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Abstract 

The recognition of seizures is very important for the diagnosis of patients with 

epilepsy. The seizure is a process of rhythmic discharge in brain and appears 

rarely and unpredictably. This behavior generates a need of an automatic detection 

of seizures by using the signals of the long-term electroencephalograph (EEG) 

recordings. Due to the non-stationary character of EEG signals, the conventional 

methods of frequency analysis are not the best alternative to obtain good results in 

diagnostic purpose. The present work proposes a method of EEG signal analysis 

based on star graph topological indices (SGTIs) for the first time. The signal 
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information such as amplitude and time occurrence is codified into invariant 

SGTIs which are the basis for the classification models that can discriminate the 

epileptic EEG records from the non-epileptic ones. The method with SGTIs and 

the simplest discriminant linear methods provide similar results to those 

previously published, which are based on the time-frequency analysis and 

artificial neural networks. Thus, this work is proposing a simpler and faster 

alternative for automatic detection of seizures from the EEG recordings. 

 

Keywords: Automatic signal processing, epilepsy seizure detection, EEG signal, 

star graphs, linear discriminant analysis 

 

1 INTRODUCTION 

Epilepsy is one of the most common neurological disorders and it is also known 

as a seizure disorder which affects the nervous system. A seizure is a sudden surge 

of electrical activity in the brain that usually affects how a person feels or acts for 

a short time. Seizures are symptoms of many different disorders that may affect 

the brain. Depending on the brain regions involved during the course of seizure, 

epilepsies can be divided into two main classes such as the following: generalized 

seizures that involve almost the entire brain and focal (partial) seizures that re-

mained restricted on a circumscribed brain region (epileptic focus). These seizures 

may be accompanied by psychic, autonomic, sensory or motor disturbances 

(Lehnertz et al., 2003; Litt and Echauz, 2002).  
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The usual procedure that can detect the suspected seizures is the electroenceph-

alogram (EEG), typically a 20-minute brain-wave recording. This method yields 

numerous practical advantages. The duration of the procedure is too short for de-

tecting the epileptic seizures and some of the registered seizures cannot be clearly 

linked to an etiology. One solution was the long-term EEG registration by using 

the portable recording systems in the normal environment of the pacient 

(Waterhouse, 2003). Clinical neurophysiologists can analyze for several days re-

cordings in a time-consuming process. Even if theoretically the patient can use the 

alarm button to warn about a seizure, in many cases they are not aware of the oc-

currence of the epileptic seizures. Thus, an automatic detection method of the sei-

zure patterns is necessary. The identification of these patterns in the extracranial 

recordings is made difficult due to the obscuring of the real seizures by EMG, 

movements or eye-blink artifacts. 

Another way to analyze the information of complex systems is represented by 

the graphical methods such as graph or complex network theory (Strogatz, 2001). 

Thus, the original information of any real system can be coded into graphs and 

their sets of non-variant numbers that characterize its topology, named topological 

indices (TIs) (Dehmer et al., 2008; Emmert-Streib and Dehmer, 2009b). These TIs 

are used as input to obtain the best classification models by using the statistical, 

Artificial Neural Network (ANN) or Maching Learning methods. In biological or 

biomedical systems, these graph approaches, can provide and intuitive vision and 

useful insights for helping analyse complicated relations therein. Many previous 
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studies on a series of important biological topics have indicated that relation, for 

example, in protein folding kinetics(Chou, 1990), predicting protein folding 

rates(Chou and Shen, 2009a), enzyme-catalyzed reactions (Andraos, 2008; Chou, 

1989; Chou and Forsen, 1980; Chou and Liu, 1981; Kuzmic et al., 1992; Myers 

and Palmer, 1985; Zhou, 1984), inhibition kinetics of processive nucleic acid pol-

ymerases and nucleases(Althaus et al., 1996), analyzing drug methabolism sys-

tem(Chou, 2010), investigation into the slow conformational change with Chou’s 

non-steady-state graphical rule (Lin and Neet, 1990), analyzing inhibition of HIV-

1 reverse transcripase(Althaus et al., 1993a; Althaus et al., 1993b; Althaus et al., 

