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Abstract: An accurate short-term load forecasting (STLF) is one of the most critical inputs for power
plant units” planning commitment. STLF reduces the overall planning uncertainty added by the
intermittent production of renewable sources; thus, it helps to minimize the hydrothermal electricity
production costs in a power grid. Although there is some research in the field and even several
research applications, there is a continual need to improve forecasts. This research proposes a
set of machine learning (ML) models to improve the accuracy of 168 h forecasts. The developed
models employ features from multiple sources, such as historical load, weather, and holidays. Of
the five ML models developed and tested in various load profile contexts, the Extreme Gradient
Boosting Regressor (XGBoost) algorithm showed the best results, surpassing previous historical
weekly predictions based on neural networks. Additionally, because XGBoost models are based on
an ensemble of decision trees, it facilitated the model’s interpretation, which provided a relevant
additional result, the features” importance in the forecasting.
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1. Introduction

The electric power system operation is a continuous work that requires real-time
coordination from the power plants to distribution substations to operate within a secure
range and conclusively deliver the electricity service with quality and without interruptions.
Before the real-time operational job arrives, planning should be done to consider the
renewable energy production sources’ behavior, the power plants and grid maintenance,
and weight the hydrothermal resources, so the electricity production meets a projected
demand. This real-time balance between energy generation and load should be sustained
to avoid damages to the grid [1].

A power system operation’s planning time scope can be decomposed into three frames,
and each of these frames focuses on specific tasks [2]: short-term, mid-term, and long-
term. The short-term timeframe goes from 1 day to 1 week, focusing more on the power
system’s operational and security aspects. The mid-term timeframe typically considers
several weeks to several months, focusing more on managing the production resources and
avoiding the energy deficits with the existing power plants. Consequently, the long-term
timeframe focuses on years to decades, intending to define the installation of new power
plants or changes on the transmission system. These criteria can vary from region to region;
nevertheless, the concept should remain.

Generic and multi-site electricity demand data is difficult to obtain. Since the authors
are familiar with Panama’s electricity infrastructure and because Panama makes its elec-
tricity load data publicly available, the authors decided to use the Panama electricity load
data to build the models. In Panama, the National Dispatch Center (CND) is in charge
of the power system planning and operation. According to CND methodologies [3], the
goal of forecasting with an acceptable level of deviation is to anticipate and supply the
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demand with minimum costs. Short-term forecasting (following week) is needed to cover
security aspects in the electrical system operation. As stated in the short-term and mid-term
methodologies [3], CND does this forecast planning every week. For short-term scheduling,
CND uses an hourly basis optimization software [4]. This optimization tool solves the
weekly minimal dispatch cost, and it requires data about the load forecast, the power
plants, and the power grid on an hourly basis. CND is currently using the Nostradamus
tool by HITACHI ABB [5] to forecast the hourly load and feed the short-term optimization
tool, to plan the following week’s hourly dispatch [6].

This research focuses mainly on predicting the short-term electricity load: this fore-
casting problem is known in the research field as short-term load forecasting (STLF), partic-
ularly, the STLF problem for the Panama power system, in which the forecasting horizon is
one week, with hourly steps, which is a total of 168 h. An accurate STLF will help reduce
the planning uncertainty added by the intermittent electricity production from renewable
sources. Afterward, it will determine the optimum opportunity costs for hydro-electrical
power plants with reservoirs. Consequently, an efficient thermal power plant dispatch can
be achieved by minimizing the unit commitment production-transmission costs for the
power system [7,8]. Ultimately, the operational costs associated with dispatching the best
set of power plants in real-time dispatch will also be reduced.

The electricity consumption patterns evolve, and new machine learning (ML) ap-
proaches are emerging, motivating the exploration to update the forecasting tools with the
most efficient and robust methods to minimize errors. In this sense, the current research
aims to develop better STLF models. The models will be evaluated with the Nostradamus’
historical weekly forecasts for Panama’s power grid to benchmark the models” performance
against the Nostradamus forecasts in an effort to show that it is possible to improve the
168 h STLEF. This research’s dataset includes historical load, a vast set of weather vari-
ables, holidays, and historical load weekly forecast features to compare the proposed ML
approaches and achieve the above-declared objectives.

The Extreme Gradient Boosting Regressor (XGBoost) algorithm showed the best per-
formance from the ML algorithms set, surpassing the historical weekly forecasts predicted
by an artificial neural network (ANN) tool and providing information about features’
importance.

In addition to this introduction, this paper includes a section with a literature review
on the STLF field, followed by a section with the materials and methods employed. Results
are presented and discussed in the following section. Finally, the last section presents the
conclusions along with limitations and future works recommendations.

Literature Review

The short-term electricity load forecasting is implemented to solve a wide range of
needs, providing a wide range of applications. The most evident difference between
research is the load scale, from a single transformer [9] to buildings [10], to cities [11],
regions [12], and even countries [13]. The second most crucial distinction among the
research field is the forecasting horizon. Varying from very short-term applications, like
forecasting the next 900 s for machine tools [14], moving to a few hours [15], predicting the
day-ahead, which is the most common [16], and 48 h ahead [17], to weekly forecasts [18].
The forecasting granularity also varies among the research field. Having granularities
from 15 or 30 min, but most of the approaches consider hourly granularity forecasting.
Despite the variety of forecasting applications, the current research will focus on covering
implemented methodologies, chosen variables, algorithms, and evaluation criteria, since
the forecast success will heavily depend on the decisions made through these development
stages.

A wide variety of methodologies and algorithms have been implemented to address
STLF. From the most straightforward persistence method, proposed in Reference [19],
which follows the basic rule of “today equals tomorrow”, until the most recent deep
learning algorithms, as exposed in the review article of Reference [20]. In this article, the
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authors compare traditional ML approaches with deep learning methods on the electricity
forecasting field and the most trending algorithms in Scopus-indexed publications from
2005 to 2015.

Time-series analysis is considered one of the most widely discussed forecasting
methodologies in which the Box-Jenkins and Holt-Winters procedures are extensively
used. For example, the authors of Reference [21] used those methods to forecast the weekly
load for Riyadh Power System in Saudi Arabia, concluding that these approaches give
insights to decompose the electric load forecast. The autoregressive integrated moving
average (ARIMA) model is proposed to forecast the next 24 h in Iran [22]. This modified
ARIMA combines the estimation with temperature and load data, producing an enhance-
ment to the traditional ARIMA model. The ARIMA model by itself does not significantly
improve the forecast accuracy and is computationally more expensive, demonstrating the
need to complement these models with external inputs to enhance the results.

