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Abstract

Rotation invariance has been an important topic in computer vision tasks such as face

detection [1], texture classification [2] and character recognition [3], to name a few. The

importance of rotation invariant properties for computer vision methods still remains for

recent DNN based approaches. In general, DNNs often require a lot more parameters with

data augmentation with rotations to yield rotational-invariant outputs. Max pooling helps

alleviating this issue, but since it is usually 2× 2 [4], it is only for images rotated with very

small angles. Recently, there have been some works on rotation-invariant neural network

such as rotating weights [5, 6], enlarged receptive field using dialed convolutional neural

network (CNN) [7] or a pyramid pooling layer [8], rotation region proposals for recog-

nizing arbitrarily placed texts [9] and polar transform network to extract rotation-invariant

features [10].

Applications of deep neural network based object and grasp detections could be ex-

panded, significantly when the network output is processed by a high-level reasoning over

relationship of objects. Recently, robotic grasp detection and object detection with reason-

ing have been investigated using deep neural networks (DNNs). There have been effects to

combine these multi-tasks using separate networks so that robots can deal with situations

of grasping specific target objects in the cluttered, stacked, complex piles of novel objects

from a single RGB-D camera. We propose a single multi-task DNN that yields an accu-

rate detections of objects, grasp position and relationship reasoning among objects. Our

proposed methods yield state-of-the-art performance with the accuracy of 98.6%and 74.2%

with the computation speed of 33 and 62 frame per second on VMRD and Cornell datasets,

respectively. Our methods also yielded 95.3% grasp success rate for novel object grasping

tasks with a 4-axis robot arm and 86.7% grasp success rate in cluttered novel objects with a

humanoid robot
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CHAPTER I

Introduction

Robot grasping of novel objects has been investigated extensively, but it is still a challenging open

problem in robotics. Humans instantly identify multiple grasps of novel objects (perception), plan how

to pick them up (planning) and actually grasp it reliably (control). However, accurate robotic grasp

detection, trajectory planning and reliable execution are quite challenging for robots. As the first step,

detecting robotic grasps accurately and quickly from imaging sensors is an important task for successful

robotic grasping.

In this paper, we propose a rotation ensemble module (REM) for robotic grasp detection using con-

volutions that rotates network weights. This special structure allows the DNN to select rotation convolu-

tions for each grid. Our proposed REM were evaluated for two different tasks: robotic grasp detection on

the Cornell dataset [16, 17] and real robotic grasping tasks with novel objects that were not used during

training. Our proposed REM was able to outperform state-of-the-art methods such as [15] by achieving

up to 99.2% (image-wise), 98.6% (object-wise) accuracy on the Cornell dataset as shown in Fig. 1.2

with 5× faster computation than [15]. Our proposed method was also able to yield up to 93.8% success

rate for the real-time robotic grasping task with a 4-axis robot arm for novel objects and to yield reliable

grasps for multiple objects unlike rotation anchor box.

Robot grasping of particular target objects in cluttered, stacked and complex piles of novel objects

is a challenging open problem. Humans instantly identify/locate target objects and their nearby objects

(object detection or OD), figure out location-wise relationship among objects (reasoning), and detect

multiple grasps of the targets and their associated objects (grasp detection or GD). However, these tasks
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are still quite challenging for robots. Locating the targets and nearby objects in the piles of objects,

reasoning their relationships and detecting multiple robotic grasps accurately and quickly are important

multi-tasks for successful robotic grasping.

Deep learning based approaches have been actively investigated for robot grasp detection since the

work of Lenz et al. [16, 17]. Thanks to the Cornell robotic grasp detection open database [16] and the

advance of deep learning techniques, many approaches have been proposed [13, 14, 18]. The current

state-of-the-art GD accuracy on the Cornell dataset is up to 97.7% [15]. The Cornell dataset contains

images with a single object and multiple grasp labels. Deep neural networks (DNNs) trained with this

dataset generally yielded multiple grasps for a single object or multiple objects that are separately placed.

Due to the capacity of DNNs, they often yielded good GD results for novel objects. However, the Cornell

dataset lacks of robotic grasping in the cluttered piles of objects. Moreover, it is especially challenging

which object the robot has to grasp first in order not to damage other objects for cluttered or stacked

objects or in order to efficiently grasp specific target objects. In other words, a robot must know if an

object is on another object in the piles of objects for successful grasping.

Recently, Zhang et al. proposed multi-task convolution robotic grasping networks to address the

problem of combining GD and OD with relationship reasoning in the piles of objects [11]. This method

consists of multiple DNNs that are responsible for generating local feature maps, GD, OD and rela-

tionship reasoning separately. More specifically, features are extracted using ResNet-101 based region

proposal network (RPN) and then are fed into three DNNs corresponding to three tasks: OD, GD and

relationship prediction among objects to perform grasping considering relationships and orderings (re-

lationship reasoning). This approach facilitates matching for reasoning and achieved high GD accuracy

of 70.1% on the VMRD robot grasping dataset [19] with reasonable computation speed of 6.5 frame

per second (FPS). However, this modular structure could be further optimized and improved for higher

accuracy, faster computation speed and less DNNs for potentially reduced GPU memory usage.

In this paper, we propose a single multi-task DNN with a simple post-processing for OD with rea-

soning and GD on the piles of novel objects using the information from a single RGB-D camera. Our

method is based on YOLOv3 [20] and deals with multi-tasks of OD, GD and relationship reasoning,

but maintained its simple single network structure. Ablation studies were performed to further optimize

different components of our multi-task networks. Our method yields the state-of-the-art multi-task GD

performance (74.2%, 98.6%) on the VMRD and Cornell datasets, respectively, with real-time compu-

tation speed (30 and 62 FPS) for high-resolution images of 608 × 608 and 320 × 320 as illustrated in

Fig. 1.2. We verify our method to real robotic grasping tasks with a 4 axis robot arm on single novel ob-

jects as well as a Baxter robot on multiple novel objects in various settings of piles (cluttered, stacking,

invisible scenes) and yielded 95.3% grasp success rate for single novel object grasping and 86.7% grasp

success rate in cluttered novel objects, respectively.
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Figure 1.1: REM module performance summary of computation time (frame per second) vs. grasp de-
tection accuracy on the Cornell dataset with object-wise data split.