1993c), analyzing inhibition kinetics of pregressive nucleic acid polymerases and 

nucleases(Chou et al., 1994), DNA sequence analysis (Qi et al., 2007), analysis of 

codon usage(Zhang and Chou, 1994), microarray analysis (Emmert-Streib and 

Dehmer, 2009a) and analyze protein-protein interaction(Zhou, 2011a, b) with 

wenxiang diagrams(Chou et al., 2011). More information about apply graphs in 

complicated network system research can be obtained in (Diao et al., 2007; 

Gonzalez-Diaz et al., 2008; González-Díaz et al., 2007). In addition, several 

works have analyzed and classified information that is similar to EEG signals 

such as the blood proteome mass spectra. Thus, star and lattice graphs have been 

used to generate models that can discriminate whether a patient has or not several 

diseases such as prostate (Ferino et al., 2008), breast (Vilar et al., 2008a) or colon 

(Munteanu et al., 2009) cancers. 

The present work proposes an automatic method to identify the epilepsy sei-
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zures by using a classification model based on topological indices of the EEG re-

cording star graphs and linear discriminant methods. Similar to the quantitative 

proteome-disease relationship (QPDR) for the proteome mass spectra (Ferino et 

al., 2008; Munteanu et al., 2009; Vilar et al., 2008a), this work is aimed at finding 

the best quantitative signal-disease relationship (QSDR). Previous works have 

used different graphs/networks for the simulation of epileptic seizures by a cou-

pled ordinary differential equation lattice model (Larter et al., 1999), to study the 

effects of different connectivity topologies in Small World Networks on EEG-like 

activities (Min et al., 2006), to study brain complex networks (Bullmore and 

Sporns, 2009; Micheloyannis et al., 2009), to evaluate the neural efficiency hy-

pothesis by using graph theoretical analysis of multi-channel EEG (Micheloyannis 

et al., 2006) or for data analysis for continuous EEG monitoring in the Intensive 

Care Unit (Scheuer and Wilson, 2004). 

 

2 STATE OF THE ART 

The processing of EEG signals is a topic that has had a great impact from its 

very beginning. Epileptic EEGs have been analyzed with many different tools and 

therefore their processing is very well documented (Kannathal et al., 2005; 

Mohseni et al., 2006b; Nigam and Graupe, 2004; Polat and Güneş, 2007; 

Srinivasan et al., 2005; Subasi, 2007). 

The early observations of EEG recordings showed that their spectra contain 

some characteristic waveforms that fall primarily within four frequency bands. 
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This was the basis of the first methods of automatic EEG processing, which were 

based on a Fourier transformation. However, this method uses the fast Fourier-

transform algorithm (FFT), which suffers from large noise sensitivity. A better 

frequency resolution which solves these spectral loss problems is obtained 

through power estimation by means of parametric methods. However, these meth-

ods are not suitable for frequency decomposition of these signals due to their non-

stationarity nature. 

The most common approach for EEG signal classification consists of two stag-

es (in general for any pattern classification system): feature extraction using any 

signal processing tool and classification with any machine learning tool, such as 

ANNs or Support-Vector Machines (SVMs)(Rivero et al., 2011). 

One of the most powerful tools for signal and image processing appeared in the 

late 1980s and it is called the wavelet transform (Addison, 2002). This technique 

has had a great impact and success, and now it is one of the most used tools in the 

field of signal processing with many scientific and engineering applications. It is 

also a very suitable tool in EEG processing, since it is appropriate for the analysis 

of non-stationary signals, which is a major advantage over spectral analysis 

(Mohseni et al., 2006b). This tool is suited for locating transient events. An exam-

ple of these events refers to the spikes that occur during epileptic seizures in EEG 

signals. In a recent work by Subasi (Subasi, 2005; Subasi and Gursoy, 2010), EEG 

signals have been analyzed by means of the discrete wavelet transform. The sig-

nals were first decomposed into five levels using a DB4 filter and wavelet coeffi-
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cients were selected as inputs to a dynamic fuzzy neural network and dynamic 

wavelet network, but they have obtained low performances on classification accu-

racy. 

