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a b s t r a c t 

Pathology Artificial Intelligence Platform (PAIP) is a free research platform in support of pathological ar- 

tificial intelligence (AI). The main goal of the platform is to construct a high-quality pathology learning 

data set that will allow greater accessibility. The PAIP Liver Cancer Segmentation Challenge, organized 

in conjunction with the Medical Image Computing and Computer Assisted Intervention Society (MICCAI 

2019), is the first image analysis challenge to apply PAIP datasets. The goal of the challenge was to eval- 

uate new and existing algorithms for automated detection of liver cancer in whole-slide images (WSIs). 

Additionally, the PAIP of this year attempted to address potential future problems of AI applicability in 
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. Introduction 

Artificial intelligence (AI) is becoming increasingly prevalent in 

ociety, with recent applications emerging in the healthcare sec- 

or. Pathology is one of the most rapidly growing areas where in 

eep learning is used for analyzing the medical images ( Litjens 

t al. (2017) ). In one study, a pathologist and an AI-based algo- 

ithm were given images of lymph node cells and were assigned 

he task of determining whether or not the cells were cancerous. 

t was found that the results were more accurate when they were 

erived using both of the sources than when either of the sources 

as used, and an error rate of 0.5% was achieved ( M. Holden and

mith (2016) ). 

South Korean government has been promoting research in AI by 

ncreasing research funding and making large investments in the AI 

ndustry. Since 2018, the Ministry of Health and Welfare in Korea 

as been supporting three AI platform projects aimed at paving the 

ay for the rapid application of AI in clinical diagnoses by focusing 

n building a training dataset for AI researchers. 

The Pathology AI Platform (PAIP) ( PAIP (2019) ) is a free research 

upport platform of pathology-related AI. The main goal of the 

latform is to construct high-quality pathology learning datasets, 

hich are provided by the Seoul National University Hospital, 

eoul National University Bundang Hospital, and SMG-SNU Bora- 

ae Medical Center. These datasets are collected over three years 

2018–2021) and include over 30 0 0 whole-slide images for six di- 

gnostic cancers. The PAIP Liver Cancer Segmentation Challenge is 

he first image analysis challenge to apply the PAIP datasets. In this 

hallenge, participants were tasked with using analytical data and 

tatistical metrics to evaluate the performances of automated al- 

orithms in determining liver cancer segmentation or viable tu- 

or burden (TB) estimation. PAIP has submitted the “PAIP 2019 

hallenge” as a part of the Medical Image Computing and Com- 

uter Assisted Intervention Society (MICCAI) 2019 Grand Challenge 

or Pathology, which aims to generate new insights into and iden- 

ify common themes for future cancer research. This was an effort 

o counter the lack of challenges that have been done to address 

epatocellular carcinoma (HCC) diagnosis using digital pathology. 

espite changes in the population demographics, the prevalence 

f liver cancer, specifically, has not yet been addressed by medical 

mage challenges. Currently, only computed tomography scans are 

vailable for use in research. 
2 
ge, participants were asked to use analytical data and statistical metrics

automated algorithms in two different tasks. The participants were given

involved investigating Liver Cancer Segmentation and Task 2 involved in-

n Estimation. There was a strong correlation between high performance

ch teams that performed well on Task 1 also performed well on Task 2.

ed the top 11 team’s algorithms. We then gave pathological implications

for cancer segmentation and the challenging images for viable tumor bur-

 participants of the PAIP challenge datasets, a total of 64 were submitted

 submitted algorithms predicted the automatic segmentation on the liver

y of a score estimation of 0.78. The PAIP challenge was created in an ef-

rch that has been done to address Liver cancer using digital pathology. It

licability of AI algorithms created during the challenge can affect clinical

 of this dataset and evaluation metric provided has the potential to aid

rking of cancer diagnosis and segmentation. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

.1. Related work 

.1.1. Liver cancer / tumor burden estimation 

The liver is a multi-functional organ in the abdomen that plays 

 major role in the synthesis and detoxification of biomaterials 

n the bloodstream from the Gastrointestinal tract to the heart. 

CC represents the most common histology of primary liver can- 

er and is originated from hepatocytes, which account for 60% of 

he liver volume. HCC is the most commonly found cancer in liver 

irrhosis or chronic liver diseases ( Akbar et al. (2019) ) associated 

ith alcohol, viruses, or metabolic diseases such as obesity or dia- 

etes mellitus. Instances have increased by 75% between 1990 and 

015 due to changing age structures and population growth, which 

re the leading factors that contribute to cancer mortality globally 

 Longo (2019) ). The tumor is composed of heterogeneous cellular 

omponents. Neoplastic hepatocytes are the main cells involved in 

CC, while the remainder is composed of neoplastic tumor cells in 

he stromal tissue, blood vessels that feed on cells, and inflamma- 

ory cells that infiltrate the individual tumor cells. The latter rep- 

esents the so-called “tumor environment,” which plays a major 

ole in tumor growth, response to treatment, and patient progno- 

is ( Seok et al. (2012) ) ( Song et al. (2015) ). Other components of

he tumor mass involve a secondary change that may result from 

retreatment, tumor characteristics, or tissue artifacts due to tissue 

anipulation. Ischemic necrosis, tumor necrosis, hemorrhages, and 

ystic changes are examples of such secondary changes. 

The tumor burden was used in radiology to evaluate the thera- 

eutic efficacy of treatment following treatment. In pathology, the 

umor burden is an important parameter used to estimate treat- 

ent response and the performance of molecular testing. In clas- 

ical pathology, there is no protocol for TB assessment. Recently, a 

etailed pathology protocol to determine the residual cancer bur- 

en in a breast cancer specimen was published by the MD Ander- 

on Cancer Center using a number of tissue sections and manually- 

stimated cellularity ( A.C. (2019) ). 

Necrosis in HCC is usually induced by pretreatment emboliza- 

ion or radiofrequency ablation before the operation. The proto- 

ol of the College of American Pathologists recommends report- 

ng a treatment in terms of the percentage of necrosis that oc- 

urs ( Sanjay Kakar and Washington (2017) ). Although the extent of 

ecrosis in a pathologic evaluation can be valuable for correlating 

ith radiologic images ( Yao et al. (2008) ), the direct prognostic rel- 

vance in terms of the outcome of the patient is not known ( Cotoi

t al. (2012) ). 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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.1.2. Digital pathology image analysis 

Digital pathology (DP) is the process by which histology slides 

re digitalized to produce high-resolution images ( Janowczyk and 

adabhushi (2016) ). There have been studies on how to ac- 

uire, process, and interpret the digitalized pathological slide im- 

ges ( Gurcan et al. (2009) ). Technological advances have created a 

aradigm shift from digitalized slide images towards digital pathol- 

gy. The combination of the whole-slide imaging (WSI) technology 

nd big data analytics has enabled access to unprecedented details 

bout data from the subcellular to the tissue level ( Bhargava and 

adabhushi (2016) ). The variety of image analysis tasks in the con- 

ext of DP includes detection and counting (e.g., mitotic events), 

egmentation (e.g., nuclei), and tissue classification (e.g., cancerous 

s. non-cancerous) ( Janowczyk and Madabhushi (2016) ). Increasing 

sage of TB in pathology combined with advances in digital scan- 

ing technology has led to increased attempts to measure TB using 

utomated algorithms with higher accuracy and precision. S. Ak- 

ar et al. compared two methods of automated TB measurement 

n breast cancer slides: a hand-engineered feature approach using 

raditional image processing techniques, and a ”deep convolutional 

eural networks” approach in which image features were automat- 

cally extracted. The two automated methods showed a strong cor- 

elation with pathologists’ assessments ( Akbar et al. (2019) ). 

