

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Doctoral Thesis

PROBABILISTIC MODEL DISCOVERY
RELATIONAL LEARNING AND SCALABLE INFERENCE

Anh Tong

Department of Computer Science and Engineering

Ulsan National Institute of Science and Technology

2021

PROBABILISTIC MODEL DISCOVERY
RELATIONAL LEARNING AND SCALABLE INFERENCE

Anh Tong

Department of Computer Science and Engineering

Ulsan National Institute of Science and Technology

Probabilistic Model Discovery
Relational Learning and Scalable Inference

A thesis submitted to
Ulsan National Institute of Science and Technology

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Anh Tong

01/06/2021
Approved by

Advisor
Kwang In Kim

Kwang In Kim (Jan 6, 2021 19:36 GMT+9)
Kwang In Kim

Probabilistic Model Discovery
Relational Learning and Scalable Inference

Anh Tong

This certifies that the thesis of Anh Tong is approved.

01/06/2021

Signature

Advisor: Kwang In Kim

Signature

Jaesik Choi: Thesis Committee Member #1

Signature

Se Young Chun: Thesis Committee Member #2

Signature

Kee-Eung Kim: Thesis Committee Member #3

Signature

Sung-Phil Kim: Thesis Committee Member #4

Kee-Eung Kim (Jan 6, 2021 16:39 GMT+9)
Kee-Eung Kim

Sung-Phil Kim (Jan 6, 2021 19:04 GMT+9)

Kwang In Kim (Jan 6, 2021 19:36 GMT+9)
Kwang In Kim

Abstract

This thesis studies interesting problems in compositionality for machine learning models under

some settings including relational learning, scalability and deep models. Compositionality is

the terminology describing the process of building small objects to complex ones. Bringing this

concept into machine learning is important because it appears in many aspects from infinitesimal

atomic to planetary structures. In this thesis, machine learning models center around Gaussian

process of which covariance function is compositionally constructed. The proposed approach

builds methods that can explore compositional model space automatically and efficiently as well

as strives to address the interpretability for obtained models.

The aforementioned problems are both important and challenging. Considering multivariate

or relational learning is de facto in time series analysis for many domains. However, the existing

methods of compositional learning are inapplicable to extend to such a setting since the explosion

in model space makes it infeasible to use. Learning compositional structures is already a

time-consuming task. Although there are existing approximation methods, they do not work

well for compositional covariances. This makes it even harder to propose a scalable approach

without sacrificing model performances. Finally, analyzing hierarchical deep Gaussian processes

is notoriously difficult especially when incorporating different covariance functions. Previous

work focuses on a single case of covariance function and is difficult to generalize for many other

cases.

The goal of this thesis is to propose solutions to the given problems. The first contribution

of this thesis is a general framework for modeling multiple time series which provides descriptive

relations between time series. Second, this thesis presents efficient probabilistic approaches

to address the model search problem which previously is done by exhaustive enumerating

evaluation. Furthermore, a scalable inference for Gaussian process is proposed, providing

accurate approximation with guarantees of error bounds. Last but not least, to address the

existing issues in deep Gaussian process, this thesis presents a unified theoretical framework to

explain the pathology in deep Gasssian processes with better error bounds for various kernels

compared to existing work and rates of convergence.

Table of contents

List of figures vii

List of tables xi

Notation xiii

1 Introduction 1

1.1 Thesis scope . 1

1.2 Challenges . 2

1.3 The contributions of thesis . 3

1.3.1 A general framework for modeling covariance structure in multiple time

series . 3

1.3.2 A scalable method for learning compositional kernel functions 4

1.3.3 A theoretical understanding of extension to deep Gaussian process 5

1.4 The outline of this thesis . 5

1.5 Publication notes . 5

2 Gaussian process and the Automatic Statistician 7

2.1 Weight-space view . 7

2.2 Function space . 8

2.3 Covariance function . 9

2.4 The Automatic Statistician System . 12

3 Global relational kernel learning with local variations 15

3.1 Introduction . 15

3.2 Review of Relational Kernel Learning . 16

3.3 Semi-Relation Kernel Learning . 17

3.4 Experimental Results . 20

3.4.1 Data sets . 20

3.4.2 Quantitative evaluations . 21

3.4.3 Qualitative Comparisons . 22

3.5 Related work and final remark . 23

4 Selective compositional kernel discovery 25

4.1 Introduction . 25

4.2 Latent Kernel Model . 27

4.2.1 Indian Buffet Process . 27

4.2.2 Model definition . 28

4.2.3 Properties . 29

4.2.4 Inference algorithm . 30

4.3 Model discovery in multiple time series . 33

4.4 Experimental evaluations . 36

4.4.1 Real-world time series data . 37

4.4.2 Qualitative results . 37

4.4.3 Quantitative results . 40

4.5 Related work and final remark . 41

5 Kernel selection for Scalable GP 45

5.1 Introduction . 45

5.1.1 Variational Sparse Gaussian process . 46

5.1.2 Shrinkage prior . 47

5.2 Kernel selection with shrinkage prior . 48

5.2.1 Kernel selection with Horseshoe prior . 49

5.2.2 Multi-inducing sparse Gaussian process 50

5.3 Variational inference with shrinkage prior . 55

5.4 Detail of variational inference . 56

5.5 Experimental Evaluations . 59

5.5.1 Kernel function pool . 59

5.6 Related work and conclusion . 64

6 Characterizing Deep Gaussian process 65

6.1 Introduction . 65

6.2 Moment-generating function of distance quantity 67

iv

6.3 Analyzing dynamic systems with chaos theory . 68

6.4 Squared exponential kernel function . 69

6.5 Cosine kernel function . 72

6.6 Periodic kernel function . 73

6.7 Rational quadratic kernel function . 74

6.8 Spectral mixture kernel . 75

6.9 Extension to non-pathological cases . 76

6.10 Analysis of recurrence relations . 77

6.10.1 Identify the pathology . 77

6.10.2 Rate of convergence . 78

6.11 Experimental results . 78

6.11.1 Correctness of recurrence relations . 79

6.11.2 Justifying the conditions of pathology . 80

6.11.3 Using recurrence relations in DGPs . 83

6.11.4 High-dimensional data set with zero-mean DGPs 84

7 Conclusion and Future work 87

7.1 Summary of contribution . 87

7.2 Future work . 87

7.3 Conclusion . 88

References 89

v

List of figures

2.1 An illustration of posterior when the number of data points increases. The model

uncertainty is updated as the more data is added. 9

3.1 Plot of 9 time series extracted from stock data sets. Time series values are

normalized. 17

3.2 Graphical model of SRKL model. Compared to RKL, SRKL includes an additional

distinctive kernel for each data sequence. 19

3.3 An ablation study on negative log-likelihoods (NLL) of kS and kj . (a) Non-

overfitting case. The NLLs on kj and kS decrease together; (b) Overfitting is

observed starting from level 3 in the search grammar. The NLL on kS keeps

decreasing from level 3. On the other hand, the total NLL on kj increases. 20

3.4 The first four plots are the posterior of SRKL for four currency exchange rates.

The last plot is a shared kernel found by SRKL to explain financial changes. . . . 21

4.1 Time series of Gold, Oil, NASDAQ, and USD index 27

4.2 A toy example. Learning two lines using LKM. This data set consists of two

samples generated from the same GP prior with a periodic kernel. 30

4.3 Comparison between the graphical model of (a) LKM and (b) relation model in

the previous chapter. 31

4.4 An example of expansion in PSE. 34

4.5 An illustration of the convergence of ν. 36

vii

4.6 IBP matrix Z in epileptic seizure data. The EEG recordings of five activities are

considered: seizure (act1), located tumor (act2), identifying tumor (act3), eyes

closed (act4), eyes open (act5). (a) Non-seizure. Left: learned Z for each activity

(black: znk = 0, white: znk = 1); Right: the GP posterior of three time series

from act5 with the corresponding decomposition. (b) Seizure. Left: learned Z

from act1; Right: posterior plot of first three time series from act1. The gray

background plots indicate znk = 0. 36

4.7 An example of pairwise comparison in GONU data set. The upper plots are the

posterior distribution of two time series. The remaining plots contain shared

components and individual components with descriptions and posteriors fk|xn for

each time series. The blank in the individual components means “not available". 39

4.8 RMSEs for each data set (9 stocks, 6 houses, 4 currencies, GONU) with corre-

sponding methods. 40

4.9 Comparing Oil and USD index. This is extracted from the pairwise comparison

of GONU data set. 41

5.1 The graphical model of two models. Solid and dashed lines indicate the connections

modeled by two different kernel function k1 and k2. (a): Sparse inducing GP. The

inducing points ui is introduced as a proxy for the connections between fi. (b):

Our approach. Inducing points are grouped. Each group represents an individual

kernel k1 or k2. 49

5.2 The posterior distributions between models. Here, W2 is the Wasserstein-2

distance between a model and the true model. The posterior obtained from our

approach is close to the true model as well as the full GP model. SVGP model

struggles to fit the data. 51

5.3 Behavior of Horseshoe prior in kernel selection. Both models predicts the test

data (?). The bar plots are the weights wi corresponding to ki. 60

5.4 Extrapolation on time series data sets. 60

5.5 First row: the weights wi in two cases. Second row: our kernel decomposition

for airline data with three most significant components GP(µi(·),Σi(·, ·)). The

weights wi are showed at the upper-left corners. 61

5.6 GEFCOM data set. First row is the plot of training data. The next rows are the

predictive posterior at test points. Our model outperforms the alternatives in

term of root mean square error (RMSE) and test negative log-likelihood (NLL). . 62

viii

6.1 Studying the squared distance, Zn, between outputs of two consecutive layers. The

asymptotic property (middle plot) of the recurrence relation of this quantity between

two consecutive layers decides the existence of pathology for a very deep model. Here, θ

indicates kernel hyperparameters. The middle plot is the bifurcation plot providing the

state of DGP at very deep layer. The pathology is identified by the zero-value region

where E[Zn]→ 0. Note that this bifurcation plot is for illustration purpose only. 67

6.2 Finding the recurrence relation of the quantity E[(fn(x)− fn(x′))2] between two

consecutive layers. 67

6.3 Bifurcation plot of the logistic function un = run−1(1− un−1). 68

6.4 (a): Bifurcation plot of the recurrence relation of SE kernel for m = 1. (b):

Contour plot of un at layer n = 300 and m = 1. The misalignment between the

red line (σ2/`2 = 1) and the zero-level contour is due to numerical errors. (c):

Increase m > σ2/`2 to avoid pathology. 71

6.5 Left: Graphical model of input-connected construction suggested by [Duvenaud

et al., 2014; Neal, 1995]. Right: The bifurcation plot of input-connected DGP. . . 77

6.6 Contour plots of E[Zn] at n = 300 with respect to four kernel functions. 78

6.7 Bifurcation and contour plot of SE kernel for two cases m = 2, 3. (a)-(b): m = 2.

(c)-(d): m = 3. 79

6.8 Bifurcation plot of the recurrence of periodic kernel for m = 1. First row: From

left to right, ` is varied. Second row: σ2 is varied. 79

6.9 RQ: Contour plots of E[Zn] at n = 300. The two contour plots share the same

zero-value level. So that α does not decide the condition overcome the pathology. 80

6.10 (a-b) Paths to fixed points for two cases: RQ and SM. Iterations of RQ start

from x = 1.2 and converge to 0. Those of SM start from x = 0.6 and converge to

a point near 1. (c) Plot of all recurrence functions h(x). Note that x is not input

data but plays the role of E[Zn]. 80

6.11 E[Zn] computed from recurrence vs. empirical estimation of E[Zn] for two kernel

functions. 81

6.12 Trace of RMSDs. RMSDs converge to 0 when the pathology occurs. 81

6.13 High-dimensional SE: E[Zn] computed from recurrence vs. empirical estimation

of E[Zn]. 81

6.14 SM kernel: E[Zn] computed from recurrence vs. empirical estimation of E[Zn]. . 82

6.15 Contour plots of RMSDs at layer 100 for three kernels: Per,SM and RQ. 82

ix

6.16 Dual-axis plot of the trajectory E[Zn]/σ2 with n running from 1 to N and RMSE. Solid

lines indicate the trajectories of E[Zn]/σ2 projected on the left y-axis. Star markers (?)

indicate RMSEs projected on the right y-axis. Dashed lines connect the E[Zn]/σ2 and

RMSE of the same N . Here, the constrain coefficient c0 = 0.2. 83

6.17 Standard zero-mean DGPs: Results of Boston housing data set 84

6.18 Constrained DGPs: Results of Boston housing data set 84

6.19 Standard zero-mean DGPs: Results of diabetes data set 85

6.20 Constrained DGPs: Results of diabetes data set 85

6.21 (a-b) Loss landscape of two models. (c) Classification accuracy with respect to the number

of layers, N , and constrain coefficients, c0. 86

x

List of tables

3.1 Negative log-likelihoods (NLLs), Bayesian Information Criteria (BIC), and root

mean square errors (RMSEs) of CKL, RKL and SRKL 21

4.1 RMSEs and NMLPs for each data set with corresponding methods (5 independent

runs per method). In most cases, LKM has lower RMSEs and NMLPs compared

to those of existing methods. 43

5.1 Extrapolation performance in UCI benchmarks. Results are aggregated from 10

independent runs. 59

5.2 Description of UCI data sets . 63

5.3 Description of heart, liver, pima data set . 63

5.4 Classification error (in %) on three data sets. 64

xi

Notation

x scalar

x vector

A matrix

N Gaussian distribution

IG Inverse Gamma distribution

GP Gaussian Process

E Expectation

KL Kullback-Leibler divergence

CKL Compositional Kernel Learning

RKL Relational Kernel Learning

SRKL Semi-Relational Kernel Learning

IBP Indian Buffet Process

LKM Latent Kernel Model

PSE Partial Set Expansion

SVGP Sparse Variational Gaussian Process

MultiSVGP Multi-inducing Sparse Variational Gaussian process

DGP Deep Gaussian Process

RMSE Root Mean Squared Error

NLL Negative Log-Likelihood

xiii

Chapter 1

Introduction

Compositionality is one of the important concepts to equip to machine learning models. It

can be understood as the process of building structures from small and simple to complex and

rich. Compositionality can be the key to bringing creativity to machines by allowing them to

learn new models or generate new data. This concept can be recognized in many things around

us from the way that the smallest atoms combine to form molecules to the macro level where

galaxies are constituted from planets. In machine learning data, compositionality can be found

in natural language processing where sentences are created from words. Another example is

image data where it can contain multiple objects, i.e., trees, roads and cars. The question is how

to learn or explore a certain type of composition efficiently since there are challenges due to the

cardinality of compositional model space as well as the difficulty of model selection problems.

1.1 Thesis scope

This thesis aims to tackle the problem of learning composition structures in a way that is

done in automatic manners and takes interpretability into account. The main studying model

that this thesis focuses on is Gaussian process. Gaussian process is a flexible probabilistic

model presenting several attractive properties including universal approximation and uncertainty

quantification [Rasmussen and Williams, 2005]. To find an appropriate Gaussian process model,

one may consider two aspects: model selection and model search. Under the Bayesian approach,

models are compared based on model evidence which balances the trade-off between model fit

and model complexity and reflects the notion of Occam’s razor on preference simpler models

over complex ones. Bayesian Information Criterion is a simple Laplace approximation of model

evidence that is a key to evaluate models in existing work. However, the question of what

measurement quantity is the most relevant is still controversial. In terms of model search, one

1

can create Gaussian process models based on some basic kernel functions and a set of rules and

operators. Although generated models are capable to learn complex data well, the space in

which they lie is open-ended.

This thesis considers the following problems. First, multiple time series are considered as

the main target data on which an automated machine learning framework is built, resulting

in interpretable models. The goal is to extract relations between these time series under

compositionality representation. This is considered as the relational learning for compositional

models. The second aspect is to improve the scalability that this thesis develops efficient methods

to explore compositional model space for large-scale data. Finally, this thesis extends theoretical

studies of a hierarchical deep version of Gaussian process [Damianou and Lawrence, 2013]. This

approach is considered as a functional composition between hierarchical layers.

1.2 Challenges

Given a glimpse of problem settings, there are certain challenges. For the multiple time series, it

is non-trivial to have a direct extension from existing models that work on single data settings.

Although consider multivariate settings is a sensible approach since making use of relations

between data can improve model generalization, such relations are rather complex. It is difficult

to discover the most appropriate model that can characterize every individual data as well as

capture relations between the multiple data.

The second challenge is that the space of compositional models is discrete and open-ended.

Due to its discrete combinatorial nature, brute-force search by enumerating all possible models

is infeasible. The existing approach of using greedy search tactics is still time-consuming. This

problem can be cast into combinatorial or discrete optimization. However, solutions are not

ready yet.

The third challenge is that the current framework is only applicable to small-scale data. In

order to scale up for large-size data sets, incorporation with existing approximate Gaussian

process methods is a natural extension. However, considering complex models or kernel functions,

there exists some degradation in approximation power.

Lastly, there is an existing issue of deep Gaussian process model that, in some conditions,

the model collapses at very deep layers. The behavior of this model is not well-studied for many

kernel functions yet. It is necessary to have a comprehensive investigation before doing any

further model selection task.

2

1.3 The contributions of thesis

This thesis proposes two models for learning covariance structure for multiple time series:

Semi-Relational Kernel Learning (SRKL) and Latent Kernel Model (LKM). Semi-Relational

Kernel Learning (Chapter 3)is an extension of Relation Kernel Learning (RKL), emphasizing

learning global kernel structures but allows variants in individual time series. Latent Kernel

Model (Chapter 4) no longer relies on global sharing assumptions. LKM automatically extracts

shared information, indicates what kernel structures are different. LKM is a general model and

maintains that all kernel structures are interpretable while some parts of SRKL are not. Under

the treatment of Indian Buffet Process prior (IBP), LKM allows extracting the relations between

multiple time series.

The second contribution (Chapter 5) is a scalable algorithm for learning compositional kernels.

This chapter devises Multi-inducing Sparse Variational Gaussian Process (MultiSVGP) which is

a new sparse Gaussian process model, aiming to improve approximation capacity for complex

compositional kernel functions. MultiSVGP maintains a group of inducing points where each

member in this group is responsible for an additive kernel component in compositional kernel

functions. This approach can be demonstrated to have a better error bound compared to the

traditional sparse Gaussian process. In the combination with MultiSVP, a Bayesian approach

utilizing a shrinkage prior is used for selecting kernel functions.

The third contribution (Chapter 6) is a unified framework to analyze the pathological issue

in deep Gaussian process. This framework presents a guideline for a given kernel function by

considering the statistical characteristics when the kernel function takes distributional inputs.

As a result, five common kernel functions are studied. The rate of convergence for each kernel is

discussed. To avoid disastrous failure in learning DGP, this chapter proposes a regularization

which constrains kernel hyperparameters staying in safe regions such that the pathology can be

avoided.

1.3.1 A general framework for modeling covariance structure in multiple

time series

This thesis proposes a general framework for tackling ubiquitous multiple data. A previous

model, Relation Kernel Learning [Hwang et al., 2016], motivated by many existing works in

statistical relational learning [Choi et al., 2010, 2015; Getoor and Taskar, 2007; Wang and

Domingos, 2008], models a group of time series with an assumption that all of the time series

are globally correlated. One can find that there are many real-world cases. For example, many

3

stocks share the same up-and-down pattern because they are influenced by the same law of

finance or causal relations. The difference among a group of time series is the magnitude and

scale among these. Relation Kernel Learning uses a single kernel function to describe this.

However, this model seems to underfit. To address this, this thesis proposes Semi-Relational

Kernel Learning in Chapter 3 which maintains global kernel assumption like RKL but allows

an individual kernel function for each time series. The responsibility of this individual kernel

function is to fit the residual that the global kernel function may not fit the time series well. The

output of this model still benefits from global kernel assumption, resulting in that the found kernel

structure capture the informative description shared among time series. Moreover, this model

achieves better predictive performance comparing to RKL and the existing approach [Duvenaud

et al., 2013; Lloyd et al., 2014].

The previous setting is restricted in terms of the data collection that should guarantee the

assumption where all time series should be strongly correlated. In practice, it takes a lot of care

to gather such information. The question is how to make a model that does not require such

data preparation. More importantly, how to make a model automatically return the relation

between time series rather than fixating a relation assumption between them? To tackle this

question, this thesis presents Latent Kernel Learning in Chapter 4. Indian Buffet Process (IBP)

prior is used to model the binary latent variables that capture relations between time series.

1.3.2 A scalable method for learning compositional kernel functions

This thesis develops a scalable approximate Gaussian process in the specific case of compositional

kernel learning. Gaussian process is known to be not scalable due to computation complexity

O(n3) with n is the number of data. This is the computation cost for a single model. Searching

among a huge number of unscalable models becomes impossible when the size of data increases.

Chapter 5 presents Multi-inducing Sparse Variational Gaussian Process (MultiSVGP) which

mitigates the cubic time complexity of Gaussian process, maintains good approximations for

the large-sized data sets. MultiSVGP extends sparse Gaussian process methods [Hensman

et al., 2013; Snelson and Ghahramani, 2006] for compositional kernel functions by dividing the

responsibility of inducing points according to individual additive kernel function in the kernel

sum. Interestingly, because of the strategy on structuring inducing points, the error bound

of the approximate distribution compared to the true posterior distribution is smaller than

that of the traditional approach in sparse Gaussian process. To facilitate the search procedure,

a probabilistic kernel selection combines with MultiSVGP based on a shrinkage prior called

Horseshoe prior. As the results, the proposed approach yields 25 times faster than [Duvenaud

4

et al., 2013; Lloyd et al., 2014] and 4-10 times faster than alternative approaches using sparse

Gaussian process [Kim and Teh, 2018]. Experiments further verify that the proposed model

outperforms the state-of-the-art Gaussian process methods in extrapolation tasks.

1.3.3 A theoretical understanding of extension to deep Gaussian process

In the vision to perform kernel selection for a new class of models, deep Gaussian processes, in

which Gaussian process layers are hierarchically stacked in a similar manner with deep neural

networks. The first step to overcome existing issues in learning deep Gaussian process. Chapter 6

establishes the theoretical foundation by analyzing the characteristics of deep Gaussian process

models given a kernel function. Five common kernel functions including squared exponential

function, cosine function, periodic function, rational quadratic function and spectral mixture

kernel function. The key findings of the analysis include the condition to avoid pathology for

each kernel function and the rate of convergence to fixed points. Also, the result shows the

spectral mixture kernel function does not. From the theoretical analysis, this chapter provides

a regularization technique to alleviate the difficulty in learning deep Gaussian process. It is

done by applying constraint which forcefully avoids the unsafe pathological kernel parameters.

Empirical experiments demonstrate that we can learn zero-mean deep Gaussian process models

while existing work fails to train such models.

1.4 The outline of this thesis

Chapter 2 provides backgrounds related to Gaussian processes and an introduction of the

Automatic Statistician framework. The main contributions of the thesis are described in

Chapter 3, 3, 5 and 6. Chapter 3 presents Semi-Relational Kernel Learning. Chapter 4

generalizes Semi-Relational Kernel Learning. Chapter 5 proposes a better approximation

method, Multi-inducing Sparse Variational Gaussian Process with a theoretical guarantee as

well as kernel selection with a shrinkage prior. Chapter 6 gives theoretical analyses of deep

Gaussian process on the condition to avoid pathology. The thesis ends with Chapter 7 containing

a summarization and open directions for future work.