Overall, in most recent research, these models are less used for electricity STLF since
ML methods provide better results, as demonstrated in References [23,24], and more
recently in Reference [25]. Particularly, in this last cited study, the authors compare the
performance of six classical data-driven regression models and two deep learning models
to deliver a day-ahead forecast for Jiangsu province, China, concluding that the ARIMA
model had several limitations to solve the STLF problem. First, it can only consider
time-series data to forecast based on the electrical load. Second, the determination of the
model order is either computationally expensive or empirical. Lastly, to make residuals
uncorrelated, several trials are required. At the same time, autocorrelation function (ACF)
and partial autocorrelation function (PACF) graphs need to be iteratively checked to tune
the model.

In contrast with the classical statistical time-series models, ML models can handle more
valuable factors, such as weather conditions, to improve the STLF accuracy. Multiple linear
regression (MLR) has been widely used for STLE For example, the authors of Reference [26]
used it to forecast the hourly weekly load in Thailand, obtaining an average mean absolute
percentage error (MAPE) of 7.71% for 250 testing weeks and pointing out that temperature
is a primary factor to predict load. Similarly, the authors of Reference [13] utilized MLR
to forecast electricity consumption 24 h ahead for 14 west-African countries, considering
weather variables like temperature, humidity, and daylight hours. The researchers that
have implemented MLR agreed on the fast training and interpretability this model offers,
although it shows poor performance for irregular load profiles.

Another approach that has been widely used for STLF during the last decades is the
artificial neural network (ANN), mainly due to the algorithm flexibility. For example, in the
2006 study of Reference [10], an ANN is proposed with a Levenberg-Marquardt training
algorithm to forecast hourly, daily, and weekly load in Ontario, Canada, presenting good
results without comparing with other algorithms. Furthermore, the authors of Reference [9]
predicted a single transformer hourly load, using quarter-hour load records and weather
data with hourly records, obtaining a MAPE performance below 1% with ANN for summer
and winter seasons. In more recent research, the authors of Reference [27] apply STLF for
urban smart grid systems in Australia, commenting that ANN has good generalization
ability for the task. However, this approach still has many disadvantages such as quickly
falling into a local optimum, over-fitting, and exhibiting a relatively low convergence rate.
Nevertheless, forecasting smart grid loads with increasing renewable energy sources is
challenging and deserves complex solutions to obtain good results.

The support vector regression (SVR) model is another popular model for STLF, mainly
with a linear kernel, due to the linearity between the inputs and the forecast, as concluded
by the authors of Reference [25], who obtained a MAPE under 2.6% for the day-ahead
prediction, performing better than MLR and multivariate adaptive regression splines. Sim-
ilarly, the authors of Reference [17] proposed forecasting the 48 h of Portuguese electricity
consumption by using SVR as a better alternative after previously submitting the ANN'’s
use for the same task in Reference [28]. The main reason for preferring SVR was the
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efficiency of the hyperparameter tuning on the daily online forecast. The SVR achieved a
MAPE between 1.9% and 3.1% for the first-day forecast and between 3.1% and 4% for the
second day. A variant of SVR is compared against ANN by the authors of Reference [29]
to forecast the south-Iranian day-ahead hourly load. They proposed the nu-SVR, which
improves upon SVR by changing the algorithm optimization problem and automatically
allowing the epsilon tube width to adapt to data. They evaluated both models for each
season: the average MAPE was 2.95% for nu-SVR and 3.24% for ANN.

The random forest (RF) ensemble technique combines independent learners to im-
prove the overall model forecasting ability. The research presented in Reference [30]
took advantage of this principle to forecast the day-ahead hourly consumption in office
buildings. They used many ensemble algorithms, with RF being one of them, including
environmental variables such as temperature and humidity and lagged load records to
improve the results. Finally, they obtained a 6.11% MAPE for RF.

Similarly, the authors of Reference [31] submitted a comparative study between many
models to forecast smart buildings’ electricity load. ARIMA, Seasonal ARIMA (SARIMA),
RE and extreme gradient boosting (XGB) were on this set of models. Their experiments
demonstrated that RF showed decent results, but XGB outperformed the other methods,
concluding that XGB gives better accuracy and better performance in terms of execution
time. The study from Reference [32] compares RF solely with XGB to forecast the next 24 h
load and concludes that XGB, as an emerging ensemble learning algorithm, can achieve
higher prediction accuracy, producing a root mean squared error (RMSE) of 3.31 for RF
and 2.01 for XGB.

The authors of Reference [33] suggest using XGB, including weather variables and
historical load, to forecast the hourly weekly load of a power plant. A remark is made on
the complexity of the XGB hyperparameter phase. For this reason, the fireworks algorithm
is proposed as a solution to obtain the global minimum on the hyperparameter space,
and for instance, getting a more accurate load forecast. STLF for holidays is one of the
most challenging tasks within the field due to their irregular load profile, though, in
Reference [16], the authors argue that there are many matured predictive methods for
STLF such as SVR, ANN, and deep learning (DL). However, those methods have some
issues: SVR is not robust to outliers, ANN has the weakness of setting the correct number
of hidden layers or can be easily trapped into a local minimum, and DL approaches require
massive high-dimensional datasets for good performance. XGB lacks these issues and
outperforms the others for solving STLF. Their results are based on averaging the daily
profile curves for similar holidays plus the use of XGB, where this averaging plus XGB
outperforms RF, SVR, ANN, and even the sole-use XGB.

Despite the good XGB performance, some authors recommend training the model
based on similar days to enhance the forecast [34,35]. A comparison between a traditional
XGB and the similar days XGB is demonstrated in Reference [34]. The similar days approach
showed a noticeable improvement, emphasizing that the accurate selection of similar days
will directly affect the STLE.

Because XGB provides the feature importance property, the authors of Reference [36]
proposed a hybrid algorithm to classify similar days with K-means clustering fed by XGB
feature importance results. Once the classification is done, an empirical mode method
is used to decompose similar days’ data into several intrinsic mode functions to train
separated long short-term memory (LSTM) models, and finally, a time-series reconstruction
from individual LSTM model predictions. This hybrid model using LSTM performed
better for STLF over 24 and 168 h horizons, after comparing with ARIMA, SVR, or a
back-propagation neural network using the same similar day approach as initial input.