Figure 1.2: (top left panel) GD with grasp candidates (black rectangles) and the best grasp (green and red
rectangle) (right panels) multi-tasks of GD, OD and relationship reasoning. (bottom left panel) computa-
tion speed (FPS) vs. prediction accuracy (mAP) for multi-task grasping detection of our method achiev-
ing the state-of-the-art performance in both accuracy and speed and other previous work of (a) [11],
(b,c) [12].
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CHAPTER II

Real-time Highly Accurate Grasping

Detection with Rotation Ensemble

Module

Ideally, robot grasp detection should be rotation-invariant. Rotation angle prediction in robot grasp

detection has been done by regression of continuous angle value [13], classification of discretized angles

(e.g., 10◦, 20◦, . . . , 170◦) [14, 18] or rotation anchor box that is a hybrid method of regression and clas-

sification [11, 12, 15]. Previous works were not considering rotation-invariance or attempting rotation-

invariant detection by rotating images or feature maps that were often time-consuming especially for

multiple objects.

2.1 Related works

Spatial, rotational invariance. Max pooling layers often alleviate the issue of spatial variance in

CNN. To better achieve spatial-invariant image classification, Jaderberg et al. proposed spatial trans-

former network (STN), a method of image (or feature) transformation by learning (affine) transforma-

tion parameters so that it can help to improve the performance of inference operations of the following

neural network layers [4]. Lin et al. proposed to use STN repeatedly with an inverse composite method
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by propagating warp parameters rather than images (or features) for improved performance [21]. Es-

teves et al. proposed a rotation-invariant network by replacing the grid generation of STN with a polar

transform [10]. Input feature map (or image) was transformed into the polar coordinate with the origin

that was determined by the center of mass. Cohen and Welling proposed a method to use group equivari-

ant convolutions and pooling with weight flips and four rotations with 90◦ stepsize [5]. Follmann et al.

proposed to use rotation-invariant features that were created using rotational convolutions and pooling

layers [6]. Marcos et al. proposed a network with a different set of weights for each local window instead

of weight rotation [22].

Object detection. Faster R-CNN was a method of using a region proposal network for generat-

ing region proposals to reduce computation time [23]. YOLO was faster but less accurate than the

faster R-CNN by directly predicting {x, y, w, h, class} without using the region proposal network [24].

YOLO9000 stabilized the loss of YOLO by using anchor box inspired by region proposal network and

yielded much faster object detection results than faster R-CNN while its accuracy was comparable [25].

For rotation-invariant object detection, Shi et al. investigated face detection using a progressive calibra-

tion network that predicted rotation by 180◦, 90◦ or an angle in [-45◦, 45◦] after sliding window [26].

Ma et al. used a rotation region proposal network to transform regions for classification using rotation

region-of-interest (ROI) pooling [9]. Note that rotation angle was predicted using 1) rotation anchor box,

2) regression or 3) classification.

Robotic grasp detection. Deep learning based robot grasp detection methods seem to belong one of

the two types: two stage detector (TSD) or one stage detector (OSD). TSD consists of a region proposal

network and a detector [11,12,14,15,18]. After extracting feature maps using proposals from the network

in the first stage, objects are detected in the second stage. The region proposal network of TSD generally

helps to improve accuracy, but is often time-consuming due to feature map extractions. OSD detects an

object on each grid instead of generating region proposal to reduce computation time with decreased

prediction accuracy [13]. Lenz et al. proposed a TSD model that classifies object graspability using a

sparse auto-encode (SAE) with sliding windows for brute-force region proposals [17]. Redmon et al.

developed a regression based OSD [13] using AlexNet [27]. Guo et al. applied ZFNet [28] based TSD

to robot grasping and formulated angle prediction as classification [14]. Chu et al. further extended the

TSD model of Guo [18] by incorporating recent ResNet [29]. Zhou et al. also used ResNet for TSD, but

proposed rotation anchor box [15]. Zhang et al. extended the TSD method of Zhou [15] by additionally

predicting objects using ROI [12]. DexNet 2.0 is also TSD that predicts grasp candidates from a depth

image and then selects the best one by its classifier, GQ-CNN [30].
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2.2 Grasping Detection

The goal of the problem is to predict 5D representations for multiple objects from a color image

where a 5D representation consists of location (x,y), rotation θ, width w, and height h, as illustrated in

Fig. 2.1. Multi-grasp detection often directly estimates 5D representation {x, y, θ,w,h} as well as its

probability (confidence) of being a class (or being graspable) z for each grid cell. In summary, the 5D

representations with its probability are {x, y, θ,w,h, z}.
For TSD, region proposal networks generate potential candidates for {x, y,w,h} [12,14,15,18] and

rotation region proposal network yields possible arbitrary-oriented proposals {x, y, θ,w,h} [9]. Then,

classification is performed for proposals to yield their graspable probabilities z. Rotation region proposal

network classifies rotation anchor boxes with 30◦ stepsize and then regresses angles.

For OSD, a set of {x, y, θ,w,h, z} is directly estimated [13]. Inspired by YOLO9000 [25], we

propose to use the following reparametrization for 5D grasp representation and its probability for robotic

grasp detection as {tx, ty, θ, tw, th, tz} where x = σ(tx) + cx, y = σ(ty) + cy, w = pw exp(tw),h =

ph exp(th) and z = σ(tz). Note that σ(·) is a sigmoid function, ph, pw are the predefined height and

width of anchor box, respectively, and cx, cy are the top left corner of each grid cell. Therefore, a DNN

directly estimates {tx, ty, θ, tw, th, tz} instead of {x, y, θ,w,h, z}.