1.5 Publication notes

This thesis is composed from (or a part of) the following publications with revision and adaption:

• Second model in Hwang et al. [2016]: Chapter 3.

5

• Tong and Choi [2019]: Chapter 4

• Tong et al. [2021]: Chapter 5.

• Tong and Choi [2021]: Chapter 6.

6

Chapter 2

Gaussian process and the Automatic

Statistician

This chapter presents an introduction of Gaussian process (GP) by providing the weight-space

view, then transitioning to functional view. Serveral basic kernel functions are introduced. What

follows is the Automatic Statistician framework.

2.1 Weight-space view

Consider a data set D = {(xi, yi)}ni=1 where x is an input vector of dimension D and y is the

corresponding scalar output.

In the linear regression problem, one may consider the following

f(x) = x>w, y = f(x) + ε,

where ε is a white noise. In Bayesian setting, the parameter w is placed an prior. In this

problem, we assume the prior over w is a Gaussian distribution as

w ∼ N (0, I).

In many machine learning problems, working in the input space is not enough. Projecting

input into a new space is more favorable for models, e.g. easy to find a linear separator. Let φ

be the feature map transforming x to φ(x). The goal is to find the linear model over this new

feature space.

7

f(x) = φ(x)>w, y = f(x) + ε,

With this hypothesis, the mean and covariance of function evaluations f(x) can be obtained

easily by
E[f(x)] = 0,

E[f(x)>f(x′)] = φ(x)>φ(x′),
(2.1.1)

To sum up, this Bayesian linear regression models center around the probabilistic derivation

or understanding over weights w. However, one can move to a functional view where the

probabilistic attention is placed on the function evaluation f(x). The above equations are a first

glimpse for this transition. For example, the dot product representation usually defines a kernel

function k(x,x′) = φ(x)>φ(x).

2.2 Function space

Definition 2.2.1. A Gaussian process is a set of random variables in which any of its subset

follows a multivariate Gaussian distribution.

Gaussian process [Rasmussen and Williams, 2005] is a prior over function

f(x) ∼ GP(m(x), k(x,x′))

where m(x) is the mean function, usually set to 0, and k(x,x′) is the kernel function.

It is clear that the mean and covariance coincide with Equation (2.1.1). By the definition of

Gaussian process, they are written as

E[f(x)] = m(x) = 0

Cov(f(x), f(x′)) = E[f(x)f(x′)]− E[f(x)]E[f(x′)]︸ ︷︷ ︸
0

= E[f(x)f(x′)] = k(x,x)

In contrast to the weight-space view in the previous section, the weights do not explicitly

appear to represent data. On the other hand, Gaussian process directly make the assumption

over f(x) which is imposed a prior distribution and used to model y.

To predict the function value at a test point x∗, we use the joint assumption between training

data and test data. Let us consider data set with three points x1,x2 and x3. The joint probability

8

Fig. 2.1 An illustration of posterior when the number of data points increases. The model
uncertainty is updated as the more data is added.

distribution of these points and new point x∗ is

f(x1)

f(x2)

f(x3)

f(x∗)

∼ N

0

0

0

0

,

k(x1,x1) k(x1,x2) k(x1,x3) k(x1,x∗))

k(x2,x1) k(x2,x2) k(x2,x3) k(x2,x∗)

k(x3,x1) k(x3,x2) k(x3,x3) k(x1,x∗)

k(x∗,x1) k(x∗,x2) k(x∗,x3) k(x∗,x∗)

.

The predictive distribution for f(x∗) can be obtained from the conditional Gaussian distri-

bution

f(x∗)|X, f ∼ N (µ(x∗), σ2(x∗))

with µ(x∗) = k(x∗,X)K−1(X,X)f

σ2(x∗) = k(x∗,x∗)− k(x∗,X)K−1(X,X)k(X,x∗)

This predictive distribution is in a simple closed form, providing an attractive way to quantify

the uncertainty of model prediction. This property becomes helpful for other methods including

Bayesian optimization and Bayesian quadrature.

There is an equivalence between the predictive posterior of Gaussian process and that of

Bayesian linear model in the previous section. That is, one can obtain the same posterior when

replacing the dot product between two features by a kernel function. The connection is presented

clearly in Rasmussen and Williams [2005].

2.3 Covariance function

Modeling kernel function is one of important problems in Gaussian process. Because the value

of kernel function between x and x′ describes how the corresponding function evaluations f(x)

and f(x′) are correlated.

9

In general kernel methods, a function k(·, ·) mapping a pair of input to R is defined as a

kernel. Let K be the integral operator with respect to the kernel function k(x,x′).

(Kf)(x) =
∫
k(x,x′)f(x′)dµ(x′),

with µ is a probability measure. A kernel function k(x,x′) has two common properties:

• It is symmetric. That is, the kernel function is invariant when exchanging between two

inputs in the pair, e.g., k(x,x′) = k(x,x′).

• A kernel function is positive semi-definite.

∫
k(x,x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0.

Suppose that data points {xi|i = 1, . . . , n}, the corresponding covariance matrix denotes as K,

having [K]ij = k(xi,xj). The covariance matrix K is a symmetric and positive semidefinite

matrix.

The family of kernel functions can be divided into two categories: stationary and non-

stationary. The stationary kernel function can instead consider input τ = x− x′.

Theorem 2.3.1 (Bochner’s theorem). A kernel function k is a weakly stationary kernel function

if and only if it can be represented as

k(τ) =
∫

exp(2πisτ)p(s)ds.

where p(s) is the spectral density function over s, i is the imagine unit (i2 = −1).

This theorem can be used to derive random Fourier features [Rahimi and Recht, 2008], or

spectral mixture kernel [Wilson and Adams, 2013].

The following contains the description of several common kernel functions:

Squared exponential kernel function The squared exponential (SE) kernel function is

defined as

k(x,x′) = exp
(
−||x− x′||22

2`2

)
.

Given two inputs x and x′, the covariance is high when inputs are close. The lengthscale

hyperparameter ` helps to rescale the distance between x and x′.

10

Matérn kernel function The family of Matérn kernel functions is defined by

k(r) = 21−ν

Γ(ν)

(√
2νr
`

)ν

Kν

(√
2νr
`

)
,

where r = ||x− x′||22, ν and ` are positive hyperparameters and Kν is a modified Bessel function.

Note that if we send ν →∞, the kernel function asymptotically becomes the SE kernel function.

In practice, there are cases where ν = 3
2 and ν = 5

2 used because the kernel functions are simple

and in closed forms, e.g.,

kν=3/2(r) =
(

1 +
√

3r
`

)
exp

(
−
√

3r
`

)
,

kν=5/2(r) =
(

1 +
√

5r
`

+ 5r2

3`2

)
exp

(
−
√

5r
`

)
.

Rational quadratic kernel function The rational quadratic (RQ) is defined as

k(x,x′) =
(

1 + ||x− x′||22
2α`2

)−α

,

where α is the scale parameter. This kernel function is originated from integrating out the

lengthscale hyperparameter of SE kernel function in which the inverse of this lengthscale follows

a Gamma distribution.

Periodic kernel function The periodic (Per) kernel function is constructed based on the

idea of wrapping input x into a new feature space u(x) = [cos(x), sin(x)]>. Then, the squared

exponential kernel function takes the input in this feature space to give the periodic kernel as

k(x,x′) = exp

−2 sin2
(||x−x′||22

2p

)
`2

 ,
where p is a hyperparameter encoding the periodicity.

Linear kernel Unlike the previous kernel functions, the linear (Lin) kernel function is a

nonstationary kernel. It is defined as following:

k(x,x′) = (x− `)>(x′ − `).

This kernel function is a variant of dot-product kernel function, k(x,x′) = x>x by introducing a

hyperparameter, `, which indicates the shift in location of inputs.

11

Kernel construction Kernel construction can be done by the addition and multiplication.

Given two kernel function k1 and k2, one can generate a new kernel function by

k1(x,x′) + k2(x,x′)

k1(x,x′)k2(x,x′)

This is also known as kernel tricks like other kernel methods. The obtained kernel functions

satify any properties of a kernel function including symetric positive definite.

2.4 The Automatic Statistician System

This section presents the background of the Automatic Statistician system. The Automatic

Statistician or Automatic Bayesian Covariance Discovery (ABCD) aims to mimic and automate

the process of statistical modeling [Duvenaud et al., 2013; Ghahramani, 2015; Grosse et al.,

2012; Lloyd et al., 2014; Steinruecken et al., 2019]. There are three main components in this

framework: language of models, search procedure and report generations.

Language of models The ingredients to construct Gaussian process models include a grammar

over kernels with a set of base kernels and kernel operators. The base kernels are: SE (squared

exponential), Lin (linear), Per (periodic). The operators consist of + (addition), × (multipli-

cation). As composed kernels get more complex, the corresponding generated models become

more expressive to fit complex data.

Search procedure The search procedure is done in a greedy manner. That is, the language

of models generates candidate models. Then, all of them are optimized by maximizing log

likelihoods. A model is selected based on the trade-off between model and data complexity.

Let M be the hypothesis model. Lloyd et al. [2014] selects the most appropriate model by the

Bayesian Information Criteria (BIC) [Schwarz, 1978.]:

BIC(M) = −2 log p(D|M)︸ ︷︷ ︸
data fit

+ |M| logN.︸ ︷︷ ︸
complexity penalty

Here, |M| is the number of free parameters in the model. BIC is the results of a rough Laplace

approximation of model evidence. Then, this selected model is the input of the language of

models to create new candidates.

12

Automatic generated explanation of models The compositional kernels resulted from

the search procedure are transformed into a sum of products of base kernels. Each structural

product of kernels is interpreted under natural-language expressions. For example,

SE︸︷︷︸
smooth change

× Lin︸︷︷︸
linearly varying amplitude

× Per︸ ︷︷ ︸
periodic function

All descriptions are gathered to produce a complete report with visualized plots and human-

friendly analyses.

13

Chapter 3

Global relational kernel learning

with local variations

In the real world, many events and objects are governed by the same causes. Consequently, data

generated from these events and objects usually shares similar patterns. The goal of this chapter

is to identify models not only can describe the sharing information between multiple time series

but also fit well for each time series.

This chapter presents Semi-Relational Kernel Learning (SRKL) which is my contribution

out of two models presented in [Hwang et al., 2016].

3.1 Introduction

The recent advance in learning structure covariance which is known as the Automatic Bayesian

Covariance Discovery (ABCD) framework, provides powerful Gaussian process models which

are able to fit complex real-world data well [Duvenaud et al., 2013; Lloyd et al., 2014]. However,

learning such compositional covariance for single (univariate) time series may not be informative

enough to describe the actual characteristics or causes of underlying data generative process.

Instead, multivariate time series are often considered where we take many variables into account.

For example, in economics, exchange rates depends on other variables such as gross domestic

products.

To address the above issue, as the part of [Hwang et al., 2016], Relational Kernel Learning

(RKL) proposes an approach by marrying statistical relational learning concepts [Belle et al.,

2015; Choi et al., 2010, 2011a,b; Wang and Domingos, 2008] and the compositional kernel

learning (CKL) from ABCD framework [Duvenaud et al., 2013]. Specifically, in order to model

15

multiple time series, RKL assumes a global kernel function which is shared among all time series.

To deal with the variations in magnitutes between these time series, RKL introduces scale and

shift coefficients to each time series which are optimized jointly with kernel hyperparameters.

The globally shared kernel function is the main target, is searched in the same manners as CKL.

This kernel function is considered as the invariance between all time series. RKL not only strives

for compactness and simplicity but also focuses on extract the global pattern among multiple

sequences. Therefore, this model provides interesting qualitative results by finding intepretable

components which can explains actual causes and events.

In many real-work cases, the assumption made by the RKL model is rather too strong, usually

leading to underfit. Because there are possible variations between individual data sequences

even though they have a common global structure. This chapter presents a model which is

called Semi-Relational Kernel Learning (SRKL). This model solves the underfit shortcomming

of RKL while keeping the spirit of RKL by encouraging a shared covariance function between

multiple data. By introducing a distinctive kernel function for each time series and . The role of

this additional kernel function is to fit the residual between data and the globally shared kernel

function. The realm of such kind of designing kernel function resembles the recent concept of

meta-learning [Finn et al., 2017; Schmidhuber, 1987] and global local forecaster with deep neural

network approach [Sen et al., 2019].

This chapter organizes as follows. The relational kernel learning is reviewed to provide a

detailed background to motivate the proposed model. Following up, Semi-Relational Kernel

Learning which is the main contribution of this chapter, presents individuals kernel for each time

series. Then, we demonstrate that the proposed model gives more accurate prediction compared

to baseline models and RKL.

3.2 Review of Relational Kernel Learning

This section reviews the model definition of Relation Kernel Learning (RKL). Before diving into

details, we take stock market as an example to illustrate strong correlation between a group of

time series. Figure 3.1 is a motivated example for time series having common global pattern of

dynamics.

Model definion Let us denote M time series as D = {d1, . . . , dM} where each dj represents

the j-th time series. The main assumption on D is that these time series resembles each other

in terms of dynamic pattern (see 3.1). Relational Kernel Learning (RKL) defines a set of kernel

16

Jun Jul Aug Sep Oct Nov Dec
2001

N
or

m
al

iz
ed

st
oc

k
p

ri
ce

Fig. 3.1 Plot of 9 time series extracted from stock data sets. Time series values are normalized.

functions:

{kj(·, ·) = σ2
jkS(·, ·) + s2

j |dj ∈ D, j = 1, . . . ,M}.

This model aims to find the kernel function kS which shares among all dj . Here σj and sj are

respectively a scale parameter and shift parameter. These parameters are introduced to tackle

the difference in magtitudes between time series. All GP hyperparameters and scale and shift

parameters are learned by maximizing the log-likelihood which is defined as

log p(D|kS , {σj}Mj=1, {sj}Mj=1) = log
M∏

j=1
p(dj |kS , σj , sj) =

M∑
j=1

log p(di|kS , σj , sj).

The more detail of this model can be found in [Hwang et al., 2016].

3.3 Semi-Relation Kernel Learning

Given a brief introduction of RKL in the previous section, this section presents Semi-relation

kernel learning which is the main contribution in this chapter.

17

Model definition

Semi-Relational Kernel Learning (SRKL) defines a set of kernel functions as

{kj(·, ·) = σ2
jkS(·, ·) + kdj

+ s2
j (·, ·)|dj ∈ D, j = 1, . . . ,M},

where all time series share the same kernel kS , kdj
is the distinctive kernel function assigned to

j-th sequence. By metaphorically describing time series as trees, ones can say that all of trees

have the common shape of trunk part represented by the shared kernel function. The distinctive

kernel function is to model the residual or remaining part of time series which can be considered

as the small branches and leaves.

Unfortunately, the search can be done to explore both the shared kernel and M distinctive

kernels. This is because the search space exponentiall increases. Here, if n is the number of

possible kernels on each search grammar tree, there are O(nM+1) number of models in SRKL.

To prevent this exhaustive search, M distinctive kernel functions are not searched by the search

grammar by fixed to be the spectral mixture (SM) kernel functions [Wilson and Adams, 2013]

k(τ) =
Q∑

q=1
wq

∏
exp{−2π2τ2

p v
(p)
q } cos(2πτpµ

(p)
q)

where Q is the number of mixture components, τ = x− x′ is a P dimensional vector. Choosing

SM kernel function is natural since its expressiveness is suitable to fit the residual of each time

series.

Interestingly, the proposed model has a connection to meta-learning problems [Finn et al.,

2017; Schmidhuber, 1987]. Meta-learning problems considers several tasks. In some model-based

meta-learning approaches, models usually are built from neural networks in which there are

shared parameters between tasks and task-specific parameters. This is similar to SRKL in

designing kernel functions.

Learning SRKL

The learning procedure of SRKL is described in Algorithm 1. For each depth s, the

search grammar G generates composite kernels. For each kernel in the search space, the

optimization problem considers (1) shared hyperparamters θS in the shared kernel function, (2)

scale factors σ1, . . . , σM which is similar to RKL , distinctive hyperparameters θ1, . . . , θM in

distintive kernel function. By minimizing the negative log likelihood of data on kernels K, the

optimal hyparameters and value are obtained to make further comparison. The shared kernel is

18

yififGPσj

kdj
(x, x′)

kS(x, x′)µ(x)

0 kS θ

G

i ∈ 1...N

j ∈ 1...M

Fig. 3.2 Graphical model of SRKL model. Compared to RKL, SRKL includes an additional
distinctive kernel for each data sequence.

Algorithm 1 Semi-Relational Kernel Learning
Require: data D = {d1, . . . , dM}, grammar G, maximum depth of search s

1: Initialize with empty candidate set K ← ∅
2: for i ∈ 0 . . . s do
3: KS ← expand(G)
4: Θ← ∅
5: for kS ∈ KS do
6: Initialize θ0 ← (θ0

S , θ
0
1, . . . , θ

0
M , σ0

1, . . . , σ
0
M)

7: kj(θ0)← kS(θ0
S , σ

0
j) + kdj

(θ0
j), j = 1 . . .M

8: θ∗ ← argmin∑M
j=1− log p(D|kj(θ))

9: Θ← Θ ∪ {(kS , θ
∗)}

10: end for
11: (k̂S , θ̂)← argmin(kS ,θ)∈Θ BIC (kS , D)
12: K ← K ∪ (k̂S , θ̂, σ̂)
13: end for
14: return K

selected by the BIC score on shared kernel KS in which the likelihood is computed by summing

all likelihoods in each time series w.r.t. the shared kernel.

There is a compromise between ks and kdj
observed during the learning procedure. When

the shared kernel is coarse and not expressive enough at the several initial depths, the distinctive

kernel fit the residual gap data and the shared kernel. When the search grammar goes further,

kS becomes more complex and now kdj
can accommodate to the residual part which is not

fitted by kS , yet. As kS generated by the search grammar is expressive enough, kdj
will make

no improvement on kj . We identify that the overfitting phenomena occurs when the negative

log-likelihood made by kj takes over the negative log-likelihood made by kS . Figure 3.3 provides

an example of overfitting in learning SRKL.

19

Search grammar level
1 2 3 4 5 6

N
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

200

300

400

500

600

700

800

900

1000

On shared kernel
On all kernels

Search grammar level
1 2 3 4 5 6 7 8

N
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

500

1000

1500

2000

2500

3000

3500

4000

On shared kernel
On all kernels

NLL(Ks) < NLL(Ks+Kdj)

Fig. 3.3 An ablation study on negative log-likelihoods (NLL) of kS and kj . (a) Non-overfitting
case. The NLLs on kj and kS decrease together; (b) Overfitting is observed starting from level 3
in the search grammar. The NLL on kS keeps decreasing from level 3. On the other hand, the
total NLL on kj increases.

3.4 Experimental Results

This section presents the quantitative and qualitative evaluations between RKL, SRKL and

ABCD system.

3.4.1 Data sets

Stock market

Nine most valuable stocks including GE (General Electric), MSFT (Microsoft), XOM (Exxon

Mobil), PFE (Pfizer), C (Citigroup), WMT (Walmart), INTC (Intel Corporation), BP (BP)

and AIG (American International Group) are selected based on the market capitalization ranks

as of 2001 [von Alten, 2001]. The data sets are retrieved from Yahoo finance [Yahoo Inc., 2015]

with time starting from 2001-05-29 to 2001-12-25. Each stock historical data contains 129 data

points. The total number of data points is 1161(=129×9). Note that the time period includes

the September 11 event. Observe that all stock values show a sudden drop After the 9/11 attacks

and gradual recovery as time goes on (see Figure 3.1). Three different learning settings for this

data set are considered: STOCK3, STOCK6, and STOCK9.

Housing Market

The housing price data set are collected from top-6 selected cities in US including Chicago, Los

Angeles, , New York, San Francisco, San Diego and, Phoenix. The selection is based on the

population of these cities [United States Census Bureau, 2014]. Time series is retrieved from the

beginning of 2004 to the end of 2013 with monthly granularity. Each data set has 120 data points.

The total number of data point in the whole data set is 720. In this data set, it is observed that

20

(e)Discovered component

Sep Oct

�10 4

1.3

1.35

1.4

1.45

1.5

(a)

Sep Oct

�10 4

1.3

1.35

1.4

1.45

1.5 (b)

Sep Oct
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5 (c)

Sep Oct
12

13

14

15

16

17 (d)

Sep Oct
50

55

60

65

70

75

80

Fig. 3.4 The first four plots are the posterior of SRKL for four currency exchange rates. The
last plot is a shared kernel found by SRKL to explain financial changes.

Negative log likelihood Bayesian Information Criteria Root mean square error
Data set CKL RKL SRKL CKL RKL SRKL CKL RKL SRKL
STOCK3 332.75 311.84 304.05 750.65 665.09 1251.62 0.40 0.78 0.38
STOCK6 972.00 1007.09 988.14 2219.71 2066.18 3333.21 3.69 5.75 1.22
STOCK9 1776.31 1763.96 1757.11 3985.03 3626.00 5633.33 8.35 9.77 4.85
HOUSE2 264.69 304.29 310.38 634.00 634.76 905.76 6.58 2.75 3.12
HOUSE4 594.79 586.81 1249.82 1424.18 1221.88 3326.94 5.84 3.66 2.22
HOUSE6 849.64 891.09 1495.40 2100.62 1876.47 4339.54 7.96 5.33 3.10
CURRENCY4 578.35 617.77 693.76 1165.82 1291.77 2269.17 330.00 282.24 201.56

Table 3.1 Negative log-likelihoods (NLLs), Bayesian Information Criteria (BIC), and root mean
square errors (RMSEs) of CKL, RKL and SRKL

in there is a peak around 2007. It is followed by a drop in 2009 due to the subprime mortgage

crisis. Three learning settings are considered: HOUSE2, HOUSE4, and HOUSE6.

Emerging Currency Market

The currency data set contains 4 currency exchange rates including Indonesian Rupiah (IDR),

South African Rand (ZAR), Russian Rouble (RUB) and Malaysian Ringgit (MYR). The time

index in this data is from 2015-06-28 to 2015-12-30 and are retrieved from Yahoo Finance [Yahoo

Inc., 2015]. Specifically, each time series is 132 currency values. A key observation in this data set

is that the financial market greatly fluctuated from the end of September 2015 to the beginning

of October 2015. This is because of several economic events including FED’s announcement

about policy changes in interest rates and China’s foreign exchange reserves falls. We call this

data set as CURRENCY4.

3.4.2 Quantitative evaluations

The baseline is the compositional kernel learning (CKL) where each time series is learned

individually. The quantitative measurements are summed from the results of each time series.

To compare between CKL, RKL, SRKL, three evaluation criteria are considered: negative log-

likelihood (NLL) and BIC on training data, and root mean square error on test (extrapolation)

data. Table 3.1 presents all experimental results with corresponding criteria.

