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Abstract

Forecasting with multivariate time series that has been studied for a long time has goal to

predict future values using previous and current values. Since it is difficult to know how many

noise is intrinsic within fast changing time series data, training the model having high predictive

performance is difficult. Recently, many researchers have been interested in many deep neural

network such as recurrent neural networks, encoder-decoder structure, and neural networks with

attention mechanism to design them to forecast future financial time series data. Many attempts

have been to use those methods for highlighting more important features for capturing the long

period of temporal dependencies in the task of forecasting multivariate time series data to make

predictive performance better. In this paper, a new framework is introduced, which is utilized

deep temporal neural networks with trend filter techniques that make original time sequence data

mixed with the noise into the trend. We show that the performance of each deep neural network

using a feature temporally processed by trend filter skills. To verify this proposed method, three

state-of-the-art models for forecasting future values in finance stock market sequence, are used

for comparing the predictive performance with the original method. Expanded experiments

for conducting the t-test between this proposed method and original one show that the new

framework is useful and has statistical significance of the fact that proposed method achieves

better performance.
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I Introduction

Designing predictive algorithms for multivariate time series have been used in various field, such

as forecasting financial market [1], weather forecasting [2], groundwater level prediction [3], and

traffic predictions [4]. Also, a few methods have been tried for forecasting time series such as

ARIMA [5–7], Gaussian Processes [8–11]. Even with these efforts, it is still challenging to predict

these data having complicated and non-linear dependencies not only between time but also

among several time series features, which can fluctuate dynamically at each time step.

The recurrent neural network (RNN) [12–14] is a kind of deep neural network for sequence

forecasting with shared internal parameters. This network is vigorously used for forecasting

tasks in time series to capture nonlinear patterns. However, the classic RNNs are related with

not only the vanishing or forgetting gradient problems but also having difficulty when used to

detect long-term representation. Recently, long short-term memory (LSTM) [15–17] and the

gated recurrent unit (GRU) [18,19] had some success in solving these limitations and have used

in diverse areas, e.g., neural machine translation [20,21], and speech recognition [22]. Based on

encoder-decoder structures [18,23,24] also helps to capture not only the input features but also

long temporal patterns by selecting the proper parts among all encoder hidden states.

Dual-stage Attention-based RNN (DA-RNN) [25] is well devised with encoder-decoder struc-

ture having a two-stage attention [26–29] structure both to focus appropriate input features

and to take the temporal sequential pattern of the input data. A DA-RNN uses exogenous

information that the last time time step T of whole input features is included in the target time

steps that the model is to predict. On the other hand, Dual Self-Attention Network [30] forecasts

future values without exogenous information unlike DA-RNN and feeds each of the multivariate

time series data individually into two parallel convolutional components. In addition, those

representations is fed into self-attention modules which is from transformer network [31,32]. All

experiments are conducted without exogenous information for all deep temporal neural networks

in this paper because exogenous information contains the future values of input features.

It is not simple task to figure out the extent how many the noise from the important signals in

time series finance data. In addition, structural break predictions are necessary to estimate future

values. However in noisy financial times series, observing structural breaks is challenging. This

complex structure of time series data interrupt appreciate predictions and make the predictive

performance of deep neural networks to be worse. To solve these problems and to increase

the performances capabilities for prediction problem, we propose a new framework that adds

a feature using the trend filtering technique such as Low-pass filter (LPF) [33, 34], L1 Trend

Filtering (L1TF) [35] to the input values.

L1 trend filtering captures a piecewise pattern between two points of trend changes and uses

a hyperparameter λ [36]. Since λ, which is capable of controlling the smoothness among the

trend and the size of residual for the trend and actual data, is optimally decided by a lot of

experiments, it can solve the problem that are difficult to distinguish between information signals
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Figure 1: Forecasting with multivariate time series, which is NASDAQ 100 Stocks. 100 features is

the stock price listed on NASDAQ 100 Stocks, and blue line is about NASDAQ 100 Index. Using

those previous and current several times series data, the future values of NASDAQ 100 Index

will be predicted. Since it is difficult to estimate the degree of noise mixing on signal information

within finance time series, the method for training a well-predictive model is difficult.

and noise so that the model can make proper predictions. On the other hands, low-pass filter is a

filter that passes signals with a frequency lower than a selected cutoff frequency hyperparameter.

