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Pictures of functions and their acceptability by automata
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Hiroshima University

Hiroshima, 730 Japan

Hiroakira Ono

College of Integrated Arts and Sciences

.Hiroshima University
Hiroshima, 730 Japan

1. Introduction
Pictorial pattern recognition is a well-established and active field,
- with numerous applications.. In this paper, we éonsider some interestfng
problems in this field from the mathematical standpoint. First, we define
~ pictures of functions of one variable in the natural number theory as patterns
of input symbols {0,1} in the cell space of the first quadrant. That is,
the picture of function y=f(x) is a pattern in which a cell (x,f(x)) is 1 and
the other cells are all 0.  This is a reasonable definition in the digital
consideration.
The set of pictures of aZ? functions is denoted by F\and called the trivial
set. It is not so difficult to def{ne a kind of automaton accepting the F.
In this paper, we consfder an automaton which accepts the set of pictures of
all computable functions of one variable. Since a picture of a computable
fuﬁction is not finife but infinite in its size (i.e., the picture spreads
out in the first qwadrant), it is necessary to introduce a different concept

of acceptability from the usual one. To this end, we introduce
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three-dimensiona] automata which are defined as a generalization of»that_on
p-tapes in [11.

Now, let C be a set of pictures of all computable functions of 6ne
variable in the natural number theory, and D be a nontrivial set of pictures
of functions containing a noncomputable function. |
(fhe definition of D will be given in the section 3.)

The.first purpose of this paper is to show that the set C consisté of ,
patterns in the bottom planes of input arrays accepted by a nondeterministié
three-dimensional automaton on w3-tapes. Then, it is proved that D is |
deterministically obtained in a similar way. That is, it is sﬁown that,

D is the set of pictures in the bottom planes of three-dimensional jnput
arrays accepted by such a deterministic automaton. Since D is ﬁot the
trivial set, it seems that this is a surprising fact. |

Let Gf be a picture of function f in the natural number theory. An
initial segment of the picture Gf is generally defined as an initial
rectangular part of this picture. The set of all initial segments of picturev
Gf is denoted by [Gf]I' Also, this definition is generalized to a set S of
pictures of functions by defining [S]I={[Gf]I] G.€S}.  Although the picture
of a function is infinite in its size, we can finitely treat it by considering
all its initial segments. In this case, we are able to use the usual concept
of array acceptors such as Turing rectangular array acceptors defined in [4].
The third purpose of this paper is to prove that [CUD]I is accepted by a
deterministic Turnig rectangular array acceptor. This result also seems

to be of interest.
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2. Definitions
In this paper, we consider exclusively a finite set ¢ of two input
symbols 0 and 1 (i.e., =={0,1}).

Definition 2.1 A two-dimensional tape of infinite size is a mapping

o: wxw—>LZ where w is the set of positive integers, and a three- dimensional
tape of infinite size is a mapping p: wxwxw—>=Z where w is the same as
before.

Hereafter, we say simply a two-dimensional (or three-dimensional) tape in
omission of "of infinite size". In the above definition, w denotes the set
of all positive integers. Even if w represents the set of all non-negative
intégers, the essential point of our theory is the same. Also, functions of
this paper mean total functions.

Definition 2.2 A picture of a function y=f(x) is a two-diemnsioanl tape in

which every cell (x,f(x)) is 1 and all other cells are 0.
The picture of the Definition 2.2 is denoted by Gf. For example,

the picture of y=3x is as follows:

Fig. 1 3x

OO —~0 0000000000
OCOO0OO0OO——0O0ODOOOOO
OO0 OCOOOO—~ODOOO-~-:
OCOO0OO0CODOOCODOOO~O
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As mentioned before, (0,f(0)) is neglected.
- pefinition 2.3 A nondeterministic automaton on w3-tapes is a 9 tuple

(QO’Q,TX,TygTZ,TXy,Tyz,TXZ,T) satisfying the following conditions:

(1) 99€Q and 45 5o tne initial state,
(2) Q is the finite set of states,
(3) Ty :Qxz ——>2Q

Ty :Qxz —>ZQ

T, Qxz —->ZQ

&yﬂxsz—ezq

Wzmexz—ezq

TXZZQX Qxz ——>ZQ

T :QxQxQxZ—»ZQ.