21

Negative log-likelihood and BIC

Table 3.1 shows the negative log-likelihoods and BIC scores in all data sets. It is clear that

RKL has better BIC scores in most of data sets. Because it considers a fewer number of

hyperparameters by sharing parameters among multiple time series. Similar to RKL, SRKL

focuses on finding shared kernel among multiple data. However, SRKL maintains high BIC

scores due to the number of hyperparameters in SM kernel. Moreover, the determinant term,

log det(KS +Kdj
) in the negative log-likelihoods, penalizes more in SRKL than that of other

models [Rasmussen and Williams, 2005].

Extrapolation performance

Extrapolation is measured by the root mean squared error (RMSE) of the prediction on future

events. The test data sets of stock data, housing data, currency data contains the next 14 days,

13 months and 13 days of data respectively.

According to Table 3.1, SRKL outperforms on most of data sets although it has higher

BIC scores and NLLs. This is because SRKL overcomes the underfit issue in RKL by having

SM kernel to complement the shared covariance. While it maintains the generalization which

benefits from sharing information between multiple time series.

3.4.3 Qualitative Comparisons

RKL and SRKL can find kernel components which are dominant in multiple sequences better

than CKL. This is because multiple data contains more information and evidence to decide

whether a signal is really dominant. It can be shown by the case of US stock data where CKL

cannot extract the drop after the 9/11 but recoginizes the drop by a smooth change. On the

other hand, RKL can explain this even by a time window. Another example is in currency

exchange rate data where SRKL also captures a qualitatively important compositional kernel

shortly written as CW(SE + CW(WN + SE, WN), CONST). The second change-window kernel

indicates a time period from mid September 2015 to mid October 2015 (see Figure 3.4). This

can be related to the big financial changes, e.g., announcements on the change in interest rates

by FED. CKL captures a change-point on only one currency for Indonesian Rupiah. The other

results form CKL do not show this change.

22

3.5 Related work and final remark

The advances in compositional kernel learning have been studied in [Duvenaud et al., 2013; Lloyd

et al., 2014] showing a great improvement comparing the the default setting by using only squared

exponential in learning Gaussian processes. In contrast to this search-based approach, there are

optimization-based methods considering learning multiple kernel from linear combinations of

kernels [Bach et al., 2004; Wilson and Adams, 2013].

The idea of learning the relation between multiple objects or multiple data is stem from

statistical relational learning [Belle et al., 2015; Choi et al., 2010, 2011b, 2015; Getoor and

Taskar, 2007; Wang and Domingos, 2008]. The model proposed in this chapter concerns about

the case that the studying data are time series. More importantly, this model further addresses

the interpretability

In conclusion, this chapter provides an approach to extract shared information among groups

of time series. The residual of each time series is fitted with expressive kernel function. The

model demonstrates an outrun performance in prediction in multiple settings. The model

explanation is further improved with the consideration of global information among data.

23

Chapter 4

Selective compositional kernel

discovery

In many real-world data, there are many data that are not aligned perfectly. This can be due to

the way of choosing or collecting data. This chapter investigates regimes that multiple data is

not well-prepared or even comes from different sources or domains. The questions are: Can the

model find which portions of models indicate the common structure? Can the model give us

how much any arbitrary pair within the multiple data are correlated?

The model in this chapter is introduced in [Tong and Choi, 2019], providing a general solution

compared to the Semi-Relational Kernel Learning in the previous chapter.

4.1 Introduction

There are numerous important real-world applications in time series analysis including signal

processing and financial market. When considering multiple correlated data sources, a model

that takes a group structure into account often shows competitive predictive performance [Yuan

and Lin, 2006]. It is important to study how correlated multiple sequences are. Consequently,

there are many practical applications, i.e., visualization and automated writing reports from

multiple time series based on their relations which are inherently encoded. However, the task of

extracting such important relations among them is non-trivial.

The Automatic Bayesian Covariance Discovery (ABCD) focuses on regression problems

using Gaussian process (GP) models [Duvenaud et al., 2013; Ghahramani, 2015; Hwang et al.,

2016; Kim and Teh, 2018; Lloyd et al., 2014; Malkomes et al., 2016]. In previous work, selecting

GP kernels is done manually with expert or domain knowledge. The ABCD follows an automated

25

procedure based on pre-defined grammar rules resulting an appropriate compositional kernel

function to fit data. The framework outputs descriptive reports which are in form of natural

language to explain data. The key strength of compositional covariance structures lies in their

expressiveness and interpretability. Cognitive studies [Schulz et al., 2016, 2017] show that

compositional functions constructed by ABCD are preferred by humans. Employing such

properties of compositional structure, this chapter proposes a kernel composition framework

which generate interpretable outputs with improved predictive performance for multiple time

series.

One of well-established research areas in which GP models involve in learning multiple time

series is multi-task GP [Álvarez et al., 2012; Bonilla et al., 2007; Guarnizo et al., 2015; Titsias

and Lázaro-Gredilla, 2011; Wilson et al., 2012]. Yet, among these multi-task GP methods, the

approach of learning compositional covariance strucutre is not considered. As an example, the

multi-output GP regression network (GPRN) proposed by Wilson et al. [2012] models data

with the linear combination of latent GPs where the linear weights are also GPs. Because the

network in this model is complex, it is impossible to perform structure search for all GPs in

the network. To make a selected covariance structures interpretable for multiple sequences, we

use additive structure kernels. Rather being fixed, these additive kernels are searched over a

set of kernels. Indian Buffet Process (IBP) [Griffiths and Ghahramani, 2005, 2011] prior is used

to model an binary matrix that indicates the membership of additive kernels to time series.

Moreover, we combine learning IBP and a search algorithm to have a better exploration over

model space.

The model presented in this chapter suggests a new way to understand multiple time series

better via analyzing latent features from IBP and interpretable kernel functions. That is, the

output of models provides the relation among time series with human-readable descriptions.

This can be a potential application helping decision-making processes in many fields including

scientific discovery, financial management.

Compared to the previous chapter which introduces a global shared kernel for all time series

and individual kernels for each time series, the model proposed in this chapter is more general

because strong correlation assumption is no longer the prerequisite, the relation among time

series is instead learned by IBP. Figure 4.1 is an example of the data that does not meet the

assumption in RKL and SRKL.

This chapter offers the following contributions. The chapter introduces the model dubbed La-

tent Kernel Model (LKM) and characterize its well-definedness along with an approximate

26

2016 2017 2018

Fig. 4.1 Time series of Gold, Oil, NASDAQ, and USD index

inference algorithm. The chapter proposes a search procedure that extends to multiple time

series. Finally, a new type of generated reports for multiple time series is presented.

4.2 Latent Kernel Model

This section starts with the Indian Buffet Process (IBP) which is an important building block of

the proposed model. Then, the Latent Kernel Model (LKM) is introduced along with theoretical

properties and an approximate inference.

4.2.1 Indian Buffet Process

The Indian Buffet Process (IBP) is introduced in [Griffiths and Ghahramani, 2005] and is a

probabilistic prior defined over a binary matrix Z. Here, the number of rows in Z is finite. On

the other hand, the number of columns in Z can be infinite. The name of this stochastic process

is metaphorically inspired by Indian restaurant where (finite) customers enter the restaurant

and are served by (infinite) dishes. IBP and Beta-Bernoulli process are closely related [Thibaux

and Jordan, 2007].

θk ∼ Beta(α
K
, 1),

znk ∼ Bernoulli(θk),

27

IBP is obtained when sending the number of columns, K, to infinity. In particular limK→∞ p(Z|α) =

0. However, [Z] = lof(Z)

lim
K→∞

p(Z|α) = exp{αHN}
αK+∏

h>0Kh!
∏

k≤K+

(N −mk)!(mk − 1)!
N !

infinite exchangeable.

An intuitive explanation of IBP is that the matrix represents feature assignments where

the element at the i-th row and the j-th column expresses the presence or absence of the j-th

feature in the i-th object.

4.2.2 Model definition

Notation Let xn = (xn1, ..., xnD)> be the n-th time series. Here, at the time step d indexed

by td, the value of the n-th time series is xnd. The number of time series is N . The number

of data points is D. Note that xn, n = 1 . . . N be rows constructing matrix X. We introduce

binary vectors zn, n = 1 . . . N as rows of latent matrix Z.

When a set of GP kernels {Ck}Kk=1 is given, the generative procedure modeling time series

xn is defined as

Z ∼ IBP(α),

fn ∼ GP(0,
K∑

k=1
znkCk),

xn ∼ N (fn, σ
2
nI),

(4.2.1)

where the IBP concentration parameter is α. Under this model construction, the observed data

xnd is fitted by a GP latent function variable fn(td). Since all p(xn|zn) are independent, the

p(X|Z) is obtained as

p(xn|zn) = |2πD(zn)|−1/2 exp
(
−1

2x>
n D(zn)−1xn

)
, (4.2.2)

where D(zn) = ∑K
k=1 znkCk + σ2

nI. The entry at (n, d) of N ×K matrix Z which is denoted

as znk ∈ {0, 1} indicates the membership whether the n-th time series has kernel Ck in its

compositional kernel. By defintion of IBP, Z can have infinitely many columns as K →∞. This

model can be viewed as a generative process that creates the stochastic kernel D(zn). In this

chapter, IBP matrix Z is learned by an approximate Bayesian inference to reason about kernel

structures and relations between time series.

28

4.2.3 Properties

Well-definedness of LKM The number of kernels theoretically can goes to infinity because

of the choice of IBP prior over the matrix Z in which the number of columns can be infinitely

many. This leads to an important verification of whether p(X|Z) results in a well-defined

probability distribution for the case that the number of kernels approaches infinity. Griffiths and

Ghahramani [2011] presents an detailed analysis for linear factor model (LFM) where feature

matrix can be marginalized in p(X|Z). However, p(X|Z) in LKM still relies on kernels in its

representation. Therefore, it is necessary to justify the well-definedness in LKM.

Proposition 1. With Z ∼ IBP(α), the likelihood of LKM as

p(X|Z) =
N∏

n=1
p(xn|zn),

with p(xn|zn) in Equation 4.2.2 is well-defined.

Proof. The main proving technique is to use left-order-from (lof) on Z which is done by reordering

the columns in Z by the binary number computed from a column [Griffiths and Ghahramani,

2011]. Because of the commutative properties among Ck, the order of Ck is changed according

to the order of lof performing on Z. This does not affect p(X|Z).

Specifically, when applying lof on Z, we obtain [Z+Z0] where K+ nonzero columns is gathered

on the left as Z+ and the remaining Z0 is just K0 zero columns. Now D(zn) is represented as

D(zn) = ∑K+
k=1 z

+
nkCk + σ2

nI which only depends on Z+. As K →∞, IBP maintains the finite

number of nonzero columns K+. Therefore, D(zn) is computed as the sum of a finite number of

covariances kernels Ck. This means that p(xn|zn) has a well-defined. This means that p(X|Z)

is well-defined.

IBP prior can be thought of a regularizer preventing the explosion from adding infinite many

kernels. Consequently, the resulting GP models remain simple as the IBP matrix is sparse.

Comparisons with existing models Consider feature sharing models including [Guarnizo

et al., 2015; Titsias and Lázaro-Gredilla, 2011; Wilson et al., 2012] as

xn =
K∑

k=1
wkfk + εn,

where εn, n = 1 . . . N are Gaussian noises, fk, k = 1 . . .K are shared features. Here, one can

understand that fk is a GP realization sampled from Ck. The linear weights, wk, can have

29

Fig. 4.2 A toy example. Learning two lines using LKM. This data set consists of two samples
generated from the same GP prior with a periodic kernel.

different ways to model, for example, spike and slab prior [Titsias and Lázaro-Gredilla, 2011] or

GP latents [Wilson et al., 2012].

The LKM is more general and expressive than the feature sharing approaches. Consider the

decomposition of posterior distribution in an additive Gaussian processe presents as f = f1 + f2,

where f1 ∼ N (0,K1) and f2 ∼ N (0,K2). The conditional distribution of f1 given the sum f is

f1|f ∼ N (K>
1 (K1 + K2)−1f ,K1 −K>

1 (K1 + K2)−1K1).

Projecting to the multiple time series setting, the decomposition for the same GP prior can

be different for each time series. That is, given a covariance index k with fixed covariance Ck,

the posterior fk|xn differs as xn changes. Figure 4.2 illustrating on a toy data set can verify

this observation. This simple experiment considers generating two sampled sequences from a

single periodic GP. LKM is trained on this data with two different periodic kernels C1 and C2,

resulting Z = [0, 1; 0, 1]. This means that LKM can recognize these two samples from one GP.

We also emphasize that the Bayesian approach that is considered in our kernel construction,

can be viewed as a stochastic kernel generative process [Jang et al., 2017b].

Compared to the model proposed in the previous chapter, Figure 4.3 shows the difference

in term of graphical model. The approach in the previous chapter heavily depends on a global

shared kernel for all time series and allows distinctive kernel Cn in each time series. Because the

spectral mixture kernel [Wilson and Adams, 2013] is used for Cn in SRKL, the interpretability

is restricted only for the global kernel.

4.2.4 Inference algorithm

Variational inference Due to the intractability to obtain the posterior, variational infer-

ence [Wainwright and Jordan, 2008] is used where the true posterior p(Z|X) is approximated

30

xn

(b) R-ABCD

fn

GP

shared kernel

Cnσn

sn

n

xn

(a) LKM

fn

GP

znk

πk

α

Ck

k

n

Fig. 4.3 Comparison between the graphical model of (a) LKM and (b) relation model in the
previous chapter.

by q(Z). That is, we minimize the KL divergence between p and q by maximizing the model

evidence lower bound (ELBO),

log p(X) ≥ E[log p(X,Z)] +H[q]

= E[log p(Z)] + E[log p(X|Z)] +H[q] , L.

where H[q] denotes the entropy of q(Z) and E is the expectation over the approximate posterior

distribution q(Z). Here, we use the model definition as p(X,Z) = p(X|Z)p(Z). The variational

distribution q(Z) is in the mean-field family and factorized into q(znk) = Bernoulli(znk; νnk).

We adopt Doshi et al. [2009] to estimate E[log p(Z)] with two approaches including finite

cases and infinite cases. In the finite variational approach, sampling Z is done by

πk ∼Beta(α/K, 1),

znk ∼Bernoulli(πk).

The variational inference considers an auxilary variable π of which the approximate distribution

is defined as ∏k q(πk). Each q(πk) is distributed from a Beta distribution, Beta(τk1 , τk2). Since

X and π are conditionally independent given Z, E[log p(X|Z)] does not contain π. Therefore,

31

we can obtain E[log p(Z)] as

E[log p(Z)]

=
K∑

k=1

[
log α

K
+
(
α

K
− 1

)
(ψ(τk1)− ψ(τk1 + τk2))

]

+
K∑

k=1

N∑
n=1

[νnkψ(τk1) + (1− νnk)ψ(τk2)− ψ(τk1 + τk2)],

where ψ(·) is the digamma function.

While in the finite variational approach, stick breaking construction [Teh et al., 2007] is used

to sample Z as

vk ∼Beta(α, 1),

πk =
K∏

i=0
vi,

znk ∼Bernoulli(πk),

with k = 1 . . .∞. Similarly, the variational distribution q(v) is proposed to approximate p(v) by

independent Beta(τk1 , τk2)

E[log p(Z)] =
K∑

k=1
[logα+ (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

+
K∑

k=1

N∑
n=1

[
νnk

(
k∑

m=1
ψ(τm1)− ψ(τm1 + τm2)

)
+ (1− νnk)Ev

[
log(1−

k∏
m=1

vm)
]]
,

with Ev

[
log(1−∏k

m=1 vm)
]

is further approximated by Taylor expansion.

Now we turn our focus on E[log p(X|Z)]. Note that the likelihood is defined as

p(X|Z) =
N∏

n=1
p(xn|zn).

We can split E[log p(X|Z)] into the sum of individual components, E[log p(xn|zn)]. Observe

that E[log p(xn|zn)] is expensive to compute because we have to compute the expectation in

which discrete random variables Z are presented. In fact, E[log p(xn|zn)] is constructed from

−1
2x>

n E
[
D(zn)−1]xn. This expression is known as the expectation of data-fit term in learning GP.

The GP model complexity term, 1
2E [log |2πD(zn)|], is the remaining quanity in the likelihood

estimation. The main problem involving estimating such a likelihood is the computational

32

complexity. Specifically, there are 2K combinatoric configurations: (1) p(zn = t)D(t)−1 for all

t ∈ {0, 1}K to estimate the expectation of inverse matrix, E
[
D(zn)−1]; (2) p(zn = t) log |2πD(t)|

for all t ∈ {0, 1}K to estimate the expectation of log-determinant, E [log |2πD(zn)|]. Therefore,

this becomes infeasible to estimate the likelihood due to exponential increase in computation.

Relaxation To handle the aforementioned difficulty, we resort to relax the discrete random

variables znk to a continuous ones. The expectation is further estimated by Monte Carlo integral.

Adopting the method in [Maddison et al., 2017], we convert the Bernoulli random variables znk ∼

Bernoulli(νnk) into 2-dimensional continuous random variable [z̃nk,˜
znk] ∼ Concrete(νnk, λ),

where λ is the temperature parameter. Here, the categorical random variable [znk, 1 − znk]

corresponds to the relaxed one [z̃nk,˜
znk]. We only need z̃nk which is the relaxed version of znk.

A sample of z̃nk is drawn by first sampling g1 and g2 from Gumbel(0, 1) and then computing as

z̃nk =
exp(log(νnk)+g1

λ)
exp(log(νnk)+g1

λ) + exp(log(1−νnk)+g2
λ)

.

This can be thought of as the Gumbel-Softmax trick [Jang et al., 2017a; Maddison et al., 2017].

After the relaxation, the Monte Carlo estimation of E[log p(xn|zn)] is obtained by

E[log(p(xn|zn)] ≈ 1
m

m∑
i=1

log p(xn|z̃(i)
n)),

where m is the number of Monte Carlo samples, {z(i)
n }mi=1 are the samples drawn from the

Concrete distribution. To this end, the expectation, E[log(p(xn|zn)] no longer depends on the

exponential number in terms of K random variables zn but the number of sample M . Moreover,

the stochastic gradient estimation can be done via the reparameterization trick [Kingma and

Welling, 2014; Mohamed et al., 2020; Schulman et al., 2015].

4.3 Model discovery in multiple time series

To have a better model exploration, this section presents an approach to search over the space

of LKM.

Search procedure Due to the fact that LKM model space is huge, the search procedure

in this section is done in a greedy manner similar to [Duvenaud et al., 2013; Grosse et al.,

2012; Lloyd et al., 2014]. At a certain depth d, we maintain a collection of additive kernel

{S(k)
d |S

(k)
d = ∏

l B
(kl)
d with B(kl)

d s are base kernels, k = 1 . . .K}. The required kernel structure

33

S(1)

S(1) S(4) S(5) S(6) S(3)

S(2) S3 PSE

Fig. 4.4 An example of expansion in PSE.

for Ck in LKM is assigned correspondingly to S(k)
d . At the depth (d + 1), the collection will

include new additive kernels which are generated from the elements of the collection at the depth

d. The expansion adopts the context-free grammar rules like in Compositional Kernel Learning

(CKL) [Duvenaud et al., 2013]. However, suppose that we expand S(k)
d into a new kernel which

is in an additive form, ∑M
m=1 S

(km)
d+1 , we replace this expansion with M separated expansions

S(k)
d → S(km)

d+1 . Instead the sum ∑M
m=1 S

(km)
d+1 is added, we include S(km)

d+1 to the collection. This

procedure guarantee these new structures satisfy the canonical definition of {S(k)
d }.

Partial set expansion (PSE) Partial set expension expands the collection S(k)
d iteratively

and obtain a set of candidates {S(k1)
d , . . . ,S(km)

d }. A new collection is created from the union

of the previous one excluded the selected structure {S(k)
d }Kk=1\{S

(i)
d } and the new candidate

structures {S(i1)
d , . . . ,S(im)

d } (Figure 4.4). The variational inference algorithm (described in

Section 4.2.4) will learn the indicator matrix Z and GP hyperparameters. The new kernel

collection is kept if the learned model has a better BIC score [Schwarz, 1978.]. Otherwise, we

rolls back to the previous one. We continue with further expansion described in Algorithm 2.

The main advantages of PSE algorithm are (1) it avoids drastic increases in structure space

when performing expansion, (2) it takes consideration into a selection criterion (BIC) and rolls

back to the previous model if necessary, (3) the hyperpameter initialization is easier with the

fewer number of kernels in PSE.

Our kernel search procedure is a meta search algorithm inspired from oracle machines in

computational theory [Papadimitriou, 1994]. The LKM plays a role as an oracle. Given a set of

kernel structures, one tries to ask the oracle to decide the appropriate structures. The oracle

will response an answer as Z in our case. Exploiting the returned Z, the kernel structures will

be elaborated more by performing PSE. The procedure is repeated by making new inquiry based

on the expanded structures.

We emphasize that PSE with LKM considers a larger number of kernel structures than

those in CKL. Suppose that CKL and our search algorithm have the same found structure

at a depth d. Whereas the CKL’s structure is Sd = S(1)
d + · · · + S(K)

d , PSE represents it as

34

Algorithm 2 Search procedure follows partial set expansion with LKM learning

Require: A multiple data set and maximum search depth D, an initial kernel collection {S(k)
d }

1: for d = 1 . . . D do
2: for S in {S(k)

d } do
3: Update {S(k)

d } ← {S
(k)
d }\S ∪ expand(S)

4: Learn Z and GP hypeparameters with LKM
5: if there is an improvement in BIC then
6: Keep the updated collection {S(k)

d }
7: else
8: Rollback to previous collection {S(k)

d }
9: end if

10: end for
11: end for

a set {S(1)
d , . . . ,S(K)

d }. Let L be the largest number of base kernels in S(k)
d , and R be the

maximum number of grammar rules per substructure. All possible search candidates in CKL is

O(RK2L +R2K) kernels, while PSE incorporating with LKM considers O(K2R2L+K) number

of kernels.

We emphasize that PSE with LKM considers a larger number of kernel structures than

those in CKL. Suppose that CKL and our search algorithm have the same found structure

at a depth d. While the CKL’s structure is Sd = S(1)
d + · · · + S(K)

d , PSE represents as a set

{S(1)
d , . . . ,S(K)

d }. Let us examine the cardinality of kernel spaces after performing an expansion

to the next depth. The procedure is to extract substructures from the current structure, then

apply grammar rules on the structure. In CKL, substructures consist of all structures generated

from the combinations of B(kl)
d in each individual S(k)

d and ones generated by the combination of

all S(k)
d . The former has O(K∑

l

(L
l

)
) = O(K2L) substructures where L is the largest number of

base kernels in S(k)
d . The latter creates O(∑k

(K
k

)
) = O(2K) combinations. When the maximum

number of grammar rules per substructure is R, the total number of candidates at the depth

d+ 1 is O(RK2L +R2K).

Our approach only applies expansion on individual structure S(k)
d via the combinations of

B(kl)
d . However, the search space still includes all the cases when substructures are extracted from

a combination of S(k)
d . For instance, the generation from LIN+PER+SE to (LIN+PER)×SE+SE

in CKL is equivalent to the generation from {LIN, PER, SE} to {LIN×SE, PER×SE, SE} in

our approach. For the case of PE, the additive kernel set will be expanded into a new one having

the number of elements R2L +K. With the flexible binary indications (on/off) of Z, the number

of all possible kernels is O(K2R2L+K) when all structures are visited to be expanded.