Also selected cutoff frequency hyperparameter is optimally determined by a lot of experiments,

the problem that has difficulty in extract noise within noisy time series to make the predictive

performance of the model. To verify the effectiveness of this method, we use two cases, one is

that trend filter is used and the other is that filtering is not applied, in conjuction with a set of

stock index data with many driving series, e.g., the NASDAQ 100 Index, the EURO STOXX 60

Index, the Dow Jones Industrial Average, the FTSE 100 Index, and the TSX 60 Index. Extensive

experiments with several time series, which means multivariate time series, demonstrate that the

this proposed method is useful and surpasses the baseline method in paired t-test [37] between

models with and without the trend filter feature.

Our main contribution in this thesis are as follows:

• A new framework is proposed in this paper, which utilizes deep temporal neural networks

with a trend filtering feature, which is a trend of the target value.

• We demonstrate that the performance of deep neural networks using a temporally processed

by trend filter skills.

• To evaluate this method, three deep temporal neural networks, which is state-of-the-art

in forecasting future time series data, are utilized for comparing between the models with

trend filtering feature as an input data and the models without one.
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• Extensive experiments on real-world multivariate time series data show that the this

proposed method is effective and significantly better than existing original methods.
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II Background

2.1 Autoregressive Integrated Moving Average (ARIMA)

By integrating an autoregressive (AR) [38,39] with a moving average model (MA) [40,41], the

future values are assumed to be a linear function of multiple past observations and random errors.

Thus the basic process that generates the time series has the following form:

yt = θ0 + φ1yt−1 + · · ·+ φpyt−p

+ εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q, d = 0,
(1)

where yt and εt are the actual value and random error, respectively, at time t. φi (i = 1, 2, ..., p)

and θj (j = 0, 1, 2, ..., q) are the parameters of AR and MA estimated using an optimization

procedure that minimizes the sum of square errors or some other appropriate loss function. p

and q are integers that pertain to the order of the model. d refers to differencing, which is used

to calculate the difference between subsequent observations to indicate the stationarity of the

time series. One of the important parts of the ARIMA model is that for making the proper

model, we set d=0 among (p, d, q) hyperparameters in this paper.

2.2 Deep Neural Network

DNN [42,43] is a non-linear method that approximates the function F that maps the input X to

the output y as follows,

y ≈ F (X), (2)

where F represents the entire layer of DNN. The several equation from the first layer to the

output layer can be represented as follows,

f1(X) = g1(W1X+ b1),

f2(X) = g2(W2f1(X) + b2),

fi(X) = gi(Wifi−1(X) + bi),

fL−1(X) = gL−1(WL−1fL−2(X) + bL−1),

y = fL−1(X)TWL + bL,

(3)

where Wi and bi represent correspondingly the weight and bias for the i-th layer map, fi, while

gi is an linear activation function for layer i. Generally, for each layer of a DNN, non-linear

mapping is applied to the input with activation functions such as a tanh, ReLU, logistic, sigmoid

and softmax.

2.3 Fully Convolutional Network (FCN)

A fully convolutional network (FCN) [44,45] have been used in image semantic segmentation,

which is taking the input image and producing the output with useful inference and learning.
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Figure 2: The architecture of Fully Convolutional Network (FCN).

Each layer of data in a convolutional network has three dimensions, h× w × d, where h and w

denotes each dimension of height and width in image data and d denotes the number of features.

Receptive fields is mapping from the area in high layer to the area in next layer. These basic

components (convolution, batch normalization, pooling, and activation functions) are computed

on local input regions.

However, for time series data, some basic component of FCN must be changed to receive

multivariate time series as input functions. As it is not spatial, but temporal, the kernel size

of one layer is 1× k, where k is the number of input time steps (window size) of one layer. xt
represents a vector of all input features at time t in a layer, and yt is a vector for the following

layer. This model is defined as follows,

yt = fks({xst+δ}0≤δ≤k), (4)

where s is the stride, k is the filter size or kernel size, and the layer type(i.e., convolution structure,

a temporal max for max pooling or average pooling) is determined by fks.

This equation is maintained with filter size and stride length following the below rule,

fks ◦ gk′s′ = (f ◦ g)k′+(k−1)s′,ss′ . (5)

An FCN naturally computes a non-linear filter, which is taking the input image and producing

the output.

