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Abstract

Manual connectome reconstruction is a challenging task because of large-scale image data, there-

fore, an automatic pipelines are needed. Recently, with the usage of deep learning in computer

vision, automatic segmentations of electron microscopy (EM) image data are acquired but have

the high error rates including merge and split errors, which means it still requires correction

through human proofreading. In this thesis, I propose a novel fully automatic proofreading

system for 2D segmentation base on reinforcement learning. By mimicking the human proof-

reading process, the proposed system uses Locator, Merger and Splitter agents for error detection

and correction tasks. With an input segmentation image, the Locator agent detects erroneous

patches on the input image and then feeds them to Merger and Splitter for correcting split and

merge errors respectively. To showcase my system performance, I evaluate it on CREMI data

set.





Contents

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Automatic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Human Proofreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

III Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Merger agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Splitter agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

IV Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 CREMI data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

V Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



List of Figures

1 The typical connectomics workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The agent-environment interaction in a Markov decision process (MDP). . . . . . 3

3 Illustration of merge and split errors. . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 The proposed proofreading system diagram. . . . . . . . . . . . . . . . . . . . . . 5

5 Illustration of encoding label map. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Illustration of the grid-action map. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Merger agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 Splitter agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9 Locator agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

10 Generating synthetic error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11 The result on split error test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 The result on merge error test set. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13 The result of on mix error test set. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

14 The result of the full-size segmentation result on test set. . . . . . . . . . . . . . . 25

15 Illustration result on full-size segmentation. . . . . . . . . . . . . . . . . . . . . . 26

16 The result of Locator on split error test set. . . . . . . . . . . . . . . . . . . . . . 26

17 The result of Locator on merge error test set. . . . . . . . . . . . . . . . . . . . . 27

4



18 The result of Locator on mix error test set. . . . . . . . . . . . . . . . . . . . . . 27



I Introduction

A brain is an organ that serves as the center of the nervous system in all vertebrate and most

invertebrate animals [1]. In a human brain, the cerebral cortex is the largest part which contains

approximately 14 ∼ 16 billion neurons; moreover, the second largest part, the cerebellum, is

estimated number of neurons is 55 ∼ 70 billion [2, 3].

In particular, each neuron is connected by synapses to other neurons forms a network within

the brain, which might be a hypothetical explanation for the functions of the brain – how the

brain stores the memories, learns things and makes decisions in circumstances [4,5]. Additionally,

these neural connections is called a wiring diagram or connectome; and the field of science,

which is the production and study of connectomes, is called connectomics [6, 7]. Therefore, one

of the goal of connectomics is fully accomplish the reconstruction map of neural connections to

understand the meaningful which is hidden inside the brain structures [8–12]. The connectome

reconstruction pipelines [12,13] is done after finished proofreading process as shown in Fig. 1.

Acquisition Registration Segmentation Proofreading Analysis

Figure 1: The typical connectomics workflow [12,13].

To achieve this goal, neuroscientists produce high resolution (HR), nanoscale level, serial-

section electron microscopy (EM) images that can capture the single neurons and single synapses.

The brain tissues are cut into extremely thin sections, as small as 30 nanometers in thickness,

and each pixel represents a 3 ∼ 5 nanometers [14–16]. With this pixel density, a cubic millimeter

volume may costs approximately one petabyte of data; therefore, manual annotating of neurons is

infeasible and automatic connectome reconstruction pipelines in Fig. 1 are required [9,13,17–19].

Recently, the convolutional neural networks (CNNs) have been widely used for automatic

cell segmentation and classification [20,21], and then, base on the predicted boundary, using wa-

tershed transformation to generate the oversegmentation result [22–26]. Flood-Filling Networks

combine two steps above into one by using predicted result as new input, which is the same as

a recurrent model [27, 28]. However, even with those state-of-the-art methods, the segmenta-

tion result still has errors, especially merge error and split error (as shown in Fig. 3) because

of various artifacts in EM images, such as noise, folding, and tearing due to the nature of the

tissue preparation in acquisition process, which means the human proofreading process is still

required [12].

With a massive data set, manual proofreading by visual inspection causes the bottleneck in
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the automatic connectome reconstruction pipelines. Many works have been proposed to accel-

erate this process, the first approach provides interactive user interface to browse segmentation

data in 2D and 3D, and to detect and manually correct errors [29–34]. The second approach is

a purely automatic proofreading in 3D [35]. All the approaches above focus on correcting merge

errors and split errors which are common errors occur in segmentation result.

1.1 Background

Reinforcement Learning

Two main characters in Reinforcement Learning (RL) are the agent and the environment. The

agent here is a learner and takes action to the environment. The environment is the world that

the agent exists and interacts with [36, 37]. At time step t, the agent in a state s = St of the

environment. If the agent is not allowed to observe the environment completely, then its partial

observation is denoted as o = Ot; otherwise, the agent observe s [37]. After observed, the agent

makes an action a = At. In the next time step t + 1, the agent receive a numerical reward

Rt+1 according to its preceding action, which means Rt+1 denotes the reward for the action

At. The goal of the agent is getting the total reward it collects over an episode which is all the

things happening in between the initial state and terminate state. Therefore, we give a positive

reward for a good action and negative reward for bad action through the feedback from the

environment to reinforce the agent to develops a rule or policy. However, some reward require a

long-term actions to get the final reward, which means it may has zero rewards in between and

the agent have to plan to get the immediate rewards or wait for the big shot. The interaction

from the agent and the feedback from environment forms a sequential decision making which

can be modeled as the Markov Decision Process (MDP). In summary, the training process in

RL is the interaction between agent and environment as shown in Fig. 2.