35

Although our search algorithm explores a much larger search space than CKL in theory,

the prior over Z is the bottleneck of our model. In fact, learning Z is optimized based on a

gradient-based method where the global optimal is not guaranteed.

4.4 Experimental evaluations

This section provides the details of data sets and gives qualitative and quantitative results of

LKM.

initial ν converged ν

Fig. 4.5 An illustration of the convergence of ν.

SE SE
PER

PER

SE
× PER

SE
× PER

ac
t2

SE SE
PER

PER

SE
× PER

SE
× PER

ac
t3

SE SE
PER

PER

SE
× PER

SE
× PER

ac
t4

SE SE
PER

PER

SE
× PER

SE
× PER

ac
t5

1 89 178

−2

0

2

ac
t5

Data

1 89 178

−1.0

−0.5

0.0

0.5

1.0

SE

1 89 178

−2

−1

0

1

2

SE

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0
PER

1 89 178

−0.5

0.0

0.5

1.0
PER

1 89 178

−2

−1

0

1

SE× PER

1 89 178

−1.0

−0.5

0.0

0.5

1.0

SE× PER

1 89 178

−2

0

2

ac
t5

1 89 178

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1 89 178

−2

−1

0

1

2

1 89 178

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1 89 178

−1.5

−1.0

−0.5

0.0

0.5

1.0

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178

−2

0

2

ac
t5

1 89 178

−1.0

−0.5

0.0

0.5

1.0

1.5

1 89 178

−2

−1

0

1

2

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178

−2

−1

0

1

2

1 89 178

−0.5

0.0

0.5

1.0

(a)

SE SE
PER

PER

SE
× PER

SE
× PER

ac
t1

1 89 178

−2

0

2

ac
t1

Data

1 89 178

−2

−1

0

1

SE

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0
SE

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0
PER

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0
PER

1 89 178

−2

−1

0

1

2

3

SE× PER

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0
SE× PER

1 89 178

−2

0

2

ac
t1

1 89 178

−1.0

−0.5

0.0

0.5

1.0

1.5

1 89 178

−2

−1

0

1

2

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178
−2

−1

0

1

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178

−2

0

2

ac
t1

1 89 178

−1.5

−1.0

−0.5

0.0

0.5

1.0

1 89 178

−2

−1

0

1

2

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

1 89 178

−2

−1

0

1

2

1 89 178
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 4.6 IBP matrix Z in epileptic seizure data. The EEG recordings of five activities are
considered: seizure (act1), located tumor (act2), identifying tumor (act3), eyes closed (act4),
eyes open (act5). (a) Non-seizure. Left: learned Z for each activity (black: znk = 0, white:
znk = 1); Right: the GP posterior of three time series from act5 with the corresponding
decomposition. (b) Seizure. Left: learned Z from act1; Right: posterior plot of first three time
series from act1. The gray background plots indicate znk = 0.

36

4.4.1 Real-world time series data

Strongly correlated data sets Three data sets are considered: US stock prices, US housing

markets and currency exchanges. These data sets are described in previous chapter, containing

a multiple time series which strongly correlates each other. These data sets are considered as

baseline data sets to compare our method to the relational approach in the previous chapter.

Heterogeneous data set To emphasize the ability of LKM to handle more general setting,

time series are collected from various domains. It is composed of gold price, crude oil price,

NASDAQ composite index, and USD index1 from 2015 July 1st to 2018 July 1st. We name this

data set as GONU (Gold, Oil, NASDAQ, USD index). Each time series contains 157 data points

taken from [Quandl, 2018]. The relations between time series are complex. For example, the gold

and oil prices may have a negative correlation where one may increase but the other decreases.

There are many financial studies focusing on these time series [Filis et al., 2011; Reboredo et al.,

2014].

Epileptic seizure data set This data set [Andrzejak et al., 2002] is retreived from UCI

repository Dheeru and Karra Taniskidou [2017a]. It contains EEG recordings of brain activities

for 23.6s. Each record is one of five activities including eyes open, eyes closed, identifying the

tumor, located the tumor and seizure activity. There are 178 data points for each time series.

4.4.2 Qualitative results

To make machine learning models interpretable, thereby help scientific discovery and decision

making, the following experiments demonstrate the potential applications the proposed model.

Exploiting information from Z

Learning Z An ablation study to visualize the convergence of variational parameters ν can

be found in Figure 4.5. The value of νnk indicates the probability of znk = 1. The bigger νnk is,

the more likely the kernel Ck is chosen to model time series xn.

Interpreting Z 50 time series is randomly selected from the epileptic seizure data where each

activity has 10 time series. Because finding a covariance kernel decomposition for a large number

of time series is time-consuming, and therefore prohibits kernel structure search, we choose a
1Data is retrieved from Quandl where codes for these data sets respectively are WGC/GOLD_DAILY_USD,

FRED/DCOILBRENTEU, NASDAQOMX/COMP,FRED/DTWEXM

37

fixed kernel structures {SE1,SE2,Per1,Per2,SE3 × Per3,SE4 × Per4}. Figure 4.6 depicts

an overview of the model outputs.

There are several interesting observations. The block matrices from Z of located tumor and

identifying tumor have similar sparsity. Also, having fewer active SE kernels shows that the

corresponding EEG recordings do not vary much. On the other hand, there are quickly varying

signal described by small lengthscales on the activities of closed eyes and opening eyes. The

seizure has a similar sparsity compared to those of closed eyes and opening eyes. However, there

does not exist low-frequency periodicity.

We can show that the latent matrix Z represents certain relations between time series with

the additional information from kernel interpretability. Next, we make use the natural-language

description of kernels to produce comparison reports.

Comparison report

Overview comparison By taking the advantage of the learned latent matrix Z and the

descriptive properties of found GP covariance structures, we generate a human-readable report

containing the comparison among time series. For example, the generated text can have formats

like

“[T1, . . . , Tm] share [description]”

where the replacement of [T1, . . . , Tm] is a set of time series, [description] is generated by the

found GP structure. Below is extracted from GONU data set.

• Gold, Oil, NASDAQ, USD index share the following property:

This component is periodic with a period of 1.4 years but with varying amplitude.

The amplitude of the function increases linearly away from Apr 2017. The shape

of this function within each period has a typical lengthscale of 4.9 days.

• Gold, Oil, USD index share the following property:

This component is a smooth function with a typical lengthscale of 2.7 weeks.

• NASDAQ has the following property:

This component is a linear function.

Pairwise comparison We provide another type of descriptive comparisons. Given a set of

N time series, the output of our model can generate
(N

2
)

reports which compare each pair of

time series. These reports give us a more detailed insight than the overview comparison. A

report consists of shared components and individual ones between time series. Alongside with

38

sh
ar

ed
ke

rn
el

s
in

di
vi

du
al

ke
rn

el
s

Gold Oil

Fig. 4.7 An example of pairwise comparison in GONU data set. The upper plots are the
posterior distribution of two time series. The remaining plots contain shared components and
individual components with descriptions and posteriors fk|xn for each time series. The blank in
the individual components means “not available".

the description of the kernel structure of Ck, this type of report presents the corresponding

posterior fk|xn which will illustrate the variations of GP realizations on different time series (see

Figure 4.7).

We bring a brief analysis of GONU data set as an example after taking a quick look over

the generated report. For instance, the gold and oil prices share many common characteristics

(long and short lengthscale varying), showing a marginally small difference. On the other

hand, NASDAQ and USD indices differ each other with many distinctive individual kernels

Cks. Interestingly, the negative correlation behavior between the oil and USD indices (i.e. two

39

Stocks
4

6

8

10

Houses

5

10

Currencies

100

200

300

400

GONU
0.6

0.8

1

1.2

Spike and Slab GPRN LMC MOSM
ABCD R-ABCD LKM (ours)

Fig. 4.8 RMSEs for each data set (9 stocks, 6 houses, 4 currencies, GONU) with corresponding
methods.

time series often go in opposite directions) can be observed by shared kernels using LKM (see

Appendix 4.9). These reports give an easy understanding for ones who do not have knowledge

in finance.

4.4.3 Quantitative results

Experiment setup All experiments are conducted to predict future events (extrapolation)

by splitting all data sets and trained with the first 90%, then tested with the remaining 10%

as in the standard setting for extrapolation tasks. Root mean square error (RMSE) and Mean

Negative Log Likelihood (MNLP) [Lázaro-Gredilla et al., 2010] are the main evaluation metrics

in all data sets.

Compare to multi-task GPs We compare multi-task GP models including ‘Spike and

Slab’ model [Titsias and Lázaro-Gredilla, 2011], GP regression network (GPRN) [Nguyen and

Bonilla, 2013; Wilson et al., 2012], Linear Model of Coregionalization (LMC) [Álvarez et al.,

2012; GPy, since 2012] and Multi-Output Spectral Mixture (MOSM) [Parra and Tobar, 2017].

The result in Table 4.1 and Figure 4.8 indicates that our methods significantly outperform these

models. This result could be attributed to that LKM leveraged by PSE selects compositional

kernels which are flexible enough to fit complex data.

Compare to existing kernel composition approaches We ran ABCD on individual

time series then aggregated the results to compare with our models. Our model outperforms

ABCD which is known as one of the state-of-the-art GP-based regression methods on univariate

40

Fig. 4.9 Comparing Oil and USD index. This is extracted from the pairwise comparison of
GONU data set.

time series. It proves that our belief about the correlations among multiple time series is

plausible.

We then compare with R-ABCD [Hwang et al., 2016]. Rather than making the assumption

that all time series share a single global kernel, our model recognizes which structures are shared

globally or partially. Quantitatively, LKM shows promising results in prediction tasks. It outruns

R-ABCD in most of the data sets (Table 4.1 and Figure 4.8). In a relationally complex data

set like GONU, LKM is significantly better while R-ABCD failed as the restriction due to its

feature (function) sharing assumption.

Spike and Slab and GPRN models perform better than ABCD and R-ABCD in the currency

data set where it contains highly volatile data. Although our model shares some computational

procedures with ABCD and R-ABCD, our model is more robust to handle different types of

time series data.

4.5 Related work and final remark

Compositional kernel learning This work is the direct extension of [Hwang et al., 2016]

for kernel discovery in multiple time series settings. In contrast, the proposed method, LKM,

41

does not rely on global shared information between multiple time series. Instead, it can work

on a more general setting when multiple time series can be partly shared structures. There are

a line of research aiming to improve the kernel learning of [Duvenaud et al., 2013]. The list

includes [Han et al., 2019; Kim and Teh, 2018; Lu et al., 2018; Malkomes et al., 2016]. This

line of work can be considered as parts of explainable machine learning approaches making data

self-interpretable Gunning et al. [2019]. In cognitive studies, [Schulz et al., 2016, 2017] find

that the kernels constructed by compositional way are more preferable by human. [Sun et al.,

2018] presents a network of compositional kernel function inspired by deep neural networks.

However, it does not retain interpretability. In terms of probabilistic construction of kernel

functions, [Saad et al., 2019; Schaechtle et al., 2015; Tong and Choi, 2016] provides methods

based on universal probabilistic programming languages Carpenter et al. [2017]; Mansinghka

et al. [2014]. Work by [Jang et al., 2017b] proposes mixtures of kernels with Lévy prior over

spectral densities.

Multi-task learning In multiple data settings, there are a number of multi-task Gaussian

process learning models [Álvarez et al., 2012; Bonilla et al., 2007; Guarnizo and Álvarez, 2015;

Guarnizo et al., 2015; Teh et al., 2005; Titsias and Lázaro-Gredilla, 2011; Wilson et al., 2012].

However, the compositional kernel functions are not investigated in such models. The model

interpretability for these models is left unexplored. In terms of learning, LKM is based on

Bayesian inference with IBP prior which encourages the sparsity while alternative models are

learned by gradient-based approaches.

Convolutional networks [LeCun et al., 1989] and sum-product networks [Poon and Domingos,

2011] are related but distinct models in learning complex function. For example, AND-like and

OR-like operation have the intuitively similar mechanisms of multiplication and summation in

compositional kernels. Adding to this notion, the model in this chapter focuses on multiple

complex functions where sharing kernels can be thought of as AND-like operation among multiple

time series.

42

9
st

oc
ks

6
ho

us
es

4
cu

rr
en

ci
es

G
O

N
U

R
M

SE
M

N
LP

R
M

SE
M

N
LP

R
M

SE
M

N
LP

R
M

SE
M

N
LP

Sp
ik

e
an

d
Sl

ab
10
.0

7 ±
0.

12
2.

87
±

0.
05

10
.8

5 ±
0.

46
6.

92
±

0.
09

17
4.

71
±

14
.5

2
4.

09
±

0.
10

1.
07

±
0.

08
2.

36
±

0.
11

G
PR

N
6.

11
±

0.
09

2.
78

±
0.

14
8.

96
±

0.
17

6.
64

±
0.

46
19

3.
13

±
49

.4
0

4.
24

±
0.

20
1.

16
±

0.
12

2.
46

±
0.

28
LM

C
8.

20
±

0.
53

2.
24

±
0.

23
11
.3

1 ±
1.

04
5.

90
±

0.
46

39
4.

83
±

40
.5

4
4.

90
±

0.
15

1.
01

±
0.

14
1.

43
±

0.
11

M
O

SM
5.

48
±

1.
01

2.
97

±
0.

01
8.

15
±

1.
51

5.
90

±
0.

20
31

8.
26

±
10

1.
52

3.
93

±
0.

15
0.

84
±

0.
18

3.
13

±
1.

06
A

B
C

D
8.

37
±

0.
03

2.
58

±
0.

05
7.

98
±

0.
03

5.
61

±
0.

05
32

5.
58

±
8.

64
4.

47
±

0.
04

0.
86

±
0.

01
2.

21
±

0.
03

R
-A

BC
D

4.
88

±
0.

03
1.

95
±

0.
05

3.
17

±
0.

10
6.

07
±

0.
09

20
8.

32
±

5.
02

3.
62

±
0.

03
0.

97
±

0.
03

2.
01

±
0.

10

LK
M

4.
58

±
0.

16
1.

87
±

0.
10

4.
37

±
0.

16
5.

54
±

0.
40

13
3.

00
±

16
.9

2
3.

61
±

0.
16

0.
76

±
0.

07
1.

90
±

0.
25

Ta
bl

e
4.

1
R

M
SE

s
an

d
N

M
LP

s
fo

r
ea

ch
da

ta
se

t
w

ith
co

rr
es

po
nd

in
g

m
et

ho
ds

(5
in

de
pe

nd
en

t
ru

ns
pe

r
m

et
ho

d)
.

In
m

os
t

ca
se

s,
LK

M
ha

s
lo

we
r

R
M

SE
s

an
d

N
M

LP
s

co
m

pa
re

d
to

th
os

e
of

ex
ist

in
g

m
et

ho
ds

.

43

Chapter 5

Kernel selection for Scalable GP

Although the Automatic Statistician framework showcases its strength to fit data well as well as

provides attractive model explanations, one of the challenges is that the framework cannot scale

with large-size data. To deal with this problem, this chapter presents a novel approach to scale

up the learning Gaussian processes when the kernel function is compositional and additive. To

further accelerate the kernel search procedure, model selection is done with the combination of a

shrinkage approach where Horseshoe prior is used.

This chapter contains the model descriptions and experimental results presented at Tong

et al. [2021].

5.1 Introduction

Recently, there have been many advances in automating model learning with statistical methods.

Still, there are challenges on how to make the automatic procedure efficient and scalable.

The Automatic Statistician framework [Duvenaud et al., 2013; Ghahramani, 2015; Grosse

et al., 2012; Lloyd et al., 2014; Steinruecken et al., 2019] aims to address challenges on automating

model discovery. The framework follows search procedures over a model space, listing all

compositional Gaussian Process (GP) kernel functions generated from compositional grammar

rules and base kernels. The obtained models can therefore creates human-readable explanations

as dissecting explainable components in the compositional kernel models. However, existing

methods have to run a time-consuming task because the search space is huge.

Recently, inspired by deep neural networks, [Sun et al., 2018] proposes a differential extension

of compositional learning. Although this model considers expressive kernel functions for GPs

and thereby demonstrates good predictive performances, it is less interpretable compared to

existing kernel learning methods, e.g. [Lloyd et al., 2014].

45

This chapter presents a new kernel composition learning method which focuses on seeking

a sparse composition of kernels with a shrinkage prior, Horseshoe prior, which is proven to be

effective in learning sparse signal [Bhadra et al., 2019; Carvalho et al., 2009]. To preserve the

interpretability in models, we devise compositional kernels by using additive kernels which can

be decipher in natural language.

To make models scalable, this chapter proposes a new approximate posterior for GP, Multi-

inducing Sparse Variational GP (MultiSVGP). Previous work on sparse inducing GP [Hensman

et al., 2013; Snelson and Ghahramani, 2006] gives an approximation for GP for a kernel function

in general settings considering a single set of inducing points. However, this can be further

improved for the specific case of additive compositional kernels by considering a group of

inducing points and assigning an individual member of inducing points responsible for an

additive kernel in our approximating posterior. This idea is justified that the error bound of

our approximation with compositional kernels is better than that of the sparse inducing GP.

Experiments demonstrate that the proposed model can capture appropriate kernel structures

for time series from small-scaled data sets to large-scaled data sets. In general, our model runs

faster than existing compositional kernel learning methods [Kim and Teh, 2018; Lloyd et al.,

2014] five to twenty times while maintaining similar accuracy. On extrapolation task, our model

outperforms alternative models as well as improves additive GPs [Duvenaud et al., 2011] with

our kernel selection.

The chapter offers the following contributions: an improved GP approximation method for

additive compositional kernels; a probablistic kernel selection using Horseshoe prior so that the

learned models can capture the inductive kernel structure in data and maintain interpretability.

5.1.1 Variational Sparse Gaussian process

The history of sparse Gaussian process methods dated back from the work of Snelson and

Ghahramani [2006]. It can be considered as a sibling of Nyström approximation [Williams and

Seeger, 2001]. The central idea of sparse Gaussian process is to introduce pseudo inducing

points, u, which are distributed jointly with Gaussian process latent variable f under a Gaussian

distribution. The number of inducing points, M , is much smaller than the number of data

points, N . The computational complexity of sparse Gaussian process is O(NM2) for each

learning iteration. There is a line of research on improving and understanding sparse Gaussian

processes [Bauer et al., 2016; Bui et al., 2017; Burt et al., 2019; Lee et al., 2017; Walder et al.,

2008].

46

Given a data set D = {(xi, yi)}ni=1, a sparse variational Gaussian process (SVGP) is defined

by

f(·) ∼ GP(0, k(·, ·)),

yi|f,xi ∼ p(yi|f(xi)),

where p(yi|f(xi)) is a likelihood which can Gaussian in regression tasks and categorical in

classification tasks. To approximate the posterior, the variational approach considers M inducing

points u = {ui}Mi=1 at locations {zi}Mi=1, forming the variational distribution as

u ∼ N (m,S),

f(·)|u ∼ GP(µ(·),Σ(·, ·)),

where the mean and and covariance are obtained as

µ(·) = ku(·)>K−1
uuu,

Σ(·, ·) = k(·, ·)− ku(·)>K−1
uuku(·),

(5.1.1)

with ku(·) = [k(zi, ·)]Mi=1 and Kuu is the covariance of u.

The variational inference maximizes the evidence lower bound (ELBO) given as follow-

ing [Hensman et al., 2013]

L =
∑

i

Eq(f(·)) [log p(yi|f(xi))]−KL[q(u)||p(u)].

Here q(f(·)) is a Gaussian, having mean as ku(·)>K−1
uum and covariance as k(·, ·)−ku(·)>K−1

uu(S−

Kuu)K−1
uuku(·). The objective L can be optimized using stochastic gradient descent.

5.1.2 Shrinkage prior

In many statistical model learning, we often encounter the problem of sparse variable selection.

Some well-known methods are proposed to tackle the problem, including Lasso regulariza-

tion [Tibshirani, 1996], spike and slab prior [Mitchell and Beauchamp, 1988] and Horseshoe

prior [Carvalho et al., 2009].

47

Spike and slab prior The spike and slab prior over w is defined as

vi ∼ N (0, σ2
w),

si ∼ Bernoulli(πs),

wi = visi.

This belongs to the two-group models. That is, the event {wi = 0} happens with probability

(1− πs); and nonzero wi distributed according to a Gaussian prior with probability πs. There is

existing work using the prior for kernel learning [Titsias and Lázaro-Gredilla, 2011].

Horseshoe prior The horseshoe prior [Carvalho et al., 2009] introduces a way to sample a

sparse vector β as

βi ∼ N (0, τ2λ2
i), i = 1 . . .m

λi ∼ C+(B), i = 1 . . .m

τ ∼ C+(A),

where C+(·) is the half-Cauchy distribution, A and B are the scale parameters. Here, τ is the

global shrinkage parameter, λi is the local shrinkage parameter. In contrast to the spike and

slab prior, horseshoe prior is a continuous shrinkage one. It has Cauchy-like tails which allow

signals to at large values. On the other hand, the infinite spike near zero keeps wi around the

origin. Ghosh et al. [2019] uses Horseshoe prior for the weight selection in Bayesian deep neural

networks.

Compared to Horseshoe prior, the spike and slab prior exhibits a substantial computational

burden as the dimension of sparse vectors increases.

5.2 Kernel selection with shrinkage prior

This section presents our main contributions: (1) kernel selection with Horseshoe prior and (2)

our approximate GP for compositional kernels.

48

u1 u2

f1x1

y1

f2

x2 y2

f3

x3

y3

(a)
u1

1 u1
2 u2

1 u2
2

f1x1

y1

f2

x2 y2

f3

x3

y3

(b)

Fig. 5.1 The graphical model of two models. Solid and dashed lines indicate the connections
modeled by two different kernel function k1 and k2. (a): Sparse inducing GP. The inducing
points ui is introduced as a proxy for the connections between fi. (b): Our approach. Inducing
points are grouped. Each group represents an individual kernel k1 or k2.

5.2.1 Kernel selection with Horseshoe prior

Consider the full GP model with kernel construction based on the following generative procedure:

f(·)|w ∼ GP(0, k̃(·, ·)), (5.2.1)

where k̃(x,x′) = ∑m
i=1w

2
i ki(x,x′) is constructed from m kernel functions ki(x,x′). We introduce

a probabilistic prior over the weights w = [w1:m], p(w) motivated from the Horseshoe prior.

That is, we add the covariance term ki(x,x′) to the step sampling βi in Horseshoe generative

procedure. This makes βi equivalent to fi(x) in GP, i.e.,

βi ∼ N (0, τ2λ2
i)⇒ fi(x) ∼ GP(0, τ2λ2

i ki(x,x′)).

When considering the multivariate normal distribution fi ∼ N (0, τ2λ2
i Ki) with kernel matrix

Ki computed from ki(x,x′), the multivariate version of Horseshoe variable, βi ∼ N (0, τ2λ2
i I), is

a special case of fi when Ki is the identity matrix. This generalization is natural, equipping

the sparsity among {fi(x)}mi=1. Denoting w2
i = τ2λ2

i and assuming that {fi(x)}mi=1 are mutually

independent, we can get f(x) = ∑m
i=1 fi(x) ∼ GP(0, k̃(x,x′)).

