
5  8.300687  0.9398978 0.09411976  8.37349  0.4739468
6 10.30922  1.141313  0.1142692  10.38687 0.6756589
7 12.31674  1.342569  0.1344020  12.3989] 0.8781389
8 14.32349  1.543706  0.1545223  14.40997 1.081195

9 16.32966  1.744750 = 0.1746327  16.42027  1.28469]

10 18.33535  1.945719  0.1947352  18.42997 1.488534
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TABLE IO
Test Result for Matrix A

Nsolv "corr Nguess qguess nit('G) nit(-]o)
1 1 1 0.299 107 >0 °
2 | 6 9
3 5 7
2 2 2 0.508 10%3 4 6
3 3 4
4 2 4 0.917 10%3 8 9
4 3
6 3 6 0.132 10" 5 8
6 2 3
8 4 8 0.173 10™ 5 6
8 2 3
10 5 10 0.213 10" 4 5
10 2 2
15 5 15 0.311 10™ 5 6
10 5
20 5 20 0.407 10%* 5 6
10 4 5

Notation : Nsoly? number of eigensolutions to be sought

simultaneously; » number of correction vectors used in

nCOY‘Y’

each iteration; N dimension of the small matrix for an

guess’

sl . 2 P
initial guess; q » maximum value of g~ for initial guess

guess

vectors; n. (-x), number of iterations required for

it
converging q2 to less than 107%.
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TABLE IV
Test Result for Matrix
7
"solv. "corr Nguess Yquess n;¢(-6) n;(-10)
1 1 1 0.299 1073 >20
2 0 16
3 7 12
4 6 9
2 2 2 0.59 107 >z
4 5 1
6 . 1 6
4 4 4 0.118 10" 7 0m
6 3 5
8 3 3
6 6 6 0.175 10%* 4 8
9 2 3
8 8 8 0.232 10%* 3 5
12 2 2
+4
10 10 10 0.289 10 2 4
15 2 3
TABLE V
Test Result for Matrix C
n n N q2 n..(-6) n,,(-10)
solv_ corr quess guess it it -
1 2 1 0.299 107 13 20
3 n >20
4 9 17
2 4 2 0.595 103 9 520
6 | 6  >20
8 5 9
4 6 4 0.119 10 20
8 | 3 9
12 3 4
6 6 6 0.176 107 20
9 3 6
12 3 5
8 8 8 0.233 10" 20
12 3 4
16 2 3
+4 )
10 10 10 0.289 10™ 9 15
15 2 1
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TABLE VI

Test Result for Matrix D

Nsolv. "corr Nguess qSuess nit(_6) nit(_]o)
10 10 10 0.327 10" 13 15
20 | 6 8
30 6 8
10 10 50 0.457 10" 8 10
20 6 8
10 10 100 0.481 107 5 8
10 10 200 0.188 107 1 2
TABLE VI

Test Result for Matrix E

2

“sotv "corr Nguess Yguess nit('G) n;¢(-10)
10 10 100 0.369 10"  >20
20 17 s
30 13 17
10 10 200 0.801 10° 17 >20
20 10 16
10 10 300 0.154 1072 6 12
20 g 8
10 10 400 0.153 1070

2 4

- 15 -