2.4 Dual-stage Attention-Based Recurrent Neural Network (DA-RNN)

A DA-RNN has two attention mechanisms, which is an encoder with input attention to select

relevant driving series appropriately at each time step and a decoder with temporal attention to

capture related encoder representations during whole time steps. According to such mechanisms,

the DA-RNN can capture relevant input features and the long-range temporal information of

a time series adaptively. This attention method can predict future target values effectively in

multivariate time series finance data.

Given n driving series, X denotes input multivariate time series i.e. X = (x1,x2, ...,xn)> =

(x1,x2, ...,xTi) ∈ Rn×Ti , where Ti is the input window size and n is the number of incoming series,

which means the number of input features. Typically, the input index time series is represented

as (y1,y2, ...,yTi). The goal of DA-RNN model is mapping of the future sequence of the target
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yTo , where To is defined as the output time step size:

ŷTo ≈ F (y1, ...,yTi ,x1, ...,xTi), To > Ti, (6)

where F (�) denotes a non-linear function for mapping of the future values of the target.

The sequence to sequence architecture is basically the RNN structures that encode each input

time series to each representations and decode those representations to output the results. The

DA-RNN model uses the LSTM structure as the encoder and decoder to capture the temporal

dependent information. Each LSTM layer of the encoder and decoder has a memory cell that

has input hidden states, such as st at time t and hidden state ht as the output. In the memory

cell, the three sigmoid gates is controlled, which are the input gate it, the forget gate ft, and the

output gate ot. The LSTM layer can be represented as follows,

ft = σ(Wf [ht−1;xt] + bf ),

it = σ(Wi[ht−1;xt] + bi),

ot = σ(Wo[ht−1;xt] + bo),

st = ft � st−1 + it � tanh (Ws[ht−1;xt] + bs),

ht = ot � tanh (st),

(7)

where [ht−1;xt] ∈ Rm+n is a combination of ht−1 ∈ Rm and xt ∈ Rn, which means the previous

hidden state and the current input data. Wf ,Wi,Wo,Ws ∈ Rm×(m+n), and bf ,bi,bo,bs ∈ Rm

are trainable parameters.

Continuously, an input attention mechanism in DA-RNN can refer to the previous hidden

state ht−1 and cell state st−1 ∈ Rm in the encoder LSTM layer as follows,

ekt = v>e tanh (We[ht−1; st−1] + Uex
k), (8)

and

αkt =
exp(ekt )∑n
i=1 exp(e

i
t)
, (9)

where T is the input time step, xk ∈ RT ,ve ∈ RT ,We ∈ RT×2m, and Ue ∈ RT×T denotes the

parameters to train.

Using the previous decoder hidden state dt−1 ∈ Rp and cell state s′t−1 ∈ Rp, temporal

attention with the decoder can calculate the attention weight of each encoder hidden state at

time t as follows,

lit = v>d tanh (Wd[dt−1; s
′
t−1] + Udhi), 1 < i ≤ T, (10)

and

βit =
exp(lit)∑T
j=1 exp(l

j
t )
, (11)

where [dt−1; s
′
t−1] ∈ R2p is the combination between dt−1 and s′t−1, which denotes the previous

hidden state and the cell state from the decoder layer, vd ∈ Rm,Wd ∈ Rm×2p, and Ud ∈ Rm×m.
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Figure 3: The architecture of Dual-stage Attention-Based Recurrent Neural Network (DA-RNN).

The attention mechanism of the DA-RNN can compute the context vector ct, which is a weighted

sum between temporal attention weight and encoder hidden states h1, ...,hT ,

ct =
T∑
i=1

βithi, (12)

where the context vector ct can be represented at individual time step. Therefore, ŷTo is calculated

as follows,
ŷTo = F (y1, ...,yT ,x1, ...,xT )

= v>y (WydT + bw) + bv,
(13)

where the parameters Wy ∈ Rp×p and bw ∈ Rp are mapping to the size of the decoder hidden

states, and vy ∈ Rp and bias bv ∈ R are the weights of a linear function, leading to the final

prediction output. This part differs from the concepts in the DA-RNN paper. We did not use

the context vector to create the prediction output due to the increased performance.