.2. Medical image analysis challenge 

The PAIP 2019 challenge attempts to suggest solutions to im- 

ortant problems of AI applicability in clinical use. Firstly, an envi- 

onment was created using digital pathology, which most patholo- 

ists utilize to diagnose cancer. This challenge provides the contes- 

ants with whole-slide images rather than small image tiles. These 

hole-slide images create technical hurdles for image analysis, but 

heir use was an important component in the application of AI for 

linical purposes. Secondly, a task was designed for viable tumor 

urden estimation. The viable tumor burden is the ratio of the 

iable tumor area to the whole area of the tumor. The need for 

he evaluation of the viable tumor burden has increased based on 

he assessment of the response rates toward chemo-radiotherapy 

r the proportion of tumor cells determined via genetic testing 

sing tissue samples. Traditional pathologists either use a semi- 

uantitative grading system to determine the residual tumor bur- 

en or report the portion of necrosis, thereby indirectly indicating 

he viable tumor burden. The main problem with the evaluation of 

he viable tumor burden is the uncertainty concerning the extent 

f the tumor as a whole relative to the extent of the viable tumor 

ells. 

The determination of tumor cells and necrotic cells using 

hole-slide images has been achieved by experienced pathologists. 

his process is labor-intensive, in addition to being unsalable to 

ranslational and clinical research studies that involve hundreds of 

esected specimens. Machine learning and AI-based diagnoses have 

mproved the process of tumor diagnosis and enabled the possibil- 

ty for quantitative studies of the mechanisms and progression of 

he disease. In this paper, we will present an overview of the PAIP 

019 challenge, addresses the prediction results, and discuss some 

f the research problems addressed in the medical image analysis 

hallenge. 

. Challenge description 

.1. Organization 

The goal of this year’s challenge was to evaluate new and ex- 

sting algorithms for the automated detection of liver cancer using 

hole-slide images. The PAIP organizers designed two tasks for the 

AIP 2019 challenge. In the first task, contestants were invited to 
3 
evelop an algorithm to detect and segment areas of carcinogenic 

ells in terms of tumor viability. In the second task, participants 

ere tasked with developing algorithms to assess and calculate the 

rea of the tumor burden. Two leaderboards were established to 

valuate the performances of the algorithms. Contestants were in- 

ited to participate in both tasks or the task that best aligned with 

heir interests. 

PAIP 2019 was hosted on Grand Challenge, which provides a 

ser-friendly interface that allows for an efficient platform set-up. 

t is one of the preferred platforms for use in challenges in medi- 

al imaging analysis ( Aresta et al. (2019) ). Participants in the chal- 

enge were instructed to register on Grand Challenge to access the 

ataset, submit their algorithms, and view the evaluated results of 

heir submissions. The Korean government has strict policies and 

egulations concerning the sharing of medical data. To protect the 

ight to privacy and prevent the state’s intervention into the pri- 

ate lives of citizens, the Personal Information Protection Act was 

egislated in 2011 ( MOIS (2011) ). All candidates had to read and 

onsent to the ”Data Use and Confidentiality Agreement” to con- 

rm their eligibility and to access the dataset. Participants were 

equired to provide their name, affiliation, address, email address, 

nd handwritten signature. Their information was then manually 

alidated by an event organizer. Once approved, participants re- 

eived credentials (username and password) to access the PAIP 

latform, which contained the dataset and a download link. 

This allowed the organizers to screen and differentiate be- 

ween validated users and anonymous participants. The ground- 

ruth information for both tasks was given to the participants for 

he training dataset. However, for the validation and test dataset, 

he ground-truth information was reserved for the challenge com- 

ittee and used to evaluate the performance of the AI learning 

odel of each participant. The PAIP 2019 challenge provided orig- 

nal whole-slide images, XML annotations made by pathologists, 

round-truth binary pixel masks generated from the XML anno- 

ations for both the whole tumor area and viable tumor area, and 

he viable tumor burden calculated from the binary pixel masks. 

The challenge website was launched with the provision of the 

raining datasets. The training datasets were divided into two 

roups: a smaller group containing 80% of the training data and 

nother group used for validation, which contained the remaining 

0% of the training data. The training data was provided twice: 

n April 15 th and May 20 th . The validation dataset was released 

n August 12 th and participants could upload their submissions on 

he challenge website. We established a daily-submission limit to 

revent the overfitting of the model. Once a participant submit- 

ed their results, they were automatically evaluated and published 

n the results page. The test dataset (which is independent of the 

raining and validation sets) was released on September 2, 2019. 

he test submission page was made available for seven days and a 

imit of seven submissions per participant was imposed. The final 

cores were not published on the leaderboard. Instead, PAIP invited 

he top 10 contestants to the MICCAI 2019 conference to present 

heir results. The challenge workshop was held in Shenzhen, China 

n October 17 th . The leaderboard was published on October 23 rd 

nd the submission for the test dataset was reopened. 

.2. Dataset 

The dataset contained 100 WSI that were used for training (50), 

alidation (10), and testing (40). The WSIs for training and valida- 

ion have two-layers of annotation for the viable tumor area and 

hole tumor area. The data annotation was made by two expert 

athologists. One pathologist with 11 years of experience in her- 

etology drew the boundaries of the whole-tumor areas and viable 

umor areas. The second pathologist confirmed the annotation by 

creening for any missed or over-estimated tumor areas. The WSI 
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or testing were presented without annotation and information of 

he presence of a tumor. 

.2.1. Selection of dataset and preparation of WSI 

All datasets were selected from the pathology archives of the 

eoul National University Hospital obtained between 20 0 0 and 

018. The training and validation datasets were composed of resec- 

ion specimens of HCC, and the testing set was composed of 31 re- 

ected HCCs and 9 biopsy specimens. Slides presenting both tumor 

nd non-tumor areas were preferentially selected for this challenge 

xcluding biopsy samples. WSIs were acquired using an Aperio AT 

canner (Leica Biosystems Imaging Inc. USA) at an x200 resolution 

ith a file format of.svs, while the annotation files were.xml. 

.2.2. Annotation of viable tumor and whole tumor area 

A pathologist constructed pixel-based annotations using an 

perio Image Scope (V12.4.0.5043, Leica Biosystems Pathology 

maging, USA). The viable tumor area was distinguished using a 

losed circle for one continuous tumor area under x200 mag- 

ification to minimize the intervening effects of the non-tumor 

ell components. Intra-tumoral necrosis, hemorrhage, and fibrous 

troma, which were visible at as low as an x50 magnification, 

ere removed using a negative pen tool. The whole tumor area 

ndicates the boundary between the non-tumorous hepatic lobules 

nd the viable tumor boundary, including peritumoral fibrosis, cap- 

ules, and inflammation. Because the histology of the whole tumor 

rea was not specified as tumor cells and was a concept of ter- 

itory, the whole tumor area was annotated at low power (x12.5) 

nd refined at high power (x200) to exclude the normal structures. 