Other different analysis of the signal is carried out by the extraction of entropy-

based features. Since the application of the concept of entropy to the information 

theory by Shannon, entropy is known as the amount of information stored in a 

more general probability distribution. Different entropy estimators have been ap-

plied to quantify the complexity of a signal. This has led to the extraction of dif-

ferent features that have been used as inputs of a classifier system (Kannathal et 

al., 2005). 

Another approach refers to the study of EEG signals as chaotic systems. From 

this point of view, Lyapunov exponents are extracted from these signals. These 

exponents are a quantitative measure for distinguishing among the various types 

of orbits based upon their sensitive dependence on the initial conditions, and are 

used to determine the stability of any steady-state behavior (Abarbanel et al., 

1991). Using Jacobi matrices, all these exponents can be estimated from a time 

series. Different features can be extracted from these exponents, which are subse-

quently used for the classification (Guler et al., 2005). 

Time-frequency features are also powerful tools for this task. An epileptic sig-

nal has components in both time and frequency, but the conventional time and 

frequency representations present only one aspect. By means of computation of a 

time-frequency distribution, a signal is localized in both time and frequency do-
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mains. This technique was used in some works, using the pseudo Wigner-Ville 

and the smoothed-pseudo Wigner-Ville distribution (Mohseni et al., 2006a; 

Tzallas et al., 2007). Features were extracted from this distribution of epileptic 

EEG signals, and they were used as inputs to a feed-forward back-propagation 

network. 

The classification of the signals using these features can be carried out by dif-

ferent classification algorithms. SVMs and Linear Discriminant Analysis are two 

of the most used methods for this task. However, the ANNs are the most used tool 

to perform this classification. This paper used recurrent ANNs, which present an 

additional advantage: for the classification of a single window of the signal, the 

previous outputs of the neurons are taken into account. This means that the 

knowledge from the previous samples of the signal is used for the classification. 

Recently, ANNs that apply Bayesian methods have been shown to be more ro-

bust compared with other techniques because they incorporate measures of confi-

dence in their output for the Levenberg-Marquardt (LM) procedure (Vuckovic et 

al., 2002). In addition, standard Multilayer Perceptron (MLP) has been improved 

by using finite impulse response filters (FIR) instead of static weights for a tem-

poral data processing (Tzallas et al., 2007). 

 

3 MATERIALS AND METHODS 

Figure 1 presents the flowchart of the new method based on star graph topological 

indices (SGTIs) of the epilepsy EEG recordings. The set of signal amplitudes of 
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each EEG segment is transformed into specific SGTIs that will be the input for the 

statistical methods that can find the best theoretical model and can discriminate 

between the epilepsy segments and the non-epilepsy ones. Additionally, these 

models based on the signal amplitudes along the time coordinate were compared 

with similar models by using the Fourier transformed data and transforming the 

frequency data into SGTIs. Details about each sub-step are presented in the para-

graphs below. 

Figure 1 comes about here 
 

3.1 EEG segment sets 

The EEG dataset includes recordings of both healthy and epileptic subjects 

(Andrzejak et al., 2001) and it is split into five subgroups (denoted Z, O, N, F and 

S) depending on the patient's diagnosis and sensor location. Each subgroup con-

tains 100 single-channel EEG segments of 23.6 seconds. The non-seizure records 

are noted as Z for EEG registrations in pacients with eyes open, O for eyes-closed 

EEG recordings, N for the case of hippocampal formation sensor location, and F 

for the epileptogenic zone. The only seizure segments are denoted as S. Z and O 

have been recorded extracranially whereas and N, F and S have been recorded in-

tracranially. Signals were selected after visual inspection for artifacts and have 

passed a week stationarity criterion. 

Table 1 comes about here 

The present calculations are based on three principal types of grouping of the Z, 
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O, N, F, S sets (see Table 1), in a similar way as Tzallas et al. (Tzallas et al., 

2007). The classification problems depend on the presence or absence of epilepsy 

seizures and on the sensor location and recording as follows: 

- Z-S (C1): normal eyes open (Z) versus seizures (S); 

- O-S (C2): nomal eyes closed (O) versus seizures (S); 

- ZONF-S (C3): all non-seizure classes (ZONF) versus seizures (S). 