(a) (b)

Figure 2.1: (a) A 5D detection representation with location (x, y), rotation θ, gripper opening with w
and plate size h. (b) For a (2,2) grid cell, all parameters for 5D representation are illustrated including a
pre-defined anchor box (black dotted box) and a 5D detection representation (red box).
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2.3 Rotation Ensemble Module

2.3.1 Parameter descriptions of the proposed OSD method

For S × S grid cells, the following locations are defined

(cx, cy) ∈ {(cx, cy)|cx, cy ∈ {0, 1, . . . ,S − 1}},

which are the top left corner of each grid cell (cx, cy). Thus, our proposed method estimates the (x, y)

offset from the top left corner of each grid cell. For a given (cx, cy), the range of (x, y) will be cx < x <

cx + 1, cy < y < cy + 1 due to the reparametrization using sigmoid functions.

We also adopt anchor box approach [25] to robotic grasp detection. Reparametrization changes re-

gression for w,h into regression & classification. Classification is performed to pick the best representa-

tion among all anchor box candidates that were generated using estimated tw, th and the following pw, ph

values: {(0.76, 1.99), (0.76, 3.2), (1.99, 0.76), (1.99, 1.99), (1.99, 3.2), (3.2, 3.2), (3.2, 0.76)} or {(1.99

, 1.99)}.
We investigated three prediction methods for rotation θ. Firstly, a regressor predicts θ ∈ [0◦, 180◦).

Secondly, a classifier predicts θ ∈ {0◦, 10◦, . . . , 170◦}. Lastly, anchor box approach with regressor &

classifier predicts both θa ∈ {30◦, 90◦, 150◦} and θr ∈ [−30◦, 30◦] to yield θ = θa + θr.

Predicting detection (grasp) probability is crucial for multibox approaches such as MultiGrasp [13].

Conventional ground truth for detection probability was 1 (graspable) or 0 (not graspable) [13]. Inspired

by [25], we proposed to use IOU (Intersection Over Union) as the ground truth detection probability as

zg = |P ∩ G|/|P ∪ G| where P is the predicted detection rectangle, G is the ground truth detection

rectangle, and | · | is the area of the rectangle.

2.3.2 Rotation ensemble module (REM)

We propose a rotation ensemble module (REM) with rotation convolution and rotation activation to

determine an ensemble weight associated with angle class probability for each grid. We added our REM

to the latter part of a robot grasp detection network since it is often effective to put geometric transform

related layers in the latter of the network such as deformable convolutions [31]. A typical location for

REM in DNNs is illustrated in Fig. 2.2 (a).

Consider a typical scenario of convolution with input feature maps f ∈ RH×W×C where N = H ×
W is the number of pixels and C is the number of channels. Let us denote gl ∈ RK×K×C , l = 1, . . . ,nf

a convolution kernel where K × K is the spatial dimension of the kernel and there are nf number of

kernels in each channel. Similar to the group convolutions [5], we propose nr rotations of the weights

to obtain nf · nr rotated weights for each channel. Bilinear interpolations of four adjacent pixel values
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Figure 2.2: An illustration of incorporating our proposed REM in a DNN for robot grasp detection (a)
and the architecture of our proposed REM with rotation convolutions (b).
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were used for generating rotated kernels. A rotation matrix is

R(r) =

cos(rπ/4) − sin(rπ/4) 0

sin(rπ/4) cos(rπ/4) 0

0 0 1


where r is an index for rotations. Then, the rotated weights (or kernels) are gil = R(i)gl, i = 0, . . . , 3, l =

1, . . . ,nf . Finally, the output of these convolutional layers with rotation operators for the input f is

dil = gil ? f , i = 0, . . . , 3, l = 1, . . . ,nf ,

where ? is a convolution operator. This pipeline of operations is called “rotation convolution”. A typical

kernel size is K=5.

Our REM contains rotation activation that aggregates all feature maps at different angles. Assume

that an intermediate output for {tx, ty, θ, tw, th, tz} is available in REM, called {txm, tym, θm, twm, thm, tzm}.
Note that θim ∈ RH×W where i = 0,π/4, 2π/4, 3π/4. For each angle, activations will be generated

and all of them must be aggregated to yield one final feature map d̂l =
∑4

i=1 d
i
l � θim/4. where �

is Hadamard product. Thus, our proposed method utilizes class probability (probability to grasp) to

selectively aggregate activations along with the weight of angle classification.

In the REM, the intermediate output is partially used for rotation activation, it still contains valuable,

compressed information about the final output - it could be a good initial bounding box. Thus, we

designed our REM to decompress, concatenate it at the end of REM as illustrated in Fig. 2.2 (b). This

pipeline delivers valuable information about {txm, tym, θm, twm, thm, tzm} indirectly to the final layer and

this structure seemed to decrease probability errors.

2.4 Loss functions

We re-designed the loss function for training robotic grasp detection DNNs to emphasize this addi-

tional REM. The output of DNN (tx, ty, θ, tw, th, tz) and the intermediate output of the REM {txm, tym, θm, twm, thm, tzm}
should be converted into (x, y, θ,w,h, z) and {xm, ym, θm,wm,hm, zm}, respectively. Then, using the
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ground truth (xg, yg, θg,wg,hg, zg), the loss function is defined as

λcd (‖m� (x− xg)‖2 + ‖m� (y − yg)‖2) +

λcd (‖m� (w − wg)‖2 + ‖m� (h− hg)‖2) +

λpr‖m� (z − zg)‖2 + λagAngLoss(θg, θ;m) +

λcd

2
(‖m� (xm − xg)‖2 + ‖m� (ym − yg)‖2) +

λcd

2
(‖m� (wm − wg)‖2 + ‖m� (hm − hg)‖2) +

λpr

2
‖m� (zm − zg)‖2 +

λag

2
CE(m� θg,m� θm)

where m is a mask vector with 1 (ground truth for that grid) or 0 (no ground truth for that grid), ‖ · ‖2 is

l2 norm, CE is cross entropy, and AngLoss is one of these functions: CE for classification on θ, l2 norm

for regression or rotation anchor box on θ. We chose λcd = λag = 1 and λpr = 5.