.2.3. Data preparation and release 

The ground-truth area maps manually generated by patholo- 

ists were further converted into the final image format for release. 

he initial ground-truth XML file consisted of a list of vertices rep- 

esenting the closed polygons, which were hand-drawn by pathol- 

gists. The provided XML file contained two sets of area maps: 

ne for the viable tumor area and the other for the whole tumor 

rea. Each area map (denoted using polygons) was converted to 

 binary map (image) using a polygon scan-conversion algorithm 

t the highest WSI resolution (level 0). Because the tumor area 

ap may have included non-tissue areas, further processing is re- 

uired to generate more accurate area maps. We used intensity- 

ased thresholding to generate a tissue mask (pixels having an in- 

ensity of less than RGB (235, 210, 235) are considered tissue) and 

emoved fragments smaller than 10 pixels in size. The extracted 

issue mask was then combined with the binary tumor area maps 

o generate the final ground-truth area maps. We allowed the par- 

icipants to further improve the tissue mask using the provided 

aw XML annotation data. 

Each slide in the training set includes an anonymized WSI in 

 .svs format, an original XML annotation for reference, a binary 

ixel mask for the ground-truth viable tumor area, and a binary 

ixel mask for the ground-truth whole tumor area. In addition, we 

eleased a single .csv file listing the viable tumor burden ratio of 

very slide in the training dataset, calculated using the ratio be- 

ween the viable and whole tumor mask areas, which served as 

he ground-truth for Task 2. 

.3. Leaderboard management 

We managed the leaderboard built on the evalutils scoring 

ystem provided by the Grand-Challenge platform. By default, the 

ubmission is automatically graded and the results (including the 

core and ranking) are posted to the leaderboard. During the vali- 

ation submission phase, the participants were allowed to submit 
4 
heir results up to 10 times per day to tune their models and post- 

rocessing parameters without the ground-truth. During the test 

ubmission phase, which lasted for seven days, the participants 

ere allowed to make only a single submission per 24-h period. 

he test submissions were graded internally and the results were 

ot posted to the leaderboard to prevent the misuse of the system 

y the participants to overfit their models to the test dataset. The 

est result among seven submissions (at most) was used in the fi- 

al rankings. 

.4. Metrics and evaluation 

Two performance evaluation metrics were developed. One is 

ased on the widely-used Jaccard index (for Task 1) and the other 

s the absolute difference of values (for Task 2). 

.4.1. Task 1: Viable tumor area segmentation 

The performance of Task 1 was evaluated by measuring the 

ixel-wise similarity between the segmentation result (binary 

ask for viable tumor region prediction) and the ground-truth 

ask. For this, we used the clipped Jaccard index ( Eq. (2) ) to mea-

ure per-slice segmentation accuracy, which is the Jaccard index 

 Eq. (1) ) clipped using a threshold value of 0.65 to penalize inac- 

urate results. For example, selecting the entire image area would 

esult in a non-zero Jaccard index, which should not be counted as 

 meaningful result. 

(A, B ) = 

| A 

⋂ 

B | 
| A 

⋃ 

B | (1) 

ˆ 
 i = 

{ 

J(M 

i 
result 

, M 

i 
GT ) , if J(M 

i 
result 

, M 

i 
GT ) > = 0 . 65 

0 , otherwise (2) 

here M 

i 
result 

is the segmentation result and M 

i 
GT 

is the ground- 

ruth area map for the i -th WSI. Then, the final aggregated score 

or Task 1 is calculated as the average of the per-slice clipped Jac- 

ard indices as follows: 

core Task 1 = 

1 

N 

N ∑ 

i =1 

ˆ J i (3) 

here N is the number of WSIs in the testing dataset. 

During the validation submission phase, we allowed the partic- 

pants to only access the aggregated score and did not reveal the 

er-slice Jaccard index to prevent the misuse of the leaderboard. 

.4.2. Task 2: viable tumor burden ratio estimation 

Task 2 involved the estimation of the viable tumor burden, 

hich is the ratio between the viable and the whole tumor areas. 

he participants were asked to submit a list of tumor burden val- 

es in a .csv format. To evaluate the performances of Task 2, the 

bsolute difference of the tumor burden values for a given slice i 

s calculated as follows: 

 B D i f f i = 1 . 0 − (| T B 

i 
result − T B 

i 
GT | ) / 100 . 0 (4)

here T B i 
result 

is the submitted tumor burden and T B i 
GT 

is the 

round truth tumor burden for the i -th WSI. Note that the tumor 

urden ranges between 0 and 100. 

Unlike Task 1, only the numbers were submitted without the 

hole tumor area masks for Task 2. To avoid submitting arbitrary 

umbers without actually estimating the tumor regions, we added 

 weighting value considering the Task 1 score, giving more confi- 

ence if the Task 1 score was higher. The final aggregated Task 2 

core was computed as an average of the per-slice weighted bur- 

en differences as follows: 

core Task 2 = 

1 

N 

N ∑ 

i =1 

ˆ J i ∗ T B D i f f i (5) 
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Table 1 

Background of selected whole slide images. 

Features Training [50] Validation [10] Testing [40] Total [100] 

Year 

~ 2000 2 0 0 2 

2001 ~ 2010 46 5 13 64 

2010 ~ 2018 2 5 27 34 

Tissue type 
Resection 50 10 31 91 

Biopsy 0 0 9 9 

Grade (Edmonson-steiner) Grade 1 7 0 3 10 

Grade 2 23 6 15 44 

Grade 3 20 4 22 46 
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Fig. 1. Example of a viable tumor and a whole tumor area annotation. 

b  

t

t

t

t

f

t

t

m

l

m

a

t

3

i

e

D

I

t

f

d

here N is the number of WSIs in the testing dataset. 

. Methods 

.1. Summary of submitted methods 

Since our PAIP challenge website was opened, 231 participants 

ave registered to download the data. Among them, 28 teams sub- 

itted the final results during the testing phase. In this section, 

e summarize the methods from the top 11 teams (see Table 2 

nd Table 3 ) who submitted their extended abstracts and gave a 

resentation at the PAIP 2019 workshop at MICCAI 2019. 

All 11 teams used similar preprocessing methods (e.g., decom- 

osing the WSI into small patches, collecting patches in the tis- 

ue regions, applying color normalization and data augmentations, 

tc). All of these teams used deep convolutional neural networks 

r variants thereof (mostly encoder-decoder architecture such as 

-Net ( Ronneberger et al. (2015) )) for tumor area segmentation. 

ulti-scale techniques and ensemble methods were also com- 

only used by many of the top-ranking teams. Detailed descrip- 

ions of the methods used by the top five teams are provided be- 

ow. 