Two of the classification problems from the Tzallas et al. work (Tzallas et al., 

2007) (1 and 3) that involved more than two classes are solved indirectly as fol-

lows: 

- Z-N-S (C4) using ZN-S (C4.1), NS-Z (C4.2) and ZS-N (C4.3) classifica-

tions; 

- ZO-NF-S (C5) using ZONF-S (C5.1), NFS-ZO (C5.2) and ZOS-NF (C5.3) 

classifications. 

Thus, the three-class model is evaluated by using the maximum probability of 

classification for each class in the individual model. An additional model based on 

the same Z-S classes (non-seizure open eyes versus seizures) and Fourier trans-

formed data (C6) was generated in order to study the influence of this frequency 

transformation. 

 

3.2 Star Graph Topological Indices 

In previous works, several graphical representation have been used (lattice, spiral 

and star graphs) for characterize a diversity of complex systems such as drugs 



11 

 

(Dehmer et al., 2009; Molina et al., 2004), proteins (Chen et al., 2010a; Chen et 

al., 2010b; Hu et al., 2011; Huang et al., 2011; Munteanu et al., 2008), nucleic ac-

ids (González-Díaz et al., 2005), proteome mass spectra (Cruz-Monteagudo et al., 

2008a) or drugs action on parasites (Prado-Prado et al., 2008). A graph is the ab-

stract representation of a real complex network and it consists of nodes (vertices) 

and links between some of them with similar characteristics (Harary, 1969).  

The star network/graph (SG) (Harary, 1969; Randic et al., 2007) is one of the 

most common computer network topologies and consists of one central switch, 

hub or computer, which acts as a conduit to transmit messages along the nodes 

(Lawrence and Barry). Thus, the hub and computer nodes, and the transmission 

lines between them, form a graph with the topology of a star. In the case of the 

proteins, the star graph can have 20 possible branches (“rays”) for each type of 

amino acid (star center is a non-amino acid vertex). Therefore, the information of 

the protein primary structure such as the type, the composition and the position of 

the amino acids in the protein chain are coded into SGTIs. The graph connectivity 

of the nodes is different compared with the original one inside the sequence. In 

addition, if the initial connectivity is added, the graph is an embedded one and the 

topological indices have the “e” suffix. In the case of the mass spectra, the signal 

amplitudes are grouped into intervals that correspond to different SG branches. In 

this way, the encoded information into the SGTIs is represented by the signal am-

plitude, the position in their recordings and the number of interval occurrences. 
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In the present work, each EEG segment was transformed into a series of charac-

teristic SGTIs, similar to the proteome mass spectra (Cruz-Monteagudo et al., 

2008b; Gonzalez-Diaz et al., 2008). The data were automatically transformed with 

S2SNet (Munteanu and Gonzáles-Diáz, 2008; Munteanu et al., 2012), a tool that 

can convert any string/sequence into star network/graph topological indices based 

on defined groups of string elements. In the first step, one S2SNet filter was used 

to transform the amplitude values into a string for each recording. In this step, the 

number of signal amplitude intervals (SG branches) was defined as 80 (the maxi-

mum types of characters from S2SNet), considering that this precision is more 

than sufficient if compared with previous papers on mass spectra. The transfor-

mation is illustrated by an example with one short fragment of a possible EEG 

record: “2 4 6 8 9 6 13 16 19 17 21 24 27 33 31” that will become the correspond-

ent string, “AABBBBCDDDEEFGG”, where A, B, C, D, E, F, G letters corre-

spond to different EEG amplitude signal intervals as follows: A = 0 to 5, B = 5 to 

10, C = 10 to 15, D = 15 to 20, E = 20 to 25, F = 25 to 30 and G = 30 to 35 (see 

Figure 2). 

Figure 2 comes about here 

In the second step, the string is transformed into the embedded and non-

embedded star graphs and their correspondent SGTIs by using the main module 

calculation of S2SNet. Due to the large number of amplitudes (4097) in every 

EEG recording, each case was divided into two parts on the time scale, the left (L) 

and the right (R) fragments (2048 and 2049 values). Thus, two groups of TIs are 
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obtained (LTI/LTIe and RTI/RTIe) and they are used to create the best classification 

model (Figure 1). The segments have been divided only into two parts in order to 

minimize the loss of information on the relations between consecutive signal am-

plitudes, and to avoid the computational complexity for the classification by hav-

ing the minimum number of TIs as inputs. 