The authors of Reference [37] proposed a multi-step-ahead forecasting methodology
using XGB and SVR to forecast hourly heat load, where a “direct” and “recursive” forecast-
ing strategy are compared. The direct method involves an independent model to predict
each period on the forecasting horizon, while the “recursive” method considers a unique
model that iterates one step at a time over the forecasting horizon, using the previous
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predicted steps as an input variable for the following forecasting step. Performance is
the main disadvantage of the direct strategy because it needs to train as many models
as desired periods to forecasts. The recursive strategy is sensitive to prediction errors,
meaning that prediction errors will propagate along the forecasting horizon.

A study to forecast the 10-day streamflow for a hydroelectric dam used a decomposition-
based methodology to compare XGB and SVR [38]. In this study, the streamflow time-series
were decomposed into seven contiguous frequency components using the Fourier Trans-
form. Then, each component was forecasted independently by the SVR or XGB. The study
results showed that SVR outperformed XGB in terms of evaluation criteria through the
Fourier decomposition methodology.

Another solution joining ANN with ensemble approaches is presented in Refer-
ence [39], where the authors seek to improve ANN generalization ability using bagging-
boosting. When training ensembles of ANNs in parallel, each ensemble uses a bootstrapped
sample of the training data and consists of training the ANNs sequentially, and this method
reduces the STLF error but increases the computational time because of the several training
procedures. Alternatively to training several ANN sequentially, the authors of Refer-
ence [40] propose an evolutionary novel optimization procedure for tuning an ANN. For
instance, avoiding the issues related to ANN tuning like overfitting and selecting the
best ANN architecture. Their results achieved a 4.86% MAPE. Based on the results from
References [10,36], ANN for STLF can outperform other forecasting methods if a robust
hyperparameter optimization is performed to avoid the issues related to ANN tuning.

Recurrent neural networks (RNN) are taking an important place in the STLF field from
all neural network approaches, especially LSTM. Contrary to standard feedforward neural
networks, LSTM feedback connections are beneficial to deal with time-series forecasting
applications. An example of forecasting the next 24 h load from a smart grid, comparing
LSTM results with a back-propagation ANN and SVR, demonstrates that LSTM can offer
a MAPE of 1.9% against 3.3% from ANN and 4.8% of SVR [41]. Similarly, the authors of
Reference [42] address the STLF for a furniture company with a method based on a multi-
layer LSTM and compare it to other models like ARIMA, exponential smoothing, k-nearest
neighbors regressor, and ANN. Moreover, their results showed that LSTM performed
better in both RMSE and MAPE, followed by SVM and ANN. According to Reference [43],
deep learning methods have a superior performance in electricity STLE. However, the
potential of using these methods has not yet been fully exploited in terms of the hidden
layer structures. For this reason, they evaluate deep-stacked LSTM with multiple layers
for both unidirectional LSTM (Uni-LSTM), bidirectional LSTM (Bi-LSTM), and SVR as the
baseline. Their results showed that Bi-LSTM returned a MAPE of 0.22% against MAPE
scores above 2% for Uni-LSTM and SVR.

The hybridization of the successive geometric transformations model (SGTM) neural-
like structure is another promising approach for STLF, as used in Reference [44] to predict
Libya’s solar radiation. This approach demonstrated a higher accuracy than MLR, SVR, RF,
and multilayer perceptron neural network, besides having a faster training time due to the
non-iterative training procedure.

2. Materials and Methods

Regarding the hardware and software, this research was developed in a computer
with an i5-9300H processor and 8 Gigabytes of RAM. Colab [45] hosted Jupyter notebooks
service. All the experiments were developed with Python [46].

2.1. Data Sources, Data Extraction, and Data Preparation

All data sources to develop this research are publicly available, and the data is available
in hourly records from January 2015 until June 2020. The data composition is the following:

1. Historical electricity load, available on daily post-dispatch reports [47], and historical
weekly forecasts available on weekly pre-dispatch reports [48], both from CND.
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2. Calendar information related to holidays, and school period, provided by Panama’s
Ministry of Education through Official Gazette [49] and holidays websites [50].

3. Weather variables, such as temperature, relative humidity, precipitation, and wind
speed, from three main cities in Panama, are gathered from EarthData satellite
data [51].

The load datasets are available in Excel files on a daily and weekly basis, with hourly
granularity. Holidays and school periods data is sparse, along with websites and PDF files.
These periods are represented with binary variables, and date ranges are manually inputted
into Excel files. Both Excel datasets are imported and converted into data frames [52].
Weather data is available on daily NetCDF files, which can be treated with netCDF [53]
and xarray [54] to select the desired variables and subsequently merge all the datasets into
a unique modeling dataset.

Finally, the results of these steps are a time-series with the historical forecast along
with its date-time timestamp as the index, and a data frame with the same timestamp
index and 15 columns, one for each of the following variables in Table 1. Both objects have
48,048 records.

Table 1. Variables’ description and units of measure.

Variable Description Unit of Measurement
National load National glectricity load, MWh
excluding exports
Holiday Holiday binary indicator -
School School period binary indicator -
Temp. 2m Air temperature at 2 m °C
Hum. 2 m Specific humidity at 2 m %
Wind 2m . Wind speed at 2 m m/s
Precipitation ¢ Total precipitable liquid water 1/m?

Load Forecast Historical natlpnal load MWh
forecast, excluding exports

Sub-index c stands for city, meaning that these variables are available for David, Santiago, and Panama City.

There are no missing values on the datasets, and an initial outlier’s revision was made
by normalizing each variable. Only a few low values on the load were detected due to
hourly blackouts and damages in the power grid, but all records were kept.

The set of variables used to train the ML models, also called features, are treated
in this section. New variables related to the date-time index are created to feed the ML
models with this extra information about time, with this being one of the most critical steps
for STLF [22,48]. The new features added to the datasets are year, month number, day of
the month, week of the year, day of the week, the hour of the day, the hour of the week,
and a weekend indicator. Since all are integer variables, except for the binary weekend
indicator, it is essential to clarify that Saturday is considered the first day of the week. For
instance, the first week of each year is the first complete week starting on Saturday, and
this is respected to keep the CND reports calendar structure for further comparisons.