2.5 Simulations and Experiments

We evaluated our proposed REM methods on the Cornell robotic grasp dataset [16, 17] and on real

robot grasping tasks with novel objects. The effectiveness of our REM was demonstrated in prediction

accuracy, computation time and grasping success rate. Our proposed methods were compared with pre-

vious methods such as [12–15, 17, 18] based on literature for widely used Cornell dataset as well as our

in-house implementations of some previous works.

2.5.1 Implementation details

It is challenging to fairly compare a robot grasp detection method with other previous works such

as [12–15, 17, 18]. Due to the Cornell dataset, most works were able to compare their results with those

of previous methods that were reported in literature. Considering fast advances of computing power and

DNN techniques, it is often not clear how much the proposed scheme or method actually contributed to

the increase of performance.

In this paper, we did not only compare our REM methods with previous works on the Cornell dataset

through literature, but also implemented the core angle prediction schemes of other previous works

with modern DNNs: regression (Reg) that Redmon et al. proposed [13], classification (Cls) that Guo et

al. proposed [14] and rotation anchor box (Rot) that Zhou et al. proposed [15]. While Redmon [13],

Guo [14] and Zhou [15] used AlexNet [27], ZFNet [28] and ResNet [29], respectively, our in-house

implementations, Reg, Cls and Rot, all used DarkNet-19 [32]. While Guo and Zhou were based on

faster R-CNN (TSD) [23], our implementations were based on YOLO9000 (OSD) [25].
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We performed ablation studies for our REM so that it becomes clear which part will affect the

performance of rotated grasp detection most significantly. We placed our proposed REM at the 6th

layers from the end of the detection network. We also performed simulations with rotation activation

using angle and probability. For multiple robotic grasps detection, boxes were plotted when probabilities

were 0.25 or higher.

All algorithms were tested on the platform with GPU (NVIDIA 1080Ti), CPU (Intel i7-7700K

4.20GHz) and 32GB memory. Our REM methods and other in-house DNNs such as Ref, Cls and Rot

were implemented with PyTorch.

2.5.2 Benchmark dataset and novel objects

The Cornell robot grasp detection dataset [16, 17] consists of 885 images (RGB color and depth)

of 240 different objects as shown in Fig. 2.3 with ground truth labels of a few graspable rectangles and

a few non-graspable rectangles. We used RG-D information without B channel just like the work of

Redmon [13]. An image was cropped to yield a 360 × 360 image and five-fold cross validation was

performed. Then, mean prediction accuracy was reported for image-wise and object-wise splits. Image-

wise split divides the Cornell dataset into training and testing data with 4:1 ratio randomly without

considering the same or different objects. Object-wise is a way of splitting training and testing data with

4: 1 ratio such that both data do not contain the same object. We followed other previous works for

accuracy metrics [13, 17, 33]. Successful grasp detection is defined as follows: if IOU is larger than a

certain threshold (e.g., 0.25, 0.3 or 0.35) and the difference between the output orientation θ and the

ground truth orientation θg is less than 30◦ (Jaccard index), then it is considered as a successful grasp

detection.

Figure 2.3: Images from the Cornell dataset
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2.5.3 Results for in-house implementations of previous works

Table 2.1 shows the results of ablation studies for our in-house implementations on the Cornell

dataset for anchor box with w and h with various ratios (N) vs. one ratio of 1:1 (1) and angle prediction

methods: regression (Reg) vs. classification (Cls) vs. rotation anchor box (Rot). The results show that

using a 1:1 ratio (1) yields better accuracy than using a variety of anchor boxes (N). For angle prediction

methods, rotation anchor box yielded the best performance while regression yielded the lowest that was

consistent with the literature. Thus, our in-house implementations seem to yield better performance in

accuracy than the original previous works possibly due to modern DNNs in our implementations: Reg -

Redmon et al. [13], Cls - Guo et al. [14] and Rot - Zhou et al. [15].

Fig. 2.4 shows the results of different angle prediction methods at IOU 25% over epoch. We observed

Table 2.1: Ablation studies on the Cornell dataset for anchor box of w, h with various ratios or one ratio
and angle prediction methods with Reg, Cls, Rot.

Anchor Box Angle Prediction
Image-wise Object-wise
25% 35% 25% 35%

N Reg 91.0 86.5 88.7 85.6
1 Reg 91.8 87.7 89.2 86.3
N Cls 97.2 93.1 96.1 93.1
1 Cls 97.3 94.1 96.6 92.9
1 Rot 98.3 94.4 96.6 93.6

Figure 2.4: Grasp detection accuracy over epoch on the Cornell dataset using various methods for angle
predictions: Rot: rotation anchor box, Cls: classification, Reg: regression, REM: ours.
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Table 2.2: The ablation studies on the Cornell dataset for our REM with RC, RA and RL.

Angle RC RA RL
Image-wise Object-wise
25% 35% 25% 35%

Cls - - - 97.3 94.1 96.6 92.9
Cls O - - 97.6 94.1 97.3 92.7
Cls O O - 99.2 95.3 98.6 95.5
Cls O O O 98.6 94.9 97.3 94.1
Reg O O - 89.3 84.0 88.3 84.5
Rot O O - 98.5 95.6 98.0 94.0

that Rot yielded slowly increased accuracy over epochs than Cls initially and Reg yielded overall slow

increase in accuracy over epochs. These slow initial convergences of Reg and Rot may not be desirable

for re-training on additional data.

2.5.4 Results for our proposed REM on the Cornell dataset

Table 2.2 shows the results of the ablation studies for our proposed REM with different components

such as rotation convolution (RC) and rotation activation (RA). RA can be obtained by using rotation

activation loss (RL) as show in Fig. 2.2. We observed that RC itself did not improve the performance

while RC & RA significantly improved the accuracy. Comparable performance was observed when using

RC & RA with Rot, but substantially low performance was achieved with Reg.

Table 2.3: Performance summary on Cornell dataset. Our proposed method yielded state-of-the-art pre-
diction accuracy in both image-wise (Img) and object-wise (Obj) splits with real-time computation. The
unit for performance is %.