2.5 Dual Self-Attention Network (DSANet)

DSANet can be used to be more accurate and robust prediction problem for multivariate time

series. In this paper, Same problem statement is also used in Eqn. 6. Two parallel convolutional

components feeding each of the univariate time series individually is used, which is called global

temporal convolution and local temporal convolution respectively to capture complicated mixtures

of global and local temporal information.

Global convolution temporal component uses a convolutional structure with multiple T × 1

filters to extract time-invariant patterns of all time steps for each driving time series globally.

Each filter of the global temporal convolution module produces a vector with a size of D × 1,

where the activation function is a ReLU function. Merged by the vectors, global convolution

structure outputs an matrix HG, which is that a well trained representation of a univariate time

series can be mapping with each row of the matrix. Local temporal convolution uses the length

of the filters as l, where l < T to map local temporal relationships in each univariate time series

to a vector representation. Also, a 1-D max-pooling layer is used for each column of the matrix

to capture the most representative features.

Then, an self-attention module inspired by the transformer can learn the similarities among

the driving series using these representations from each component. The self-attention module

7



Figure 4: The architecture of Dual Self-Attention Network (DSANet).

is composed of several stack of layers, and two sub-layers which are a self-attention module

and a position-wise feed-forward layer is used for each stack layer. This scaled dot product

self-attention module which can calculate the similarity between a query and each key to output

a set of value is defined as follows,

ZG = softmax(
QG(KG)>√

dk
)VG, (14)

where QG,KG, and VG are the set of queries, keys, and values obtained by applying projections

to the output of global temporal convolution. dk represents the dimension of the keys. The

position-wise feed-forward layer which is contained in two linear layers with a ReLU function is

defined as

FG = ReLU(ZGOW1 + b1)W2 + b2, (15)

where ZGO is the final representation of the self-attention modules. In addition, it has a residual

connection followed by layer normalization [46] to make training easier and to improve general-

ization. To improve the robustness, an Autoregressive(AR) linear model is combined in a parallel

manner because the scale of the output in non-linearity methods is not sensitive to the scale of

the input.

Finally, the prediction of DSANet is obtained by combining a feed-forward layer to sum

among two self-attention modules and the AR prediction.

2.6 L1 Trend Filtering

If a univariate time series yt, t = 1, ..., n it consists of trend xt that changes slowly and a random

component zt which changes rapidly. The goal of L1 trend filtering is to estimate the trend

component xt or, equivalently, estimate the random component zt = yt − xt. This method can

adjust xt to be smooth and can adjust zt, referred to as the residual, to be small. The main

principle is that the trend filtering optimize trend estimates that are piecewise linear. This

method allows the selection of the trend estimate as the minimizer of the objective function as

follow,
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(1/2)
n∑
t=1

(yt − xt)2 + λ
n−1∑
t=2

|xt−1 − 2xt + xt+1| , (16)

which can be written in matrix form as

(1/2) ‖y − x‖22 + λ ‖Dx‖1 , (17)

where ‖u‖1 =
∑

i |ui| denotes the l1 norm of the vector u and D ∈ R(n−2)×n is second-order

difference matrix.

D =


1 −2 1

1 2 −1
. . . . . . . . .

1 −2 1

 (18)

In addition, λ is a non-negative parameter used to handle between the extent of the residual

and the smoothness of x. Fig. 5 shows after the trend filtering that the fluctuating behavior

of the original time series graph is stabilized and the trend filtering simply follows the general

trend between two adjacent knot points. This means that time series models can detect some

important signals more easily and that filtering simplifies the prediction of noisy time series. The

important signal represents a change point (knot) when the time series trend changes. Many

experiments in this paper show the effect of the trend filtering for three deep temporal neural

network models.

Figure 5: Stock prices before and after the L1 Trend Filtering. Blue line is original value and

red line is the optimal trend of original time series. The greater the value of λ, the smoother is

adapted to the trend. This makes the number of knots to be smaller.

To derive a Lagrange dual of the primal problem of minimizing Eqn. 16, we set a new variable

z which has constraint z = Dx, to obtain formulation as follow,

minimize (1/2) ‖y − x‖22 + λ ‖z‖1 ,

subject to z = Dx.
(19)

According to a dual variable ν with the constraint, the Lagrangian is

L(x,h, ν) = (1/2) ‖y − x‖22 + λ ‖z‖1 ,+ν
T (Dx− z). (20)
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Figure 6: L1 trend loss for various example which have a lot of slopes between the previous and

the following points. The greater the difference of slope between the previous and the following

points, the greater the loss of the L1 trend (z), which is second term of the smoothness in Eqn.