.2. Jung et al. (1st place, newhyun00) 

Jung et al. ranked first in both Task 1 and 2. They used an Ima-

eNet pre-trained EfficientNet-B4 ( Tan and Le (2019) ) as a back- 

one encoder structure, which has shown superior performance 

ith high efficiency in resource usage. In addition, they employed 

 U-Net architecture (UNet++ level 5, Zhou et al. (2018) ) for pixel- 

evel segmentation. Unlike a common approach of setting the 

earning rate over cross-validation, they used fast.ai (2019) to find 

he best learning rate for the Rectified Adam( Liu et al. (2019) ) op-

imizer. In the data preprocessing step, the authors merged the vi- 

ble and whole tumor areas into one label image containing three 

lasses (viable tumor, whole tumor excluding the viable tumor 

rea, and background) based on the observation that the viable 

nd whole tumor areas are related to each other. The proposed 

ethod employed an ensemble of nine networks for Task 1, which 

as trained with various magnification and learning rates using a 

imple majority voting method. For Task 2, the average of the nine 

iable tumor burden ratios was calculated using the results of Task 

. The results showed that the leveraging of various optical magni- 

cations is one of the important factors contributing to the supe- 

ior performance of their algorithm. 

.3. Yang et al. (2nd place, team sen) 

Yang et al. ranked second in Task 1. They proposed multi-task 

earning over a modified U-Net, which adopts the SE-Resnext101 

 Hu et al. (2018) ) module over the encoder portion, and the SK
5 
lock ( Li et al. (2019) ) is applied in the decoder portion. The au-

hors applied the latent features of the encoder as an input to 

he patch-wise classification network. Furthermore, they extracted 

he latent features in the middle of the decoder as an input to 

he pixel-wise segmentation. Finally, concatenating all of the latent 

eatures of the decoder was used to generate the final segmenta- 

ion results. The novel aspect of their proposed method involves 

he performance of patch-level classification and pixel-level seg- 

entation together using a shared encoder-decoder network and 

everaging state-of-the-art deep network modules (SE-Res and SK 

odules) with deep supervision (i.e., supervision on the intermedi- 

te layers). The Otsu thresholding method ( Otsu (1979) ) was used 

o remove the non-tissue region when processing the training data. 

.4. Rajkumar et al. (3rd place, team MIRL-IITM) 

Rajkumar et al. proposed an ensemble prediction method us- 

ng three different deep neural networks: DenseNet-121 ( Huang 

t al. (2017) ), InceptionResNetV2 ( Szegedy et al. (2017) ), and 

eepLabV3+ ( Chen et al. (2018) ). The first two networks use the 

mageNet pre-trained backbones for the encoder and a conven- 

ional U-Net for the decoder, while the third network is trained 

rom scratch. Their final results represent an average of the three 

ifferent results obtained from these three networks. Various data 
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Table 2 

Overview of the top 2 competitors’ methods. 

Rank 

(Task1 

/ 

Task2) 

Team 

(Affiliation) Model Architecture Pre-trained Learning rate Optimizer Loss func. Framework HW Devices Epochs Batch size 

1 / 1 newhyun00 

(Frederick 

National 

Lab) 

UNet + with 

EfficientNet-B4 

backbone 3 

ImageNet 

(backbone) 

LR finder 

from fast.ai 

(6.8e-5 @ 

200X, 5.8e-5 

@ 150X, 

1.0e-4 @ 

100X) 

Cosine 

annealing 

RAdam Categorical 

CE Jaccard 

Keras GTX 1080 Ti 
∗ 4ea 

24 12 

2 / - Sen (Sichuan 

University) 

UNet + with 

classification 

outputs, 

SE-ResNeXt101 

backbone, SK block 

decoders 

ImageNet 3e-4 (epoch 

≤ 20), 1e-4 

(20 < epoch 

≤ 30), 1e-5 

(epoch > 30) 

Adam CE Dice Pytorch Xeon 

E5-2680v4 

Tesla P40s ∗

2ea 

50 32 

3 / 2 MIRL-IITM 

(Indian 

Institute of 

Technology 

Madras) 

UNet with 

DenseNet121 

backbone, UNet 

with 

InceptionResNetV2 

backbone, 

DeepLabV3 + 

4 

ImageNet 

(UNet 

backbones) 

None 

(DeepLabV3 + ) 

1e-5 (UNet: 

epoch ≤ 2, 

backbones 

frozen), 5e-6 

(DeepLabV3+: 

epoch 

≤ 2), 2e-4 

(epoch > 2) 

Adam CE Dice Tensorflow Core 

i7-4930K 

TITAN V 

15 

~30 

32 

4 / 4 Damo AIC 

(Alibaba 

Inc.) 

ResNet34/101 ASPP 

UNet (fully 

customized) 

None 1e-3 Adam CE Dice 

Focal loss 

Pytorch - 100 4 

5 / 3 QuIIL 

(Sejong 

University) 

DenseNet 

(Classification), 

Dense-UNet 

(Segmentation) 5 

None 1e-4 Adam CE (Both), 

Focal loss 

(Dense- 

UNet) 

- TITAN Xp 60 10 

(DenseNet), 

20 (Dense- 

UNet) 

6 / 6 CUHK-Med 

(Insight 

Medical 

Tech Inc. 

The Chinese 

Univ. of 

Hong Kong) 

UNet with 

attention block 

and ResNet101 

backbone, 

PFA-ScanNet 

ImageNet 

(PFA- 

ScanNet) 

1e-3 (UNet), 

1e-4 (PFA- 

ScanNet) 

Cosine decay 

Adam 

(UNet), SGD 

(PFA- 

ScanNet) 

CE Dice Keras TITAN Xp 3000 - 

7 / 7 

DAISYlab@UKE 

(Universität- 

sklinikum 

Hamburg- 

Eppendorf) 

UNet-based 

multi-scale FCN 

with ResNet 

backbone 

(msYI-Net) 6 

ImageNet 

(ResNet 

backbone) 

1e-3 

(decayed by 

0.5 for every 

38.4K 

iterations) 

Adam SGD CE Pytorch Quadro 

P6000 

> 120 14 

8 / 5 COSYPath 

(Icahn 

School 

Medicine at 

Mt. Sinai) 

SegNet(1) (viable 

vs. others), 

SegNet(2) (viable 

vs. non-viable vs. 

others) 

ImageNet 1e-4 

(SegNet(1)), 

1e-5 

(SegNet(2)) 

Adam SGD CE Pytorch GTX 1080 

TITAN Xp 

< 100 8 

9 / 11 LRDE (EPITA 

- LRDE) 

VGG16 with 

decoder 7 
ImageNet - Adam Categorical 

CE 

- - 50 8 

10 / 8 Sig-IPath 

(12sigma 

technologies 

Inc.) 

UNet None 0.01 

ReduceL- 

ROnPlateau 

SGD Dice Pytorch - < 100 32 (200X) 1 

(12.5X) 

14 / 9 blackbear 

(University 

of Maine 

Tianjin 

Chengjian 

University) 

DeepLabV3 + 

UNet++ with 

ResNet152 

backbone, UNet++ 

with 

InceptionResNetV2 

backbone 

ImageNet 1e-2 

(divided by 

10 after 3 or 

4 epochs) 

Adam CE Dice - Tesla V100 ∗

1ea Tesla 

K80 ∗ 4ea 

< 14 16 for V100 

4 for K80 

3 There were top ten contestants on the leaderboard in each task, but only eligible teams were invited for the MICCAI 2019 conference. We decided to analyze the al- 

gorithms of the teams who have submitted the extended abstract and have presented their work at the conference. Therefore, the methodologies of the top nine teams 

for each task are summarized in this table. You may find the whole leaderboard on the challenge website.: https://paip2019.grand-challenge.org/ 3 https://github.com/ 

newhyun00/paip2019 _ code 4 https://github.com/koriavinash1/DigitalHistoPath 5 https://github.com/ChangHeeHAN/PAIP2019 6 https://github.com/RSchmitzHH/multiscale 

and https://arxiv.org/abs/1909.10726 ( Schmitz et al. (2019) ) 7 https://www.lrde.epita.fr/wiki/Challenges _ codes ( Puybareau et al. (2018) ). 