Load weekly lags, load weekly moving average (LMA), and weekly moving standard
deviation features were newly calculated features that helped capture the most recent load
changes [30], keeping the hourly granularity. These were calculated from the immediately
preceding week until the fourth week, adding 12 more features to the current dataset.

The decision of which variables should be used to train the ML models is criti-
cal to obtain good results. This process, known as feature selection (FS), also reduces
computation time, decreases data storage requirements, simplifies models, evades the
curse of dimensionality, and enhances generalization, avoiding overfitting [55]. For
these reasons, several FS techniques were performed along with the STLF state-of-the-
art [7,22,50]. The explored FS techniques were: feature variance, correlation with the
target, redundancy among regressors [56], and feature importance [57], according to the
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default models multiple linear regression, decision tree regressor, random forest regres-
sor, and extreme gradient boosting regressor. After having 35 regressors and a defined
target, the FS analysis showed that 13 regressors would significantly contribute to the
forecast. Given an hour, &, to forecast the load, L, at this hour, L;, and denoting lags in
historical load by Lj_;, where i remains in the hourly granularity, the best regressor is
expressed as: Lh7168/ th336/ Lh7504/ Lh7672/ LMAhflég, LMAh,336, month_of_the_yearh,
day_of_the_weeky, weekend_ indicatory, holiday_indicatory, hour_of_the_day;,, tempera-
ture _2m_in_Panama_cityy, and rel_humidity_2m_in_Panama_cityy,, with temperature be-
ing the most important weather variable due to its positive relationship with electricity
load [58], as illustrated in Figure 1. This figure shows the typical load range, from 800 to
1600 MWHh, and a temperature range between 23 and 35 °C. The dashed line identifies the
linear equation: Ly, = 74.8 temperature_2m_in_Panama_city;, — 867.5, which indicates that
a 1 °C increase in temperature represents a 74.8 MWh electricity demand increase.

24 26 28 30 32 34 36
Temperature in Panama city (°C)

Figure 1. National electricity load vs. temperature in Panama City.

2.2. Modeling

Before splitting the data into training and test datasets, the hourly records at the
beginning and the end of the horizon are dropped if they do not belong to a complete 168 h
weekly block for consistency on training, validation, and testing. After this, 284 weeks
are available with hourly records. The dataset is split into train and test, keeping the
chronological records. Records are sorted by date-time index, always leaving the last week
for testing and the remaining older data for training. Based on this logic, there are 14 pairs
of train—test datasets selected. Twelve pairs, having a testing week for each month of the
last year of records before the 2020 quarantine started (due to the COVID-19 pandemic),
and two more after the quarantine began. To note, the official lockdown in Panama began
on Wednesday, 25 March of 2020 (week 12—2020) [59]. These criteria test the models under
regular and irregular conditions since the quarantine period presented a lower demand
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with atypical hourly profiles. The selected testing weeks also included typical days and
holidays to test the models on different conditions throughout the year.

Studies have shown that many decision-makers exhibit an inherent distrust of au-
tomated predictive models, even if they are proven to be more accurate than human
forecasters [60]. One way to overcome “algorithm aversion” is to provide them with
interpretability [61]. For these reasons, the current research explores a set of candidate
ML models that have been proven as forecasters within the STLF state-of-the-art, but also
models that can offer a certain level of interpretability.

The candidate ML models considered in this research are multiple linear regression
(MLR), k-nearest neighbors regressor (KNN), epsilon-support vector regression (SVR),
random forest regressor (RF), and extreme gradient boosting regressor (XGB). All these
estimators were executed using a pipeline with a default Min—-Max scaler as the first step.
These ML models, the pipeline structure, and the scalers were from sci-kit learn [62], except
for XGB [63].

MLR uses two or more independent variables to predict a dependent variable by
fitting a linear equation. This method’s assumptions are that: the dependent variable and
the residuals are normally distributed, there are linear relationships between the dependent
and independent variables, and no collinearity should exist between regressors. Since
MLR can include many independent variables, it can provide an understanding of the
relationships [55], but it presents the disadvantage of being sensitive to outliers.

KNN is not typical for STLE. Nevertheless, their results can be interpreted, and some
researchers used it as a baseline model [64]. The KNN method searches for the k most
similar instances; when the k most similar samples are found, the target is obtained by
local interpolation of the targets associated with the k found instances [42]. The main
disadvantage of this method is that it tends to overfit, and it has few hyperparameters to
change this situation.

SVR is a regression version of the support vector machine (SVM), which was initially
designed for classification problems [65]. In contrast to ordinary least squares of MLR,
the objective function of SVR is to minimize the L2-norm of the coefficient vector, not the
squared error. The error term is then constrained by a specified margin ¢ (epsilon). SVR
is frequently used for STLF with the linear [25] or radial basis function (RBF) kernel [66],
identifying load patterns better than other linear models [67].

RF is an ensemble learning method with generalization ability. It fits many decision
trees on various sub-samples of the dataset and uses averaging to improve the forecast and
avoid over-fitting. For these reasons, it seems suitable for STLF, but the few researchers
that consider this model have demonstrated a weak performance on their results [28,68].

XGB is another ensemble ML algorithm, based on the gradient boosting library, but
enhanced and designed to be highly efficient, flexible, and portable [65], providing a
forward stage-wise additive model that fits regression trees on many stages while the
regression loss function is minimized [69]. Due to its recent development, XGB is not
a matured STLF method [16]. Nevertheless, researchers are starting to use it, showing
outstanding performances against traditional methods [29,30].

Once the training and testing week pairs were defined, models were trained with the
earliest train—test pair, following the forward sliding window approach [70] for time-based
cross-validation [71]. The idea for time-based cross-validation is to iteratively split the
training set into two folds at each step, always keeping the validation set ahead of the
training set. This process of defining folds, training the model, predicting the validation
fold, and evaluating the model performance while changing hyperparameters and moving
the training /validation sets further into the future is illustrated in Figure 2. The sliding
window characteristics are 149 weeks (2.8 years) for training/validation. Within those,
64 are validation weeks, excluding the last 72 h from each validation fold to comply with
the three-day unknown gap when forecasting the weekly demand on real conditions;
finally, the forward step on the training/validation process is one week.
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Figure 2. Sliding window time-based cross-validation.