The TIs calculation is based on several elements of the graph such as the initial 

and graph connectivity matrices, the distance matrix and the degree matrix 

(Bornholdt and Schuster, 2003). The connectivity matrices (M) in the sequence 

and in the star graph are combined in the case of the embedded graph. The dimen-

sion of this matrix is i by i, where i represents the number of nodes or the length 

of the sequence. The matrix connectivity of the embedded graph includes the ini-

tial sequence connectivity. The distance matrix (d) represents the number of nodes 

between two nodes. Due to the fact that the graph is undirected, Mij is equal to Mji 

and dij is equal with dji (the matrices M and d are symmetric). The degree vector 

(degi) is the number of connectivities of each node. 

S2SNet (Sequence to Star Networks) tool was developed by our group, and it is 

based on wxPython (Rappin and Dunn, 2006) and it uses Graphviz (Koutsofios 

and North, 1993) as a graphics back-end.  In this study, all the calculations are 

based on embedded (Emb) and non-embedded (nEmb) TIs, nodes without 

weights, Markov normalization and power of matrices/indices (n) up to 5. The 

results of the S2SNet calculation contain the following eight types of TIs 

(Todeschini and Consonni, 2002): 
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- Shannon entropy of the n powered Markov matrices (Shn): 

           
i

ii ppSh log ,                                                                                       (1) 

where pi are the ni elements of the p vector, resulted from the matrix multiplica-

tion of the powered Markov normalized matrix (ni x ni) and a vector (ni x 1) with 

each element equal to 1/ni; 

- Trace of the n connectivity matrices (Trn): 

           
i

ii

n

n MTr ,                                                                                              (2) 

where n = 0 – 5 (power limit), M = graph connectivity matrix (i*i dimension); ii = 

i
th

 diagonal element; 

- Harary number (H): 

         



ji ij

ij

d

M
H ,                                                                                                   (3) 

where dij are the elements of the distance matrix and Mij are the elements of the M 

connectivity matrix; 

- Wiener index (W): 

           



ji

ijdW ,                                                                                                   (4) 

- Gutman topological index (S6): 

          



ij ij

ji

d
S

degdeg
6

,                                                                                      (5) 

where degi are the elements of the degree matrix; 

- Schultz topological index (non-trivial part) (S): 
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           
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ji
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- Balaban distance connectivity index (J): 

             



ji k k

kjikij ddM
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edges
J

2
,                                                   (7) 

where nodes+1=AA numbers/node number in the star graph+origin, ∑k dik is the 

node distance degree; 

- Kier-Hall connectivity indices (
n
X): 
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10   ,                                                                                         (8) 
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- Randic connectivity index (
1
X): 

          



ij ji

ijM
X

degdeg

1 .                                                                                  (13) 

92 indices (n=5) corresponding to the left and right parts of each recording, and to 

the embedded (23 LTIe and 23 RTIe) and non-embeded star graphs (23 LTI and 23 

RTI) will be the input of the linear statistical methods in order to obtain the best 
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classification model that can predict whether an EEG recording contains an epi-

lepsy seizure or not.  

The models based on the SGTIs of the original signal amplitudes are compared 

with the Fourier transformed data. In the first step, the signal amplitudes in time 

are converted into frequencies with a Fourier transformation. In the second step, 

the scale is changed with a logarithmic one due to the large differences in the ob-

tained frequencies. The resulted plot of the frequencies in logarithmic scale is 

symmetric and only half of the data is necessary leading to cases with 2049 fre-

quency values. In the last stept, these values are transformed into a string and fin-

nally into 46 SGTIs [23 TI(FT) and 23 TIe(FT)] by using S2SNet. The infor-

mation codification of the signal amplitudes (or frequencies) involves a contrac-

tion of the variable number for the classification input from 4097 to 92 (or 2049 to 

46 for the Fourier transformation case). 