An automaton on w3-tapes is called deterministic if every transition
function of (3) in the Definition 2.3 is a mapping into Q.

Informally, Ty corresponds to the usual transition functioh along the

y

xy-plane in the on-line tessellation acceptor in [2], and Tyz, T, are

x-axis, and T ., T, are similar. TXy is the transition function of the

similar. See the Fig.2 .

J Fig.2

i\



38

q; is a state of a cell (m+1,n,1) and a; is a state of a cell (m,n+1,1),

and 0 is an input symbol of the a cell (m+1,n+1,1). Then, a state of the
cell (m+1,n+1,1) is determined by rxy(qi,qj,o). t is the transition function
of three-dimensional on-line tessellation acceptor. See Fig.3 .

sfg 1

U
J

”00

T %

<

B

i

Fig.3

93,0559 are states of the cells (m+1,n,7),(m,n+1,2),(m,n,2+1), respectively.
1 is an input symbol of the cell (m+1,n+1,2+1). Then, a state of the cell
(m+1, n+l, I+1) is determinied by T(qi’qj’qk’])'

Note that an automaton on w3-tapes is a variant of the corresponding
definition for the two-dimensional on-line tessellation acceptor [2] and
also it corresponds to the finite causal w2-systems [3] .

WXWXw

Definition 2.4 For every sezl , the run r over s of an automaton A on

WXWXW

w3-tapes is recursively defined as reQ satisfying the following

conditions:
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For every i,J,k,

(1) r(1,1,1,) € t(a4594,94,5(1,1,1))

(2) r(i+1,1,1) e (r(i,1,1),s(i+1,1,1))
r(1,3+1,1) ery(r'(l 3J3s1)58(1,3+1,1))
r(1,15k+1)é%rz(r(1,1,k),s(],],k+1))

(3) r(i+1,j+1,1)érxy(r(i+1,j,]),r(i,j+1,]),s(1+1,j+1,1)
r(],j+1,k+1)6ryz(r(1,j+1,k),r(],j,k+1),s(1,j+1,k+1))
r(i+1,1,k+1)érxz(r(i+1,1,k),r(i,],k+1),s(i+1,],k+1))

(4) r(i+1,341,k+1)er(r(i+1,3,k)»r(i,3+1,k) ,r(i,3,k+1),s(i+1,5+1,k+1)).

The run r is a three- dimensional infinite array of states which is
obtained by successively applying the transition functions of automaton

A to s. We use the notation Rn(A,s) to represent the set of all runs of

automaton A to s.

Definition 2.5 Let y be a mapping from A into B. Then, In (y) is defined

as follows:

In(y)

Definition 2.6 sez”"® is said to be accepted by an acceptor A=(A,F)

{b]y 1({b}) is infinite}.

on w3-tapes iff the following conditions are satisfied:
(1) A is an automaton on w3-tapes,

(2) F€ Q is the set of accepting states,

(3) 3r(r € Rn(A,s) & In(r) F¥¢).

The above definition of acceptability is a generalization of that called
B-automaton on w-tapes in [1]. Since the picture of function in the natural
number theory is not finite but infinite in its size, we use Definition 2.6
concerning its acceptability. It is mathemética]1y of fnterest to consider
input arrays of infinite size. If we want to discuss pictures of functions

from the engineering side and develop the standard theory, other definitions
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are necessary. The best way to this end is to consider the initial segment
of input of infinite size. An initial segment of two-dimeénsional tapes with
infinite size is generally defined as follows:

Definition 2.7 An initial segment of two-dimensional tape with infinite

size is its partial array over cells (x,y) satisfying the following (1),(2),

or (3):
For some m,
(1) Txx<mand 1 <y <max u,[(i,3)=1] if max w.[(i,3)=1] = m,
T<ism 9 1<izm
(2) 1 s x<mand 1 <y <m if max u:[(i,j)=1] < m,
T<i<m J
(3) T<x<mand 1 <y if 3i(1<i<m & Vj(i,j)=0)),

where u of the above (1)-(2) is the u-operation in the number theoty.