The hyperparameter tuning was performed using the sci-kit learn package with the
sliding window attributes with randomized search and grid search cross-validation [63].
First, a randomized search was conducted to explore a vast hyperparameter space. A grid
search was then conducted to explore a finer hyperparameter space based on the random-
ized search results. This two-step approach [14] attempts to find a global optimum without
digging through all the hyperparameter grids in the first step, reducing computational
time, and refining the result by searching the second step.

The hyperparameter search results are shown in Table 2, except for MLR, which does
not possess a hyperparameter space to enhance the predictions. The absent parameters
were considered with their default value. As exposed in the Results and Discussion
Section, XGB demonstrated the best performance. For this reason, only a description of
these parameters will be addressed. For the ‘eval_metric’ parameter, ‘rmse” was the most
suitable option to penalize large errors. The default ‘gbtree” booster was kept to take
advantage of the generalization ability of the ensemble of trees instead of the weighted
sum of linear functions provided by ‘gblinear’. The ‘n_estimators’ is the number of
iterations the model will perform, in which a new tree is created per iteration. For this
reason, values above hundreds of trees are considered to make a sizeable iterative process
that can adapt to the problem. The ‘max_depth” parameter was kept with low values
to avoid overfitting by training weak tree learners. The ‘learning_rate” had the most
extensive search to adapt the hyperparameter search during each boosting step, preventing
overfitting. The parameters ‘subsample’, ‘colsample_bytree’, ‘colsample_bynode’, and
‘col_sample_bylevel’ were reduced to provide generalization ability to the model, restricting
the training process with sub-samples of the data. A range of larger values and the default
zero were explored for ‘gamma’, to control partitions on the leaves’ nodes, making the
algorithm more conservative. Similarly, because ‘min_child_weight” controls the number
of instances needed to be in each node, for this reason, values above the zero-default setting
were explored.

This research addresses many evaluation metrics to systematically evaluate the ML
models” performance, including the traditional metrics for ML forecasting, RMSE, and
MAPE, as well as other specific metrics for STLE. Where MAPE and RMSE metrics express
the average model prediction error, both metrics can range from zero to infinity and
are indifferent to the direction of errors, with MAPE being easier for interpretation and
comparison, and RMSE having the benefit of penalizing large errors. The rest of the metrics
focus on the weekly deviation of the forecasts, evaluating the highest load “Peak”, the
lowest load “Valley”, and the sum of the 168 load periods “Energy”. All those metrics are
negatively oriented, which means that lower values are better. These evaluation metrics
and their formulation are listed in Table 3. A is a weekly set of actual hourly load values, F
is a weekly set of forecasted hourly values, and subindex & stands for a specific hour. For
this research, all testing sets were whole weeks with 168 h, so n is 168.
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Table 2. Hyperparameter space search and results.

Model Hyperparameter Randomized Search RS 1 Selection Grid Search GS 2 Selection
n_neighbors (3,6,9,12, 15,18, 21, 24,27) 29 (23, 26, 29, 32, 35) 29
KNN weights (uniform, distance) distance (distance) distance
metric (minkowski, euclidean, manhattan) manhattan (manhattan) manhattan
leaf_size (5,15, 25, 35) 35 (29, 32, 35, 38, 41) 29
kernel (linear, rbf) rbf (rbf) rbf
SVR epsilon (0.0001, 0.3), step 0.01 0.0701 (0.03505, 0.09113), step 0.01402 0.03505
C (0.01, 0.1, 1, 10, 100) 100 (50, 70, 90, 110, 130) 50
tol (0.001) 0.001 (0.001) 0.001
criterion (mse) mse (mse) mse
n_estimators (50, 100, 150, 200) 200 (200) 200
RF max_samples (0.5,0.6,0.7,0.8,0.9) 0.5 0.5) 0.5
max_depth (10, 20, 30, 40, 50) 40 (20, 35, 50, 65) 35
ccp_alpha (5 x 1077 0.01), step 0.0005 0.0095005 (0.0094, 0'0%931&())104’ 0.0109, 0.0094
random_state (123) 123 (123) 123
eval_metric (rmse) rmse (rmse) rmse
n_estimators (100, 150, 200, 250, 300, 350, 400) 300 (300, 310, 320) 300
max_depth (3,5) 5 5,7,9) 7
subsample (0.6,0.7,0.8,0.9) 0.8 (0.7) 0.7
colsample_bytree (0.7,0.8,0.9, 1.0 0.9 (0.7,0.75) 0.7
XGB colsample_bylevel (0.7,0.8,0.9,1.0) 1.0 0.7) 0.7
colsample_bynode (0.7,0.8,0.9,1.0) 0.8 (0.7,0.75) 0.7
learning_rate (0.0001, 0.2501), step 0.05 0.0501 (0.05, 0.045) 0.045
min_child_weight (1,3,5,7) 7 7) 7
gamma (0,5,10, 15) 15 (15) 15.00
random_state 123 123 (123) 123
! RS stands for randomized search. 2 GS stands for grid search.
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Table 3. Evaluation metrics.

Metric Definition Equation Unit
MAPE mean absolute percent error MAPE — % i ‘ AhA—Fh ’ % 100% %
h=1' "
RMSE square root of mean square error RMSE = |1 i (A — Fh)z MWh
n
h=1
max(A)—max(F) o
Peak peak load absolute percent error Peak — - « 100% Yo
max
Valley valley load absolute percent error Valley = min(A_)_(I:)in(F) % 100% %
min
Energy energy absolute percent error Energy = 7275:15‘,,”7%;:1 Bl % 100% %
h=141h

3. Results and Discussion

The overall hourly evaluation along the 14 testing weeks is displayed in Figure 3,
showing the MAPE and RMSE error distributions with box-whiskers plots by ML candidate
model and the historical weekly pre-dispatch forecast. The lower end of each boxplot
represents the 25th percentile, the upper end shows the 75th percentile, and the central
line depicts the 50th percentile or the median value. In this case, the lower whiskers are
zero for all forecasts. In contrast, the upper whiskers represent the upper boundaries for
errors distribution, calculated as 1.5 times the inter-quartile range plus the 75th percentile
value. The values outside these boundaries are considered outliers, which means large
errors. A statistics summary to complement the error’s distribution is shown in Table 4.