49

The assumption on sparsity among kernel functions ki encourages simple kernels which agree

with model selection principles like Occam’s razor in Rasmussen and Ghahramani [2001] and

BIC in Lloyd et al. [2014].

5.2.2 Multi-inducing sparse Gaussian process

To motivate the proposed approach, we will first provide a naive model directly obtained from

the sparse Gaussian process. Then, we present our main model.

SVGP with compositional kernels Given inducing points u, we formulate the correspond-

ing sparse GP model as

f(·)|w,u ∼ GP(µ̃(·), Σ̃(·, ·)), (5.2.2)

µ̃(·) = k̃>
u (·)K̃−1

uuu,

Σ̃(·, ·) = k̃(·, ·)− k̃>
u (·)K̃−1

uuk̃u(·).

Here, we denote that K̃uu = ∑m
i=1w

2
i Kiuu, and Kiuu is the covariance of u computed from

kernel function ki(·, ·).

Multi-inducing sparse variational GP Given w, we define the model via the combination

of conditional posterior distributions:

f(·)|U,w ∼ GP
(

m∑
i=1

wiµi(·; ui),
m∑

i=1
w2

i Σi(·, ·; ui)
)
, (5.2.3)

where
µi(·) = kui(·)>K−1

uiui
ui,

Σi(·, ·) = ki(·, ·)− kui(·)>K−1
uiui

kui(·).
(5.2.4)

Here kui(·) = [ki(ui, ·)]>, and Kuiui is the covariance of ui w.r.t. kernel ki. For convenience, we

omit the notation ui in µi and Σi.

Compared to the model in Equation 5.2.2, m inducing groups of inducing points, U = {ui}mi=1

are used. Each ui is responsible for a kernel function ki, consisting of Mi inducing points

ui = [u(i)
1:Mi

] at inducing location Zi = [z(i)
1:Mi

] ∈ Zi. The number of inducing points, Mi, should

be much smaller than the number of data points in the data set, N ,(i.e. Mi � N).

50

Figure 5.1 compares between the graphical model of SVGP and that of our proposed

approach. In simple words, each member in inducing groups is assigned to a single kernel

structural representation. We dub this model as Multi-inducing Sparse Variational Gaussian

Process (MultiSVGP).

Discussion It is obvious that the conditional distribution in Equation 5.2.3 is not equivalent to

the conditional distribution of SVGP in Equation 5.2.2 since the inverse of the matrix sum is not

equal to the sum of inverse matrices. Our proposed conditional distribution treats each kernel

independently with separate inducing points while the condition in SVGP contains correlations

between the kernels which are often complicated under the matrix inverse operator.

Better fit We hypothesize that the sum of conditional Gaussians is still able to learn from

data well compared to other GP models. This can be confirmed by a small experiment in which

data are generated from a true model with kernel function SE1 + SE2 + Per1. We then fit the

data with full GP, SVGP model and our proposed approach. Figure 5.2 shows the posterior

distributions of these models along with their Wasserstein-2 distance to the true model. We can

see that the posterior obtained from our assumption can have good approximation.

True model

0.0 2.5 5.0

Full GP

0.0 2.5 5.0

W2 = 22.39
SVGP

0.0 2.5 5.0

W2 = 139.59
Ours

0.0 2.5 5.0

W2 = 17.56

Fig. 5.2 The posterior distributions between models. Here, W2 is the Wasserstein-2 distance
between a model and the true model. The posterior obtained from our approach is close to the
true model as well as the full GP model. SVGP model struggles to fit the data.

Interpretation using inter-domain variational Gaussian Process Inter-domain Gaus-

sian process [Lázaro-Gredilla and Figueiras-Vidal, 2009] can formulate features which can lie in

difference domains. The following adopts the similar approach to explain the proposed model.

Let us consider m Gaussian processes which are associated to different kernels:

gi(x) ∼ GP(0, ki(x,x′)), i = 1 . . .m. (5.2.5)

51

Because Gaussian process is close under any linear transformation. We consider the following

linear transformation

ui(·) =
∫
φi(x, ·)gi(x)dx.

The choice of φi(x, z) is a Dirac function included the information of which inducing point group

z̃ is in:

φi(x, z) = I{z ∈ Zi}δ(z− x).

Choosing Dirac delta function δ(·) is similar to traditional sparse Gaussian process. Whereas

I{z ∈ Zi} provides the membership information of inducing points in the group. We combine all

gi(x) to get the model in Equation 5.2.1:

f(x) =
m∑

i=1
wigi(x) ∼ GP

(
0,

m∑
i=1

w2
i ki(x,x′)

)
.

Followed by Lázaro-Gredilla and Figueiras-Vidal [2009], the corresponding (cross-) covariance

between U and f can be obtained as

kuf (z,x) =
m∑

i=1
wiI{z ∈ Zi}ki(z,x),

kuu(z, z′) =
m∑

i=1
I{z ∈ Zi}I{z′ ∈ Zi}ki(z, z′).

(5.2.6)

From the posterior mean and covariance in Equation 5.1.1, we get the same formula in Equa-

tion 5.2.3.

Here, we compare the approximate quality of MultiSVGP and that of SVGP. Here, we argue

that our approximate posterior can at least as good as SVGP. Let P̂ be the true posterior of

GP, Qmulti be the variational approximation of MultiSVGP in Equation 5.2.3 and Qsingle be the

variational approximation of SVGP in Equation 5.2.2.

The case1 k(x,x′) = k1(x,x′) + k2(x,x′) is considered. Let λi, λ
(1)
i , and λ

(2)
i be the i-th

operator eigenvalue w.r.t. k, k1, and k2. MultiSVGP has M inducing points in each inducing

group. SVGP has M inducing points. The error bound for the SVGP is

KL(Qsingle||P̂) ≤ Csingle
2σ2

nδ

(
1 + ||y||

2
2

σ2
n

)
,

1without loss of generality, wi is set to 1

52

with probability at least 1 − δ [Burt et al., 2019]. Here, Csingle = ∑∞
i=M+1 λi, and σ2

n is a

Gaussian noise variance. In MultiSVGP, the KL divergence between P̂ and Qmulti is bounded

by the following proposition.

Proposition 2. Given k(x,x′) = k1(x,x′) + k2(x,x′), with probability at least 1− δ, we have

KL(Qmulti||P̂) ≤ Cmulti
2σ2

nδ

(
1 + ||y||

2
2

σ2
n

)
,

with Cmulti=N
∑M

i=1

(
λi − λ(1)

i − λ
(2)
i

)
+N∑∞

j=M+1 λj.

Furthermore, it is true that Cmulti ≤ Csingle, making the upper bound of KL(Qmulti||P̂) is

smaller or equal than the upper bound of KL(Qsingle||P̂).

Proof. In Lemma 1 of Burt et al. [2019], we have

KL(Qmulti||P̂) ≤ t

2σ2
n

(
1 + ||y||22

σ2
n + t

)
.

Here t = trace(Kff −K>
uf K−1

uuKuf︸ ︷︷ ︸
Qff

). Kuf is the cross-covariance matrix between inducing

points U and f . Kuu is the covariance matrix of U.

Recall the covariance between U and f in Equation 5.2.6:

kuf (z,x) =I{z ∈ Z1}k1(z,x) + I{z ∈ Z2}k2(z,x),

kuu(z, z′) =I{z ∈ Z1}I{z′ ∈ Z1}k1(z, z′) + I{z ∈ Z2}I{z′ ∈ Z2}k2(z, z′),

where I(z ∈ Zi) = 1 if z ∈ Zi, otherwise it is equal 0. Then, we can compute

Kuf = Cov

u1

u2

 , f
 =

Ku1f

Ku2f

 ,

Kuu = Cov

u1

u2

 ,
u1

u2

 =

Ku1u1 0

0 Ku2u2

 ,
where Ku1f is the covariance matrix computed from k1(·, ·) with u1 ∈ Z1, and Ku1u1 is the

covariance matrix of u1 ∈ Z1 computed from k1(·, ·). The same is applied to Ku2f and Ku2u2 .

From Qff = K>
uf K−1

uuKuf and block matrix multiplication, we can obtain

Qff = K>
u1f K−1

u1u1Ku1f + K>
u2f K−1

u1u2Ku2f .

53

Let ψ(1)
i and ψ

(2)
i be the eigenfunctions of the covariance operators w.r.t. k1(x,x′) and

k2(x,x′). Similar to Burt et al. [2019], we interpret the individual terms in Qff under the

eigenfeature representation as

[Kfu1K−1
u1u1Ku1f]c,r =

M∑
i=1

λ
(1)
i ψ

(1)
i (xc)ψ(1)

i (xr),

[Kfu2K−1
u2u2Ku2f]c,r =

M∑
i=1

λ
(2)
i ψ

(2)
i (xc)ψ(2)

i (xr).

By Mercer’s theorem and with ψi(x) be the eigenfunctions of covariance operator for k(x,x′),

we have

k(x,x′) =
∞∑

i=1
λiψi(x)ψi(x′).

Then the entry at (n, n) of Kff −Qff is

[Kff −Qff]n,n =
∞∑

i=1
λiψ

2
i (xn)−

(
M∑

i=1
λ

(1)
i (ψ(1)

i)2(xn) +
M∑

i=1
λ

(2)
i (ψ(2)

i)2(xn)
)
.

From this, we can have the expectation of t

Ex[t] = N
∞∑

i=1
λi −N

(
M∑

i=1
λ

(1)
i +

M∑
i=1

λ
(2)
i

)
.

Here the eigenfunction terms are disappeared. Because E[ψ2
i (x)] =

∫
ψ2(x)p(x)dx = 1. Similarly,

E[(ψ(1)
i)2(x)] = E[(ψ(2)

i)2(x)] = 1.

According to Burt et al. [2019], we apply the Markov’s inequality, we have, with probability

at least 1− δ,

KL(Qmulti||P̂) ≤ Cmulti
2σ2δ

(
1 + ||y||

2
2

σ2
n

)
,

where Cmulti = N
∑M

i=1

(
λi − λ(1)

i − λ
(2)
i

)
+N

∑∞
j=M+1 λj .

Comparing to Csingle = ∑∞
i=M+1 λi, we use the result in Tao [2010]; Wielandt [1955] where

M∑
i=1

λi ≤
M∑

i=1
λ

(1)
i +

M∑
i=1

λ
(2)
i .

We can conclude that the upper bound of KL(Qmulti||P̂) is smaller than the upper bound of

KL(Qsingle||P̂).

This is considered a theoretical justification for the comparison in Figure 5.2.

54

5.3 Variational inference with shrinkage prior

Having an introduction of kernel selection problem in the previous section, this section presents

the variational inference method for this model. Here, the variational distribution which is

factorized into two parts: the approximate posterior distribution of GP latent variables and

that of sparse vector w. Let q(w) be the variational distribution over w. The distribution

q(f ,U,w)=q(f ,U)q(w) approximates the true posterior. Similar to the approximate posterior

construction of SVGP, q(f ,U) is formulated as p(f |U)q(U), with q(U)=∏m
i=1 q(ui) and q(ui) is

parameterized by N (mi,Si). The goal is to maximize the evidence lower bound (ELBO) defined

as
L =E

[
log p(y, f ,U,w)

q(f ,u,w)

]
=Ep(f(·))

[
Eq(w)[log p(y|f ,w)]

]
−KL(q(U)||p(U))−KL(q(w)||p(w)).

(5.3.1)

After marginalizing all ui, p(f(·)) is obtained in the same manner with SVGP [Hensman et al.,

2013]. The KL divergence related to U is the sum of the KL divergences of ui.

We describe the subroutine for variational inference w.r.t. w, represented by Horseshoe

variables, τ and λ. Because of the flat-tailed property of Half-Cauchy distribution, it is

reparameterized by double inverse Gamma distributions [Ghosh et al., 2019; Wand et al., 2011].

That is, if a ∼ C+(b), this corresponds to a2 ∼ IG(1/2, φ−1
a) and φa ∼ IG(1/2, b−1) as an auxiliary

variable, φa, is introduced. To this end, including the additional auxiliary variables, the prior

contains variables {τ,λ, φτ ,φλ} as

τ2|φτ ∼ IG(1/2, φ−1
τ), φτ ∼ IG(1/2, A−1),

λ2
i |φλi

∼ IG(1/2, φ−1
λi

), φλi
∼ IG(1/2, B−1).

The mean-field approach is further used to factorize the variational distribution q(τ,λ, φτ ,φλ).

Specifically, the variational distributions of τ and λi are chosen as log-normal distributions

q(τ2) = Lognormal(τ2;µτ , σ
2
τ),

q(λ2
i) = Lognormal(λ2

i ;µλi
, σ2

λi
).

Whereas q(φτ) and q(φλi
) remain inverse Gamma distribution.

As we replace w with {τ,λ}, we have the expectation Eq(τ)q(λ)[log p(y|f , τ,λ)] which is

estimated by Monte Carlo integration. q(τ) and q(λ) using reparameterization tricks for Log

55

normal distributions [Kingma and Welling, 2014]. In particular, since the product τ2λ2
i is also

Log normal, it can be reparameterized by exp(µτ + µλi
+ ε(στ + σλi

)) with ε ∼ N (0, 1). We

provide the detailed derivation of ELBO in Section 5.4.

Computational complexity Compared to SVGP using single inducing points, MultiSVGP

takes O(mmaxi{M2
i }b) at each optimization iteration with minibatch size b. Again, Mi is the

number of inducing points ui.

5.4 Detail of variational inference

Prior Recall the prior over τ,λ, φτ ,φλ after reparameterization is

τ2|φτ ∼ IG(τ2|1/2, φ−1
τ),

φτ ∼ IG(φτ |1/2, A−1),

λ2
i |φλi

∼ IG(λ2
i |1/2, φ−1

λi
), i = 1 . . .m,

φλi
∼ IG(φλi

|1/2, B−1).

Variational distribution The variational distributions of τ and λi are in the form of log

normal distribution.

q(τ2) = Lognormal(τ2|mτ , σ
2
τ)

q(λ2
i) = Lognormal(λ2

i |mλi
, σ2

λi
), i = 1 . . .m.

On the other hand, the variational distributions of the auxiliary variables φτ and φλi
remain as

Inverse Gamma distributions

q(φτ) = IG(φτ |sτ , rτ)

q(φλi
) = IG(φλi

|sλi
, rλi

), i = 1 . . .m.

56

KL divergence As w = {τ,λ, φτ ,φλ}, the KL divergence KL(q(w)||p(w)) becomes

KL
(
q(τ2)q(φτ)

∏
i

q(λ2
i)q(φλi

)||p(τ2|φτ)p(φτ)
∏

i

p(λi|φλi
)p(λi)

)

=H[q(τ2)] +H[q(φτ)] +
∑

i

H[q(λ2
i)] +

∑
i

H[q(φλi
)]+

Eq(τ2)q(φτ)[log p(τ2|φτ)] + Eq(φτ)[log p(φτ)]+∑
i

Eq(λi)q(φλi
)[log p(λ2

i |φλi
)] +

∑
i

Eq(φλi
)[log p(φλi

)].

(5.4.1)

where H[·] denotes the entropy of a distribution.

Individual terms will be explained as following. The entropy terms will be computed as

H[q(τ2)] = µτ + 1
2 log(2πeσ2

τ),

H[q(λ2
i)] = µλi

+ 1
2 log(2πeσ2

λi
).

The expectations of log prior can be derived as

Eq(τ2)q(φτ)[log p(τ2|φτ)]

=Eq(τ2)q(φτ)
[
log IG(τ2|1/2, φ−1

τ)
]

=Eq(τ2)q(φτ)[−
1
2 log φτ − log Γ(1/2)− 3

2 log(τ2)− 1
τ2φτ

]

=− 1
2Eq(φτ)[log φτ]− log Γ(1/2)− 3

2Eq(τ2)[log(τ2)]− Eq(τ2)[τ−2]Eφτ [φ−1
τ],

where the individual terms can be calculated as

Eq(φτ)[log φτ] = log rτ − ψ(sτ), (Inverse Gamma distribution property)

Eq(φτ)[φ−1
τ] = sτ

rτ
, (Inverse Gamma distribution property)

Eq(τ2)[log(τ2)] = µτ (compute from log normal distribution)

Eq(τ2)[τ−2] = exp(−µτ + 1
2σ

2
τ). (Log normal distribution property)

57

Here, ψ(·) is the digamma function. Similarly, we can obtain the expectation of log prior w.r.t

to λi

Eq(λ2
i)q(φλi

)[log p(λ2
i |φλi

)]

=− 1
2Eq(φλi

)[log φλi
]− log Γ(1/2)− 3

2Eq(λ2
i)[log(λ2

i)]− Eq(λ2
i)[λ−2

i]Eφλi
[φ−1

λi
].

We intentionally do not write the explicit form of H[q(φτ)], H[q(φλi
)], Eq(φτ)[log p(φτ)] and

Eq(φλi
)[log p(φλi

)] because the variables φτ and φλ do not follow an optimization but are updated

by the following.

Closed-form update for q(φτ) and q(φλi
) Under the mean-field assumption on variational

variables τ,λ, φτ ,φλ, we can obtain the closed-form optimal solution w.r.t. the auxiliary variables

φτ ,φλ Neville et al. [2014]. That is, after each optimization step on other variables, we update

q(φτ) and q(φλi
) by

q(φτ) = IG(sτ = 1, rτ = E[τ−2] +A−2),

q(φλi
) = IG(sλi

= 1, rλi
= E[λ−2

i] +B−2).
(5.4.2)

Evidence lower bound Recap that the evidence lower bound is in the following form:

L =Ep(f(·))
[
Eq(τ,λ)[log p(y|f , τ,λ)]

]
−KL(q(U)||p(U))−KL(q(τ,λ)||p(τ,λ)). (5.4.3)

Note that the expectation w.r.t τ,λ is estimated by Monte Carlo integration. During training,

we draw one sample τS and λS by the reparameterization trick for the product τSλiS =

exp(µτ + µλi
+ ε(στ + σλi

)) where ε ∼ N (0, 1).

The following algorithm describes our variational inference

Algorithm 3 Variational inference for MultiSVGP with Horseshoe prior
Require: Data D = {X,y}, a set of kernel function {ki(x,x′)}mi=1

Initialize kernel hyperparameters, variational parameters {µτ , σ
2
τ , µλi

, σ2
λi
, sτ , rτ , sλi

, rλi
}

for within a number of iterations do
Sample a minibatch (xb,yb)
Sample τS ,λS with τSλiS = exp(µτ + µλi

+ ε(στ + σλi
)) where ε ∼ N (0, 1)

Compute Ep(f(xb))
[
Eq(τ,λ)[log p(yb|f , τ,λ)]

]
≈ Ep(f(xb)) [log p(yb|f , τS ,λS)]

Compute KL(q(U)||p(U)) as the sum of KL(q(ui)||p(ui))
Compute KL(q(τ,λ)||p(τ,λ)) by Equation 5.4.1
Compute ELBO L based on Equation 5.4.3
Perform an optimization step for ELBO L
Update q(φτ) and q(φλi

) by Equation 5.4.2
end for

58

Table 5.1 Extrapolation performance in UCI benchmarks. Results are aggregated from 10
independent runs.

RMSE Test log-likelihood
SVGP-SE No prior GP-NKN Ours SVGP-SE No prior GP-NKN Ours

boston 7.30±0.21 7.24±0.27 5.53±0.49 5.41±0.10 −3.72±0.07 −3.72±0.10 −3.77±0.26 −3.24±0.11
concrete 9.64±0.14 8.70±1.05 6.44±0.19 7.39±0.42 −3.54±0.01 −3.45±0.08 −3.10±0.01 −3.33±0.06
energy 0.83±0.07 0.69±0.18 0.41±0.03 0.37±0.05 −1.11±0.03 −1.07±0.08 −0.54±0.04 −0.76±0.05
kin8nm 0.11±0.00 0.11±0.08 0.09±0.00 0.09±0.01 0.71±0.01 0.74±0.02 1.02±0.05 0.89±0.01
wine 0.62±0.00 0.62±0.01 0.67±0.01 0.63±0.01 −1.04±0.00 −1.04±0.00 −1.01±0.01 −1.04±0.01
yacht 1.45±0.10 1.22±0.44 0.46±0.05 0.36±0.05 −1.91±0.14 −1.67±0.46 −0.63±0.02 −0.83±0.12

5.5 Experimental Evaluations

This section first sets up the choices for compositional kernels. We then test how the Horseshoe

prior for kernel selection on synthetic data as well as time series data. Finally, we demonstrate

our model in both regression and classification tasks. The source code is developed based

on Matthews et al. [2017].

5.5.1 Kernel function pool

Now, we present our approach in designing kernel structures for {ki(x,x′)}. A kernel function

is constructed as a form of multiplicative kernel ∏α
i=1 Bi where Bi is a base kernel taking from

SE,Lin,Per. In our experiment, the kernel pool is composed of all possible kernels having the

multiplicative order up to 2. We allow duplication in kernels structure. The total number of

kernels in the pool is 24. Each kernel in the pool remains interpretable and can be described by

natural language explanations [Lloyd et al., 2014].

Hyperparameter initialization [Kim and Teh, 2018; Vanhatalo et al., 2013] suggests two

types of hyperparameter initialization: weak prior and strong prior. Unlike existing approaches

requiring multiple restarts, we made sure our kernel pool covers both of them.

Behavior of Horseshoe prior To see how Horseshoe prior behaves for kernel selection

problem, we created a synthetic data (xi, yi)100
i=1 with xi ∈ [−5, 5] and yi generated from kernel

Per1 + SE × Per2. We train our model and compare to the case where there is no prior on

weights w. Figure 5.3 shows our model spike at the relevant kernel structure (SE× Per) while

the model with no prior mistakenly assign weights for local variations (SE).

59

no prior Horseshoe prior

k e
rn

el

S
E

S
E

S
E

P
E

R

P
E

R

P
E

R

S
E×

P
E

R

S
E×

P
E

R

S
E×

P
E

R
ke

rn
el

S
E

S
E

S
E

P
E

R

P
E

R

P
E

R

S
E×

P
E

R

S
E×

P
E

R

S
E×

P
E

R

Fig. 5.3 Behavior of Horseshoe prior in kernel selection. Both models predicts the test data (?).
The bar plots are the weights wi corresponding to ki.

Airline Mauna Loa CO2

Fig. 5.4 Extrapolation on time series data sets.

Small-sized 1D regression We verify our model on small-sized data sets: airline passenger

volume, Mauna Loa CO2 concentration. Figure 5.4 shows that our model can fit the data well.

In the airline data set, the obtained kernel includes Per× SE, Lin and SE while [Lloyd et al.,

2014] reports Lin + Per × SE × Lin + SE and a heteroscedastic noise. Also, in the mauna

data set, the model can explain the trend and periodicity in data. Our model can reduce the

running time to less than 0.5 hour comparing to 10− 12 hours like [Duvenaud et al., 2013; Lloyd

et al., 2014] or 2.5 − 4 hours like [Kim and Teh, 2018]. Figure 5.5 provides the visualization

of weights w found by our model comparing to the model without imposing any prior. This

figure also gives the decomposition from GP
(∑

wiµi(·),
∑
w2

i Σ(·, ·)
)

corresponding with the

most important components.