Method Angle Type
Img Obj Speed
25% 25% (FPS)

Lenz [17], SAE Cls TSD 73.9 75.6 0.08
Redmon [13], AlexNet Reg OSD 88.0 87.1 13.2
Kumra [33], ResNet-50 Reg TSD 89.2 88.9 16

Asif [34] Reg OSD 90.2 90.6 41
Guo [14]#a, ZFNet Cls TSD 93.2 82.8 -
Guo [14]#c, ZFNet Cls TSD 86.4 89.1 -

Chu [18], ResNet-50 Cls TSD 96.0 96.1 8.3
Zhou [15]#b, ResNet-50 Rot TSD 97.7 94.9 9.9
Zhou [15]#a, ResNet-101 Rot TSD 97.7 96.6 8.5
Zhang [12], ResNet-101 Rot TSD 93.6 93.5 25.2
Our REM, DarkNet-19 Cls OSD 99.2 98.6 50

Table 2.3 summarizes all evaluation results on the Cornell robotic grasp dataset for previous works

and our proposed methods. Our proposed method yielded state-of-the-art performance, up to 99.2%
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Figure 2.5: Grasp detection results on the Cornell dataset for (a) Reg, a modern version of Redmon [13],
(b) Cls, a modern version of Guo [14], (b) Rot, a modern version of Zhou [15] and (d) our proposed
Cls+REM. (e) Ground truth labels in Cornell dataset. Black boxes are grasp candidates and green-red
boxes are the best grasp among them.

prediction accuracy for image-wise split and up to 98.6% for object-wise split, respectively, over reported

accuracies of the previous works that are listed in the Table. Our proposed methods yielded these state-

of-the-art performances with real-time computation at 50 frame per second (FPS). Note that AlexNet,

DarkNet-19, ResNet-50, ResNet-101 require 61.1, 20.8, 25.6 and 44.5 MB parameters, respectively.

Thus, our REM method achieved state-of-the-art results with relatively small size of DNN (20.8MB)

compared to other recent works using large DNNs such as ResNet-101 (44.5MB).

Fig. 2.5 illustrates grasp detection results on the Cornell dataset. Our proposed Cls+REM yielded

grasp candidates that were close to the ground truth compared to other previous methods such as Reg

and Cls.
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CHAPTER III

A Single Neural Network for Multi-Taskf

3.1 Related Works

Pre-deep learning era. Data-driven GD for novel objects has been investigated extensively [35]. Saxena

et al. proposed a machine learning (ML) based method to rank the best graspable location for all candi-

date image patches from different locations [36]. Jiang et al. proposed a 5D robotic grasp representation

by using a ML method to rank the best graspable image patch whose representation includes orientation

and gripper distance among all candidates [37].

Depth vs color information. There are several works that use depth information only or color infor-

mation only for GD. Johns et al. developed a method to estimate a grasp score (quality) from a single

depth image [38]. Dex-Net 3.0 was proposed to estimate robotic grasps for suctions from a depth image

(point cloud) trained with synthetic data [39]. There have been a couple of works to use depth images

only for closed-loop grasping [40, 41]. Morrison et al. demonstrated that using fast, lightweight neural

network was important for grasping dynamic objects [41]. There also have been some works using color

images only for GD. Since depth image is often quite noisy [42], only RGB images have been used

for learning 5D grasp representation from a color image [43] and for achieving almost state-of-the-art

performance [15].

OD with GD. Zhang et al. proposed a VMRD grasping dataset with object detection and object relation

and a Visual manipulation relationship network (VMRN) [19]. Based on SSD [44], an OD method,

VMRN extracted features and then predicted relationship of objects. Zhang et al. further developed
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multi-task robotic grasp networks for OD, GD and reasoning with VMRN [11, 12] based on the GD

work of Zhou [15] for grasping tasks in complex piles of objects.

3.2 Multi-task robot grasping

Prior to the challenging grasping operation that requires high-level inference, we first classify it as

a sub-problem to solve this problem, and then perform sub-optimization for each related problem first.

For this, the subproblems were first defined.

3.2.1 Single object robot grasping

A 5D robotic grasp representation is widely used for GD with a parallel gripper when a single 2D

image (RGB or RGB-D) is used [17,37]. This representation is a vector of {xgd, ygd, θgd,wgd,hgd} that

consists of location (xgd, ygd), orientation θgd, gripper opening width wgd and parallel gripper plate size

hgd.

3.2.2 Multi-task robot grasping

Grasping a specific target object in cluttered and stacking objects requires more than single object

grasping information and needs additional information such as object class and relationship reasoning

(see Fig. 1.2) for sequential grasp planning. We extended the 5D robotic grasp representation further to

include object class (clsgd) and stacking order (ordgd) among objects as follows:

{xgd, ygd, θgd,wgd,hgd, clsgd, ordgd}.

3.3 Reparametrization of 15D representation

We propose a 15D representation for multi-task robot grasping problem to exploit a single multi-task

DNN for OD, GD and reasoning altogether. Parameters related to OD are {xod, yod,wod,hod, clsod, prod}
and the parameters related to GD are {xgd, ygd,wgd,hgd, clsgd, prgd, θgd}. where prod is a probability

of an object existing and prgd is a graspable probability. The parameters of reasoning are {clsfc, clscc}
for ordering objects (ordgd). Father class (FC) and children class (CC) are labels under and over the

predicted target object, respectively. FC and CC are predicted of each grid.
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We propose the following reparametrization of OD and GD for robotic grasping in the piles of

objects:

OD = {txod, t
y
od, t

w
od, t

h
od, t

pr
od, t

cls
od },R = {tclsfa , tclscc }

GD = {txgd, t
y
gd, t

w
gd, t

h
gd, t

pr
gd, t

cls
gd , tθgd}

where xj = σ(txj ) + cxj , yj = σ(tyj ) + cyj , σ(·) is a sigmoid function, wj = pwj exp(twj ),hj =

phj exp(thj ), θgd = pθgd + tθgd, clsj = softmax(tclsj ), clsrs = σ(tclsrs ), prj = σ(tprj ), j ∈ {od, gd} and

rs ∈ {fc, cc}. Note that phj , pwj and pθgd are the pre-defined height, width, orientation of an anchor box,

respectively, and (cxj , cyj ) are the location of the top left corner of each grid cell (known). Thus, DNN for

GD of our proposed methods will estimate {txj , tyj , t
θ
j , t

w
j , thj , tprj } instead of {xj , yj , θgd,wj ,hj , prj}.

xj , yj ,wj ,hj are properly normalized so that the size of each grid is 1× 1. Lastly, the angle θgd will be

modeled as a discrete and continuous value instead of a continuous value.