35
30 —5
°
25 a0
& 3
== 20 g =
> § o g 3
< 15 g
s
10
5
0
KNN RF Predispatch
MIR SVR XGB
(a)
500
450 =
400 =
= 350 —8
é 300
= 250 2
£ 200 g
= 0
= 150
100
50 ¢|
0
KNN RF Predispatch
MLR SVR XGB

(b)

Figure 3. Box-whisker plots for each candidate model and the pre-dispatch load forecast: (a) MAPE
evaluation results, (b) RMSE evaluation results.
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Table 4. Errors distribution by model, by metric. SD = standard deviation, Perc. = percentile.

Model Metric Mean SD Min. 25th 50th 75th Max.
Perc. Perc. Perc.
MAPE 4.95 3.88 0.00 1.90 4.10 7.00 22.30
RMSE 59.20 44 .45 0.00 23.13 49.50 85.80 224.60
Pre-Disp. Peak 2.76 2.19 0.10 0.70 2.40 4.30 7.10
Valley 4.48 3.02 0.30 2.10 4.15 5.90 11.90
Energy 2.81 2.06 0.60 1.40 2.20 3.10 8.20
MAPE 443 3.91 0.00 1.60 3.50 6.10 29.00
RMSE 53.97 49.66 0.00 19.40 42.45 73.45 431.40
MLR Peak 2.74 2.16 0.50 1.40 1.70 3.48 7.90
Valley 4.50 3.27 1.00 2.35 2.85 6.00 12.50
Energy 1.87 1.53 0.10 0.93 1.35 2.48 5.80
MAPE 4.56 3.41 0.00 1.90 3.80 6.50 18.30
RMSE 54.63 41.68 0.00 23.10 45.30 78.00 225.40
KNN Peak 5.19 2.48 0.20 3.78 5.35 6.20 11.40
Valley 291 2.37 0.50 0.98 2.25 4.80 8.20
Energy 2.66 1.79 0.40 1.25 2.30 3.90 7.40
MAPE 4.08 3.41 0.00 1.50 3.25 5.60 20.40
RMSE 49.82 42.25 0.00 18.83 39.85 67.90 260.30
SVR Peak 3.43 1.92 0.40 1.78 3.80 4.23 8.20
Valley 4.38 2.73 0.80 2.13 3.85 6.33 10.80
Energy 2.18 1.78 0.10 0.68 1.75 3.60 6.00
MAPE 411 3.17 0.00 1.70 3.40 5.60 18.70
RMSE 49.97 39.21 0.00 20.80 41.00 69.28 235.20
RF Peak 3.94 2.35 0.30 1.70 4.10 4.88 9.90
Valley 3.68 2.82 0.30 1.43 3.55 5.03 11.70
Energy 1.71 1.54 0.10 0.35 1.35 2.53 5.80
MAPE 3.66 2.95 0.00 1.40 3.00 5.10 18.60
RMSE 4452 36.09 0.10 16.70 36.80 61.98 223.30
XGB Peak 2.93 1.99 0.10 0.98 3.10 4.70 6.50
Valley 3.04 3.13 0.00 0.68 2.00 4.90 11.50
Energy 1.75 1.30 0.20 0.68 1.65 2.40 5.30

This overall evaluation shows that the pre-dispatch forecast, also abbreviated as
Pre-Disp., has a larger standard deviation on both metrics, which implies that the ML
candidates” models improve the STLF task. Nevertheless, MLR shows several outliers
with a high magnitude. The best ML models were XGB, RF, and SVR with RBF kernel,
having a similar performance by looking at these two metrics. Considering a reasonable
computational time for training and predicting, XGB is more efficient than RF and SVR
but even more flexible in hyperparameter tuning. RF showed the slowest computational
performance, followed by SVR, XGB, KNN, and MLR, the faster model but the least
accurate.