 

3.3 Statistical Analysis 

Several classification models have been created with General/Linear Discriminant 

Analysis (GDA/LDA) method (Kowalski and Wold, 1982; Van Waterbeemd, 

1995) from STATISTICA 6.0 package (StatSoft.Inc., 2002). These models can 

predict whether an EEG segment contains an epilepsy seizure and, consequently, 

if a patient has epilepsy. In the main models (C1-C3), there are only two groups of 

cases, one containing epilepsy seizure EEG segments and the other corresponding 

to non-epilepsy ones. The dependent variable (EpilepsyOrNot) takes 1 for epilep-
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sy seizures and 0 for non-epilepsy cases (in the case of non-mixed classes), and 

the cross-validation variable (CV) takes two values (train and val). The best cross-

validation methods used to examine a predictor are the independent dataset test, 

the subsampling test, and the jackknife test (Chou and Zhang, 1995).  The jack-

knife test has been increasingly used by researchers to examine the accuracy of 

various predictors (Chen and Li, 2007). In the present work, the independent data 

test is used by splitting the data at random in a training series (train, 50%) used 

for model construction and a prediction one (val, 50%) for model validation. A 10-

fold cross-validation test was carried out for the entire model. Due to the big dif-

ferences between the value ranges of the TIs, all the independent variables are 

standardized prior to model construction.  

The general QSDR formula contains embedded and non-embedded TIs from 

the left and right parts of the segments: 





p

ol

lRl

o

mk

kRk

m

nj

jLj

n

i

iLi TIecTIcTIecTIccEpSc
1

0 ,          (14) 

where EpSc is the continue score value for the epilepsy/non-epilepsy classifica-

tion, c1-cp are the L/RTI(e) coefficients and c0 is the independent term. We inspect-

ed the percentage of a good classification and the number of variables to be ex-

plored in order to avoid over-fitting or chance correlation. The Forward model 

type was tested for all the classifications and the simple linear mathematical form 

of the model has been chosen in absence of prior information. 

In addition, the EEG segments are used to create classification models based on 
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the Fourier transformed signals for Z versus S sets. The obtained frequencies are 

used as input for S2SNet application and a similar series of 92 TIs was calculated. 

The model is similar to (14): 

)()(

)()()(
1

0

FTTIedFTTId

FTTIedFTTIddFTEpSc
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











,                                       (15) 

where EpSc(FT) is the continue score value for the epilepsy/non-epilepsy classifi-

cation using the Fourier transformation filter, d1-dp are the L/RTI(e)(FT) coeffi-

cients  and d0 is the independent term. The results are compared in order to show 

the effect of the FT on the actual method based on SGTIs. The reported percent-

ages are accuracy (Ac), sensitivity (Se) and specificity (Sp) that measure the ratio 

of the number of total, epilepsy (or class 1) or non-epilepsy (or class 0) recordings 

correctly classified by the model with respect to the real classification. 

 

4 Results and discussion 

Thirty classification models were tested by using five types of grouping the Z, O, 

N, F, S sets (see Table 1), depending whether they correspond to the epilepsy sei-

zures or not in order to compare the results Tzallas et al. work (Tzallas et al., 

2007).  The aim is to find the best GDA equation able to discriminate between 

EEG recordings with and without epilepsy seizures. The attributes include 92 em-

bedded and non-embedded SGTIs obtained with S2SNet application. The values 

obtained for the 10-fold accuracies (Ac), selectivity (Se) and specificity (Sp) with 
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the Forward Stepwise method are presented in Table 2. The models were based on 

non-embedded, embedded and both groups of topological indices. 

Table 2 comes about here 

The best model was considered Z-S (C1 in Table 1) based on non-embedded 

SGTIs due to the practical reason of extracranial measurements, the small number 

of the equation indices (only three) and the high values of correctly classified 

compounds of 99.00%, 98.21% and 100% for the test accuracy, selectivity and 

specificity, respectively (Eq. 15). Details about the 10-fold classification values 

are shown in Table 2. 