6 

https://paip2019.grand-challenge.org/
https://github.com/newhyun00/paip2019_code
https://github.com/koriavinash1/DigitalHistoPath
https://github.com/ChangHeeHAN/PAIP2019
https://github.com/RSchmitzHH/multiscale
https://arxiv.org/abs/1909.10726
https://www.lrde.epita.fr/wiki/Challenges_codes
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Table 3 

Data processing and training details of the top competitors’ methods. 

Rank (Task1 

/ Task2) Zoom level Tissue detection Stain norm Num of patches Input size Augmentation Etc. 

1 / 1 200X 150X 

100X 

Threshold by 

average pixel 

values 

X 175K 8 512 ∗ 512 Blurring, Shifting, 

Scaling, Rotating, 

Elastic transform 

(albumentations) 

• Average outputs from 

200X, 150X, 100X •
Majority voting from 9 

versions of output •
Stochastic weight 

averaging 

2 / - 200X Otsu 

( Otsu (1979) ) 

X > 1M 256 ∗ 256 Flipping, 

Translating, 

Rotating, Color 

jittering 

- 

3 / 2 200X Otsu + Closing / 

Opening / 

Dilating 

X > 200K 9 256 ∗ 256 

(training) 1024 ∗

1024 (testing) 

Flipping, 

Rotating, 

Blurring, HSV, 

Contrast Center 

perturbation 

• Whole tumor 

predictions were 

generated from convex 

hull of viable tumor 

predictions 

4 / 4 200X 50X 

12.5X 

- X 1K 10 1024 ∗ 1024 

(200X model) 

2048 ∗ 2048 (50X 

model) 4096 ∗

4096 (12.5X 

model) 

Rotating • Average outputs from 

each model 

5 / 3 200X As the challeng 

website showed 

(RGB 

threshold + mor- 

phology) 

X 53K 

(Classification) 

22K (Segmen 

tation) 11 

1024 ∗ 1024 

(Classification) 

512 ∗ 512 

(Segmentation) 

Scaling, Shifting 

Rotating, 

Shearing 

Blurring, Color 

jittering 

• Cascaded inference: 

viable tumor 

predictions were 

conducted only under 

whole tumor prediction 

area 

6 / 6 200X Otsu X 5K 512 ∗ 512 (UNet) 

692 ∗ 692 

(training 

PFA-ScanNet) 

2708 ∗ 2708 

(testing 

PFA-ScanNet) 

HSV, Flipping, 

Scaling Rotating, 

Cropping Color 

jittering 

• Aggregate two 

outputs to predict 

viable tumor burden: 

(1) UNet for viable 

tumor prediction (2) 

PFA-ScanNet for whole 

tumor prediction 

7 / 7 200X 50X 

12.5X 

Color thresh- 

old + connected 

components 

O ( Reinhard 

et al. (2001) ) 

Variable (Extract 

on-the-fly) 12 

512 ∗ 512 (200X) 

572 ∗ 572 (50X) 

512 ∗ 512 (12.5X) 

Rotatng, Flipping 

Brightness, 

Contrast 

• 5-fold CV splits 

ensemble • Multi-scale 

multi-encoder model 

with a single decoder 

using all scales at the 

same time 

8 / 5 20X As the challenge 

website showed 

(RGB 

threshold + mor- 

phology) 

O ( Bejnordi 

et al. 

(2015) ) 

- 500 ∗ 500 HSV • Aggregate outputs 

from two models 

trained with: (1) Viable 

tumor vs. Others (2) 

Viable tumor vs. 

Non-viable tumor vs. 

Others 

9 / 11 50X - X - 300 ∗ 300 None - 

10 / 8 200X 12.5X Empirical 

combinations of 

OpenCV 

threshold 

functions 

X 1M (200X) 5K 

(12.5X) 

512 ∗ 512 (200X) 

2048 ∗ 2048 

(12.5X) 

Rotating, Flipping 

Affine transform 

Scaling, Lighting 

• Multiply outputs 

from two models 

trained with: (1) 200X; 

(2) 12.5X • Negative 

mining strategy 

14 / 9 200X Otsu X 391K (training) 

45K (validation) 

512 ∗ 512 

(training) 2048 ∗

2048 (testing) 

HSV, Contrast, 

Flipping Rotating, 

Scaling Shearing, 

Cropping Elastic 

deforming Color 

jittering 

• Exhaustive searching 

to find an optimal 

threshold value. 

9 The same number of patches were randomly sampled from three classes: Viable tumor, Non-viable tumor, and Background area. 9 The same number of patches were 

randomly sampled from two classes: Tumor and Non-tumor area. 10 Patches were randomly sampled after segmenting areas from WSIs into three: Foreground, Background, 

and Edge region. 11 For classification models, only patches with > 50% tissue area were selected. Among them, patches with > 80% tumor area were defined as tumor patches, 

while those with < 20% as non-tumor patches. For segmentation models, patches were collected only from the area with > 80% tissue area (i.e. tumor area). 12 The same 

number of patches were randomly sampled from four classes: Background, Overall tissue, Tumor, and Viable tumor. 

a
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t
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ugmentation techniques were used, such as flipping, rotating, 

lurring, and brightness/saturation/hue/contrast jittering, etc. For 

ask 2, they proposed a heuristic algorithm to predict the whole 

umor area from the viable tumor area determined in Task 1 using 

 convex hull algorithm. We observed that even though the Jac- 

ard index accuracy of the whole tumor area generated using the 

roposed heuristic method was low, the viable tumor burden value 

as reasonably good, ranking second in Task 2. 
7 
.5. Ma et al. (4th place, team damo-AIC) 

Ma et al. proposed another multi-scale ensemble scheme based 

n multi-task learning for predicting viable tumor masks and 

hole tumor masks. The proposed method used three levels (x200, 

50, and x12.5) of WSIs to generate three outputs, which were 

hen combined into one result using an ensemble method. For 

he highest resolution (200x) WSIs, a customized multi-task net- 
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Fig. 2. The process of PAIP dataset preparation. 
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ork including a ResNet101 ( He et al. (2016) ), backbone, and 

SPP blocks ( Chen et al. (2018) ), was used, while a U-Net with a

esNet34 ( He et al. (2016) ) backbone was used for the two smaller

esolution images. The cross-entropy loss was used for classifica- 

ion while the dice and focal loss ( Lin et al. (2017) ) were used for

egmentation. They demonstrated that their proposed model out- 

erforms the state-of-the-art models (e.g., U-Net and DeepLabV3+) 

sing our PAIP challenge data. 
8 
.6. Han et al. (5th place, team QUIIL) 

Han et al. proposed the cascading of three deep neural net- 

orks to successively conduct patch-level liver cancer detection 

nd pixel-level viable tumor segmentation. For liver cancer detec- 

ion, the authors proposed a per-patch classification network based 

n DenseNet-121 ( Huang et al. (2017) ) wherein the input WSI is 

ecomposed into 1024 × 1024 patches, and each patch is clas- 
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Fig. 3. The boxplot of the raw scores of Task 1 for the top nine teams. 
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Table 4 

The final scores of Task 1: Liver Cancer Segmentation for the top nine teams. 