Moreover, all models were also evaluated by testing week, knowing that each week
has a different context, hence a different load profile. These models’ results are displayed
in Table 5.
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Table 5. Evaluation metrics by model, for each testing week, and average.
Year 2019 2020
Model Week 15 21 24 29 33 37 41 44 51 1 6 10 20 24 Average
Month April May June July August September October November December Jannuary February March May  June
MAPE 3.90 3.10 6.08 5.55 4.16 4.68 5.04 6.65 5.38 4.06 3.79 2.93 9.06 4.96 4.95
RMSE 64.9 49.5 94.9 84.4 63.8 67.5 70.4 87.4 80.2 58.7 61.1 436 1129  66.7 71.9
Pre-Disp. Peak 2.30 0.10 7.10 3.80 0.30 4.30 4.80 6.20 2.50 0.80 3.70 1.30 0.70 0.70 2.76
Valley 2.10 4.10 4.50 2.40 11.90 2.70 6.20 9.20 5.50 1.90 1.80 4.20 5.90 0.30 4.48
Energy 2.20 1.40 6.00 1.10 0.60 2.80 4.80 2.20 1.30 1.40 3.10 2.50 8.20 1.70 2.81
MAPE 5.41 2.45 5.93 471 4.44 3.22 3.19 6.91 5.67 5.00 2.54 2.75 6.49 4.35 4.50
RMSE 105.1 43.8 91.6 70.5 71.4 45.3 44.6 99.1 93.4 83.8 38.5 47.8 82.6 60.9 69.9
MLR Peak 1.40 1.20 7.90 3.70 2.90 2.20 1.50 7.30 1.50 1.80 1.60 0.50 3.40 1.40 2.74
Valley 2.80 2.50 2.60 2.90 12.50 1.00 5.40 10.00 2.40 5.40 2.20 1.90 3.60 7.80 4.50
Energy 0.30 0.10 5.80 1.10 1.80 1.00 2.40 1.00 2.70 0.70 1.50 1.20 4.40 2.20 1.87
MAPE 5.19 4.28 7.38 4.58 4.51 2.82 3.09 441 4.55 3.72 3.45 2.40 6.80 5.51 4.48
RMSE 77.6 65.3 109.9 70.9 67.0 40.2 422 62.7 72.8 55.1 53.8 38.3 91.0 76.8 66.0
KNN Peak 5.40 5.30 11.40 5.40 6.10 3.40 0.20 7.10 3.90 6.50 5.80 5.00 1.90 5.20 5.19
Valley 0.90 1.00 240 0.70 7.00 1.60 8.20 4.60 1.10 5.40 2.10 0.50 2.80 240 291
Energy 3.90 3.90 7.40 1.40 3.50 0.40 2.10 0.70 0.80 1.70 3.00 1.80 4.20 2.50 2.66
MAPE 4.16 2.23 5.16 4.18 3.63 2.93 3.00 5.29 7.22 4.47 2.83 2.32 7.11 4.32 4.20
RMSE 69.8 39.5 79.0 64.2 56.1 427 42.0 76.0 104.0 62.6 43.2 38.2 92.4 62.0 62.3
SVR Peak 4.00 2.80 8.20 5.00 420 0.40 0.90 3.60 420 4.30 410 3.20 2.00 1.10 3.43
Valley 1.90 2.20 2.60 2.30 10.80 0.80 6.10 3.20 7.60 6.00 7.00 1.60 4.50 4.70 4.38
Energy 2.10 0.80 5.10 0.60 1.40 0.60 2.40 3.40 4.20 0.70 0.10 0.90 6.00 2.20 2.18
MAPE 3.75 3.09 5.94 3.81 4.88 3.09 2.95 4.88 5.02 423 3.60 2.08 6.12 4.65 415
RMSE 55.9 58.2 89.9 56.9 72.9 46.3 41.5 74.5 76.8 61.9 52.8 36.6 78.0 63.1 61.8
RF Peak 4.20 4.70 9.90 4.00 6.60 1.70 0.30 5.10 1.60 4.80 4.80 2.40 3.30 1.70 3.94
Valley 3.00 410 2.30 0.80 11.70 0.30 5.10 1.50 4.80 5.00 4.50 1.20 1.60 5.60 3.68
Energy 3.20 1.20 5.80 0.10 2.20 0.20 1.80 1.50 2.30 0.40 0.60 0.10 3.40 1.20 1.71
MAPE 3.53 2.46 317 3.53 4.03 2.89 2.58 4.56 5.32 3.94 3.34 1.87 6.47 4.64 3.74
RMSE 53.5 45.9 54.7 53.4 61.1 429 37.8 65.6 77.0 58.6 489 31.8 85.2 62.0 55.6
XGB Peak 4.70 4.20 6.50 2.30 4.80 0.30 1.20 3.60 2.60 4.70 4.50 1.20 0.30 0.10 2.93
Valley 2.20 0.80 0.70 1.80 11.50 0.00 3.30 0.50 4.80 0.90 7.40 0.60 2.80 5.20 3.04
Energy 2.70 1.70 2.80 1.20 1.20 0.30 1.60 2.00 2.20 0.80 0.20 0.20 5.30 2.30 1.75
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The weekly evaluation demonstrates that XGB improved MAPE and RMSE for all
the testing weeks. XGB was also accurate in predicting the peak load, valley load, and
weekly energy. MLR is the simplest model, thus for some holidays with low demand,
it predicted high loads, adding errors to the weekly evaluation, but it also showed the
smallest peak deviation overall, followed by XGB. KNN did not expose this issue, but it
predicted unusual hourly load profiles on holidays. It also tends to forecast lower demands.
For instance, it was the best model to predict load valleys, followed by XGB, but the worst
to predict load peaks. RF showed a good performance for peaks and valleys and had the
smallest energy deviation along all testing weeks, followed by XGB. The RF forecast’s
negative side was the irregular spikes that do not follow the typical hourly profile. Since
XGB demonstrated the best performance, providing an average MAPE of 3.74%, only
hourly results from this model are plotted along with the pre-dispatch forecast and the
real load, illustrated in Figure 4. These testing weeks include holidays, regular days, and
periods with quarantine restrictions due to the COVID-19 pandemic. Figure 5 shows
another testing week, with all the candidates” ML models forecast.

Real Load ML Forecast

Sun Mon

(a)

Real Load

ML Forecast

161
165

(b)

Real Load ML Forecast

Figure 4. Weekly pre-dispatch and XGB forecast comparison with the real load. (a) Week 51, 2019 (21-27 December 2019),
(b) Week 10, 2020 (7-13 March 2019), (c) Week 24, 2020 (13-19 June 2019).
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Figure 5. Weekly pre-dispatch vs. ML candidates’ models. (a) Hourly forecast for Week 15, 2019 (13-19 April 2019).
(b) Frequency distribution of error by forecast, for Week 15, April 2019.

Overall, all models distinguished between weekends and weekdays load. Since
weekends had a lower demand with low variance, all models showed a decent performance
for these periods. For periods with similar characteristics, like the early morning, most of
the forecasts were reasonably good. The most difficult periods to forecast were daytime
periods during working days due to their high variance. The most challenging was holidays
due to fewer records, different contexts, and the natural randomness of consumers’ demand.
Examples of holiday forecasting are shown in Figure 4a, on Tuesday 24 and Wednesday
25 December 2019, and another holiday example is illustrated in Figure 5a for Thursday
18 and Friday 19 April 2019. The quarantine period brings another challenge for STLF
since the load profiles changed abruptly for this period, and fewer records are available for
training. Besides, the load profiles do not follow a steady pattern. Differences between the
quarantine period and no quarantine are shown in Figure 4b,c, respectively.

Beyond having an accurate forecast, it is relevant to know the factors contributing to a
specific STLF task. Some of the ML candidates’ models proposed in this research provide
a straightforward way to check the feature importance, except for KNN and SVR, which
only provide coefficients for the linear kernel. Still, feature permutation importance [72]
is applied to those two models with ten permutation rounds to estimate their feature
importance. For MLR, feature importance is obtained through the coefficient property by
multiplying each coefficient by the feature standard deviation to reduce all coefficients
to the same measurement unit. Then, the absolute value of each feature importance is
scaled to get the contribution percentage. For RF and XGB, the feature importance property
directly returns contribution percentage by feature. Table 6 shows the feature importance
by ML model, where each value is the average from evaluating each model on the 14 testing
weeks.
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Table 6. Average feature importance by ML model.