For the case (3) of Definition 2.7, thé initial segment of given tape is
infinite in the direction of y-axis. Also, it is easily known that every
initial segment of Gf of function is a rectangular array. We call the m-th
initial segment for the Definition 2.7.

The (m+1)-th initial segment is called the next of the m-th one.

For example, see Fig. 4 and Fig. 5:

0001
0000
0010
Fig. 4 8 ? g 8 4-th initial segment of GZx
0000
1000
0000
00000
01000
Fig. 5 00111 5-th initial segment of Ges
10000} Flx)= .
00000 x)={2x i x<2
3 if x>3
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For the two-dimensional tape P, the set of its initial segments for every
m is denoted by [P]I. Also, this definition is generalized to the set S of
two-dimeénsional tapes by defining [S]I={[P]I| PES}.

The usual Turing acceptors (TA's) in the one-dimensional input are well-
known. Turing rectangular array acceptors (TRAA's) are defined as a natural
generalization of TA. That is, it is defined as an acceptor over rectangular
array inputs which can move "left", "right", "up", "down", or "no move".
Since the details of TRAA's are described in [4], we do not review it here
but give only the formal definition.

Definition 2.8 An array automaton M is a triple (Q,V,8), where

Q is the set of states,

V is the set of symbols,

81 QxVxA —e»ZQxVXA(or._g,Q x V¥ x A, . in the deterministic case) is the
transition function, and

AE{L,R,U,D;N} ("left","right", "up", "down", "no move") is the set of

move directions.

Definition 2.9 A Turing rectangular array acceptor is a triple (M,qO,QA)

over rectangular array inputs, where M is an array automaton, 9 is M's
initial state and QA is a set of accepting states.

Acceptability by a TRAA is defined in the uaual way.
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‘3. Theorems

Let us now consider a two-dimensional pattern re s®*®*{1}  When this r is

. o CWXwX
the restriction of an s ez® ¥

, r is called the bottom picture of s.

To prove one of the main theorem of this paper, we give some preliminary
Temmas. LetAf(x) be a computable function and Re be the set of rectangular
arrays over {0} whose lengths of column and row are m and f(m) for some m,

respective1y; See Fig. 6 .

00...

‘ 00 ...
f(m) | . Fig.6

00...
m

Lemma 3.1 There is a deterministic TRAA which accepts Rf.

Proof:

| Let us consider an element wﬁ-Rf whose lengths. of column and row are m

and f(m), respectively. Since f is a,computab]e function, there exists

a Turing machine M1 which computes this f. Thus, there is a sequence of
configurations 3158554453 which represents this computation. Now,we define
a TRAA M2 as follows: At first, m cells (m,]),(m,Z),...,(m,m) are marked
‘which correspond to the value m of variable x. Then, by making use of cells
(my1), (m,2),...,(m,m),.... this TRAA M2 simulates the above M1. Finally,
M2 accepts an element = of Re if and only if the result by M1 equals to f(m). //

Note that the TRAA of Lemma 3.1does not use the west, east, and south

b]ank spaces.
‘Lemma 3.2 There is a deterministic TRAA which accepts [Gf]I’ where f is a
computable function.

Proof:

Every element of Rf consists of symbol 0 only as shown in Fig.6 . As
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compared with this ng Gf consists of pictures such that every cell (i,f(i))
js1 and all other cells are 0. Thus, by making use of the M2 of Lemma 3.1,
we define a TRAA M3 as follows:
i) M3 simu]ates the M2 for every column i,
ji) The correctness of i-th column is ensured only after the correctness'
of (i-1)-th column,
iii) M3 goes to an accepting state at the upper-right-corner of every m-th
initial segment. .
From the above consideration, we get this Temma. //
By the same way, [F]I is accepted by a TRAA where F is the set of
pictures of all functions.
In the previous lemmas, inputs were the set of rectangular arrays.
From now on, we will consider the case of three-dimensional tapes as inputs.
Theorem 3.3 (The first main theorem) There is a nondeterministic acceptar
A=(A,F) on w3-tapes as follows:

The set C of pictures of all computable functions of one

variable is exactly the set of bottom pictures of three-

dimensional input arrays accepted by this 4.