Rank Team Score 

1 newhyun00 0.7890 

2 Sen 0.7772 

3 MIRL-IITM 0.7503 

4 Damo AIC 0.6718 

5 QuIIL 0.6652 

6 CUHK-Med 0.6625 

7 DAISYlab@UKE 0.6596 

8 COSYPath 0.6313 

9 LRDE 0.5299 

t

i

w

F

b
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l
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r
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p

w

ified as either tumorous or benign. For viable tumor segmenta- 

ion, the patches classified as tumors in the previous stage were 

urther classified into either viable or non-viable tumors using a 

lassification network (involving the same architecture as shown 

bove). Then, the viable tumor patches were further processed by 

he pixel-level segmentation network based on U-Net. For training, 

dam optimizer ( Kingma and Ba (2014) ) and cross-entropy loss 

ere applied to all networks. In addition, the focal-loss ( Lin et al. 

2017) ) was adopted to account for the class imbalance in the data 

or the segmentation network. In Task 2, they estimated the viable 

umor burden ratio using the results generated by the first and the 

hird networks, which represent the whole tumor area (estimated 

er-patch) and the viable tumor area (estimated per-pixel). 

. Results 

.1. Results of task 1: Liver cancer segmentation 

The final scores of Task 1 for the top nine teams were reported 

n Table 4 in the order in which they ranked. The top three teams 

chieved scores of approximately 0.75–0.79, which are substan- 

ially higher than 0.63–0.67 scores of the achieved by the fourth 

o eighth ranked teams. The p-value of the paired t -test between 
Fig. 4. The boxplot of the raw scores of T

9 
he top three versus fourth to sixth was 7.22e-3 and that of the 

ndependent t -test between the top three versus fourth to eighth 

as 9.78e-5, which means the difference is significant enough (see 

ig. 6 ). The ninth team yielded a 0.53 score. Fig. 3 shows the 

oxplot of the raw Jaccard scores for the top nine teams without 

hresholding to show outliers. The top three teams have one to two 

utliers indicated by the red plus-sign markers, while the other 

ower-ranked teams have more than two outliers or a larger stan- 

ard deviation. Almost all teams yielded low raw Jaccard scores 

hat are lower than 0.2, which implies that the algorithms failed 

o detect viable tumors. However, the team ‘Sen’ did not yield such 

ow raw scores for all test cases; and all cases for ‘Sen’ yielded Jac- 

ard scores higher than 0.4. 

Fig. 4 illustrates the raw Jaccard scores of Task 1 for all indi- 

idual test images, represented as boxplots for the top nine teams. 

his figure shows that there are some pathology images are eas- 

ly segmented such as the test images with indices 4, 6, 8, and 

, among others, while there are also very challenging images to 

egment, such as the test images with indices 21, 24, 32, and 

4, among others. Simple majority-voting based ensembles for the 

op three results (indicated by the red asterisks) and for the top 

ine segmentation results (indicated by the green circles) were re- 

orted. The ensemble of the segmentation masks of the top three 

eams resulted in improved overall raw scores from 0.82 (the best 

aw score of ‘newhyun00’) to 0.85 (top 1–3 ensemble). The extent 

f the outliers in terms of the lowest raw Jaccard score was im- 

roved, as the lowest Jaccard score of 0.47 obtained by team Sen 

as improved to 0.58. However, the ensemble of the segmentation 
ask 1 for all individual test images. 
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Fig. 5. Segmentation results for 3 selected test images for one high and two low average final scores whose test image indices are 38, 21, 34, respectively. 
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Table 5 

The final scores of Task 2: Viable Tumor Burden Estimation for the top nine 

teams. 

Rank Team Score 

1 newhyun00 0.7528 

2 MIRL-IITM 0.6337 

3 QuIIL 0.6330 

4 Damo AIC 0.6200 

5 COSYPath 0.5969 

6 CUHK-Med 0.5883 

7 DAISYlab@UKE 0.5774 

8 Sig-IPath 0.4624 

9 blackbear 0.4335 

a

s

g

asks created using the results of all top nine teams yielded poor 

cores for many test images. Fig. 5 illustrates the three cases for 

ne high- and two low- average final scores for the top three rank- 

ng teams (the first three rows) along with the top 1–3 ensemble 

esults (the fourth row) with the ground-truth masks (white) and 

asks determined from the results (green). The last row shows 

he original pathology images with the ground-truth masks (red). 

n many cases, the top three methods yielded good segmentation 

asks, as shown in the first column of Fig. 5 . However, there are

ften outlying results, such as the mask in the first row and the 

hird column of Fig. 5 (indicating overdetection) and the mask in 

he third row and the second column of Fig. 5 (indicating under 

etection). 

.2. Results of task 2: Viable tumor burden estimation 

The final scores of Task 2 for the top nine teams are reported 

n the order of their ranks in Table 5 . The top team achieved
10 
 score of 0.75, which is substantially higher than the 0.62–0.63 

cores obtained by the groups ranked second through fourth. The 

roups ranked fifth through seventh achieved scores in the range 
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Fig. 6. Bar graph of the final top ranking scores. 

Fig. 7. The boxplot of the raw scores of Task 2 for the top 9 teams. 
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Fig. 8. The boxplot of the mean-normalized ratios of Task 2 for the top 9 teams. 
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f 0.58–0.60, which are substantially higher than the 0.43–0.46 

cores achieved by the groups ranked eighth and ninth. The p- 

alue of one-way ANOVA between the first, second to fourth, fifth 

o seventh, and eighth to ninth groups (i.e., four groups) was 2.10e- 

, which means the differences between the groups are significant 

nough (see Fig. 6 ). 

Fig. 7 shows the boxplot of the raw scores for the top nine 

eams. The first ranked team achieved scores that are all higher 

han 0.8, while the third-ranked team achieved similar scores ex- 

ept for one outlier that is lower than 0.7. The second-ranked team 

ielded a wide range of scores from around 0.4 up to 1.0. Even 

hough the raw scores of the third-ranked team were better than 

hose of the second-ranked team, the final score of the second- 

anked team was higher due to the weighting of the Task 1 re- 

ults. The whole tumor estimation algorithm of the third-ranked 

eam may possibly work better than the whole tumor estima- 

ion method of the second-ranked team. Fig. 8 shows the mean- 

ormalized ratio, which is the estimated ratio minus the ground- 

ruth ratio. Ideally, the mean-normalized ratio should be 0. The 

rst-ranked team yielded good viable tumor burden estimation 

alues for all cases thanks to the accurate viable segmentation re- 
11 
ults from Task 1. The third-ranked team also yielded good mean- 

ormalized ratios similar to those of the first-ranked team. 