3.3.1 Anchor box: w, h in each cell

Anchor box approach has been used for OD [25]. Due to re-parametrization with anchor box, es-

timating wj ,hj is converted into estimating twj , thj , which are related to the expected values of various

sizes of wj ,hj . Then, the best grasp representation among all anchor box candidates is selected for

the final output. Thus, re-parametrization changes regression problem into regression + classification

problem for wj ,hj . all the configuration of anchor boxes are selected empirically.

3.3.2 Anchor box: orientation in each cell.

While MultiGrasp took regression approach for θgd [13], Guo et al. converted regression problem of

estimating θgd into the classification for θgd among finite number of angle candidates in {0,π/18, . . . ,

17π/18} [14]. Zhang [45] proposed orientation anchor box so that the angle is determinded using classi-

fication as well as discrete anchor box rotations. Mean average precision (mAP) increased by 3% when

using orientation anchor box (4 angles) over angle classification on the VMRD.

3.3.3 Object class: cls in each cell.

When objects are stacked in a complex way, it becomes a difficult task to match OD result (detection

bounding box) with GD result without additional information such as object classes. For this task, object

class is predicted for each of grasp detection box result so that our proposed model can yield grasping

detection boxes, their grasping points and corresponding object classes. A softmax was selected for class

activation function through our self-evaluation ablation study that will be reported shortly.
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Figure 3.1: Proposed FCNN architecture based on Darknet.

3.3.4 FC and CC in each cell.

For inter-object relationship, we propose to predict FC and CC along with other detection results. FC

and CC are class labels under and over the target object, respectively. FC and CC consist of object class

labels and no-class label. (tclsfc , tclscc ) ∈ {class1, class2, ..., classnone}. In our experiment, we observed

that CC is more accurately estimated than FC. Thus, we only used CC for reasoning for the best possible

results.

3.4 Proposed FCNN with predictions across scales

Our proposed FCNN inherited pre-trained Darknet-53 of YOLOv3 for OD [20] and extended it for

multi-task OD with reasoning and GD as illustrated in Fig. 3.1. For our multi-task predictions, we did

not only adopted prediction across scales for OD using feature pyramid networks [46], but also extended

it for reasoning and GD.

On the low-resolution scale, three anchor boxes (w,h) for OD 1 anchor box for GD and 4 anchor

boxes for grasping angles are predicted as

(pwod, p
h
od) ∈ {(540, 540), (480, 480), (420, 420)},

(pwgd, p
h
gd) ∈ {(300, 300)}, pθgd ∈ {0,π/4, 2π/4, 3π/4}.

Then, on the mid-resolution scale after ×2 bilinear up-sampling, 3 anchor boxes for OD, 1 anchor box
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Figure 3.2: Schematic pipelines of Zhang [11, 12] vs ours. Mark ’N’ means neural network and ’P’
means post-processing.

for GD and 4 anchor boxes for grasping angles are estimated as

(pwod, p
h
od) ∈ {(360, 360), (300, 300), (240, 240)},

(pwgd, p
h
gd) ∈ {(100, 100)}, pθgd ∈ {0,π/4, 2π/4, 3π/4}.

On the high-resolution scale after ×4 up-sampling, the following anchor boxes for our multi-tasks are

predicted:

(pwod, p
h
od) ∈ {(180, 180), (120, 120), (60, 60)}.

OD with reasoning are performed across scales of ×1, ×2 and ×4 and GD are performed across

scales of ×1 and ×2. Therefore, 9 anchor boxes are predicted with 4 bounding box offsets, object

probability, object class (class number) and (class number+1)×2 reasoning classes (FC, CC) for OD

with reasoning. In addition, 8 anchor boxes are predicted with 4 bounding box offsets, orientation, grasp

probability and object class (class number) for GD.
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3.5 Reasoning post-processing: from class to index

Fig. 3.2 illustrates the differences between the works of Zhang [11, 12] and our proposed methods.

Previous work generated necessary information for OD with reasoning and GD. Deep neural networks

(N) generated local features or OD or GD or relationship among objects (FC, CC), respectively and

sequentially. However, as shown in [13], dealing with GD and classification often improves the overall

performance of GD. We propose a novel single network (N) to yield most information on OD and GD

with simple reasoning post-processing (P) for building hierarchy among objects.

For a generated global feature map including class information, bounding box information and FC

/ CC, reasoning post-processing can build index relationships using class information. Firstly, non-

maximum suppression is applied to GD and OD to eliminate unnecessary detection results. Secondly,

bounding boxes in OD and GD (bbod, bbgd) are grouped based on their class information (clsod, clsgd).

Then, the spatial information of bounding boxes are used for further grouping bounding box pairs for

OD and GD based on the IOU (Intersection Over Union) as follows:

IOU =
bbod ∩ bbgd
bbod ∪ bbgd

. (III.1)

Lastly, among GD candidates whose IOU exceeds a certain threshold, the best probability for GD is

selected to obtain the final OD / GD bounding box pair. Similarly, we compare object classes with child

classes already obtained in the model to get the relationships between them by matching boxes with IOU

threshold. With these technologies, we could make a object relation graph for robot grasping.