Feature MLR KNN SVR RF XGB

L1 23.70% 3.00% 16.00% 73.60% 24.70%

Lis36 12.90% 2.40% 6.90% 1.70% 12.80%

L5504 14.50% 4.70% 15.30% 10.70% 12.10%

Li672 14.10% 2.40% 12.80% 3.60% 16.40%

LMA}, 168 3.00% 0.80% 0.30% 1.00% 0.50%

LMA}, 336 4.20% 1.40% 0.30% 1.00% 0.50%

month of the year 1, 0.50% 0.00% 0.00% 0.70% 0.70%

day of the week 1, 0.80% 7.30% 4.10% 0.50% 2.20%

weekend indicator 1, 3.30% 22.10% 11.00% 0.10% 2.70%

holiday indicator 11.30% 16.40% 11.20% 3.40% 9.40%

hour of the day 1, 2.20% 27.40% 2.70% 0.70% 14.40%

temperature in 9.20% 9.10% 16.50% 2.10% 3.10%
Panama City ,

relative humidity in 0.30% 3.20% 2.80% 1.00% 0.40%

Panama City j,

The feature importance results show that the load lags have a strong influence on
the forecasting, especially the most recent week. The hour of the day is also a crucial
feature, especially for KNN; also, temperature resulted in an essential feature for SVR and a
secondary feature for the rest of the models. Relative humidity does not show a significant
weight for all models. Lastly, the binary indicators for holidays and weekends show minor
importance but still relevant, mainly to mark the difference between a higher load peak for
working days and a lower peak for non-working days. The least essential variable was the
month, indicating that monthly trends are not significant for STLF. For research reasons,
it is valuable to see the feature’s contribution by model, but the model’s less significant
features can be neglected for performance and simplicity for deployment reasons.

The results obtained in the current research can be interpreted from the perspective of
any time-series forecasting research using ML techniques since the standard ML methodolo-
gies for STLF were applied to train and evaluate results, as exposed in the literature review.
For example, the selected features across the STLF field of study match this research’s best
features: the load lags, the hour of the day, and temperature. Holidays and weekends’
binary indicators also contribute since they help determine a high or low range of load.

In contrast with most of the studies where researchers forecast 24 or 48 h, this research
addressed a 168 h horizon, considering a 72 h gap before the first forecasting period.
Besides the typical MAPE and RMSE evaluation metrics, this research proposed load peak,
load valley, and energy evaluation as secondary, practical metrics that analysts can easily
monitor. Another distinction of this research is the diversity for testing periods, presenting
STLF for regular working days, holidays, and irregular periods during the 2020 quarantine.
This research’s most important distinction is comparing the official weekly pre-dispatch
forecast as a baseline and validating the results.

4. Conclusions

This research presented a novel model that improves weekly STLF forecast with a 72 h
gap. The model was developed and benchmarked with data and previous forecasts from
Panama’s power system. Results along 14 testing weeks confirmed the suitability of the
XGB algorithm. First, for time efficiency on training and predicting, second, for flexibility
due to the hyperparameter space, and third, for providing certain interpretability through
its feature importance property.

For the above-exposed reasons, this research makes several important contributions
to the field of study. First, it shows that models built with XGB have superior performance
to models built with other algorithms. Second, it confirms that temperature plays a critical
role in STLE. Third, it demonstrates the excellent performance of ML models by forecasting
for a longer horizon than typical research, and even with a three-day gap of data before the
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forecast. Lastly, this research identifies public data that can be used by other researchers to
improve STLF forecasting or be used as a benchmark.

This research also has several practical implications. First, it created a model that
Panama can use to replace of the current one, thus allowing Panama to reduce costs
and improve STLF performance. Second, this model could be trained and applied in
other countries or regions with similar conditions. Furthermore, the positive impacts
of providing a more accurate STLF will reduce the planning uncertainty added by the
intermittent renewable production and subsequently be closer to the optimal hydrothermal
costs scheduled in the weekly unit commitment. This third practical implication leads to a
fourth: for the specific case of the Panama energy spot market, because it is a marginalist
market, accurate STLF can also reduce the hourly energy price uncertainty in the wholesale
electricity market.

Limitations and Future Work

Future work within this specific research can include more historical load records
to train models in particular situations, like holidays. Another approach to enhance the
holidays’ forecast is to develop a specific model for holidays and merge the predictions
with a regular days model [16] and use stacking techniques to enhance the forecast accuracy,
even though it increases the training and predicting time [73].

In the particular case study of Panama’s national load, there are special consumers
named auto-generators (Panama Canal and Minera Panama [74]). These consumers have a
significant load, but as their agent’s name suggests, they supply their own demand with
their own power plants most of the time, except for scheduled maintenance periods on
their power plants or unforeseen unavailability on their power plants [75]. Those agents
will consume energy from the national power system during those events, causing an extra
increase in the national load. If this additional load can be scheduled, it is better to track the
electricity load by consumer and forecast only the residential, commercial, and industrial
load, then add auto-generators if needed. This load segregation avoids distortions on
the load forecast, as stated in auto-generators methodology [3]. In this context, another
research avenue to develop STLF by consumers emerges, but it requires data with this
segregation.

Since DL models are out of this research scope, and DL models require more records
than ML models, unidirectional and bidirectional LSTM were not compared in the research.
However, future studies should evaluate these algorithms’ performance that have proven
good for STLF [44]. Similarly, non-iterative ANN-based algorithms can be explored due to
their good performance and low training time, like Reference [45] compared with a set of
ML models.

Although there are currently several weather forecasts available with hourly granular-
ity [76], because the temperature is crucial for STLE, it is advisable to count with an accurate
temperature forecast to feed this STLF model. Hence, a temperature forecast model can
complement this research.

It is advised to do a weekly load patterns revision since consumption patterns can
change in the future. An example of abrupt changes on the hourly load profile was exposed
in this research during the 2020 quarantine period. However, other trending consumption
patterns [77], like recharging more electric vehicles and having more solar production
behind-the-meter, will produce residential and commercial hourly consumption changes.
This revision implies that forecasting models should be updated more often, and even that
they need to be more robust.

A possible solution to overcome these issues is to automatically enabling the models to
learn with new data every week by deploying the “Champion-Challenger” approach [78].
A weekly hyperparameter tuning is executed to update the models and make them compete
to ensure the best performance along time.

The final goal of STLF is to reduce the uncertainty on real-time dispatch of hydrother-
mal power plants because the wind and solar farms are non-dispatchable power plants.
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Consequently, another way to reduce this uncertainty and complement the STLF is by
providing an accurate forecast for wind and solar production and other non-dispatchable
power plants, if any.
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