001.0,99.224;10.0,95.0,200

*05.21*38.114*13.12018.0 50

0





pChiURcN

XXShEpSc RRR
,                           (16) 

where N is the number of cases (Z and S), Rc is the canonical regression coeffi-

cient, U is the Wilk’s statistics, Chi is the Chi-Square statistics and p is the p-level 

(probability of error). Rc value shows a high level of correlation between the input 

variables and the classification of EEG recordings. Wilk’s U is used to measure 

the statistical significance of the discriminatory power of the model and its values 

range from 1.0 (non-discriminatory power) to 0.0 (perfect discriminatory power). 

Chi shows the statistical significance in the discrimination between groups, a 

measure of the extent to which a variable makes a unique contribution to a predic-

tion of group membership. Thus, this model presents a high level of correlation 

between the input variables and the EEG recording classification (Rc=0.95), and 

can discriminate very well between the epilepsy seizure recordings and the non-
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seizure ones (U=0.10). The additional 10-fold cross-validation test showed an av-

erage of 99.30%, 98.61% and 100% for accuracy, selectivity and specificity, re-

spectively. Another model based on almost triple TIs (eight) can be obtained with 

small differences in the test selectivity and specificity of 99.90% and 99.80% 

(with the same accuracy). 

The quality of the best model for the C1 classification was tested by studying 

the receiver operating characteristic (ROC) curve (James A. Hanley, 1982) in or-

der to show that the classifier is not random; the training cases against the full set 

residuals to search for patterns and the robustness of the GDA model to the inter-

ferences were also verified. The ROC curve can estimate a different and better 

threshold for the a priori classification probability. Since the area under the ROC 

curve (1.00) is significantly higher than the area under the random classifier curve 

(0.5, diagonal line), the C1 model is not random, but a truly statistically signifi-

cant classifier. The mathematical form of the model has been chosen in absence of 

any prior information. Figure 3 shows that the training cases against the residuals 

did not present any characteristic pattern (Dillon and Goldstein, 1984). Due to the 

robustness of the GDA multivariate statistical techniques, the predictive ability 

and interference reached by using the proposed model should not be affected (see 

Figure 4). 

Figure 3 comes about here 

Figure 4 comes about here 

The results shown in Table 2 are typically considered as excellent in the litera-
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ture for LDA/GDA-QSAR/QSDR models (Castillo-Garit et al., 2008; Estrada and 

Molina, 2001; Marrero-Ponce et al., 2004; Morales et al., 2006; Vilar et al., 

2008b). The main models based on two classes (C1-C3) provide excellent results 

with 10-fold test accuracy, selectivity and specificity between 92% and 100%, 

with only one exception of 88.83% for the test selectivity in the case of the C3 

model based on non-embedded TIs. The grouping of all non-seizure EEG record-

ings (ZONF) versus the seizure set (S) gives rise to the possibility of a more gen-

eral classification based on embedded TIs with 10-fold test accuracy, specificity 

and selectivity of 98.20%, 95.24% and 98.95% respectively. 

In the case of indirect models, due to the mixture of seizure and non-seizure 

cases, there is a significant difference between all TI models and the non-

embedded and embedded ones (maximum 14%), with 10-fold test accuracy values 

from 83.93 to 99.73% (see details in Table 2). The set consisting of all TIs has 

been used to generate three GDA models that can indirectly discriminate between 

three classes of EEG recordings. In the case of the Z-N-S classification (C4) the 

following equations can evaluate the probability of EEG recording to be classified 

as Z, N or S: 

- ZN-S classification (C4.1) with test accuracy, selectivity and specificity 

values of 99.33%, 98.00% and 99.33% respectively: 

        

001.0,63.563;02.0,99.0,300

*79.16*13.280*41.537

*13.54*00.179*15.46

*45.12*10.6287.51

452

1

5
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
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,                                      (17) 
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- NS-Z classification (C4.2) with test accuracy, selectivity and specificity 

values of 94.67%, 98.00% and 93.00% respectively: 

        
001.0,05.179;29.0,84.0,300

*15.126*33.0*34.1231.2





pChiURcN

JeSHEpSc RRR
,                         (18) 

- ZS-N classification (C4.3) with test accuracy, selectivity and specificity 

values of 96.00%, 92.00% and 98.00% respectively: 

        

001.0,42.233;20.0,90.0,300

*27.9*22.3

*64.366*85.69*15.55

*49.2*51.9*79.3071.3
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,                                 (19) 

The 10-fold values for the training, validation (test) and both sets are presented in 

detail in Table 2. The final evaluation is given by the maximum probability of 

classification for all three equations as Z, N or S. 