3.6 Loss functions

For the output vectors OD, GD and R of DNN and the ground truth (GT) ODgt, GDgt and Rgt, we

propose the following loss function to train our single multi-task DNN:

∑
i∈Ω

∑
j∈{od,gd}

{
∑

k∈{x,y,w,h}

MSE(kij , k
i
j,gt)+∑

k∈pr
(− log kij) +

∑
k∈clsob

FocLoss(kij , k
i
j,gt)}+

λn

∑
i∈Ωc

∑
j∈{od,gd}

∑
k∈pr

(− log(1− kij))+ (III.2)

∑
i∈Ω

∑
j∈R

∑
k∈clsfc,clscc

FocLoss(kij , k
i
j,gt)+∑

i∈Ω

∑
j∈gd

∑
k∈θ

MSE(kij , k
i
j,gt)
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where x, y,w,h, z are functions of tx, ty, tw, th, tz respectively, Ω is the grid cells where the object or

grasping object are located. Since clsfc and clscc are multi-classes and imbalance, we used focal loss

developed for training highly accurate dense object detectors (FocLoss) [47]:

FocLoss(pt) = −(1− pt)γ log pt (III.3)

Focal loss gamma is set to 2 and we set λn = 100.

3.7 Experimental Evaluations

We evaluated our proposed methods on the VMRD dataset [11], the Cornell dataset [16].

3.7.1 Implementation details

Darknet-53 was also implemented for the evaluations on the VMRD and for real multi-task robot

grasping of multi objects. Either stochastic gradient descent (SGD) with momentum of 0.9 or Adam

optimizer was used for training. Learning rate was 0.001 and mini batch size was set to 2. For self-

evaluation to optimize the model, total epoch was 50. Once the model is optimized, total epoch was set

to 100 with reducing learning rate by half every 30 epochs. Patch based training was performed with

the sizes of 608× 608 using data augmentation [11]. All algorithms were tested on the platform with a

single GPU (NVIDIA GTX1080Ti),a single CPU (Intel i7-7700K 4.20GHz) and 32GB memory.

3.7.2 Evaluations on VMRD and Cornell datasets

We performed benchmarks using the Cornell dataset [16, 17] as illustrated in Fig. ??. This dataset

consists of 855 images (RGB-D) of 240 different objects with GT labels of a few graspable / non-

graspable rectangles. We cropped images with 360×360, but did not resize it to 224×224. Five-fold

cross validation (CV) was performed and average prediction accuracy was reported for image-wise and

object-wise splits. When the difference between the output orientation θ and the GT orientation θgt

is less than a certain threshold (e.g., 30°), then IOU that is larger than a certain threshold (e.g., 0.25,

0.3) will be considered as a successful grasp detection. The same metric for accuracy has been used in

previous works [12–15, 17, 18, 33, 48].

VMRD dataset was used to train our single multi-task network. VMRD consists of 4233 train data

and 450 test data (RGB images) as illustrated in Fig. 3.3. In this dataset, there are 2-5 objects stacked in

each image and GT for OD with with class label & relationship index, GD with class label and FC / CC

labels. There are 31 object classes. If the IOU for predicted OD and GT OD is larger than 0.5 and the
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best grasping point for that object meets the above Cornell evaluation metric, it is considered as success

(mAP with grasp or mAPg) [11].

Figure 3.3: VMRD dataset.

3.8 Results

3.8.1 Simulation results on VMRD dataset

Table 3.1: Self-evaluation summary on VMRD.

Across scales Activation Loss Opt. mAPg (%)
1, 2, 3 Sigmoid Cross Entropy Adam 56.5
1, 2, 3 Softmax Cross Entropy Adam 63.1

1, 2 Softmax Cross Entropy Adam 64.9
1, 2 Softmax Focal Loss Adam 67.1
1, 2 Softmax Focal Loss SGD 69.2

Table 3.1 summarizes our ablation study results on the VMRD multi-task robot grasp dataset. The

method on the first row of Table 3.1 is an initial extension of YOLOv3 to multi-task robot grasping.

Then, by changing activation function, scale, loss function and optimization algorithm, we were able to

optimize our single DNN empirically for multi-task OD, GD and reasoning from 56.5% mAPg (mAP

with grasp) to 69.2% mAPg. The VMRD dataset seems unbalanced since there are 2061 notebooks and

93 chargers. Focal Loss gives small weights to well-classified examples while gives large weights to

some examples that are difficult to classify to focus on learning difficult examples.

Fig. 3.4 illustrates qualitative results for generating multi-task robotic grasps. Fig. 3.4(a) shows a

two-level stacking case and its OD, GD and reasoning results of our proposed method (bottom row) and

GT (top row). Fig. 3.4(b) shows another multi-stacking case of GT (top) and the output of our proposed

method (bottom). Note that GT contains an error in reasoning (Stapler is not on the Apple) while our

method corrected for it through training on many examples.
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Figure 3.4: Multi-task detection results for VMRD. The 1st row is GT and the 2nd row is the results of
our proposed methods. Note that our method yielded correct reasoning result for “Stapler” while GT
incorrectly describes it.

Table 3.2 summarizes the results of the results of previous methods [11, 12] and our proposed

method. Our proposed method yielded state-of-the-art performance of 74.3% mAP with grasp (mAPg)

at the fastest computation speed of 33.3 FPS for a high resolution input image (608×608).

Table 3.2: Performance summary on VMRD dataset.

Method mAPg (%) Speed (FPS)
Zhang [12] baseline, OD, GD 54.5 10.3
Zhang [12], OD, GD 68.2 9.1
Zhang [11], OD, GD, reasoning 70.5 6.5
Ours, OD, GD, reasoning 74.6 33.3

3.8.2 Simulation results on Cornell dataset

Fig. 4.1 illustrates qualitative results for generating robotic grasps using our methods without and

with predictions across scales. Both yielded fairly good grasp detection results, but there were often cases

with fine details where predictions across scales improved the results such as the case with scissors as

shown in Fig.4.1.

Table 3.3 summarizes the results of previous methods and our methods. Our proposed method with

RGB-D yielded state-of-the-art performance of up to 98.6% prediction accuracy for image-wise split

and up to 97.2% for object-wise split, respectively. Our proposed method with RGB also yielded com-

parable results to state-of-the-art methods. Note that our proposed method yielded these results with
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(a) Ground truth

(b) Ours without predictions across scales

(c) Ours with predictions across scales (proposed)

Figure 3.5: GD results on Cornell dataset using our methods without and with predictions across scales.

the smallest DNN and the fastest computation time of 16 ms per high resolution image (360×360) that

can be potentially useful for real-time applications or stand-alone applications with limited memory and

energy. Using depth and predictions across scales improved performance.
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Table 3.3: Summary on Cornell data (25% IOU).