Markov Decision Process (MDP)

The MDP is basicaly defined by:

• A set of environment’s states S (St ∈ S). And O (Ot ∈ O), if need.

• A set of action or an action space A (At ∈ A).

• The probability of transition to state s′, from state s taking action a : p(s′ | s, a) =

Pr{St+1 = s′|St = s,At = a} with p : S× S×A→ [0, 1] .

• Reward function r : S×A× S→ R: Rt = r(s, a, s′). Or can be simply as state-action pair

r(s, a) or only state r(s).

• A policy At = π(St) is a mapping from states to actions. The agent uses this rules to

selection action. If the agent is not fully observation, then At = π(Ot).
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Agent 

Environment 

Reward
𝑅𝑡

State
𝑆𝑡 ; 𝑂𝑡

Action
𝐴𝑡

𝑅𝑡+1

𝑆𝑡+1; 𝑂𝑡+1

Figure 2: The agent-environment interaction in a Markov decision process (MDP). At time step

t, given a current state St or an observation Ot, the agent selects an action At. In the next time

step, t + 1, the agent receives a reward Rt+1 as a consequence of its previous action [36]. The

observation Ot is used if the agent only can see a limited observation, if not, the agent fully

observes the state St [37].

1.2 Problem and Motivation

Problem:

In general, as you can see in Fig. 3, the actions required for correcting the error are Merging

and Splitting. Merging means we choose a pair of segments and then they will be assigned as a

same label, and Splitting means we draw a boundary on a segment to cut it into two fragments.

The way to correct the error is not hard; even a novice can correct it easily with a short training

beforehand. However, with a huge dataset [14], manually proofreading is time consuming and

costly. In fact, many works design applications [33, 34] for accelerating this task or using the

community [38], hence, human are still required.

Motivation:

In recent years, the achievements of AI such as in gaming: AlphaGo [39], AlphaZero [40],

AlphaStar [41], hide and seek [42] and Agent57 [43] ; or AlphaFold in biology [44], in autonomous

driving [45, 46], and in robotics [47] are shown that AI can perform tasks as same as human-

level. Inspired by these trends, I proposed a novel automatic proofreading system by mimicking

human proofreading process which can correct merge errors and split errors.

The human proofreading process consist of two important tasks. The first one is identifying

the errors in the overall context. Secondly, once an error is spotted, we focus on the error area
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Erroneous Label map
Highlighted 

Merge & Split Errors Ground truth

Figure 3: Illustration of merge and split errors. The merge errors are correct segments have been

merged together in green regions, split errors are fragments of one or many correct segments

highlighted as red regions, and yellow are the overlapped regions between two kinds of errors.

to figure out what is the problem and do either Merging or Splitting. Moreover, the process of

locating error spots and applying updates on them requires decisions, which means these tasks

can be naturally adapted to the reinforcement learning framework as follows:

• An agent for the detecting task.

• Two sub-agents for doing the Merging or Splitting actions.

In summary, given a good segmentation method, there is no guarantee that the result doesn’t

have any errors, and hence proofreading task is the one cannot avoid. However, proofreading by

human slows the reconstruction pipeline so I would like to make it fully automatic by applying

the reinforcement learning which can fulfil the simple human-level task.

1.3 Contribution

From the motivation above, I design three agents:

• Locator agent: with a low-resolution input image can locate the error locations.

• Merger agent: can detect and correct split error.

• Splitter agent: can detect and correct merge error.

In addition, the Locator agent tries to find the erroneous patches from a coarse resolution image

just like we humans detect error spot in the overall context. Next, the erroneous patches are

cropped from fine resolution image, and fed to Merger and Splitter agents for correcting split

and merge errors respectively. Fig. 4 shows the overview of the proposed proofreading system.

Therefore, my contribution consists of three agents which built a fully automatic proofreading

system.
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Splitter 
Agent 

Merger 
Agent 

Initial Label map

Image

Input

Corrected Label map

Locator 
Agent 

Patch Selection

Correcting processDetecting process

Ground truth

Figure 4: The proposed proofreading system diagram. From the beginning, an input consists

of an initial label map and an EM image, the Locator agent choose a coordinate of a patch

containing error regions base on an action grid. The chosen patches cropped from image and

label map are fed to Merger agent to correct split errors, after that Splitter agent corrects merge

errors on the result adopted from Merger agent. The correct label patch is pasted back into the

label map, and those segments outside of the patch which connected to prior erroneous segments

inside are also relabeled by watershed transformation. The initial label map is updated from

the corrected label map for the next iteration.
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I’d like to verify this, I don’t create new method in the reinforcement learning. I only use

reinforcement learning as an approach for my application by adapting the Markov Decision

Processes
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II Related Work

2.1 Automatic Segmentation

General automatic segmentation methods [22, 23, 48, 49] are used for reconstructing from vast

EM brain volumes. Also, a decade ago, CNNs have been applied to detect the boundary of

neurons [50,51]; after few years, the U-Net [20], as known as a baseline network for segmentation

task till now, is proposed and led to many variant of its designs [21, 52–54]. Then, in the last

few years, these state-of-the-art methods [24–27] came with the approaches using both CNNs,

to predict the affinity or to classify boundary, and agglomeration to refine after watershed

transformation. However, the challenges [16,55] showed that, because of the uncertain distorted

areas on the images, it’s still hard to achieve a flawless result without human proofreading

process.