16. By setting hyperparameter λ, the knot having lower L1 trend loss can be flattened and other

point can be remain as knot.

The dual problem is

minimize g(ν) = (1/2)νTDDT ν − yTDT ν

subject to − λ1 ≤ ν ≤ λ1.
(21)

The dual problem Eqn. 21 is a convex and quadratic program (QP). From the solution νlt of

the dual Eqn. 21, L1 trend estimate is calculated as follow,

xlt = y −DT νlt. (22)

10



III Improved Predictive Model with Trend Filtering Feature

As followed figure 7, a new framework is proposed utilized deep temporal neural networks with a

additional trend filtering feature, which is the trend of the target value. Three deep temporal

neural networks, which is state-of-the-art in forecasting future time series data, are utilized for

comparing between the models with trend filtering feature as an input data and the models

without one.

Figure 7: The proposed framework add a feature using trend filter technique. Three deep

temporal neural network which are Fully Convolutional Network (FCN), Dual Self-Attention

Network (DSNet), and Dual-stage Attention-based RNN (DA-RNN), are used to verify the

efficiency of this method. Trend filter feature (TF feature) which is used for input data to predict

fucture values is applied by the trend filter technique to original target data. Each predictive

values have same time steps for each model, several metrics such as RMSE, MAE, MAPE are

used for comparing between with and without trend filter feature.
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IV Experimental results

We implement the proposed methods and the baseline models in the PyTorch framework. This

sections describes five stock index datasets, after which the parameter settings of the proposed

methods and the evaluation metrics are introduced. Lastly, the performance between the proposed

methods and original methods is compared for proving the effectiveness of this methods.

4.1 Datasets

To verify the effectiveness of the proposed methods, we utilize five stock market index datasets

that represent the different stock exchanges from Bloomberg. These datasets are suitable for

multivariate time series forecasting. In order to reflect recent market trends, data from July of

2019 to January of 2020 are used here. Each dataset consists of a stock market index as the

target of the prediction and the stock prices of companies as the input. We assume that the

function used to compute the index out of the individual stocks is unknown. Thus, the deep

neural network models must learn a predictive index function from observations. The frequency

of the data is one minute. This satisfies the conditions of the deep neural networks, which require

a large number of samples. Moreover, each dataset is divided into two cases: one with L1 trend

filtering applied and the other with original inputs. As Table ??, the information of each datasets

is shown.

NASDAQ 100 Stock

The NASDAQ is a separate index of only 100 blue-chip companies listed on the NASDAQ index

in the USA. This data covers the term of July 1, 2019 to January 10, 2020, i.e., 193 days in total.

In this paper, the first 45,668 data samples is used as the training set and the following 5,075

data samples is used the test set. The growth rate of the NASDAQ 100 Index during the period

of test data is 3.26%.

EURO STOXX 50 Index

The EURO STOXX 50 Index represents the 50 leading stocks in 12 Eurozone (e.g., Austria,

France, Germany) countries and major sectors. It is calculated by the STOXX company. This

data covers the term from July 1, 2019 to January 10, 2020, i.e., 193 days in total. In this paper,

the first 65,349 data samples is used as the training set and the following 7,261 data samples is

used as the test set. The growth rate of the EURO STOXX 50 Index during the period of test

data is -3.47%.

Dow Jones Industrial Average (DJIA)

The DJIA consists of only 30 blue-chip companies listed on the NYSE and NASDAQ indices in

the USA. This data covers the term from July 2, 2019 to January 31, 2020, 195 days in total. In

12



Dataset Stock Exchange
Size

Train Test

NASDAQ 100 Stock NASDAQ 45,668 5,075

EURO STOXX 50 Stock Eurozone 65,349 7,261

Dow Jones Industrial Average NYSE, NASDAQ 48,740 5,416

FTSE 100 Stock LSE 61,907 6,879

TSX 60 Stock TSE 49,404 5,490

Table 1: Information of the datasets.

this paper, the first 48,740 data samples is used as the training set and the following 5,416 data

samples as the test set. The growth rate of the DJIA during the period of test data is 1.16% .