Proof:

At the beginning of the proof, we consider the sequence of configurations
which leads to the acceting state a9, for a noe;[Gf]I in Lemma 3.2. Let the
sequence denote Tgs Myseees Ty o From this sequence, we construct a three-
dimensional array aé follows in Fig.7 . That is,no is written on a plane

which is parallel to the xy-plane, and s ‘

+1 is aslant put over e In this

case, the z-axis corresponds to the time step. As seen later, it is very

important that s is aslant put over e

+1

Let H be the set of three-dimensional input arrays h's whose every bottom

-10-
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represents a picture G.€ C and h (i,j,k) is arbitrary for i>1, j>1, k>2.

Fig. 7

X
We will now define a nondeterministic acceptor 4=(A,F) on m3-tape§ which
accepts the set H. At first, A checks whether or not a certain initial
segment of bottom of given input array is correct. The checking of m-th
initial segment is done as follows: Firstly, A marks a special symbol over
all cells of this initial segment. In this case, when this initial segment
is infinite in its size (see (3) of Definition 2.7) A continue to mark the
symbol and so A never fall into an aceepting state g After terminating to
mark, A begins the following act. A checks again whether or not this initial
segment represents a partial picture of a function. Then, by nondetermin-
istically guessing A writes a Turing machine (exactly say, the code of a
Turing machine) to compute a function f on cells (1,1),(1,2),...,(1,1).
This code is fixed in the subsequent bihaviors of A. According to this code,
A checks again whether or not this initial segment is correct. In this case,
A acts as the universal Turing machine. A writes states at every cell such
by one cell to

that the above-mentioned m; follows to L By shifting ms

+1 +1

-11-
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the x-axis and the y-axis from the preceding Tis A can write every configu-
ration in the fashion of three-dimensional on-line. Also, let us assume
that the given bottom input is a]Ways written on the every plane containing
™5 (See Fig. 7.) This is possible, because at every time step the shifting
is- done as mentioned before. This method is analogous to the technique used
in [3].

If a cell (x,y,1) in the m-th initial segment is illegally 0, A falls
into the dead state qq at some cell. Also if a cell (x,y,1) 1& this segment
is illegally 1, A falls into the dead state q4- After once fallen into the
dead state, A always write the dead state q,. If a cell (x,y,1) is legally
1 (i.e., y=f(x)) and the m-th initial segment is right, A ever falls into
the accepting state 9 at some cell of three-dimension and the A begins to
check the next initial segment. Further, if the previous mentioned code of
a Turing machine is incorrectly guessed, then A fa]]s into the dead state
g Notice that A can do this checking. Also, A never fall into the
accepting state a, for the‘case that A does not halt.

Thus, it is sufficient for the proof of this theorem. to define an acceptor
on w3-tapes as A=(A,{qa}). Because, it is easily shown that for every
h 3dr(reRn(A,h) & In(r),\{qa}#q>) iff heH. //

It is shown by the similar method to Theorem 3.3 that there is an acceptor
4 on w3-tapes as follows: The set F of pictures of all functions of one
variable is exactly the set of bottom of three-dimensional array accepted by
this A.

Problem Is there a deterministic acceptor 4=(A,F) on w3-tapes which accepts
the set H ?

To prove the second main theorem of this paper, we give here a lemma.