2.2 Human Proofreading

In fact, with multi-terabyte EM image data set, it’s time consuming to proofread physically.

Interactive Proofreading. In order to speed up the procedure, many interactive tools

have been developed to contain a visualization and interaction system, which support user to

interact the data in 2D and 3D. Sicat et al. [29] built an AVIZO plugin, which generates a

graph abstraction for simplifying proofreading task. A skeleton constructed from the initial

segmentation volumes is used to identify the potential erroneous regions and guide users to it.

Raveler [56, 57] is one of the tools in Janelia Farm FlyEM project, which supports annotation

and proofreading on large data set. Nevertheless, with many parameters for fine-tuning, it’s only

compatible for professional users. A game platform, EyeWire [38], which adapts the proofreading

task as a puzzle game and participants earn virtual rewards after accomplished the task. Mojo

[30] and Dojo [31] are simple tools which use scribbles to correct the errors. Dojo is an extended

version of Mojo which aims to effortless interaction by running on a minimalistic web-based user

interface.

Computer-aided Proofreading. Uzunbas et al. [58] detected potential erroneous labels

by training a conditional random field to track the underlying uncertainty in the merge tree

of an automatic segmentation method. But this work is only applied to isotropic volumes that

certainly needed to be improved for anisotropic volumes. Zung et al. [35] introduce detection and

correction framework by an error-detecting net and an error-correcting net. The error-detecting

net detects merge and split errors given a binary mask of candidate object, then its output is a

map containing the locations of merger and split errors; moreover, the output map is considering

as an advice to the error-correcting net by taking all the union of all erroneous segments have

been found by the error-detecting net which made the framework fully automatic. However, the

error-correcting net only does the object mask pruning task, which means it can correct only

merge errors while the error-detecting net detects both merger and split errors; therefore, there
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are constraints in their framework and it is not as same as human correction behavior. On top

of this, their framework works on 3D volumes, while my system works on 2D slices.

Currently, the work done by Haehn et al. [34] is the state-of-the-art in proofreading task. The

authors showed a human-guided proofreading approach, which is called guided proofreading, to

correct merge and split errors base on the boundary of segmentation on an error patch, and

then displays the suggested corrections as a yes/no decision for users. In order to detect split

error, they proposed a CNN-base boundary classifier or split error detection, which outputs the

probability of the given boundary mask of two adjacent segments in the error patch. Likewise,

to detect merger error, they reused the trained split error detection and inverted the probability

result given a set of boundaries generated from a segment. In other words, given a segment, they

randomly placed pairs of symmetric seed points on the boundary of the dilated the segment to

generate a set of potential boundaries by watershed transformation; then, they used the inverse

probability result to rate individually boundary. To get the error patches, they inspect all the

segments, to find merge error, and boundaries of neighbouring segments, to find split error, on

the segmentation in a brute-force manner; next, all the probability results from two detectors

are sorted into a list of rankings which will be looped from top by users. Besides, they also

defined a threshold to run automatic selection. However, the result showed the amount of

correct corrections is lower than the total. After all, their approach is encapsulated in human

correction task and still requires human labor. Actually, I’m inspired a lots from [34]. For merge

error correction, dynamic decision-making can take part in, which means instead of placing

randomly a pair of points, which creates a boundary and cuts 2 segments have been merged, my

Splitter agent can decide the optimal locations to place seeds; therefore, my Splitter agent not

only reduces a large amount of effort but also can separate more than 2 segments.

2.3 Reinforcement Learning

Song et al. [59] suggested an interactive segmentation method called SeedNet. In terms of

human interaction, it can be useful in the process of connectomics. On top of that, the authors

considered the step-by-step segmentation as a decision process, so the idea is implemented on

the Reinforcement Learning framework. In contrast, my work is different from the perspective of

methodology and goals. However, we shared some ideas such as the definition of current status,

and modifying reward function for the Reinforcement Learning framework.

In order to follow the human detection task, it is natural to make a series of decisions

such as zoom-in and zoom-out, which leads to the use of the reinforcement learning framework.

Utilizing selective zooming-in [60–62] has been suggested in order to perform object detection

or segmentation efficiently on large sized images. Trained policy works efficiently on choosing

which area to zoom in, which makes these approaches not only reduce computational complexity

but also can be considered as human identify actions. However, those approaches are for the

semantic segmentation or classification, while mine is for proofreading on the segmentation slices.

To the best of my knowledge, this is the first fully automatic proofreading method mimicking
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the behavior of human annotators using a reinforcement learning approach for connectomics.
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III Method

From Fig. 4, all the agents observe and take action on image. If I define each pixel as an action,

it may requires a huge action space containing pixel-wise actions; and also, the scope of this

thesis is limited in discrete action space so I don’t use continuous action space. Therefore, action

space of the agent is the set of the intersections on a designed grid and an additional terminate

action. In other words, I proposed a grid-action map method for applying into all agents. It’s

similar with [59] but my agents have a terminate action while theirs don’t. The details is defined

later in the section below.