Financial Times Stock Exchange (FTSE) 100 Index

The FTSE 100 index represents the stock prices of 100 companies in the order of market

capitalization listed on the London Stock Exchange(LSE). The FTSE 100 Index is the leading

index of the UK stock market. This data covers the term from July 1, 2019 to January 10, 2020,

i.e., 193 days in total. In this paper, the first 61,907 data samples is used as the training set and

the following 6,879 data samples is used as the test set. The growth rate of the FTSE 100 Index

during the period of test data is -4.26%.

Toronto Stock Exchange (TSX) 60 Index

The TSX 60 Index is a stock market index of 60 large companies in the order of market

capitalization listed on the Toronto Stock Exchange (TSE). This data covers the term from July

1, 2019 to January 10, 2020, i.e., 193 days in total. In this paper, the first 49,404 data samples is

used as the training set and the following 5,490 data samples is used as the test set. The growth

rate of the TSX 60 Index during the period of test data is -0.16%.

4.2 Parameters and Investment Model Settings

To apply the trend filtering feature to the input data, we set the parameter λ to 0.005. In ARIMA,

we set the parameters p, d, and q to corresponding values of 1, 0, and 0. In the DA-RNN, there

are four parameters, which are the number of input window size Ti, the number of output window

size To, and each hidden dimension of the encoder m and decoder p. To find optimal parameters,

we conducted a grid search. Finally, we find the best performance which are Ti = 64, To = 5,

and m = p ∈ {64, 128}. For the parameter To, the higher the value of the parameter is, the

more often a lagged prediction compared to the ground truth can be detected. Accordingly,

this parameter value is fixed. For the other parameters m and p, these parameters are modified

proportionally relative to the number of driving time series for each dataset. In DSANet, the

13



number of multi-head nhead is set to 8 and both the inner-layer dimension of Position-wise

Feed-Forward Networks and the output of the dimensions are modified proportionally to the

number of driving time series for each dataset. In FCN, the parameter filters are 32 in all layers,

and the kernel sizes are 7, 5, and 3 in the sequence layer. Since FCN does not perform well in this

experiments, only the index value is used as an input. To compare the results between the model

with the trend filtering feature and that without it, only the trend filtering feature is added with

the index value. To ensure that the prediction is properly done in the desired direction, a simple

investment model that buys or sells only one amount for each trade is applied to the output of

the regression model. The position is determined by comparing the last predicted values ŷTo
with the actual value yT . Also, the initial balance is set proportionally to the initial price for

each dataset.

4.3 Evaluation Metrics

To evaluate the performance capabilities of various models for forecasting time series, three

metrics are used: the root mean squared error (RMSE), the mean absolute error (MAE), and

the mean absolute percentage error(MAPE), with the Adam optimizer. RMSE is defined as

RMSE =

√√√√ 1

N

N∑
i=1

(yit − ŷit)2, (23)

and MAE is defined as

MAE =
1

N

N∑
i=1

∣∣∣yit − ŷit∣∣∣ , (24)

where yt is the target value at time step t and ŷt is the predicted value at time step t. MAPE is

chosen as an evaluation metric because the proportion of prediction deviation can measure from

the ground truth. MAPE is defined as

MAPE =
1

N

N∑
i=1

∣∣∣∣∣yit − ŷityit

∣∣∣∣∣ . (25)

In the investment model, the rate of return, used as an evaluation measure, is computed by

subtracting the initial balance from the previous balance, adding the value of the stocks an

investor has, and dividing these numbers by the initial balance.

Rate of Return(%) =
BLast −BInitial + Stocks× Pclose

BInitial
× 100, (26)

where BLast and BInitial are correspondingly the last balance and initial balance, and Pclose is

the closing price of the index.