Fig. 9 illustrates the raw mean-normalized ratios of Task 2 for 

ll individual test images as boxplots. There are some pathology 

mages for which the viable tumor burden estimation was rela- 

ively easy, such as the test images with indices 1, 7, 8, and 12, 

mong others, while other images were more challenging, such 

s the test images with indices 21, 25, 28, and 39, among others. 

he simple majority-voting based ensembles for the top three ra- 

io estimations (indicated by the red asterisks) and top nine (indi- 

ated by the green circles) ratio estimations are reported, respec- 

ively. The ensemble constructed using the estimations of the top 

hree teams resulted in a slightly improved overall burden estima- 

ion from reducing the mean absolute error of 0.0530 (from team 

newhyun00") to 0.0512, as well as reducing the number of out- 

iers. However, the ensemble incorporating all of the top nine re- 

ults yielded poor estimates for many test images and the mean 

bsolute error was 0.0584. The ensemble results for Task 2 are 

herefore consistent with the ensemble results for Task 1. 

Fig. 11 illustrates three cases for the first, third, and fourth rank- 

ng teams (the first three rows) along with the ensemble results for 

he top first, third, and fourth ranking teams (the fourth row) for 

he resulting masks (white indicates viable tumor, and green in- 

icates whole tumors). The last row shows the original pathology 

mages with the ground-truth masks. The results of the second- 

anked team were not used in the creation of the ensemble re- 

ults in this case because the raw score of this team was sub- 

tantially lower than other teams in this ensemble. Additionally, 

he whole tumor segmentation results of the second-ranked team 

ere severely down-sampled by 16 times, such that the creation 

f an accurate ensemble was not feasible. Note that this ensem- 

le involving the top first, third, and fourth ranking teams was 

erformed using the segmentation masks, rather than the final 

atio estimations as shown in the fourth row of Fig. 11 . In the

rst column, all results yielded good viable (shown in red) and 

hole (shown in purple) tumor masks, as well as a good viable 

umor burden estimation that is close to 0.9548. The second and 

hird columns of Fig. 11 illustrate the cases where relatively poor 

iable tumor burden estimations of the third- and fourth-ranked 

eams were compensated by majority voting-based ensembles of 

ll three segmentation results to yield the ensemble estimates that 

re closer to the ground truths, respectively. 

Lastly, the final scores between these two tasks are strongly cor- 

elated, as illustrated in Fig. 10 , which shows an R 2 value of 0.873. 

t seems that our thresholding and Task 1 weighting allowed us 

o avoid obtaining high Task 2 scores with relatively poor segmen- 



Y.J. Kim, H. Jang, K. Lee et al. Medical Image Analysis 67 (2021) 101854 

Fig. 9. The boxplot of the raw mean-normalized ratios of Task 2 for all individual test images. 

Fig. 10. Correlations between Task 1 / 2 final scores. 
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ation results for both viable and whole tumors, as illustrated in 

ig. 11 . 

. Discussion 

.1. Organization 

There were about 794 registered users and over 231 data down- 

oads in the PAIP 2019 Challenge. At the end of the contest, how- 

ver, only 30 validation submissions and 28 test submissions were 

eceived. This drop in the submission rate is common in medi- 

al image challenges, which indicates a need to revise the design 

f future challenges to maintain the interest of the participants 

hroughout the entire duration. The number of participants in Task 

 and Task 2 also differed. Task 1 had 27 participants submit their 

esults, compared to only 17 submissions for Task 2. 

The validation submission period allowed for the opportunity 

o identify technical problems that may occur during a relatively 

hort test submission period. In the PAIP 2019 Challenge, in case 
12 
he participants failed to upload their results due to technical 

roblems during the submission of the test, we received an ad- 

itional submission via email to be scored. Grand Challenge, the 

latform we used for this challenge, has limited upload capacity 

nd this caused intermittent submission errors. The participants 

ad to wait for 24h to determine whether or not the submission 

ad been successfully uploaded, and then re-upload it if an error 

ccurred. 

.2. Medical perspective 

Anatomic pathology is a classical, yet an essential method for 

he confirmative diagnosis of a disease, especially neoplastic dis- 

ases. Digitalization of a pathological image makes image analy- 

is possible and deep learning algorithms opened a new era of 

omputational pathology because feature extraction based on cel- 

ular morphology would not be needed. Convolutional neural net- 

ork algorithms using labeled images are superior to classical im- 

ge analyses, which use limitedly assessed cellular features. Given 

he complex tissue images, it is practically impossible for a person 

o accurately annotate the object of classification. While preparing 

he data, there are a few things to consider. First is the level of 

nnotation because the cellular level is most accurate but prac- 

ically impossible to draw, and a realistic scale would be needed 

o that the algorithm accuracy is not affected. Second is the de- 

ermination of the number of images is needed to generate the 

odel. We used resected samples for training and had to consider 

hich factors affect the modeling among the number of cases and 

he total patches of the image. The third is a matter of exact cri- 

eria and definition; for example, the tumor boundaries defining 

he whole tumor area do not have specific histological characteris- 

ics like the tumor cells; hence, it is not easy to distinguish them 

n glass slides, but they can be easily distinguished on gross ex- 

mination. This is a matter of scale and some participants used 

ifferent levels of images for modelling. The participants” results 

howed high accuracy at the case level, but all cases showed false- 

ositive or false-negative results at the image level. For example, 

ases with low Jaccard scores were grade 1-HCCs, which were 

ell-differentiated and similar in appearance to that of reactive hy- 

erplasia of non-neoplastic hepatic nodules. (see Fig. 12 ) There was 

o difference in the grade distribution between the training and 

he test groups, but the higher the grade, the higher was the Jac- 
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Fig. 11. Segmentation results for 3 selected test images whose test image indices are 38, 2, and 22, respectively. 

Table 6 

Statistics analysis results for each group of slides by cancer grades. 

Features / Grade Grade 1 Grade 2 Grade 3 

mean ± SD 0.60 ± 0.11 0.73 ± 0.16 0.76 ± 0.18 

Training [50] 7 23 20 

Validation [10] 0 6 4 

Testing [40] 3 15 22 

Total 10 44 46 
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ard score. (see Table. 6 ) The greater the difference was between 

he surrounding non-tumor tissue and the tumor, the higher was 

he accuracy of segmentation was. Given that well-differentiated 

umors have a lower diagnostic agreement between the patholo- 

ists, a new approach is needed in this area. 

.3. Characteristics of the top ranked methods 

We observed several common characteristics between the top- 

erforming methods. One notable characteristic is the use of multi- 
13 
cale inputs and ensemble methods (either explicitly with the out- 

uts or implicitly with the network features). Many participants 

sed two or three levels of WSI processing for the input data and 

ombined the output results. In these methods, each input is pro- 

essed by an independent network and the results are combined 

fter analysis using either an averaging or a majority-voting en- 

emble method (newhyun00, MIRL-IITM, Damo-AIC). Some meth- 

ds (DAISYlab@UKE and Sig-IPath) combined intermediate feature 

aps from the different networks to generate a single output at 

he end without an explicit ensemble operation. Another inter- 

sting characteristic is that some methods leveraged both multi- 

cale and multi-stage network features without multi-scale inputs. 

eam Sen proposed a combination of feature maps from different 

cales in the decoder network to improve the segmentation results. 

ung et al. (newhyun00) employed a stochastic weight averaging 

ethod ( Izmailov et al. (2018) ) to average the network weights at 

ifferent points in time during training to improve the convergence 

nd accuracy of the results. We observed that about half of the 

op-ranked teams used a pre-trained network using the ImageNet 
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Fig. 12. Example patches from (a) normal, (b) grade 1, (c) grade 2, and (d) grade 3. 
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atabase, and most teams used various data augmentation meth- 

ds, such as random geometric and color transformations. 