3.1 Merger agent

The goal of the Merger agent is correcting the split errors highlighted as red regions ,and also

the overlapped regions in Fig. 3 . In general, the human correcting split error process has two

basic steps. The first step is find and pick a split fragment. The second step is find and pick

another split fragment corresponding with the preceding fragment. After that, a pair of split

fragments have been merged into a new segment which is a correct segment or still a fragment

of a larger correct segment. By repeating this process, till the end, we will fix all the split errors.

I design Merger agent following this process as a MDP ( as shown in Fig. 7).

State: The state contains the representations of the environment, which consists of an EM

image I, a label map L and a point map P . Our agent interacts with the environment base

on coordinates so it needs a map representing the chosen locations. Therefore, a Point map is

proposed (P ∈ [0, 1]), through all episodes, after the agent taken an non-terminate action At, the

Point map at time step t+ 1, Pt+1, is inserted a Gaussian kernel g ∈ [0, 1]16×16 corresponding to

the area surrounding the chosen coordinate. The label map (L ∈ N\0) is the result after applied

the watershed transformation into the probability map which is the result of prior automatic

segmentation process. The Merger agent observes the normalized label map L̂ = L
lmax

which is

divided with a maximum index on label map. The size of both the state and the observation are

128×128, in this case, after measured the maximum number of segments which can be contained,

and excluded the background’s value 0, I choose lmax = 99. And also, at the initial state t = 0,

all the index of segments in label map L0 are shuffled with range [1, lmax] in order to prevent the

model observing the same index over a region repeatedly which makes the model more robust.

However, observing the L̂ may not enough information for the agent to distinguish the segments.

In other words, I want the agent observe the label map as a cell instance segmentation map from

the index value. But after normalized, the index value in L has been scaled down from range

[1, lmax] to [0, 1] and the step between two indices are scaled down lmax times. There for one label

map may not fully represents a dense cells. The position encoding method in natural language

processing [63] suggested enhancing the model’s input by equipping each word with its position

in a sentence, which means the position is encoded into a wavelength d-dimensional vector.

Inspired by the position encoding method, I encode the label map L ∈ NH×W → L̈ ∈ NH×W×d

10



and the value in L is calculated by a base B as follows:

H∑
i=1

W∑
j=1

Li×j =
H∑
i=1

W∑
j=1

d∑
k=1

L̈i×j×k ∗Bk−1

or L =
d∑

k=1

L̈k ∗Bk−1

(1)

where k denotes index of the last axis in L̈. For Merger agent and Splitter agent, I choose d = 2

and B = 10, Eq. 1 becomes:

L = L̈2 ∗ 101 + L̈1 ∗ 100

= L̈2 ∗ 10 + L̈1

(2)

In this case, the maximum index in L̈ is lmax = Bd − 1 = 102 − 1 = 99. Fig. 5 shows how this

encoding method operates on a 3× 3 label map.

0 1 2

3 40 60

90 98 99

𝐿 𝐿
0.0000 0.0101 0.0202

0.0303 0.4040 0.6061

0.9091 0.9899 1.0000

0 1 2

3 0 0

0 8 9

0 0 0

0 4 6

9 9 9

ሷ𝐿2 ሷ𝐿1
0 0.1 0.2

0.3 0 0

0 0.8 0.9

0 0 0

0 0.4 0.6

0.9 0.9 0.9

ሷ𝐿2
ሷ𝐿1

ሷ𝐿

𝑙𝑚𝑎𝑥 = 99

𝐿

𝑙𝑚𝑎𝑥 = 99

ሷ𝐿 with 𝐵 = 10 ሷ𝐿

Figure 5: Illustration of encoding and normalizing result on a 3 × 3 label map. The L̂ is the

normalized map of L and L̈ is encoded map of L.

In the end, the Merger agent observes L̂ or ˆ̈L, the EM image I ∈ [0, 1] and Point map P to

detect and correct split errors.

Action: Given a state, in order to pick a fragment on L, an non-terminate action is defined

as coordinates of intersections on a defined 2D grid excluding the intersections on boundary,

which means, from a (n+ 2)× (n+ 2) grid, the action space consists of inner n× n actions and

an additional terminate action. To make it’s more precisely, I choose 15× 15 actions, thus, the

grid-action is dense and the total number of actions is 226 (see Fig. 6a).

Additionally, in the time step t, with action At, the chosen coordinate is ct. Then, the label

on the chosen coordinate is L(ct).
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(a) The overlap of grid-action map 15× 15 and the
Point map in Merger, Splitter agents. The termi-
nate action has index 225 and the size of the Gaus-
sian kernel is 16× 16 pixels.

(b) The overlap of grid-action map 7×7 and a Point
map in Locator agent. The terminate action has
index 49 and the size of the Gaussian kernel is 32×
32 pixels.