4.4 Lookahead Baseline Method

The Lookahead baseline method is used for performance comparisons of both the prediction

accuracy and Rate of Return. As Fig. Fig. 11, the prediction metric is calculated between the
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Figure 8: Prediction results for the comparison between the model with the L1 trend filtering

and without. Each dataset is located in each row, and each figure shows the prediction difference

for two methods of the model.

samples of the shifted value by prediction step and the current value. The rate of return is

calculated identically to how it is done in a simple investment model. One difference between

the Lookahead baseline method and other models is that the predicted value ŷTo is not used for

determining the current position. The Lookahead baseline method only uses actual prices of test
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Figure 9: Prediction results of DA-RNN+L1TF compared to other methods. Each dataset is

located in each row having two different terms of time by representing two columns, and the

prediction comparison from each figure is shown. As shown in the figure, the DA-RNN+L1TF

outperforms other methods.
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Figure 10: Prediction results of DA-RNN+L1TF compared to DA-RNN+LPT. As shown in the

figure, the DA-RNN+L1TF outperforms other methods because DA-RNN+LPT predicts the

future values sensitively compared with DA-RNN+L1TF.
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Dataset
(Growth Rate %)

Model
Metric

RMSE MAE MAPE Rate of Return (%)

NASDAQ
100 Index
(3.26%)

Lookahead 252.65 10.2805 11.52 0
ARIMA 8.5656 4.4327 5.02287 1.01

FCN 9.2603 5.0765 5.7540 7.02
FCN + L1TF 8.8692 5.2586 5.9606 7.02

DSANet 5.4383 2.6163 2.9638 6.99
DSANet + L1TF 5.3484 2.5368 2.874 7.05

DARNN 5.3079 2.6057 2.9514 -3.93
DARNN+LPT 6.3020 2.5780 2.9190 7.43

DARNN + L1TF 5.2053 2.5146 2.8486 -0.71

EURO STOXX
50 Index
(-3.47%)

Lookahead 85.681 3.5038 9.5152 0
ARIMA 3.8829 2.1286 5.6934 0.82

FCN 3.9643 2.2349 5.9765 1.08
FCN + L1TF 3.4165 1.9012 5.0851 1.04

DSANet 2.0377 1.1880 3.1777 -1.85
DSANet + L1TF 2.0049 1.1619 3.1077 -0.18

DARNN 2.0232 1.1764 3.1469 -0.14
DARNN+LPT 2.0210 1.1590 3.1010 1.21

DARNN + L1TF 1.8392 0.9368 2.5057 7.39

Dow Jones
Industrial Average

(1.16%)

Lookahead 787.98 29.0741 10.0784 0
ARIMA 19.7453 10.4543 3.6458 -1.21

FCN 20.4051 10.8882 3.7968 9.83
FCN + L1TF 17.6532 9.7217 3.3899 9.83

DSANet 12.0051 6.3011 2.1974 9.69
DSANet + L1TF 12.0281 6.3009 2.1973 12.41

DARNN 12.6665 6.6695 2.3258 -0.75
DARNN+LPT 17.9170 6.4610 2.2250 3.24

DARNN + L1TF 11.5129 5.9758 2.0844 8.08

FTSE 100 Index
(-4.26%)

Lookahead 176.34 7.1058 9.6254 0
ARIMA 6.9347 3.8055 5.0598 -0.55

FCN 6.9883 4.0133 5.3341 -0.43
FCN + L1TF 6.2695 3.2788 4.3594 -0.30

DSANet 3.7534 2.2669 3.0142 -0.25
DSANet + L1TF 3.7444 2.2648 3.0115 0.33

DARNN 4.244 2.3906 3.1788 -0.24
DARNN+LPT 5.6033 2.3179 3.0831 12.780

DARNN + L1TF 2.9276 1.3448 1.7874 5.75

TSX 60 Index
(0.16%)

Lookahead 27.976 1.0155 9.8054 0
ARIMA 0.6146 0.3508 3.3636 0.001

FCN 0.6678 0.3836 3.6775 -0.003
FCN + L1TF 0.5886 0.3219 3.0861 -0.003

DSANet 0.4606 0.2210 2.1185 0.65
DSANet + L1TF 0.4584 0.2195 2.1044 0.67

DARNN 0.4673 0.2256 2.1627 0.09
DARNN+LPT 0.3366 0.1946 1.8647 0.30

DARNN + L1TF 0.4031 0.1451 1.3917 0.30

Table 2: Evaluation results of multivariate time series forecasting and Rate of Return. Compared

with the original model, one applying trend filtering technique has low values in terms of RMSE,

MAE, and MAPE and is similar or higher in terms of Rate of Return. we adopt LPT only to

DA-RNN to compare between LPT and other methods.
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Figure 11: The way for calculating the prediction accuracy (left), and the Rate of Return (right).

data to determine whether an investor buys or sells a stock.