Additional calculations have been made in order to study how the Fourier trans-

formation of the EEG recordings has an influence on the case of the star graph 

based method. Thus, after the transformation of the original EEG signals in fre-

quencies, the SGTIs have been calculated for the logarithmically transformed am-

plitudes. The best model with the Forward stepwise method is based only on the 

non-embedded SGTIs and it has accuracy, selectivity and specificity values of 

90.00%, 92.45% and 87.23% respectively: 

001.0,33.107;32.0,82.0,200

)(*98.0

)(*37.38)(*19.27)(*81.13

)(*61.4)(*82.118.0)(

5

2
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
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FTJFTSFTW

FTHFTTrFTEpSc

 ,                                            (20) 
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These results are significantly lower than the models without Fourier transfor-

mation and demonstrate that there is no need to use it in the case of the star graph 

method applied to this set of EEG recordings. 

The accuracy of our best models that can discriminate between the seizure and 

non-seizure EEG recordings (Z-S and ZONF-S) is at least equal to the previous 

ones in the literature and even better than other methods (see Table 3). In the case 

of the ZO-NF-S composed model, the accuracies are better than the previous ones 

(Tzallas et al., 2007) for the all the TI models and visibly poor for the models 

based only on the non-embedded or embedded TIs. 

Table 3 comes about here 
 

5   CONCLUSION 

This study proposes epilepsy/non-epilepsy seizure classification models for EEG 

recordings by using the star graph topological indices of the signal sequences. The 

results prove an excellent predictive ability of using a small number of star graph 

TIs and the simplest and fastest GDA statistics linear models. In addition, it was 

demonstrated that for better results it is not necessary to Fourier transform the ini-

tial data in frequencies. 

This method is completely deterministic, i.e., once the training and test sets 

have been defined, the model is built from the training set without any random 

process. Therefore, a training set will always generate always the same model. 

This is an advantage of other machine learning systems, such as ANNs, because a 
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validation set is not required, and there is no need to repeat the experiment many 

times in order to average the results due to the stochastic nature of the system. 

This work can be useful in the automatic detection in practice of epilepsy sei-

zures and breaks new ground in applying the same methodology to other signal 

classification in neurology or other fields.  

6   FUTURE WORK 

The next directions of graph application on medical spectra are the use of different 

type of graphs such as the lattice and spiral ones, the improvement of the input 

data with other spectra derived variables such as the mixed variables and solving 

other similar problems for spectra diseases such as schizophrenia or Alzheimer. 

The model presented here uses a Linear Discriminant Analysis method for classi-

fication. Following the same line, further work could be done by using different 

classification methods to test the performance of the features extracted from the 

signals. For instance, Artificial Neural Networks or Support-Vector Machines 

could be used to carry out the classification. 

Since user-friendly and publicly accessible web-servers represent the future direc-

tion for developing practically more useful models, simulated methods, or predic-

tors(Chou and Shen, 2009b), we shall make efforts in our future work to provide a 

web-server for the method presented in this paper. 
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FIGURE LEGENDS 

Figure 1. The flowchart of the proposal method based on star graph topological 

indices classification models. L and R are the left and right parts of the 

initial EEG recording. 

Figure 2. Example of the S2SNet transformation of a small EEG recording frag-

ment into embedded and non-embedded star graph topological indices 

by using only seven groups/value ranges. 

Figure 3. Training cases against the residuals for the full set (C1 classification, Z 

vs. S, normal eyes open vs. seizure). 

Figure 4. Residuals vs. deleted residuals plot for the GDA model in the case of 

the classification C1 (Z vs. S, normal eyes open vs. seizure). 
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TABLE LEGENDS 

Table 1. The classes with the EEG segments of the five classification problems. 

Table 2. 10-fold performance of the gda-based classification models on training, 

validation and total sets. 

Table 3. The comparison of the results of the actual work and previous ones. 