Figure 6: Illustration of the grid-action map (yellow lines, orange dot and white numbers), and

how a Gaussian kernel is inserted at action a = 0 ( the red number) in the Point map. The

orange dots indicate where the agent can do action and the number is the index of non-terminate

action in the action space (zero-based numbering). The image has size 128× 128 pixels.
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Reward: The reward is the feedback of the environment. By designing a correct reward

function, we can guide the agent to learn our desire task which is improving the metric value. In

this case, for a simple task, given only a correct segment has been split into multiple fragments,

I want the Merger agent merge all the split fragments into the correct segment again. Thus,

I can simply design the Merger agent receive positive reward if it picked a erroneous fragment

and negative reward if the picked. The reward function is as follows:

Rt+1 =

 1 if L(ct) ∈ Et

−1 otherwise
(3)

where Et is the binary mask of erroneous fragments at time step t, and Rt+1 is the reward

receive in time step t + 1, which is 1 if the picked label is matched with the error binary mask

and vice versa, for the action ct at time step t . In fact, at the odd time step, the picked label

indicates as a base label; then, in the next time step, or the even time step, the next picked label

is changed its label to base label, which is as same as the way human pick and merge a pair of

segments (see Fig. 7). Given a correct segment has been split to n fragments, the number of

time step need to fix it is 2n−2 steps. Follow this scheme, a pair of segments is merged without

any awareness. Therefore, the agent have to learn not only how to correct split error but also

learn how to avoid penalty from merging a correct pair of segments. All of the change-makings

at each time step are updated directly on L. Since I have the ground truth (GT ∈ N \ 0), I

can use it as a reference for checking picked pairs; thus, a pair is merged only if it’s a pair of

erroneous fragments. In this additional option, the Merger agent only see the combining of two

erroneous fragments and nothing changes when it receives a penalty. In summary, I design 4

Merger agents with follow configuration:

Observe L Observe L̈

Environment only merges erroneous segments M1 M2

Environment merges a pair without any awareness M3 M4

3.2 Splitter agent

The task of the Splitter agent is correcting the merger errors highlighted as green regions, and

the overlapped regions in Fig. 3. The human correcting merge error process is drawing the

boundary on the merge error segment, which means we cut a segment into smaller segments by

drawing boundaries. In fact, one simple approach is using a refine model to re-segment the label

map again. However, a merge errors happened due to ambiguous areas on the EM image which

makes the prior segmentation process can’t generate complete boundaries . Therefore, there is

still no guarantee that using new segmentation model can achieve a better result if the prior

segmentation process is already at the best condition. To overcome this problem, [34] proposed

generating random boundaries by the watershed transformation base on the EM image, which

13



Label map 𝐿𝑡

EM Image 𝐼

State 𝑺𝒕
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Merger 
Agent 
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𝒂 = 𝟐𝟎

Merging a pair of selected segments 
with order (odd 𝒕, even 𝒕). 
Do nothing in other cases

Label map 𝐿𝑡+1

Observation 𝑶𝒕

Point map 𝑃𝑡 Point map 𝑃𝑡+1

Grid-action map

Reward
𝑹𝒕+𝟏

𝐼 𝑃𝑡 ሷ𝐿1 ሷ𝐿2

Selected label 
at odd time step 𝑡 − 1

Selected label 
at even time step 𝑡

𝑡 𝑚𝑜𝑑 2

Figure 7: The interaction in Merger agent. In a time step t, The black arrow is the flow of

the state St; the red arrow is the input observation Ot to the agent; the yellow arrow indicates

the action of the agent for the corresponding Ot, hence, a = 20. The grid-action map gets the

state St and read the action a; after that, the Point map Pt+1 is inserted a Gaussian kernel on

a coordinate of the action index. The orange is the image processing flow of the environment.

In this case, a gateway module is checking whether this time step is odd or even. If it’s odd,

then the environment saves the chosen label. If it’s even, the environment looks up the previous

chosen label in the odd time step and change the current chosen label to the previous chosen

label respectively. The green arrow indicated the updating flow for the next time step and also

calculating the reward for the action a. The reward calculation Eq. 3 in both kinds of time step

is the same, the reward is only either this chosen label is correct or not.
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means we use the natural shape of the cells to to get the boundaries on ambiguous areas. I

follow [34]’s method to split a segment, but instead of using random locations as markers for

running the watershed transformation and relying on a rating model, my Splitter agent will

learn and find the optimal locations respectively.

State: The state in Splitter agent is the same with Merger agent, which means the Splitter

agent observes L̂ or ˆ̈L, the EM image I ∈ [0, 1] and Point map P to detect and correct merge

errors. Even they observe the same view, but their environment operates different with each

other. While the Merge agent doesn’t create new cell instance or new index value in the label map

L, the Splitter agent learns to choose optimal coordinates to generate precise boundaries and new

cell instances or new indices are added to the label map L after the watershed transformation.

Action: Given a state, the Splitter agent chooses coordinates to be markers for the watershed

transformation process, which means the coordinates are represent as a grid-action 15 × 15.

Therefore, the action space of Splitter agent is the same with Merger agent. To operating the

watershed transformation method, a marker map M ∈ [0, 1] is created from the initial state.

All the chosen pixels on M , corresponding with chosen coordinates, are set value, which means

M(ct) = t with (t > 0). Another one needed for the watershed transformation is the value map

V . The the watershed transformation using V as a topographic surface and flood this surface

from its minima. In general, V = invert(I), which means the high values are considering as

catchment basin and low values like background are watershed line, but due to the artifact on

EM image, I pass I into a Gaussian filter (σ = 2) and normalize the result so that V ∈ [0, 1].