4.5 Prediction Results

We compare the accuracy of Lookahead, ARIMA, FCN, FCN+L1TF (L1 trend filtering), DSANet,

and DSANet+L1TF, DA-RNN, DA-RNN+LPT(Low-pass filter), DA-RNN+L1TF models on

all datasets. In addition, we conducted several experiments after creating some groups for each

model, with one using trend filtering technique, and the other using the original inputs.

Table 2 summarizes the evaluation results of all methods on the test set. In the "model"

column in Table 2, "model+L1TF" means that the model utilizes the L1 trend filtering, as

described above. For both the prediction and Rate of Return, we observe that the models with

trend filtering feautres outperform the models without the trend filtering, indicating that the L1

trend filtering feature is helpful for proper predictions and that it achieves higher performances.

In addition, considering that the models with the trend filtering feature obtain better results

than the Lookahead baseline method and the growth rate of each dataset, it can be shown that

instances of noise in the time series are somewhat distinguishable from informative signals when

we use models with the trend filtering feature. In Table 2, DA-RNN+L1FT outperforms the

other models in terms of the MAE, and MAPE. In terms of the RMSE on the some datasets,

DA-RNN+LPT has better performance. In the FCN case, the larger the step sizes of the input

and output are, the more unpredictable the output becomes. Although the DA-RNN and the

DSANet show similar prediction results, DA-RNN+L1FT shows much better performance results

compared to DSANet+L1TF. To show that DA-RNN+L1TF outperforms the other models, the

prediction results for certain methods, including FCN, DSANet, DA-RNN, and DA-RNN+L1TF,

are shown in Fig. 10. Only DA-RNN predicts well compared to the other methods 38, and 120

time steps on the FTSE 100 Index and at 48 and, 80 times steps on the TSX 60 Index.

Fig. 8 shows comparisons of the prediction results between the models with the trend
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Dataset Model w/ L1TF w/o L1TF p-value

NASDAQ

100 Index

FCN 8.8692 9.2603 0.007

DSANet 5.3484 5.4383 0.998

DARNN 5.2053 5.3079 0.027

EURO STOXX

50 Index

FCN 3.4165 3.9643 0.000

DSANet 2.0049 2.0377 0.000

DARNN 1.8392 2.0232 0.000

Dow Jones

Industrial

Average

FCN 17.6532 20.4051 0.000

DSANet 12.0281 12.0051 0.466

DARNN 11.5129 12.6665 0.000

FTSE 100 Index

FCN 6.2695 6.9883 0.000

DSANet 3.7444 3.7534 0.380

DARNN 2.9276 4.244 0.000

TSX 60 Index

FCN 0.5886 0.6678 0.000

DSANet 0.4584 0.4606 0.013

DARNN 0.4031 0.4673 0.000

Table 3: Results of paired t-test between the models with L1TF and without L1TF. p-values

with bold font indicate that the improvements of the models with L1TF over the vanilla models

are statistically significant. Out of 15 cases (3 models and 5 datasets), 12 cases are statistically

significant.

filtering feature and those without it. In the results with the NASDAQ 100 Index, after the

price increases rapidly, DSANet+L1TF predicts the future index value insensitively compared to

DSANet without the trend filtering feature. The trend filtering feature is also helpful to predict

future time series appropriately in the DJIA, FTSE 100 index, and TSX 60 index results.

In addition, the paired t-test of two methods, with and without the trend filtering, shows

the statistical significance of the fact that proposed method achieves better performances than

models without filtering. On five datasets and three deep neural network models, twelve results

of fifteen cases are statistically significant under significance level 0.05, and the results are shown

in Table 3.
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V Conclusion

5.1 Summary

In this paper, we proposed a novel method that includes the trend filter feature, such as L1

trend filtering, and Low-pass filter, which is helpful for the task of multivariate time series

forecasting, especially for finance data with complex and non-linear dependencies. Furthermore,

we applied this method to deep temporal neural networks that can detect certain important

signals more easily and filtering simplifies the prediction of noisy time series to address the

issue of the difficulty in distinguishing noise from informative signals. Experiments on five index

datasets demonstrated that the proposed method outperforms deep neural networks that do not

utilize this method for multivariate time series forecasting.
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