Let us consider the number v which is obtained from the code of Turing

-12-
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machine computing a computable function f Qf one variable. This is easily
obtained as follows: If the number of symblos used in coding of Turing
machine is L, v is defined as a L-ary number. By making use of a code number
of a Turing machine, every computable function of one variable is denoted by
fv(x). Obviously, all code numbers can be linearly arranged such that

V] <Vp <ee eV SV <o Let us denote the set of all code numbers by
Cy. We consider a subset T&C,. If T is a finite set, then T={v ‘

N N

where v _ < v. , and if T is an infinite set, then T={v_ ,v_ ,...} where
N Ma \, Ny N2
Then, by making use of a set T we define a function qT(x) in

seeesV_ }

'V
L L) Ny

Yn.<"n
i i+l
the natural number theory as follows:

The case of a finite set T={v_ , v s...,v_ }:
n n n
1 2 k
gT(x) = (1 ifl< X<v"1‘
fo (v, )+ if v < x<v
Ung M " Mi+1
£ (v )+ ifv <X.
vnk Nk Ny
The case of an infinite set T={v_ ,v_ ,...}
Ny" N
gr(x) = (1 if1 < X<y,
f (v )+ if v € X<v
“ny M " i+1

1

Now, we define the set V as follows: V={gT(x)[ T < Cy}. Further, let D
be the set of pictures of elements of V.
Lemma 3.4 The set D contains a picture of a noncomputable function. Also
the set D is not the trivial set.
Proof:

Let us consider the function qCN(x). It is obvidus that gCN(x) is an

element of V. Let us assume that g. (x) is a computable function. Then, it
Cy

-13-



107

must be computable by a Turing machine whose code number is a v Thus,
gCN(X) can -be denoted by fvi(x). Therefore, we have gCN(vi)=fvi(Vi)’ But,
9 (vi)=fv1(v1)+1 from the definition. This is a contradiction. Hence, we
know that gCN(x) is not a computable function. _
Also, it is easy to prove that the set D is not the trivial set. //
Theorem 3.5 (The second main theorem) There is a deterministic acceptor
4=(A,F) on w3-tapes as follows:
The set D is exactly the set of bottom pictures of three-dimensional
input arrays accepted by this A.
Proof:
First of all, let us define a characteristic point of picture of function
f as follows: A cell (x,f(x)) is said a characteristic point iff f(x)¥f(x-1).
(See Fig.8 .)

characteristic point

t : 1
| | S
i ]

—_— :

! o :

1 : :

i ! |

' ' ;

: : :

Y v Y

" M+ N2
Fig.8

The proof of this theorem is similar to Theorem»3.3 . A checks whether or
not a m-th initial segment of bottom of given input represents a partial
picture of a function. If this segment represents a function, A searches a
characteristic point contained in it. Obviously, A can do it. By making

use of every characteristic point (x,y,1), A can deterministically accepts

-14-
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this initial segment. The acceptance is done as follows: A can encode a
Tufing machine from the code number x of a characteristic point and then A
acts as the universal Turing machine according to this code. For a character-
istic point (x,y,1), if y?fx(x)+1 then A falls jnto the accepting state Ay
For non—characteristié point (x,y,1)=1, A falls into a, iff
(x-1,y,1)=(x,y,1)=1.

After terminating an acceptance of the m-th initial segment, A goes the
next initial segment, and then A repeats this_process. 0f course, the
acceptance of (m+1)-th initial segment is ensured only after the acceptance
of m-th initial segment.

The other parts of proof are quite similar to Theorem 3.3.

That is, we define A=(A,{qa}). Because, it is shown that for every given
input h, 3Jr(reRn(A,h) & In(r)ﬂ{qa}#¢) iff a bottom of h is in the set D.
Further, it is obvious from the above construction of A that A is deterministic. //

Let us now give the final theorem of this paper.

’Theorem 3.6 (The third main»theorem) Let C and D be the same as before.
[CYD]; is accepted by deterministic TRAA.
Proof:

It is easily proved from the previous discussion that [CVD]I is accepted
by a nondeterministic TRAA. However, it is well-knownthat deterministic
TRAA's are equivalent to nondeterministic TRAA's with respect to the accepta-
bility. // ‘

In the same consideration to Theorem 3.6, it is obvious that [C]I'and [D]I

are accepted by deterministic TRAA's.

-15-
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