However, only using Gaussian filter is not enough blurring the boundary of the cell body inside

the neuron, while we are considering the cell body is the same part of the neuron here. Therefore,

V is added the Gaussian kernel g on the area surrounding the chosen coordinate: V (ct) = g By

this scheme, the Splitter agent not only learns to find the split errors but also it learns placing

the point in order cut the merged segments precisely. Fig. 8 shows how it corrects the merge

errors.

Reward: Base on the task of the Slitter agent, the total reward comprise two kind of reward:

detecting reward and metric reward. The detecting reward Rd is similar with the reward function

in Merger agent:

Rd =

 1 if L(ct) ∈ Et

−1 otherwise
(4)

where Rd is the detecting reward at time step t+ 1 for the action ct at time step t and Et is the

error map contains the binary mask of merge errors at time step t. To encourage the Splitter

agent to find the optimal coordinates, the metric reward can represent as the improvement

metric value between two time steps. According to [59], the gap between two metric values are

not enough. Since our data set is CREMI so I use the CREMI score metric, which is defined as

a geometric mean of (V OImerge + V OIsplit) and the ARAND [16, 64]:

CREMI =
√

(V OImerge + V OIsplit) ∗ARAND (5)
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Figure 8: The interaction in Splitter agent. In a time step t, The black arrow is the flow of

the state St; the red arrow is the input observation Ot to the agent; the yellow arrow indicates

the action of the agent for the corresponding Ot, hence, a = 159. The grid-action map gets the

state St and read the action a; after that, the Point map Pt+1 is inserted a Gaussian kernel on a

coordinate of the action index. The orange is the image processing flow of the environment. In

this case, the image I is passed through a Gaussian filter and summed with the Point map Pt+1,

then the inverted result and the mask of chosen labels ,the red color, are used as the input for

the watershed transformation. After that, the region in label map Lt+1 is updated base on the

watershed result and the red mask. The green arrow indicated the updating flow for the next

time step and also calculating the reward Eq. 7 for the action a.
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The V OImerge and V OIsplit are used to measure the merge and split errors respectively, while

ARAND computes Adapted Rand error as defined by the SNEMI3D contest [55,64]. The lower

the score, the better the result, which meanss it opposite with the IoU metric. Therefore, I

design a function for metric reward which makes the agent receive more reward if the CREMI

score is lower and lower in each time step:

Rlog = − log(
CREMI(Lt, GT )

CREMI(Linit, GT )
) ∗ w (6)

where Rlog is the received reward as time step t+ 1 for the action At. The Lt and Linitial is the

label map at time step t and at the initial state respectively. w is the constant value, in this

case I choose w = 2. The total reward at time step t + 1 for the action At at time step t is as

follows:

Rt+1 =


1 +Rlog if L(ct) ∈ Et

0 if CREMI has been equal 0 once: Πt−1
ti

CREMI(Lti) = 0

−1 otherwise

(7)

During the training phase, if the agent corrects all the split errors, if it keep does more actions,

the label map will have split errors, and also, I can’t give the penalty for this case because it

makes the agent misleading. Therefore, I set all the later reward to 0 as a signal to prevent the

agent doing redundant actions. In summary, I have two kinds of Splitter agents:

• S1 is a Splitter agent observing L̂.

• S2 is a Splitter agent observing ˆ̈L.

3.3 Locator

In the general case, an error segment is not easily distinguished as a stand-alone merge error

or a stand-alone split error, thus it can be both like the region highlighted as yellow in Fig. 3.

Running only or both pre-train Merger or Splitter agents on that area is not enough to have a

flawless result. There is a case we have to revisit that area again. Therefore, I propose Locator

agent, which mimics the human detecting error task. The task of the Locator agent is finding

error areas within high resolution label map L from a coarse resolution view. The Locator agent

also has to be aware of the improvement of the label map such as if the result from Merger and

Splitter is not good, the Locator has to consider to revisit the preceding error area again or not.

In fact, by observing the coarse resolution image, the memory for parameters in the Locator

agent is saved.

State: The state in Locator agent is the same with Merger and Splitter agent but the

observation’s size is different, which means the Locator agent still observes L̂ or ˆ̈L, the EM

image I ∈ [0, 1] and Point map P , but the L̂ or ˆ̈L are computed from a downscaled label

map, in this case, 4 times. The EM image I is also downscaled from its original input size. The
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observation’s size can be also known as the input to the agent’s model. From now, for definition,I

will call the observation’s size as coarse resolution or low resolution (LR), and the size of the

stage in the environment as fine resolution or high resolution (HR); and also, the error patch P ,

which is the patch cropped from HR image with a size the same in Merger and Splitter agents,

hence, the correcting size or cropping size = 128. Additionally, with the larger size of HR label

map requiring larger capacity index or larger lmax; therefore, I choose the encode base B = 20

so the lmax = 399. The Gaussian kernel in Locator is g ∈ [0, 1]32×32 because of the different

grid-action map.