Medium-sized 1D regression We test our model on GEFCOM data set from the Global

Energy Forecasting Competition [Tao Hong, Pierre Pinson, and Shu Fan, 2014]. The data set

60

Horseshoe

kernels ki
0

20
w
i

No prior

kernels ki
0

10

w
i

25.8

Per× SE

9.0

Lin

5.5

SE

Fig. 5.5 First row: the weights wi in two cases. Second row: our kernel decomposition for airline
data with three most significant components GP(µi(·),Σi(·, ·)). The weights wi are showed at
the upper-left corners.

has N = 38, 070 data points containing hourly records of energy load from January 2004 to June

2008. We randomly take 90% of the data set for training and held out 10% as test data. We

compare our model with SVGP with no prior and SVGP with Softmax [Teng et al., 2020].

Figure 5.6 compares the predictive posteriors on the test set. It is clear that our model fits

better, giving more accurate predictions as well as uncertainty estimation. The approach in [Teng

et al., 2020] takes the second places. The inducing points are associated with complicated kernel

function, not divided for each additive kernel. Therefore, the approximate capacity of this model

is still more restricted than ours due to Proposition 2.

Our model found SE1×Per1 + SE2 + SE3 as the kernel structure for this data. This agrees

with the kernel function in [Lloyd, 2013] which is manually chosen. Also, our Per kernel has

periodicity 1.001 days which also can describe the property that there are peaks in the morning

and evening. This is aligned with the result reported in [Kim and Teh, 2018].

Higher-dimension regression We conducted experiments on UCI data sets [Dheeru and

Karra Taniskidou, 2017b] including boston, concrete, energy, kin8nm, wine and yatch (see

Table 5.2 for detailed descriptions). We consider baseline models: GP-NKN [Sun et al., 2018],

SVGP with no shrinkage prior over w (no prior), and SVGP with SE kernel (SVGP-SE). To

justify the extrapolation performance, we projected data onto the principal component of data

and sorted data according to the projection [Sun et al., 2018]. From sorted indices, test data is

taken from top 1/15 and bottom 1/15 of the data, the remaining is train data. We measure the

root mean square error (RMSE) and test log-likelihood in each model.

61

2004 2005 2006 2007 2008
2

0

2

4

2004 2005 2006 2007 2008
2

0

2

4 test
predict mean
confidence

O
ur

s

RMSE: 0.368 NLL: 0.579

2004 2005 2006 2007 2008
2

0

2

4 test
predict mean
confidence

no
pr

io
r

RMSE: 0.513 NLL: 0.869

2004 2005 2006 2007 2008
2

0

2

4 test
predict mean
confidence

So
ft

m
ax

RMSE: 0.423 NLL: 0.724

Fig. 5.6 GEFCOM data set. First row is the plot of training data. The next rows are the
predictive posterior at test points. Our model outperforms the alternatives in term of root mean
square error (RMSE) and test negative log-likelihood (NLL).

Table 5.1 shows that our model has a competitive extrapolation capability comparing to

GP-NKN. Roughly, our model has better performance in terms of RMSE for most of data sets,

except concrete data set. In boston data set, our model performs well for the predictive log-

likelihood. Still, GP-NKN consistently outperforms others in this measurement. This is because

this model is still considered as a full GP model retaining good uncertainty quantification while

the remaining methods including ours are sparse GPs. However, GP-NKN takes significantly

more time to train, e.g. in kin8nm. Although the model with no prior has a highly complex

kernel, it fails to this extrapolation task. On the other hand, our model with shrinkage prior

demonstrates the effect of regularization in kernel selection, resulting in better predictions.

Improving additive GPs [Duvenaud et al., 2011] propose additive kernels for GPs to prevent

the local property of kernel functions taking all input dimensions [Bengio et al., 2006]. The

62

Table 5.2 Description of UCI data sets

Data set # data N Dimension D Description
boston 506 13 Boston housing price
concrete 1030 8 Predict concrete compressive strength
energy 768 8 Predict energy efficiency for buildings
kin8nm 8192 8 Kinematics of an 8 link robot arm
wine 1599 22 Wine quality data set
yacht 308 7 Prediction of residuary resistance of sailing yachts

Table 5.3 Description of heart, liver, pima data set

Data set # data N Dimension D Description
heart 303 13 Predict the presence of heart disease
liver 345 6 Predict liver disorders
pima 768 8 Pima Indians Diabetes Database

additive kernel is the sum of lower-dimensional kernel functions which depend on a subset of

input variables.

Suppose D is the dimension of data. Let SD = {1, . . . , D} be the index set of dimensions.

We adopt this approach and consider the d-order additive kernel

kd(x,x′) =
∑

{i1,...,id}⊆SD

w2
i1...id

∏
i∈{i1,...,id}

k(x[i],x′[i]).

Unlike [Duvenaud et al., 2011] treating weights wi1...id
equally in the same order d, we learn

w = [wi1...id
] with our model. We conduct the experiment in three data sets: heart, liver,

pima2 [Duvenaud et al., 2011] for classification task. Table 5.3 provides the description of these

three data sets. The kernel type used here is SE kernel. The data sets are randomly split

into training (90% of data) and test (10% of data) sets. We first run the model in Duvenaud

et al. [2011] to obtain the most important order d. From d, we proceed learning wi1...id
. One

limitation is that this setting is not scalable w.r.t D as the number of kernels,
(D

d

)
, increases

exponentially. Table 5.4 shows that our model can improve the accuracy of additive GPs by

selecting appropriate kernels. On the other hand, the model without any prior even hurts the

prediction. In the previous regression task, our model performs poorly in concrete data set since

the 1-order additive kernels is the best fit for this data according to [Duvenaud et al., 2011].

We retrained the model and obtained an improved result with 6.90±0.05 in RMSE, pushing the

result closer to that of GP-NKN.
2taken from https://github.com/duvenaud/additive-gps

63

https://github.com/duvenaud/additive-gps

Table 5.4 Classification error (in %) on three data sets.

Additive GPs No prior Our model #kernels
(D

d

)
Heart 18.15±4.56 16.00±1.41 14.00±2.11

(13
1
)

= 13
Liver 30.36±8.37 40.29±6.93 27.43±2.52

(6
3
)

= 20
Pima 23.99±3.46 29.87±3.72 20.52±1.65

(8
6
)

= 28

5.6 Related work and conclusion

There is a large body of work [Duvenaud et al., 2013; Kim and Teh, 2018; Lloyd et al., 2014]

establishing the foundation of model discovery for Gaussian processes. [Grosse et al., 2012]

presents work on unsupervised learning for the case of matrix decomposition. Then, [Duvenaud

et al., 2013; Ghahramani, 2015; Lloyd et al., 2014] extend to supervised settings with Gaussian

process (GP) models. [Sun et al., 2018] build complex kernels under network architectures

having an additive layer where any two kernels are summed and followed by a product layer

where kernels are multiplied. [Kim and Teh, 2018] adopt search procedure but smartly avoid

the learning model by finding bounds of likelihood. However, the search is still time-consuming

and is done heuristically greedy manner. A complete review as well as a guideline for automatic

systems can be found in [Steinruecken et al., 2019]. While inheriting the spirits of existing work

on kernel compositions, this chapter focuses on scaling up the system in terms of data size and

efficient model selection.

A recent work [Teng et al., 2020] shares some similarity to our work. The paper presents

a probabilistic approach to select among models with a Softmax-like assumption for choosing

a model. The main idea in this chapter is to select a single model out of a manual fixed set

of candidate models. Our model generating kernels combinatorially considers a bigger model

space than that of [Teng et al., 2020]. On the other hand, models [Teng et al., 2020] use single

inducing points for compositional kernels. Its sparse GP approximation can be limited compared

to our MultiSVGP. Another work [Malkomes et al., 2016] attempts to extract a model out of

candidate ones using surrogate models, e.g., Bayesian optimization. The surrogate models are

based on the distance between GP models.

There is existing work proposing probabilistic priors, e.g., spike-and-slab prior, on multi-task

GP [Titsias and Lázaro-Gredilla, 2011]. However, the approach does not scale well with the

number of data and suffers from computational burden by the choice of probabilistic priors.

64

Chapter 6

Characterizing Deep Gaussian

process

This chapter investigates a new type of model, Deep Gaussian processes, that multiple Gaussian

process layers are hierarchically stacked. In contrast to the previous chapters where many

theoretical properties of Gaussian processes are well-understood, deep Gaussian processes are

fresh and required to take a deeper look at how the models behave, especially, with respect to

different kinds of kernel functions. To this end, this chapter aims to analyze the characteristic of

deep Gaussian process for five types of basic kernel functions such that the degradation can be

avoided. The theoretical insights tailor the decision to choose kernel function in deep Gaussian

processes. Experiments justify the theorecial results and suggest a regularization approach to

train deep Gaussian processes.

6.1 Introduction

Deep Gaussian process (DGP) [Damianou and Lawrence, 2013] is a new promising class of models

which are constructed by a hierarchical composition of Gaussian processes. The strength of this

model lies in its capacity to have richer representation power from the hierarchical construction

and its robustness to overfitting from the probabilistic modeling. Therefore, there have been

extensive studies [Bui et al., 2016; Cutajar et al., 2017; Dai et al., 2016; Havasi et al., 2018;

Hensman and Lawrence, 2014; Lu et al., 2020; Salimbeni and Deisenroth, 2017; Salimbeni et al.,

2019; Ustyuzhaninov et al., 2020] contributing to this research area.

There exists a pathology, stating that the increase in the number of layers degrades the

learning power of DGP [Duvenaud et al., 2014]. That is, the functions produced by DGP priors

65

become flat and cannot fit data. It is important to develop theoretical understanding of this

behavior, and therefore to have proper tactics in designing model architectures and parameter

regularization to prevent the issue. Existing work [Duvenaud et al., 2014] investigates the

Jacobian matrix of a given model which can be analytically interpreted as the product of those

in each layer. Based on the connection between the manifold of a function and the spectrum

of its Jacobian, the authors show the degree of freedom is reduced significantly at deep layers.

Another work [Dunlop et al., 2018] studies the ergodicity of the Markov chain to explain the

pathology.

To explain such phenomena, we study a quantity which measures the distance of any two

layer outputs. We present a new approach that makes use of the statistical properties of the

quantity passing from one layer to another. Therefore, our approach accurately captures the

relations of the distance quantity between layers. By considering kernel hyperparameters, our

method recursively computes the relations of two consecutive layers. Interestingly, the recurrence

relations provide a tighter bound than that of Dunlop et al. [2018] and reveal the rate of

convergence to fixed points. Under this unified approach, we further extend our analysis to five

popular kernels which are not analyzed yet before. For example, the spectral mixture kernels

do not suffer the pathology. We further provide a case study in DGP, showing the connection

between our recurrence relations and learning DGPs.

Deep Gaussian process We study DGPs in composition formulation where GP layers are

stacked hierarchically. An N -layer DGP is defined as

fN ◦ fN−1 ◦ · · · ◦ f1(x),

where, at layer n, for dimension d, f (d)
n |fn−1 ∼ GP(0, kn(·, ·)) independently. Note that the GP

priors have the mean functions set to zero. The nonzero-mean case is discussed later (Section 6.9).

We shorthand fn ◦ fn−1 ◦ · · · ◦ f1(x) as fn(x) and write kn(fn−1(x), fn−1(x′)) as kn(x,x′). Let m

be the number of output of fn. All layers have the same hyperparameters.

Theorem 6.1.1 (Dunlop et al. [2018]). Assume that k(x,x′) is given by the squared exponential

kernel function with variance σ2 and lengthscale `2 and that the input x is bounded. Then if

σ2 < `2/m,

P(
∥∥fn(x)− fn(x′)

∥∥
2 −−−→n→∞

0 for all x,x′ ∈ D) = 1

where P denotes the law of process {fn}.

66

E[Zn]
= h(E[Zn−1]; θ)

Safe θ

Pathology No Pathology

layer 1

C
ov
ar
ia
n
ce

S
am

p
le

layer 5 layer 10 layer 30 layer 90 layer 1

C
ov
ar
ia
n
ce

S
am

p
le

layer 5 layer 10 layer 30 layer 90

Fig. 6.1 Studying the squared distance, Zn, between outputs of two consecutive layers. The asymptotic
property (middle plot) of the recurrence relation of this quantity between two consecutive layers decides
the existence of pathology for a very deep model. Here, θ indicates kernel hyperparameters. The middle
plot is the bifurcation plot providing the state of DGP at very deep layer. The pathology is identified by
the zero-value region where E[Zn]→ 0. Note that this bifurcation plot is for illustration purpose only.

fn−2

fn−1

f n
−
2
(x
)

f n
−
2
(x
′)

layer n− 1

√
Zn−1

fn−1

fn

f n
−
1
(x
)

f n
−
1
(x
′)

√
Zn

layer n

Recurrence relation: E[Zn]= h(E[Zn−1]; θ)

Fig. 6.2 Finding the recurrence relation of the quantity E[(fn(x) − fn(x′))2] between two
consecutive layers.

This theorem tells us the criterion that the event of vanishing in output magnitude happens

infinitely often with probability 1.

6.2 Moment-generating function of distance quantity

We are interested in quantifying the expectation of the squared Euclidean distance between any

two outputs of a layer and thereby study the dynamics of this quantity from a layer to the next

layer. Figure 6.2 shows that we can make use of the found recurrence relations to study the

pathology of DGPs.

For any input pair x and x′, we define such quantity at layer n as Zn = ‖fn(x)− fn(x′)‖22 =∑m
d=1

(
f

(d)
n (x)− f (d)

n (x′)
)2
. When the previous layer fn−1 is given, the difference between any

f
(d)
n (x) and f

(d)
n (x′) is Gaussian,

(
f (d)

n (x)− f (d)
n (x′)

)
|fn−1 ∼ N (0, sn).

67

Fig. 6.3 Bifurcation plot of the logistic function un = run−1(1− un−1).

Here sn = kn(x,x) + kn(x′,x′)− 2kn(x,x′) which is obtained from subtracting two dependent

Gaussians. We can normalize the difference between f
(d)
n (x) and f

(d)
n (x′) by a factor √sn to

obtain the form of standard normal distribution as

(f (d)
n (x)− f (d)

n (x′))
√
sn

|fn−1 ∼ N (0, 1).

Since all dimensions d in a layer are independent, we can say that Zn
sn
|fn−1 ∼ χ2

m, is distributed

according to the Chi-squared distribution with m degrees of freedom.

One useful property of the Chi-squared distribution is that the moment-generating function

of Zn
sn
|fn−1 can be written in an analytical form, with t ≤ 1/2,

MZn
sn

|fn−1
(t) = E

[
exp

(
t
Zn

sn

)
|fn−1

]
= (1− 2t)−m/2. (6.2.1)

We shall see that the expectation of the distance quantity Zn is computed via a kernel

function which, in most cases, involves exponentiations. Given that the input of this kernel

is governed by a distribution, i.e., χ2, the moment-generating function becomes convenient to

obtain our desired expectations.

Figure 6.2 depicts our approach to extract a function h(·) which models the recurrence

relation between E[Zn] and E[Zn−1]. This is also the main theme of this chapter.

6.3 Analyzing dynamic systems with chaos theory

Recurrence maps representing dynamic transitions between DGP layers are nonlinear. Studying

the dynamic states and convergence properties for nonlinear recurrences is not as well-established

as those of linear recurrences. As an example, given a simple nonlinear model like the logistic

map: un = run−1(1− un−1), its dynamic behaviors can be complicated [May, 1976].

68

Recurrent plots or bifurcation plots have been used to analyze the behavior of chaotic systems.

The plots are produced by simulating and recording the dynamic states up to very large time

points. This tool allows us to monitor the qualitative changes in a system, illustrating fixed

points asymptotically, or possible visited values. Other techniques, e.g. transient chaos [Poole

et al., 2016], recurrence relations [Schoenholz et al., 2017] have been used to study deep neural

networks.

We take the logistic map as an example to understand a recurrence relation. Figure 6.3 is

the bifurcation plot of the logistic map. This logistic map is used to describe the characteristics

of a system which models a population function. We can see that the plot reveals the state of

the system, showing whether the population becomes extinct (0 < r < 1), stable (1 < r < 3), or

fluctuating (r > 3.4) by seeing the parameter r.

6.4 Squared exponential kernel function

The squared exponential kernel (SE) is defined in the form of

SE(x,x′) = σ2 exp
(
−
∥∥x− x′∥∥2

/2`2
)
. (6.4.1)

Theorem 6.4.1 (DGP with SE). Given a triplet (m,σ2, `2), m ≥ 1 such that the following

sequence converges to 0:

un = 2mσ2
(
1− (1 + un−1/m`

2)−m/2
)
, (6.4.2)

Then, P(‖fn(x)− fn(x′)‖2 −−−→n→∞
0 for all x,x′ ∈ D) = 1.

Proof. Note that we do not directly have access to E[Zn] but E[Zn|fn−1] because of the Markov

structure of the DGP construction. Getting E[Zn] is done via E[Zn|fn−1] where we use the law

of total expectation E[Zn] = Efn−1 [E[Zn|fn−1]].

Now, we study the term E[Zn|fn−1]:

E[Zn|fn−1] =E[
m∑

d=1
(f (d)

n (x)− f (d)
n (x′))2|fn−1]

=2mσ2 − 2mkn(x,x′).
(6.4.3)

The second equality is followed by E[(f (d)
n (x))2] = E[(f (d)

n (x′))2] = σ2 and E[f (d)
n (x)f (d)

n (x′)] =

kn(x,x′). Recall that we write kn(x,x) = kn(fn−1(x), fn−1(x′)). By the definition of SE kernel,

69

we have

E[Zn|fn−1] = 2mσ2
(

1− exp
(
−Zn−1

2`2
))

.

Applying the law of total expectation, we have

E[Zn] = 2mσ2
(

1− E
[
exp

(
−Zn−1

2`2
)])

.

Again, we can only compute E[exp(−Zn−1
2`2)] = Efn−2 [E[exp(−Zn−1

2`2)|fn−2]. The expectation will

be computed by the formula of the moment-generating function with respect to Zn−1
sn−1
|fn−2 where

t = − sn−1
2`2 in Equation (6.2.1). Choosing this value also satisfies the condition t ≤ 1/2. Now, we

have
E[Zn] = 2mσ2

(
1− E

[(
1 + sn−1/`

2
)−m/2

])
≤ 2mσ2

(
1−

(
1 + E [sn−1]/`2

)−m/2
)
.

(6.4.4)

Here, Jensen’s inequality is used as (1 + x)−a is convex for any x > 0. By Equation (6.4.3), we

have
E[Zn−1|fn−2]

m
= 2σ2 − 2kn−1(x,x′) = sn−1.

Replacing sn−1 in Equation (6.4.4) and applying the law of total expectation for the case of

Zn−1, we obtain recurrence relation between layer n− 1 and layer n is

E[Zn] ≤ 2mσ2
(

1−
(
1 + E[Zn−1]/m`2

)−m/2
)
.

Using the Markov inequality, for any ε, we can bound P(Zn ≥ ε) ≤ E[Zn]
ε2 .

At this point, un defined in Equation (6.4.2) is considered as the upper bound of E[Zn].

We condition that {un} converges to 0, then {E[Zn]} converges to 0 as well. By the first

Borel-Cantelli lemma, we have P(lim supn→∞ Zn ≥ ε) = 0, which leads to the conclusion in the

same manners as Dunlop et al. [2018].

Analyzing the recurrence Figure 6.4a illustrates the bifurcation plot of Equation (6.4.2)

with m = 1. The non-zero contour region in Figure 6.4b tells us that σ2/`2 should be smaller

than 1 to escape the pathology. When m > 1, Figure 6.4c shows that if m > σ2/`2, un does not

approach to 0, implying the condition to prevent the pathology. This result is consistent with

Theorem 6.1.1 in Dunlop et al. [2018].

70

(a) (b) (c)

Fig. 6.4 (a): Bifurcation plot of the recurrence relation of SE kernel for m = 1. (b): Contour
plot of un at layer n = 300 and m = 1. The misalignment between the red line (σ2/`2 = 1) and
the zero-level contour is due to numerical errors. (c): Increase m > σ2/`2 to avoid pathology.

Discussion Note that the relation between E[Zn] and E[Zn−1] presents a tighter bound than

existing work [Dunlop et al., 2018]. If we construct the recurrence relation based on [Dunlop

et al., 2018], E[Zn] is bounded by

E[Zn] ≤ mσ2

`2
E[Zn−1]. (6.4.5)

One can show that (1 + x)a ≥ 1− ax, a < 0, x > 0, implying

2mσ2(1− (1 + E[Zn−1]/(m`2))−m/2) ≤ mσ2E[Zn−1]/`2.

In fact, a numerical experiment shows that our bound of E[Zn] is found to be close to the true

E[Zn]. That is, we can see the trajectory of E[Zn] for every layer of a given model of which the

depth is not necessary to be infinitely many.

One can reinterpret the recurrence relation for each dimension d as

E[Z(d)
n] ≤ 2σ2

(
1−

(
1 + E[Z(d)

n−1]/`2
)−m/2

)
,

where E[Z(d)
n]=E[Zn]

m with Z
(d)
n =

(
f

(d)
n (x)− f (d)

n (x′)
)2

.

A guideline to obtain a recurrence relation Given a specific kernel function, one may

follow these steps to acquire the corresponding recurrence relation: (1) considering the form of

kernel input where it may be distributed according to either the Chi-squared distribution or its

variants (presented in the next sections); (2) checking whether there is a way to represent the

kernel function under representations such that statistical properties of kernel inputs are known;

71

(3) caring about the convexity of the function after choosing a proper setting (as we bound the

expectation with Jensen’s inequality in the proof of Theorem 6.4.1).

6.5 Cosine kernel function

The cosine kernel (Cos) function takes inputs as the distance between two points instead of the

squared distance like in the case of SE kernel. We will mainly work with
√
Zn in this subsection.

The cosine kernel function k(x,x′) = Cos(x,x′) which is defined as

Cos(x,x′) = σ2 cos
(
π
∥∥x− x′∥∥

2/p
)
.

Starting with Equation (6.4.3) and using the definition of Cos kernel, we have

E[Zn|fn−1] =2mσ2 − 2mσ2 cos(π
√
Zn−1/p)

=2mσ2 −mσ2 exp(iπ
√
Zn−1/p)

−mσ2 exp(−iπ
√
Zn−1/p).

Here, Euler’s formula is used to represent cos(·) and i is the imaginary unit (i2 = −1). To

obtain E[Zn], we use the law of total expectation and compute the two following expecta-

tions: E
[
exp(iπ

√
Zn−1/p)|fn−2

]
and E

[
exp(−iπ

√
Zn−1/p)|fn−2

]
. From Zn

sn
|fn−1 ∼ χ2

m, we have√
Zn
sn
|fn−1 ∼ χm, is distributed according to the Chi distribution. This observation follows the

first step in the guideline. The characteristic function of the Chi distribution for random variable√
Zn
sn
|fn−1 is

ϕ√
Zn/sn|fn−1

(t) = E
[
exp

(
it
√
Zn/sn

)]
= 1F1(m2 ,

1
2 ,
−t2

2) + it
√

2Γ((m+ 1)/2)
Γ(m/2) 1F1(m+ 1

2 ,
3
2 ,
−t2

2).

where 1F1(a, b, z) is Kummer’s confluent hypergeometric function. A generalized hypergeometric

function is in the form of

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑

n=0

an̄
1a

n̄
2 . . . a

n̄
p

bn̄
1b

n̄
2 . . . b

n̄
q

zn

n! .