.4. Limitations 

We created a large number of datasets containing liver cancer 

hole-slide images with annotations of viable tumors and whole 

umor areas. Over the next two years, we plan to diversify this 

ataset by incorporating slides of different cancers with different 

nnotations. We intend to invite more centers to participate in this 

roject. We hope that the dataset and evaluation metrics we have 

rovided will aid in the development and benchmarking of can- 

er diagnosis and segmentation. However, there are a number of 

roblems that remain to be explored. 

Firstly, patient confidentiality is a major barrier on the way 

o obtaining a valuable dataset. The PAIP database consists of 

nonymized data provided by deceased patients and patients who 

ave signed consent and release forms. This is because sharing the 

hole-slide images that were obtained from patients that have 

ot provided their consent violates privacy law, even after data 

nonymization. Therefore, the liver cancer data used in this study 

s limited and not representative of the larger range of liver cancer 

atients. 

Secondly, the AI algorithms developed during the challenge 

ave not yet been tested in terms of providing clinical diagnoses. 
14 
hese AI algorithms should be further evaluated and compared 

ith the clinical diagnoses provided by doctors to determine their 

uture applications. Considerable research is therefore required be- 

ore these AI algorithms can be developed into software. 

Thirdly, it will be difficult to establish ownership of the medi- 

al device developed from AI algorithms using PAIP’s datasets. This 

reates a problem of ownership: which group owns patents to the 

edical device? Establishing ownership might prove difficult as 

qual claims can be made by the three stakeholders. Is it the intel- 

ectual property of the algorithms’ developers, the hospital which 

rovided the data set, or the manufacturer which developed the 

roduct? 

Fourthly, the annotation of the whole-tumor boundary is not 

ery accurate. As machine learning algorithms are known to rely 

n training data, the ground-truth should be accurately annotated 

 Aresta et al. (2019) ). However, due to the complexity and high- 

ost of the cell-level annotation process, participants in this chal- 

enge had to use training data for the whole-tumor boundary area, 

hich was not very accurate. Because there is no standard defini- 

ion of the whole-tumor boundary area, it is difficult for patholo- 

ists to annotate the whole-tumor boundaries. As such, the afore- 

entioned conclusions all require further refinement and correc- 

ion in the light of future research. 

Finally, the reproducibility of the results generated by the par- 

icipants’ algorithm was not high. We received the image masks or 
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he listed values as resulting predictions. Therefore, in addition to 

he methodology reported by the participants, we had to respond 

eparately to the fact that various techniques could be applied to 

mprove the quality of the results. After our challenge operation 

eriod, top competitors were asked to release their source code, 

ut not all teams could release their code for various reasons. If the 

hallenge platform is to be improved in the future, it is expected 

hat the platform will generate and score the results by itself after 

eceiving executable code to increase the reproducibility and eval- 

ate the algorithm more transparently. If the platform can execute 

ode, the shortage of hardware resources will no longer be a bar- 

ier to participation in the medical image challenges, which can 

lso lead to increased accessibility to small budget participants. 

. Conclusion 

The PAIP challenge was created to combat the lack of research 

hat has been done to address liver cancer using digital pathology. 

ut of the 231 participants of the PAIP challenge datasets, a total of 

4 were submitted from 28 team participants. There was a strong 

orrelation between high performance on both tasks by teams, in 

hich teams that performed well on Task 1 also performed well 

n Task 2. The submitted algorithms automatically predicted the 

egment of the liver cancer with WSIs to an accuracy of a score 

stimation of 0.78. 

Three main conclusions can be drawn from this challenge. First, 

he participants’ results were highly accurate at the case level, but 

ll cases showed false positive and false negative results at the 

mage level. Second, we found that the greater the difference be- 

ween the surrounding non-tumor tissue and tumor, the higher the 

ccuracy of segmentation. At last, the top-ranked teams achieved 

igh performance with a pre-trained network using the ImageNet 

atabase. Various data augmentation methods such as random ge- 

metric and color transformation were commonly used among 

ost teams. 

The main takeaway points from the PAIP 2019 challenge are as 

ollows: 

1. To avoid participants overfitting their results, we recommend 

continuing with private test submissions. During the valida- 

tion phase, participants would receive their results immedi- 

ately. However, during the test phase, participants would be 

ranked before receiving their results. 

2. We should extend the period of time for validation submis- 

sion. This will allow for more participants to join the chal- 

lenge and to increase participation in the final test submis- 

sions. 

3. The final test ranking of the predictive results for medical im- 

ages could be adapted to include various qualitative evalua- 

tions by medical experts. Using only a simple segmentation 

metric (e.g., the Jaccard score), clinically meaningful results 

might be marked with lower scores. Multiple experts partic- 

ipated in the qualitative evaluation. 

4. The challenge rules on how to use external data are estab- 

lished. We must set standard guidelines for participants on 

whether to allow the use of external data according to the 

challenge. If allowed, there must be a clear rule on how to 

use external data to ensure all participants have access to 

the same resources. 

5. Consider the reproducibility for analyzing the results. It is of- 

ten difficult to reproduce the intermediate results of partici- 

pants. If analytical data are required for subsequent studies, 

it is recommended to submit the code used in the challenge 

so that the algorithms can be analyzed in detail. 

The challenge is designed to find the best possible algorithm to 

etect liver cancer in patients. We believe this will also further re- 
15 
earch into the applicability and trustworthiness of AI in clinical 

ettings. We hope that this contribution will enable future quanti- 

ative studies of the progression and mechanism of the disease. 
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ppendix A. Source Code Availability 

Table A1 

Table A1 

Finalists’ source code availability. 

Team Source code Link 

availability 

newhyun00 
√ 

https://github.com/newhyun00/paip2019 _ code 

Sen ✗ a - 

MIRL-IITM 

√ 

https://github.com/koriavinash1/DigitalHistoPath 

Damo AIC ✗ - 

QuIIL 
√ 

https://github.com/ChangHeeHAN/PAIP2019 

CUHK-Med ✗ b - 

DAISYlab@UKE 
√ c https://github.com/RSchmitzHH/multiscale 

COSYPath ✗ b - 

LRDE 
√ 

https://www.lrde.epita.fr/wiki/Challenges _ codes 

Sig-IPath ✗ b - 

blackbear ✗ d - 

a Pending: They will be participating in PAIP 2020 with the same network. They 

plan to open the source code after the competition. 
b Not available due to intellectual property limits. 
c It will be available after the team’s manuscript publication process. 
d Not available due to pending proposal for alternative project. 

ppendix B. Related Links 

• PAIP 2019 challenge website: https://paip2019.grand-challenge. 

org/ 
• PAIP 2019 forum: https://github.com/paip-2019/challenge 
• PAIP website : http://www.wisepaip.org/ 
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