Action: Given a stage, the Locator observes through its coarse resolution view and try to

identify the error area. The action space of Locator is the same grid-action map of Merger

and Splitter agents but different size because the task now is viewing from the overall context

so I don’t need a dense grid anymore, hence, I choose 7 × 7, so now the total actions of the

action space is 50. A patch is cropped from HR image with the correcting size and the chosen

coordinate as the center. Then, this patch is firstly fed to a pre-train Merger agent for detecting

and correcting split errors. Next, the Slitter agent obtains the result patch from Merger agent

and do the rest. The corrected patch is pasted back into to label map L I choose this correcting

order because I trained the Merger agent only with one split error case, which means the Merger

agent may picks wrong segments and produces merge errors. That is the reason why the Splitter

agent is run after, it can cover the Merger agent if Merger agent accidentally generated merge

errors. Fig. 4 is the summary of how Locator work and Fig. 9 shows its interaction. Nevertheless,

if the Splitter agent generates split errors, the Locator has to know it and revisiting the previous

area again. From this scheme, a loop may exists if the two agents keep generate and fixing each

other errors; in this case, the Locator still receive the rewards but it made the Locator agent

only revisits the same location again and again forever, which is what I want to avoid.

Reward: Again, the task of the Locator is locating the error areas and those chosen areas

have to improve the metric of the HR label map. It’s the same case with Splitter agent, I want

the Locator not only able to find error areas but also fully aware of the improvement metric.

However, the Rlog in Splitter agent encourages the Splitter agent with the lower the CREMI

score, the much higher reward, but it is not sensitive with small improvement from the beginning,

so I can’t apply the same case to the Locator agent. Because the large size of the label map,

after corrected the error patch, the improvement score is low so Rlog return a low immediate

reward. Therefore I design the function which is similar with Rlog but sensitive with the small

change in CREMI score.

Rexp =
exp(w ∗ ( −CREMI(Lt)

CREMI(Linit)
+ 1)− 1)

exp(w)− 1
(8)

where w is a constant. There for the reward at time step t+ 1 for the action At at time step t
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Figure 9: The interaction in Locator agent. In a time step t, The black arrow is the flow of the

state St; the red arrow is the input observation Ot, which is the downscaled St, to the agent;

the yellow arrow indicates the action of the agent for the corresponding Ot, hence, a = 24.

The grid-action map gets the state St and read the action a; after that, the Point map Pt+1

is inserted a Gaussian kernel on a coordinate of the action index, and also, the location of the

chosen patch is calculated. The orange is the image processing flow of the environment. In this

case, the image I and the label map Lt is cropped according to the location of the chosen patch.

The size of the chosen patch is base Merger and Splitter agent, hence, 128× 128 as I defined in

the previous. A pre-trained Merge agent gets the cropped patches and corrects the split errors

if they exist in the cropped label map. Next, the result from the Merger sent to a pre-trained

Splitter agent for checking and correcting the merger errors. After the correcting phase, the

region in label map Lt+1 is updated base on the corrected patch. Moreover, all the modified

labels inside the patch are tracked on a mask; then this mask is used for relabeling the external

labels which are related to modified labels. The green arrow indicated the updating flow for the

next time step and also calculating the reward Eq. 9 for the action a.
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is as follows:

Rt+1 =



1 +Rexp if L(ct) ∈ Et

0 if CREMI score has been equal 0 once,

or no improvement in the CREMI score

−1 otherwise

(9)
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IV Experiments and Results

4.1 CREMI data set

CREMI is data from the MICCAI Challenge on Circuit Reconstruction from Electron Microscopy

Images (CREMI) [16]. The CREMI data set consists of three volumes from an adult Drosophila

melanogaster (a common fruit fly) brain tissue, each of volume has size 1250 × 1250 × 125

pixels or (5µm)3 in physical size. The three volumes are different in appearance: The neurons

in CREMI A are mostly homogeneous in size and shape, the two other volumes (CREMI B

and C) are more challenging, with cells that have jagged boundaries and large variations in size

and shape. In my experiments, I use CREMI A data set. I use the first 92 slices in z axis for

training, 23 slices for validation while training and the last 10 slices for testing. The metric for

the CREMI data is the CREMI_score:

CREMI_score =
√

(V OIMerge + V OISplit) ∗ARand (10)

where V OIMerge, V OISplit and ARand are defined in [64]. The lower the score, the better result.

4.2 Training

Synthetic Error: To train the agents, I need erroneous label maps which can be obtained from

the output of a segmentation model. However, training with the result from the segmentation

model can make the agents bias on the characteristics of the segmentation model. Therefore,

I generate synthetic error while training the agents. Additionally, the data set is for 3D seg-

mentation task, there are cases two cells are shown separated in an EM image but they are

merged in the ground truth, which means the data contains noisy labels. But the result shows

that my agents work robustly just by training with synthetic error. To generate merge error for

training the Splitter agent, given a ground truth, I randomly pick from 1 to 4 segments and set

them as the same index. If only 1 segment is chosen, in this case, there are no merge errors.

By this scheme, the Splitter agent not only fix a big merged segment but also can fix a far

segments which is may generated by Merger agent. For Locator agent, I randomly pick from

0 to 2 segments and then those chosen segments are randomly merged with theirs neighbour

segments with the amount from 1 to 4 including itself. To generate split errors for Locator and

Merger agents, I randomly pick a segment from the ground truth and run watershed to generate

erroneous fragments. The number of fragments is from 2 to 6. Fig. 10 shows how to generating

the synthetic error from the ground truth.