72

Here, xn is the rising factorial defined as

xn =
n−1∏
k=0

(x+ k).

This is considered as the second step in the guideline. Back to our process of finding the

recurrence function, we consider the case
√

Zn−1
sn−1
|fn−2 ∼ χm. By choosing t = ±π

√
sn−1
p for its

characteristic function, we can obtain

E[Zn] = 2mσ2
(

1− 1F1(m2 ,
1
2 ,−

π2

2p2E[Zn−1|fn−2])
)
.

This is because the imaginary parts of ϕ(t = π
√

sn−1
p) and ϕ(−π

√
sn−1
p) are canceled out.

As the third step in the guideline, we perform a sanity check about the convexity of 1F1.

Only with m = 1, 1F1(1
2 ,

1
2 ,

−t2

2) = exp(− t2

2) is convex. Our result in this case is restricted to

m = 1. Now, we can state that the recurrence relation is

un = 2σ2
(
1− exp(−π2un−1/2p2)

)
. (6.5.1)

6.6 Periodic kernel function

The periodic kernel (Per) resembles to Cos kernel, and is written in the form of

Per(x,x′) = σ2 exp
(
−2 sin2(π‖x−x′‖2/p)

`2

)
.

In this case, we do not have an exact recurrence under equality. Instead, we find the lower bound

of E[Zl]. It is done by using ex ≥ 1 + x:

exp
(
−2 sin2(πr/p)

`2

)
≥ g(cos(2πr

p
)).

where r = ‖x− x′‖2, and g(cos(2πr/p)) = 1− `−2 + `−2 cos(2πr/p). We can see that the Per

kernel now is bounded in terms of Cos kernels and use the readily obtained result of Cos kernel

to get the recurrence.

The function g is obtained based on exp(x) ≥ 1 + x:

g(cos(2πr
p

)) = 1− 1
`2

+ 1
`2

cos(2πr
p

).

73

The bound of E[Zn] is recursively computed from E[Zn−1]:

E[Zn] ≤ h(E[Zn−1|]),

where

h(E[Zn−1]) =2mσ2

`2

(
1− 1F1(m2 ,

1
2 ,−

2π2

p2 E[Zn−1)
)
.

6.7 Rational quadratic kernel function

Now, we study the rational quadratic (RQ) kernel. This kernel is obtained from the SE kernel

by marginalizing the inverse lengthscale of SE kernel Rasmussen and Williams [2005]:

RQ(x,x′) =
(
1 +

∥∥x− x′∥∥2
/(2α`2)

)−α
.

We use the power series expansion (1 + x)−α = ∑∞
k=0

(−α
k

)
xk for this kernel

E[Zn] = 2σ2 − 2σ2
∞∑

k=0

(
−α
k

)
E[Zk

n−1|fl−2]
(2α`2)k

.

Next, we use the high-order moment of Chi-squared distribution. As Zn−1
sn−1
|fn−2 ∼ χ2

m, it is known

that E
[

Zk
l−1

sk
l−1
|fl−2

]
= 2k Γ(k+ m

2)
Γ(m

2) . Then, we can obtain the corresponding recurrence relation as

E
[(

1 + Zn−1
2α`2

)−α

|fn−2

]

=
∞∑

k=0

(
−α
k

)
E[Zk

n−1|fn−2]
(2α`2)k

=
∞∑

k=0

(−1)kαk̄

k!
2k Γ(k+m/2)

Γ(m/2) E[Zn−1|fn−2]k

(2α`2)k
(use high-order moment of Chi-squared)

=
∞∑

k=0
αk̄
(
m

2

)k̄ (−1)kE[Zn−1|fn−2]k
(α`2)kk! (by a property of rising factorial)

=2F0(α; m2 ; −E[Zn−1|fn−2]
α`2

). (by definition of hypergeometric function)

Consequently, we obtain the recurrence between layers as

un = 2m(1− 2F0(α; m2 ; −un−1
α`2

)),

74

where 2F0(·; ·; ·) is one of the hypergeometric functions. This 2F0(·; ·; ·) function has a close

connection to the exponential integral function Ei(x) =
∫+∞

−x
e−t

t dt. This is related to the way

of constructing the RQ kernel from SE kernel.

6.8 Spectral mixture kernel

We consider the case the spectral mixture kernel has one-dimensional inputs and one mixture.

We rewrite the kernel function as:

exp(−2π2σ2r2) cos(2πµr) = 1
2{exp(−2π2σ2r2 + 2πµir) + exp(−2π2σ2r2 − 2πµir)}

= 1
2 exp(− µ2

2σ2)
{

exp(−2π2σ2(r − iµ

2πσ2)2) + exp(−2π2σ2(r + iµ

2πσ2)2)
}
.

This leads to our change in variables in the main text where we denote

w2 = exp(− µ2

2σ2), v2 = 2π2σ2, u = iµ

2πσ2 .

Because (
√

Zn−1±iµ/(2πσ2))2

sn−1
is distributed according to a non-central Chi-square distribution

with degree of freedom 1 and the noncentrality parameter λ = −µ2/(4π2σ4sn−1). The moment-

generating function is

Mχ′2
1

(t) = E
[
exp

(
t
(
√
Zn−1 ± iµ/(2πσ2))2

sn−1

)]
= (1− 2t)−1/2 exp(λt

1− 2t).

Choosing t = −2π2σ2sn−1, we have

E
[
exp

(
−2π2σ2(

√
Zn−1 ±

iµ

2πσ2)2
)]

= (1 + 4π2σ2sn−1)−1/2 exp

 µ2

2σ2

1 + 4π2σ2sn−1

We can obtain the recurrence relation as

un = 2

1− exp(− µ2

2σ2) exp

 µ2

2σ2

1 + 4π2σ2un−1

 (1 + 4π2σ2un−1)−1/2

= 2

{
1− exp

(
− 2π2µ2un−1

1 + 4π2σ2un−1

)
(1 + 4π2σ2un−1)−1/2

}
.

In the case of high-dimensional DGPs, the SM kernel takes m-dimensional inputs. Because all

dimensions are independent, we can obtain the expectation rely on the probabilistic independence

between input dimensions to obtain the expectation as the product of the expectation in each

75

dimension. Hence, we can have the recurrence in the form:

un = 2m
{

1− exp
(
− 2mπ2µ2un−1

1 + 4π2σ2un−1

)
(1 + 4π2σ2un−1)−m/2

}
.

Note that we assume all dimensions share the same parameter σ2 and µ.

6.9 Extension to non-pathological cases

We use our approach to analyze two cases including nonzero-mean DGPs and input-connected DGPs

where there is no pathology occurring.

Nonzero-mean DGPs Let f (d)
n (x)∼GP(µn(x), kn(x,x′)) with the mean function µn(x), the

difference between two outputs, (f (d)
n (x)− f (d)

n (x′)) ∼ N (νn, sn) with νn = µn(x)− µn(x′). This

leads to Zn
sn
|fn ∼ χ′2

m, the non-central Chi-squared distribution with the non-central parameter

λ = mν2
n.

Since we already provide an analysis involving the non-central Chi-squared distribution with

spectral mixture kernels, no pathology of nonzero-mean DGPs can be shown by our analysis

(Section 4.3). That is, there is no pathology as λ > 0. When λ = 0, this case falls back to

zero-mean or constant-mean. Mean functions greatly impact the recurrence relation because λ

is inside an exponential function.

To the best of our knowledge, this is the first analytical explanation for the nonexistence

of pathology in nonzero-mean DGPs. In practice, there is existing work choosing mean func-

tions [Salimbeni and Deisenroth, 2017]. [Dunlop et al., 2018] briefly makes a connection between

nonzero-mean DGPs and stochastic differential equations. However, there is no clear answer

given for this case, yet.

Input-connected DGPs Previously, [Duvenaud et al., 2014; Neal, 1995] suggest to make

each layer connect to input. The corresponding dynamic system is

un = 2mσ2(1− (1 + un−1/m`
2)−m/2) + c,

with c is computed from the kernel function taking input data x. By seeing its bifurcation plot

in Figure 6.5, we can reconfirm the solution from [Duvenaud et al., 2014; Neal, 1995]. That is,

76

x f1(x) f2(x) f3(x)

Fig. 6.5 Left: Graphical model of input-connected construction suggested by [Duvenaud et al.,
2014; Neal, 1995]. Right: The bifurcation plot of input-connected DGP.

un converges to the value which is greater than zero, and avoids the pathology. However, the

convergence rate of E[Zn] stays the same.

6.10 Analysis of recurrence relations

This section explains the condition of hyperparameters that causes the pathology for each kernel

function. Then we discuss the rate of convergence for the recurrence functions.

6.10.1 Identify the pathology

Figure 6.6 shows contour plots based on our obtained recurrence relations. This will help us

identify the pathology for each case.

Cos kernel Similar to SE, the condition to escape the pathology is π2σ2/p2 > 1. Figure 6.7

provides the bifurcation plot and contour plots for the case m > 1.

Per kernel If we increase `, then we should decrease the periodic length p to prevent the

pathology (see Figure 6.8).

RQ kernel The behavior of this kernel resembles that of SE. We also observe that the change

in the hyperparameter α does not affect the condition to avoid the pathology (Figure 6.9).

SM kernel Interestingly, this kernel does not suffer the pathology. If (σ2, µ) goes to (0, 0),

E[Zn] approaches to 0. However, E[Zn] is never equal to 0 since both σ2 and µ are positive.

77

(a) Cos (b) Per

(c) RQ (d) SM

Fig. 6.6 Contour plots of E[Zn] at n = 300 with respect to four kernel functions.

6.10.2 Rate of convergence

Recall that h(·) is the function modeling the recurrence relation between E[Zn] and E[Zn−1].

According to Banach fixed-point theorem [Khamsi, 2001], the rate of convergence is decided

by the Lipchitz constant of h(·), L = suph′(·). The more curved the functions are, the faster

the convergence rates are (see Figure 6.10a and 6.10b). Figure 6.10c compares the recurrence

relation under the function h(x). Specifically, for SE, the rate of convergence to a fixed point

depends on the dimension parameter m. In general, SM has the fastest convergence rate among

all. On the other hand, the class of RQ kernels has the slowest rate.

Understanding the convergence rate to a fixed point of recurrence relations can be helpful.

For example, if a dynamic system corresponding to a DGP model quickly reaches its fixed point,

it may be not necessary to have a very deep model. This can give an intuition for designing

architectures in DGP given a kernel.

6.11 Experimental results

This section verifies our theoretical claims empirically. Firstly, we investigate the correctness of

recurrence relations. Then, we check the condition avoiding pathology. Furthermore, we provide

78

(a) (b) (c) (d)

Fig. 6.7 Bifurcation and contour plot of SE kernel for two cases m = 2, 3. (a)-(b): m = 2.
(c)-(d): m = 3.

Fig. 6.8 Bifurcation plot of the recurrence of periodic kernel for m = 1. First row: From left to
right, ` is varied. Second row: σ2 is varied.

case studies in real-world data sets. All kernels and models are developed based on GPyTorch

library [Gardner et al., 2018].

6.11.1 Correctness of recurrence relations

We set up a DGP model with 10 layers with SE kernel. The inputs are x0 = 0 and x1 = 1.

We will track the value Zn = ‖fn(x0)− fn(x1)‖22 for n = 1 . . . 10. Given a kernel k(x, x′), we

can exactly compute the expectations E[Zn]. From the model, we collect 2000 samples for

each layer n to obtain the empirical expectation of E[Zn]. Then, we would like to compare the

true and empirical estimates. Figure 6.11 plots the comparisons for SE kernel and SM kernel.

This numerical experiment supports the claim that our estimation E[Zn] is tight and even close

79

Fig. 6.9 RQ: Contour plots of E[Zn] at n = 300. The two contour plots share the same zero-value
level. So that α does not decide the condition overcome the pathology.

(a) (b) (c)

Fig. 6.10 (a-b) Paths to fixed points for two cases: RQ and SM. Iterations of RQ start from
x = 1.2 and converge to 0. Those of SM start from x = 0.6 and converge to a point near 1. (c)
Plot of all recurrence functions h(x). Note that x is not input data but plays the role of E[Zn].

to the true estimation. On the other hand, E[Zn] computed based on Dunlop et al. [2018] in

Equation (6.4.5) grows exponentially, and cannot fit in Figure 6.11. The additional plots with

different settings of hyperparameter and m can be found in Figure 6.13 and 6.14

6.11.2 Justifying the conditions of pathology

From Ndata inputs, we generate the outputs of DGPs and measure the root mean squared

distance (RMSD) among the outputs RMSD(n) =
√

1
Ndata(Ndata−1)

∑
i6=j ‖fn(xi)− fn(xj)‖22. We

record this quantity as we increase n. We replicate the procedure 30 times to aggregate the

statistics of RMSD(n). Here, we only consider the case m = 1.

SE kernel We set up models in one dimension with inputs of each model in range (−5, 5)

with Ndata = 100. The kernel hyperparameter σ2 is set to 1 while 1/`2 runs from 0.1 to 5.

80

SE SM

Fig. 6.11 E[Zn] computed from recurrence vs. empirical estimation of E[Zn] for two kernel
functions.

SE Cos

Fig. 6.12 Trace of RMSDs. RMSDs converge to 0 when the pathology occurs.

Figure 6.12a shows the trace of RMSD computed up to layer 100. When σ2/`2 > 1, the models

start escaping the pathology.

Cos kernel With a similar setup to that of SE, Figure 6.12b shows that when π2σ2/p2 > 1,

the models do not suffer the pathology.

Per kernel Since the Per kernel has three hyperparameters, σ2, `2, p, we fix σ2, and vary `2

and p. In this case, we collected the RMSDs at layer 100. We then compare the contour plot of

Fig. 6.13 High-dimensional SE: E[Zn] computed from recurrence vs. empirical estimation of
E[Zn].

81

Fig. 6.14 SM kernel: E[Zn] computed from recurrence vs. empirical estimation of E[Zn].

(a) Per (b) SM

(c) RQ, α = 0.5 (d) RQ, α = 3

Fig. 6.15 Contour plots of RMSDs at layer 100 for three kernels: Per,SM and RQ.

these RMSDs with the values of the lower bound of E[Zn] computed when n is large. We can

find a similarity between Figure 6.15a and Figure 6.6b. The lower left of both plots has low

values, identified as the region that causes the pathology.

RQ kernel Analogous to Per, only the RMSDs at layer 100 are gathered. We chose two

different values of α = {0.5, 3}, and varying values of σ2 and `2. Figure 6.15c-d shows two

contour plots of RMSDs for the two settings of α. Both of the two plots share the same area of

which the contour level is close to 0.

SM kernel This kernel shows no sight of pathology (Figure 6.15b). We can find the similarity

between this plot with the contour plot of E[Zn] in Figure 6.6d.

82

St
an

da
rd

C
on

st
ra

in
ed

Fig. 6.16 Dual-axis plot of the trajectory E[Zn]/σ2 with n running from 1 to N and RMSE. Solid lines
indicate the trajectories of E[Zn]/σ2 projected on the left y-axis. Star markers (?) indicate RMSEs
projected on the right y-axis. Dashed lines connect the E[Zn]/σ2 and RMSE of the same N . Here, the
constrain coefficient c0 = 0.2.

6.11.3 Using recurrence relations in DGPs

Here, we use the recurrence relation as a tool to analyze DGP regression models. We learned the

models where the number of layers, N , ranges from 2 to 6 and the number of units per layer, m,

is from 2 to 9. We trained our models on Boston housing data set Dheeru and Karra Taniskidou

[2017b] and diabetes data set Efron et al. [2004]. For each data set, we train our models with

90% of the data set and hold out the remaining for testing. The inference algorithm is based

on Salimbeni and Deisenroth [2017]. We considered two settings: (1) standard zero-mean DGPs

with SE kernel; (2) the SE kernel hyperparameters are constrained to avoid pathological regions

with `2 ∈ (0, c0mσ
2], constraint coefficient 0 < c0 < 1.

Figure 6.16 plots the root mean squared errors (RMSEs) and quantity E[Zn]/σ2 which

describes changes between layers. For the case of standard zero-mean DGPs, we can observe that

models can not learn effectively at deeper layers and there are drops in terms of E[Zn]/σ2 at the

last layer. In the case of constraining hyperparameters, we see fewer drops and the results are

improved when comparing to non-constrained cases. It seems that the drop pattern of E[Zn]/σ2

correlates to model performances. We provide detailed figures and an additional result on the

diabetes data set with a similar observation in Figure 6.17, 6.18, 6.19 and 6.20.

83

Fig. 6.17 Standard zero-mean DGPs: Results of Boston housing data set

Fig. 6.18 Constrained DGPs: Results of Boston housing data set

6.11.4 High-dimensional data set with zero-mean DGPs

We test on MNIST data set [LeCun and Cortes, 2010] with the two models like previous

experiments. The number of units per layer, m, is chosen as m = 30. We consider the number

of layers, N = 2, 3, 4.

The standard zero-mean DGP without any regularization fails to learn from data with

accuracy ≈ 10%. This means that the output of this model is just a flat function, making this

10-class classifier have such an accuracy. On the other hand, the constrained zero-mean DGP

can alleviate the model performance with accuracy at best 91.21%. Figure 6.21c provides the

results with different settings of c0.

To have a better understanding of the above models, we visualize the loss landscape Li

et al. [2018] of the two cases in Figure 6.21. The standard zero-mean DGP easily falls into

unsafe pathological hyperparameters during optimization and cannot escape the unsafe state

(see Figure 6.21a). In contrary, the loss landscape of constrained DGPs (Figure 6.21b) shows an

improved loss surface. However, we note that it still has a flat region where the optimization

84

Fig. 6.19 Standard zero-mean DGPs: Results of diabetes data set

Fig. 6.20 Constrained DGPs: Results of diabetes data set

cannot be improved.

Our result is not as good as the accuracy (98.06%) of nonzero-mean DGPs reported in Sal-

imbeni and Deisenroth [2017]. However, we emphasize that the main contribution of our work

is not to demonstrate the classifier performance but to show the importance of incorporating

the theoretical insights into practice. This shows that learning zero-mean DGPs is potentially

possible.

85

−1.0−0.50.00.51.0

−1.0

−0.5

0.0

0.5

1.0

×
10

6

0.5

1.0

1.5

(a) Standard
−1.0

−0.5
0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

×
10

6
2
4
6
8

(b) Constrained

0.5 0.2 0.1 0.05 0.01

c0

20

40

60

80

A
cc

u
ra

cy
(%

)

50.03

73.79

55.1

74.37

91.21

80.3

66.84

90.58

73.87

89.68

11.35

29.19 30.12

62.36
55.55

N = 2

N = 3

N = 4

(c) Accuracy

Fig. 6.21 (a-b) Loss landscape of two models. (c) Classification accuracy with respect to the number of
layers, N , and constrain coefficients, c0.

86

Chapter 7

Conclusion and Future work

This chapter conludes this thesis with summary and discuss potential follow-up work.

7.1 Summary of contribution

One of the main contributions in this thesis is to propose a framework which automatically

discovers relational structures for multiple time series. The development of this framework is

done in two models: Semi-Relational Kernel Learning and Latent Kernel Model. The former

presented in chapter 3 extends Relational Kernel Learning [Hwang et al., 2016]. The latter

presented in chapter 4 generalizes the former and allows to train on a wider range of data.

Extracting interpretable relations via kernel functions is one of interesting features where one can

know how much multiple time series are correlated and what relations are in natural-language

reports.

The second contributions of this thesis is a scalable inference for Gaussian processes models

of which kernels functions are additive compositional kernels. Along with a new approximate

Gaussian process, kernel selection is casted under the hood of learning shrinkage parameters

where Horseshoe prior is used.

This thesis also contributes to theoretical insights of deep Gaussian processes. The proposed

approach is general, allowing to study a number of kernel functions. Detailed analyses including

error bounds and rates of convergence are presented.

7.2 Future work

As presented in this thesis, learning discrete structure is usually hard. The approach in this thesis

often incorporates probabilistic assumptions over discretes spaces. One promising direction is to

87

learn the Fourier representation of compositional kernels. This idea is based on the Bochner’s

theorem where kernel functions can be implicitly infered from the spectral density in Fourier

domain. Preliminary work can be found in [Tompkins et al., 2019]. Yet, the question of how to

make such methods interpretable left unanswered.

Deep Gaussian process is an notable extension of Gaussian process by combining Gaussian

process layers. Despite the expressiveness of this new model, there are many interesting open

questions to establish its foundation: how this model behaves when introducing compositional

kernel or injecting inducitve biases to this model; practical inference algorithm to select compo-

sitional kernel for deep Gaussian processes. These are all challenging problems required careful

treatments.

7.3 Conclusion

In conclusion, I hope that this thesis can provide a fresh probabilistic perspective of learning

compositional covariance structures for multiple time series as well as a guideline for scalable

Gaussian processes with complex kernel functions. The theoretical understandings of the existing

issues in deep Gaussian processes in this thesis is still prelimiary but potentially helpful for

building kernel selection for deep Gaussian processes.

88

References

Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions:

A review. Foundations and Trends in Machine Learning, 4(3), 2012.

Ralph G. Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and

Christian Elger. Indications of nonlinear deterministic and finite-dimensional structures in time

series of brain electrical activity: Dependence on recording region and brain state. Physical

review. E, Statistical, nonlinear, and soft matter physics, 64, 2002. doi: 10.1103/PhysRevE.64.

061907.

Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic

duality, and the SMO algorithm. In ICML, 2004.

Matthias Bauer, Mark van der Wilk, and Carl Edward Rasmussen. Understanding probabilistic

sparse gaussian process approximations. In NeurIPS, pages 1533–1541. 2016.

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Probabilistic inference in hybrid

domains by weighted model integration. In IJCAI, 2015.

Yoshua Bengio, Olivier Delalleau, and Nicolas L. Roux. The curse of highly variable functions

for local kernel machines. In NeurIPS, pages 107–114. 2006.

Anindya Bhadra, Jyotishka Datta, Nicholas G. Polson, and Brandon Willard. Lasso meets

horseshoe: A survey. Statist. Sci., 34(3):405–427, 08 2019.

Edwin V. Bonilla, Kian Ming Adam Chai, and Christopher K. I. Williams. Multi-task gaussian

process prediction. In NeurIPS, pages 153–160, 2007.

Thang D. Bui, José Miguel Hernández-Lobato, Daniel Hernández-Lobato, Yingzhen Li, and

Richard E. Turner. Deep gaussian processes for regression using approximate expectation

propagation. In ICML, pages 1472–1481, 2016.

89

Thang D. Bui, Josiah Yan, and Richard E. Turner. A unifying framework for gaussian process

pseudo-point approximations using power expectation propagation. J. Mach. Learn. Res., 18:

104:1–104:72, 2017.