Agent settings: All the agents are trained with asynchronous advantage actor-critic (A3C)

[65] method and the code is base on the RL framework from [66]. I train the model with Adam

optimizer and the learning rate is 10−5. The discount factor γ is 0.9. During training, in Merger

and Splitter agents, the ε decreases from 1 to 0.1 over 40, 000 steps and fixed. In the Locator,

the ε decreases from 1 to 0.1 over 10, 000 steps and fixed. The maximum length of the episode
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Two Split errors

Random picked segments
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Figure 10: The flow of generating merge and split error from the ground truth. The upper

branch is the generating merger error flow

is 6, if go over, I will terminate. The training procedure stop when the agent reaches 1 million

steps.

4.3 Testing

Evaluate Merger and Splitter Agents

With Synthetic Error: From test set, I randomly generate synthetic error test set for special

test cases:

• Split error test set: contains only split errors. The number of correct segments chosen to

be split on each image is in randomly

• Merge error test set: contains only merge errors.

• Mix error test set: contains both split and merge errors, hence including the overlapped

errors.

Each data set contains 1000 samples with size 128× 128.

With the set of Merger agents (M1, M2, M3, M4) and two Slitter agents, I combine Merger

and Splitter agent in this order:

• M1S1, M2S1 is a group of agents observing label map

• M3S2, M4S2 is a group of agents observing encoded label map
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From this setup, I can measure the benefit of encoded label map. The Splitter agent are run

after Merger agent because the Splitter agent is trained with the metric reward so it’s stronger

than the Merger agent.

In Fig. 11, M3 and M4 are the best for fixing merge error among Merger agents, especially,

the CREMI score in M3 decreased 67.7%. It proofs the benefit from encoded label map in M3

and M4. All Merger agents also slightly produced merge errors (0.01 V OIMerge). When there

are no merge error, the Splitter agents only create a small split error ( increased 3%V OISplit).

Merge error also produced from Splitter agent because it placed a point on a boundary. When

combining Merger and Splitter agents, the errors made from Merger agent are corrected by

Splitter agent after that.

• M1 reduce 19.7% when the S1 is after it

• M2 reduce 15.4% when the S1 is after it

• M3 reduce 20.6% when the S2 is after it

• Surprisingly, M4S2 is increased. Maybe because of the score from M4 is already slow from

the beginning.
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Figure 11: The result on split error test set. The lower the score, the better result.

In Fig. 12, the Splitter agents reduce 88.9% and 90.5% scores on S1 and S2. But they also

created split errors. In overall, S2 is better than S1 16.6% The encoded label map shown the

improvement in both Merger and Splitter agents. When there are no split error, the Merger
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agents only create around 1% Merge error. From the function of Merger, merging a pair of

segments, it can’t create split error. In overall, the stand-alone merger agent is more stable than

splitter agent.
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Figure 12: The result on merge error test set. The lower the score, the better result.

In Fig. 13, when the overlapped error exist, the combination of M3S2 has the best result, it

reduced 75.5%CREMIscore.

In fact, the good performance on the 3 test sets can be related to the characteristic of the

dataset. In this case, the CREMI A is homogeneous almost all the slices, which means the shape

of the cell is not vary, so it’s may easy for the agents to get the good result on the test sets. But

in spite of that, the result proofs my method works.

With Segmentation Result: I use a simple U-Net [20] to get the full size 1250 × 1250

segmentation result on the test set; then I run the combination M3S2 to infer on the sliding

window size 128×128 and step/stride size 64×64. In Fig. 14, The Patch is measured the sliding

window and Image is measured the full-size image. Even the score of the Image higher 41.9%

than the initial score, the score of the patch show that, the combination M3S2 did fix 16% the

error on patch.

This problem happened due to the poor watershed result as shown in Fig. 15.

Evaluate Locator Agent

I trained Locator in 3 cases, with Merger-Splitter agents, random fix segments base on GT and

paste all GT patch. When inference, Locator infers with Merger and Splitter (M3S2). In each
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Figure 13: The result on mix error test set. The lower the score, the better result.
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Figure 14: Inference on the full size segmentation result 1250× 1250. The lower the score, the

better result. The patch score is measured the sliding window output from M3S2 agent, and the

Image is measured on the full size image 1250 × 1250. The result shows that the score of the

image is increase, however, the patch score is decreased, which means M3S2 corrected the input

patch correctly.
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Ground truth EM imageResultInitial Label Map

Figure 15: A result on a full-size image in test set. The size of the slit error so small, like the tail

of a segment. Therefore, even the M3S2 can fix the error on the patch, the tail is still counted

as an error on the image.

cases, I test the size of O, or the input size, with size 128× 128 and 256× 256.
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Figure 16: The result of Locator on split error test set. The lower the score, the better result.

All the results Fig. 16,Fig. 17 and Fig. 18 show that, train Locator with Merger and Splitter

agents is the best option and it fixed around 70% on CREMI_score in all synthetic error test

sets.
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Figure 17: The result of Locator on merge error test set. The lower the score, the better result.
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Figure 18: The result of Locator on mix error test set. The lower the score, the better result.
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V Conclusion and Future Work

Nowadays, many segmentation works is proposed gradually increasing the accuracy, which made

the proofreading topic becomes less attention. From the proposed system, I created a new

method to resolve the bottleneck problem in proofreading task by replacing manually proofread-

ing with automatic mimicking human proofreading process. The result in section IV shown that,

this method is promising. For the future works, I will expand the agent from discrete action

space to continuous action space. And also, there are many options can replace the Locator

agent such as using a CNNs to classify a sliding window of HR image containing a error or not.

A comparison between them are needed.
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