David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates of convergence for sparse

variational Gaussian process regression. In ICML, pages 862–871, 2019.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael

Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic

programming language. Journal of Statistical Software, Articles, 2017.

Carlos M. Carvalho, Nicholas G. Polson, and James G. Scott. Handling sparsity via the horseshoe.

In AISTATS, pages 73–80, 2009.

Jaesik Choi, Eyal Amir, and David J. Hill. Lifted inference for relational continuous models. In

UAI, pages 126–134, 2010.

Jaesik Choi, Rodrigo de Salvo Braz, and Hung H. Bui. Efficient methods for lifted inference

with aggregate factors. In AAAI, page 1030–1036, 2011a.

Jaesik Choi, Abner Guzmán-Rivera, and Eyal Amir. Lifted relational kalman filtering. In IJCAI,

pages 2092–2099, 2011b.

Jaesik Choi, Eyal Amir, Tianfang Xu, and Albert J. Valocchi. Learning relational kalman

filtering. In Proceedings of the Twenty-Ninth Conference on Artificial Intelligence (AAAI),

pages 2539–2546, 2015.

Kurt Cutajar, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. Random feature

expansions for deep Gaussian processes. In ICML, volume 70, pages 884–893, 2017.

Zhenwen Dai, Andreas Damianou, Javier Gonzalez, and Neil D. Lawrence. Variationally auto-

encoded deep gaussian processes. In ICLR, 2016.

Andreas Damianou and Neil Lawrence. Deep gaussian processes. In AISTATS, volume 31, pages

207–215, 2013.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017a. URL http:

//archive.ics.uci.edu/ml.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017b. URL http:

//archive.ics.uci.edu/ml.

90

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Finale Doshi, Kurt Miller, Jurgen Van Gael, and Yee Whye Teh. Variational inference for the

indian buffet process. In AISTATS, 2009.

Matthew M. Dunlop, Mark A. Girolami, Andrew M. Stuart, and Aretha L. Teckentrup. How

deep are deep gaussian processes? Journal of Machine Learning Research, 19(54):1–46, 2018.

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin

Ghahramani. Structure discovery in nonparametric regression through compositional kernel

search. In ICML, pages 1166–1174, 2013.

David K Duvenaud, Hannes Nickisch, and Carl E. Rasmussen. Additive gaussian processes. In

NeurIPS, pages 226–234. 2011.

David K. Duvenaud, Oren Rippel, Ryan P. Adams, and Zoubin Ghahramani. Avoiding pathologies

in very deep networks. In AISTATS, pages 202–210, 2014.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.

Annals of Statistics, 32:407–499, 2004.

George Filis, Stavros Degiannakis, and Christos Floros. Dynamic correlation between stock

market and oil prices: The case of oil-importing and oil-exporting countries. International

Review of Financial Analysis, 20(3):152 – 164, 2011.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation

of deep networks. In ICML, volume 70, pages 1126–1135, 2017.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.

Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In

NeurIPS, 2018.

Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning (Adaptive Computa-

tion and Machine Learning). The MIT Press, 2007. ISBN 0262072882.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):

452–459, 2015.

Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Model selection in bayesian neural networks

via horseshoe priors. Journal of Machine Learning Research, 20(182):1–46, 2019.

GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy,

since 2012.

91

http://github.com/SheffieldML/GPy

Thomas L. Griffiths and Zoubin Ghahramani. Infinite latent feature models and the indian

buffet process. In NeurIPS, pages 475–482, 2005.

Thomas L. Griffiths and Zoubin Ghahramani. The indian buffet process: An introduction and

review. Journal of Machine Learning Research, 12:1185–1224, 2011.

R.B. Grosse, R. Salakhutdinov, W.T. Freeman, and J.B. Tenenbaum. Exploiting compositionality

to explore a large space of model structures. In UAI, pages 306–315, 2012.

Cristian Guarnizo and Mauricio A. Álvarez. Indian Buffet process for model selection in convolved

multiple-output Gaussian processes. ArXiv e-prints, 1503.06432, 2015.

Cristian Guarnizo, Mauricio A. Álvarez, and Álvaro Á. Orozco. Indian buffet process for model

selection in latent force models. In CIARP, pages 635–642, 2015.

David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and Guang-Zhong

Yang. XAI—explainable artificial intelligence. Science Robotics, 4(37), 2019. doi: 10.1126/

scirobotics.aay7120. URL https://robotics.sciencemag.org/content/4/37/eaay7120.

Jiyeon Han, Kyowoon Lee, Anh Tong, and Jaesik Choi. Confirmatory bayesian online change

point detection in the covariance structure of gaussian processes. In IJCAI, pages 2449–2455,

2019.

Marton Havasi, José Miguel Hernández-Lobato, and Juan José Murillo-Fuentes. Inference in

deep gaussian processes using stochastic gradient hamiltonian monte carlo. In NeurIPS, pages

7517–7527. 2018.

James Hensman and Neil D Lawrence. Nested variational compression in deep Gaussian processes.

arXiv preprint arXiv:1412.1370, 2014.

James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In UAI,

pages 282–290, Arlington, Virginia, USA, 2013.

Yunseong Hwang, Anh Tong, and Jaesik Choi. Automatic construction of nonparametric

relational regression models for multiple time series. In ICML, pages 3030–3039, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.

In ICLR, 2017a.

Phillip A Jang, Andrew Loeb, Matthew Davidow, and Andrew G Wilson. Scalable levy process

priors for spectral kernel learning. In NeurIPS, pages 3943–3952. 2017b.

92

https://robotics.sciencemag.org/content/4/37/eaay7120

Mohamed Khamsi. An introduction to metric spaces and fixed point theory. 01 2001.

Hyunjik Kim and Yee Whye Teh. Scaling up the Automatic Statistician: Scalable structure

discovery using Gaussian processes. In AISTATS, volume 84, pages 575–584, 2018.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Miguel Lázaro-Gredilla and Aníbal R. Figueiras-Vidal. Inter-domain gaussian processes for

sparse inference using inducing features. In NeurIPS, pages 1087–1095, 2009.

Miguel Lázaro-Gredilla, Joaquin Quiñonero Candela, Carl Edward Rasmussen, and Aníbal R.

Figueiras-Vidal. Sparse spectrum gaussian process regression. J. Mach. Learn. Res., 11:

1865–1881, 2010.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):

541–551, 1989.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:

//yann.lecun.com/exdb/mnist/.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Hierarchically-partitioned gaussian process

approximation. In AISTATS, 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss

landscape of neural nets. In NeurIPS, 2018.

James Robert Lloyd. GEFCom2012 hierarchical load forecasting: Gradient boosting machines

and gaussian processes. International Journal of Forecasting, 2013.

James Robert Lloyd, David Duvenaud, Roger Grosse, Joshua B. Tenenbaum, and Zoubin

Ghahramani. Automatic construction and natural-language description of nonparametric

regression models. In AAAI, pages 1242–1250, 2014.

Chi-Ken Lu, Scott Cheng-Hsin Yang, Xiaoran Hao, and Patrick Shafto. Interpretable deep

gaussian processes with moments. In Silvia Chiappa and Roberto Calandra, editors, AISTATS,

2020.

Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil Lawrence. Structured variationally auto-

encoded optimization. In ICML, volume 80, pages 3267–3275, 2018.

93

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous

Relaxation of Discrete Random Variables. In ICLR, 2017.

Gustavo Malkomes, Chip Schaff, and Roman Garnett. Bayesian optimization for automated

model selection. In NeurIPS, pages 2892–2900, 2016.

Vikash K. Mansinghka, Daniel Selsam, and Yura Perov. Venture: A higher-order probabilistic

programming platform with programmable inference. arXiv preprint, arXiv:1404.0099, 2014.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis

Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A

Gaussian process library using TensorFlow. J. Mach. Learn. Res., pages 1–6, 2017.

Robert M. May. Simple mathematical models with very complicated dynamics. Nature, 261

(5560):459–467, 1976.

T. J. Mitchell and J. J. Beauchamp. Bayesian variable selection in linear regression. Journal of

the American Statistical Association, 83(404):1023–1032, 1988.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient

estimation in machine learning, 2020.

Radford M. Neal. Bayesian learning for neural networks. PhD thesis, 1995.

Sarah E. Neville, John T. Ormerod, and M. P. Wand. Mean field variational bayes for continuous

sparse signal shrinkage: Pitfalls and remedies. Electron. J. Statist., 8(1):1113–1151, 2014. doi:

10.1214/14-EJS910.

Trung Nguyen and Edwin Bonilla. Efficient variational inference for gaussian process regression

networks. In AISTATS, pages 472–480, 2013.

Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

Gabriel Parra and Felipe Tobar. Spectral mixture kernels for multi-output gaussian processes.

In NeurIPS, pages 6684–6693, 2017.

Ben Poole, Subhaneil Lahiri, Maithreyi Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.

Exponential expressivity in deep neural networks through transient chaos. In NeurIPS, pages

3360–3368, 2016.

Hoifung Poon and Pedro M. Domingos. Sum-product networks: A new deep architecture. In

UAI, pages 337–346, 2011.

94

Quandl. A marketplace for financial data, 2018.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NeurIPS,

pages 1177–1184. 2008.

Carl Edward Rasmussen and Zoubin Ghahramani. Occam’s razor. In NeurIPS, pages 294–300,

2001.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine

Learning. The MIT Press, 2005.

Juan Carlos Reboredo, Miguel A. Rivera-Castro, and Gilney F. Zebende. Oil and us dollar

exchange rate dependence: A detrended cross-correlation approach. Energy Economics, 42:

132 – 139, 2014.

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K.

Mansinghka. Bayesian synthesis of probabilistic programs for automatic data modeling. Proc.

ACM Program. Lang., 3(POPL):37:1–37:32, 2019. doi: 10.1145/3290350.

Hugh Salimbeni and Marc Deisenroth. Doubly stochastic variational inference for deep gaussian

processes. In NeurIPS, 2017.

Hugh Salimbeni, Vincent Dutordoir, James Hensman, and Marc Deisenroth. Deep Gaussian

processes with importance-weighted variational inference. In ICML, pages 5589–5598, 2019.

Ulrich Schaechtle, Ben Zinberg, Alexey Radul, Kostas Stathis, and Vikash K. Mansinghka.

Probabilistic programming with gaussian process memoization. ArXiv e-prints, 1512.05665,

2015.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:

The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14

May 1987.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep informa-

tion propagation. In ICLR, 2017.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using

stochastic computation graphs. In NeurIPS, pages 3528–3536. 2015.

Eric Schulz, Josh Tenenbaum, David K Duvenaud, Maarten Speekenbrink, and Samuel J

Gershman. Probing the compositionality of intuitive functions. In NeurIPS, pages 3729–3737.

2016.

95

Eric Schulz, Joshua B. Tenenbaum, David Duvenaud, Maarten Speekenbrink, and Samuel J.

Gershman. Compositional inductive biases in function learning. Cognitive Psychology, 99

(Supplement C):44 – 79, 2017.

G Schwarz. Estimating the dimension of a mode. The Annals of Statistics, 6(2), 1978.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural

network approach to high-dimensional time series forecasting. In NeuIPS, pages 4837–4846.

2019.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In

NeurIPS, pages 1257–1264. 2006.

Christian Steinruecken, Emma Smith, David Janz, James Lloyd, and Zoubin Ghahramani. The

Automatic Statistician. In Automated Machine Learning. May 2019.

Shengyang Sun, Guodong Zhang, Chaoqi Wang, Wenyuan Zeng, Jiaman Li, and Roger Grosse.

Differentiable compositional kernel learning for Gaussian processes. In ICML, pages 4828–4837,

2018.

Terence Tao. 254A, Notes 3a: Eigenvalues and sums of Hermi-

tian matrices, 2010. URL https://terrytao.wordpress.com/2010/01/12/

254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/.

Tao Hong, Pierre Pinson, and Shu Fan. Global energy forecasting competition 2012, 2014.

Yee Whye Teh, Matthias W. Seeger, and Michael I. Jordan. Semiparametric latent factor models.

In AISTATS, 2005.

Yee Whye Teh, Dilan GrÃ¼r, and Zoubin Ghahramani. Stick-breaking construction for the

indian buffet process. In AISTATS, pages 556–563, 2007.

Tong Teng, Jie Chen, Yehong Zhang, and Bryan Kian Hsiang Low. Scalable variational bayesian

kernel selection for sparse gaussian process regression. In AAAI, pages 5997–6004, 2020.

Romain Thibaux and Michael I. Jordan. Hierarchical beta processes and the indian buffet

process. In AISTATS, pages 564–571, 2007.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society (Series B), 58:267–288, 1996.

96

https://terrytao.wordpress.com/2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/
https://terrytao.wordpress.com/2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/

Michalis K. Titsias and Miguel Lázaro-Gredilla. Spike and slab variational inference for multi-task

and multiple kernel learning. In NeurIPS, pages 2339–2347. 2011.

Anthony Tompkins, Ransalu Senanayake, Philippe Morere, and Fabio Ramos. Black box quantiles

for kernel learning. In AISTATS, pages 1427–1437, 2019.

Anh Tong and Jaesik Choi. Automatic Generation of Probabilistic Programming from Time

Series Data. arXiv e-prints, art. arXiv:1607.00710, 2016.

Anh Tong and Jaesik Choi. Discovering latent covariance structures for multiple time series. In

ICML, pages 6285–6294, 2019.

Anh Tong and Jaesik Choi. Characterized deep Gaussian processes via nonlinear recurrence

systems. AAAI, abs/2010.09301, 2021.

Anh Tong, Toan Tran, Hung Bui, and Jaesik Choi. Learning compositional sparse Gaussian

processes with a shrinkage prior. AAAI, 2021.

United States Census Bureau. Population estimates: Historical data. https://www.census.gov/

popest/data/historical/index.html, 2014. Accessed: 2015-09-15.

Ivan Ustyuzhaninov, Ieva Kazlauskaite, Markus Kaiser, Erik Bodin, Neill D. F. Campbell, and

Carl Henrik Ek. Compositional uncertainty in deep gaussian processes. In UAI, page 206,

2020.

Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen, and Aki

Vehtari. Gpstuff: Bayesian modeling with gaussian processes. J. Mach. Learn. Res., 14(1),

2013.

Tom von Alten. Top 100 market capitalization. http://fortboise.org/top100mktcap.html, 2001.

Accessed: 2015-09-15.

Martin J Wainwright and Michael I Jordan. Graphical Models, Exponential Families, and

Variational Inference. Now Publishers Inc., 2008. ISBN 1601981848.

Christian Walder, Kwang In Kim, and Bernhard SchÃ¶lkopf. Sparse multiscale gaussian process

regression. In ICML, pages 1112–1119, 2008.

Matthew P. Wand, John T. Ormerod, Simone A. Padoan, and Rudolf FrÃ¼hwirth. Mean field

variational bayes for elaborate distributions. Bayesian Anal., 6(4):847–900, 12 2011. doi:

10.1214/11-BA631. URL https://doi.org/10.1214/11-BA631.

97

https://www.census.gov/popest/data/historical/index.html
https://www.census.gov/popest/data/historical/index.html
http://fortboise.org/top100mktcap.html
https://doi.org/10.1214/11-BA631

Jue Wang and Pedro M. Domingos. Hybrid markov logic networks. In AAAI, pages 1106–1111,

2008.

Helmut Wielandt. An extremum property of sums of eigenvalues. 1955.

Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel

machines. In NeurIPS, pages 682–688. 2001.

Andrew G. Wilson, David A. Knowles, and Zoubin Ghahramani. Gaussian process regression

networks. In ICML, 2012.

Andrew Gordon Wilson and Ryan Prescott Adams. Gaussian process kernels for pattern discovery

and extrapolation. In ICML, pages 1067–1075, 2013.

Yahoo Inc. Yahoo finance - business finance, stock market, quotes, news. http://finance.yahoo.

com/, 2015. Accessed: 2015-09-15.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

doi: 10.1111/j.1467-9868.2005.00532.x.

98

http://finance.yahoo.com/
http://finance.yahoo.com/

Acknowledgements

I am fortunate to have Professor Jaesik Choi as my academic advisor. I am grateful for his

immense supports and encouragement throughout my PhD journey. Professor Choi always cares

for my developments, advising me to stay positive even during difficult times. I have learned

from not only his knowledge but also his experience that he shared.

I would like to thank Professor Kwang In Kim for being my administrative advisor. The proposal

presentation’s discussion with Professor Kwang In Kim helps me to solidify one of the ideas

leading to this thesis. I would like to thank Professor Se Young Chun for being in both my

proposal and thesis committee as well as for teaching me two fundamental courses at UNIST

which are helpful and relevant to my research. I am grateful for having Professor Kee-Eung Kim

as one of my thesis committee members and I truly appreciate his thoughtful advice. I would

like to thank Professor Sung-Phil Kim for his valuable feedback.

I would like to thank Dr. Hung Bui and Dr. Toan Tran for hosting my internship. I appreciate the

time in VinAI as an eye-opening experience that I can broaden my view in different research areas.

I always respect their achievements and contributions to the artificial intelligence community in

Vietnam.

I also would like to thank SAILab members for being helpful and reliable labmates who I always

can count on when asking for favors within our lab environment as well as many other things

outside the lab.

I want to thanks my friends in my home country for all the encouragements and my friends at

UNIST for sharing experience and for hanging out so that my life outside of research is more

enjoyable.

Finally, I would like to thank my dearest parents who always support me in pursuing PhD and

constantly remind me to stay healthy in any situations. I would like to thank my sister and my

brother-in-law for always giving helping hands whenever I need.

	1 Introduction
	1.1 Thesis scope
	1.2 Challenges
	1.3 The contributions of thesis
	1.3.1 A general framework for modeling covariance structure in multiple time series
	1.3.2 A scalable method for learning compositional kernel functions
	1.3.3 A theoretical understanding of extension to deep Gaussian process

	1.4 The outline of this thesis
	1.5 Publication notes

	2 Gaussian process and the Automatic Statistician
	2.1 Weight-space view
	2.2 Function space
	2.3 Covariance function
	2.4 The Automatic Statistician System

	3 Global relational kernel learning with local variations
	3.1 Introduction
	3.2 Review of Relational Kernel Learning
	3.3 Semi-Relation Kernel Learning
	3.4 Experimental Results
	3.4.1 Data sets
	3.4.2 Quantitative evaluations
	3.4.3 Qualitative Comparisons

	3.5 Related work and final remark

	4 Selective compositional kernel discovery
	4.1 Introduction
	4.2 Latent Kernel Model
	4.2.1 Indian Buffet Process
	4.2.2 Model definition
	4.2.3 Properties
	4.2.4 Inference algorithm

	4.3 Model discovery in multiple time series
	4.4 Experimental evaluations
	4.4.1 Real-world time series data
	4.4.2 Qualitative results
	4.4.3 Quantitative results

	4.5 Related work and final remark

	5 Kernel selection for Scalable GP
	5.1 Introduction
	5.1.1 Variational Sparse Gaussian process
	5.1.2 Shrinkage prior

	5.2 Kernel selection with shrinkage prior
	5.2.1 Kernel selection with Horseshoe prior
	5.2.2 Multi-inducing sparse Gaussian process

	5.3 Variational inference with shrinkage prior
	5.4 Detail of variational inference
	5.5 Experimental Evaluations
	5.5.1 Kernel function pool

	5.6 Related work and conclusion

	6 Characterizing Deep Gaussian process
	6.1 Introduction
	6.2 Moment-generating function of distance quantity
	6.3 Analyzing dynamic systems with chaos theory
	6.4 Squared exponential kernel function
	6.5 Cosine kernel function
	6.6 Periodic kernel function
	6.7 Rational quadratic kernel function
	6.8 Spectral mixture kernel
	6.9 Extension to non-pathological cases
	6.10 Analysis of recurrence relations
	6.10.1 Identify the pathology
	6.10.2 Rate of convergence

	6.11 Experimental results
	6.11.1 Correctness of recurrence relations
	6.11.2 Justifying the conditions of pathology
	6.11.3 Using recurrence relations in DGPs
	6.11.4 High-dimensional data set with zero-mean DGPs

	7 Conclusion and Future work
	7.1 Summary of contribution
	7.2 Future work
	7.3 Conclusion

	References

<startpage>20
1 Introduction 1
 1.1 Thesis scope 1
 1.2 Challenges 2
 1.3 The contributions of thesis 3
 1.3.1 A general framework for modeling covariance structure in multiple time series 3
 1.3.2 A scalable method for learning compositional kernel functions 4
 1.3.3 A theoretical understanding of extension to deep Gaussian process 5
 1.4 The outline of this thesis 5
 1.5 Publication notes 5
2 Gaussian process and the Automatic Statistician 7
 2.1 Weight-space view 7
 2.2 Function space 8
 2.3 Covariance function 9
 2.4 The Automatic Statistician System 12
3 Global relational kernel learning with local variations 15
 3.1 Introduction 15
 3.2 Review of Relational Kernel Learning 16
 3.3 Semi-Relation Kernel Learning 17
 3.4 Experimental Results 20
 3.4.1 Data sets 20
 3.4.2 Quantitative evaluations 21
 3.4.3 Qualitative Comparisons 22
 3.5 Related work and final remark 23
4 Selective compositional kernel discovery 25
 4.1 Introduction 25
 4.2 Latent Kernel Model 27
 4.2.1 Indian Buffet Process 27
 4.2.2 Model definition 28
 4.2.3 Properties 29
 4.2.4 Inference algorithm 30
 4.3 Model discovery in multiple time series 33
 4.4 Experimental evaluations 36
 4.4.1 Real-world time series data 37
 4.4.2 Qualitative results 37
 4.4.3 Quantitative results 40
 4.5 Related work and final remark 41
5 Kernel selection for Scalable GP 45
 5.1 Introduction 45
 5.1.1 Variational Sparse Gaussian process 46
 5.1.2 Shrinkage prior 47
 5.2 Kernel selection with shrinkage prior 48
 5.2.1 Kernel selection with Horseshoe prior 49
 5.2.2 Multi-inducing sparse Gaussian process 50
 5.3 Variational inference with shrinkage prior 55
 5.4 Detail of variational inference 56
 5.5 Experimental Evaluations 59
 5.5.1 Kernel function pool 59
 5.6 Related work and conclusion 64
6 Characterizing Deep Gaussian process 65
 6.1 Introduction 65
 6.2 Moment-generating function of distance quantity 67
 6.3 Analyzing dynamic systems with chaos theory 68
 6.4 Squared exponential kernel function 69
 6.5 Cosine kernel function 72
 6.6 Periodic kernel function 73
 6.7 Rational quadratic kernel function 74
 6.8 Spectral mixture kernel 75
 6.9 Extension to non-pathological cases 76
 6.10 Analysis of recurrence relations 77
 6.10.1 Identify the pathology 77
 6.10.2 Rate of convergence 78
 6.11 Experimental results 78
 6.11.1 Correctness of recurrence relations 79
 6.11.2 Justifying the conditions of pathology 80
 6.11.3 Using recurrence relations in DGPs 83
 6.11.4 High-dimensional data set with zero-mean DGPs 84
7 Conclusion and Future work 87
 7.1 Summary of contribution 87
 7.2 Future work 87
 7.3 Conclusion 88
References 89
</body>