Method Input
Image Object Speed

(%) (%) (FPS)
Lenz [17], SAE RGB-D 73.9 75.6 0.08
Redmon [13], Alexnet RG-D 88.0 87.1 13.2
Kumra [33], Resnet-50 RGB-D 89.2 88.9 16
Asif [48] RGB-D 90.2 90.6 41
Guo [14] #a, ZFnet RGB-D 93.2 82.8 -
Guo [14] #c, ZFnet RGB-D 86.4 89.1 -
Chu [18], Resnet-50 RG-D 96.0 96.1 8.3
Zhou [15], Resnet-50 RGB 97.7 94.9 9.9
Zhou [15], Resnet-101 RGB 97.7 96.6 8.5
Zhang [12], Resnet-101 RGB 93.6 93.5 25.2
Ours, Darknet-19 RGB 97.7 96.1 140
Ours, Darknet-19 RG-D 98.6 97.2 62.5
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CHAPTER IV

Toward Robot Demonstration in

Real-environment

4.1 Evaluation of multi-tasks OD, GD, reasoning with Baxter

We evaluated our proposed methods using a Baxter with 7-axis arms (Rethink Robotics, Germany,

see Fig. 4.1a) for three different scenarios of cluttered scene, stacking scene and complex invisible

stacking scene. In cluttered scene, it was recorded as success if the robot grasped the target in a single

try. In stacking and invisible scenes, it was recorded as success if the robot removed objects over the

target and then grasp the target. For the invisible scene with no target detected, the robot put away

overlapping objects one by one until the target is found. Prediction was performed separately between all

robot movements. All combinations of items, the target object and stacking orders are chosen randomly.

4.2 Evaluation of GD with 4-axis robot arm

We evaluated our proposed methods with a small 4-axis robot arm (Dobot Magician, Shenzhen

YueJiang Tech, China) for novel object grasping. The following 8 novel objects (toothbrush, candy,

earphone cap, cable, styrofoam bowl, L-wrench, nipper, pencil) were used for grasping tasks. If the

robot gripper grasps an object and moves the object to another place, it is counted as success.
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Table 4.1: Performance summary of grasping tasks for cluttered (CS), stacking (SS) and invisible (IS)
scenes.

#objects 2 3 4 5
CS - 86.7(13/15) 85.0%(17/20) 86.7%(26/30)
SS 80.0%(8/10) 60.0%(9/15) 55.0%(11/20) -
IS - 60.0%(9/15) 40.0%(8/20) 28.0%(7/25)

4.3 Results of Robot Evaluation in Real-envirionment

(a) (b)

Figure 4.1: (a) our real multi-task evaluation environment (Baxter). (b) our robot grasping experiment
with 4-axis robot.

4.3.1 Results of multi-task OD, GD, reasoning with Baxter

Fig. 4.2a shows the OD, GD and reasoning results of our proposed methods for different scenarios

such as (a) cluttered scene (CS), (b) stacking scene (SS) and (c) invisible scene (IS). For CS, the target

“Stapler” was successfully located with proper grasp. For SS, the target “Knife” and its related object

“Toothpaste” were well located with correct relationship reasoning. For IS, the target was not detected

due to occlusion, but as overlapped objects are removed based on the reasoning results (green arrow),

the target was finally detected at the step 3. Table 4.1 shows the performance summary of the results

of our proposed method with a Baxter robot. In CS, the accuracy was high, up to 86.7% regardless

of the increase in the number of objects. However, in SS, we observed that increasing the number of

objects decreases grasp success rate possibly due to the difficulties of FC, CC predictions among them

with severe occlusions. This phenomenon was also observed in challenging IS case. Fig. 4.2b show that

the results when the items are stacked. We target the knife at first step. After building the relationship
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among those objects, then firstly grasped the toothpaste and then re-try whole detection process and

conduct grasping. However in the stacking scene, we found that increasing the number of objects had a

significant effect on the accuracy, thus making a lot of changes in the child and father class predictions.

Fig. 4.2c show that the results when target item is invisible. It also can be demonstrated well(60%) but

the same effect appear.

4.3.2 Results of GD with 4-axis robot arm

Fig. 4.1b illustrates our robot grasp experiment with “nipper”. Note that due to small gripper and

small objects, grasp detection accuracy was important for successful robot grasping. Our proposed

method yielded 95.3% mean grasp success rate with 6.5% standard deviation for 8 novel, small objects

with 8 repetitions per each object.

4.4 Discussion

It was confirmed that the work was done well as long as the number of objects was limited by

putting off the work performed after the simple calibration work. However, in the stacking and invisible

scenes, it could be confirmed that the stack relationship of the object was still not fully inferred, and it

is believed that a way to improve the post-processing stage for the Real-environment manipulation part

could be further researched.
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(a) Cluttered scene (b) Stacking scene

(c) Invisible scene

Figure 4.2: Target grasp detection results in (a) cluttered scene, (b) stacking scene and (c) challenging
invisible scene.
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CHAPTER V

Conclusion

We propose the REM for robotic grasp detection that was able to outperform state-of-the-art methods

by achieving up to 99.2% (image-wise), 98.6% (object-wise) accuracies on the Cornell dataset with fast

computation (50 FPS) and reliable grasps for multi-objects [49].

We propose a single multi-task DNN that yields the information on GD, OD and reasoning among

objects with a simple post-processing [50]hods yielded state-of-the-art performance with the accuracy

of 98.6% and 74.2% and the computation speed of 33 and 62 FPS on VMRD and Cornell datasets,

respectively. Our methods also yielded 95.3% grasp success rate for single novel object grasping with

a 4-axis robot arm and 86.7% grasp success rate in cluttered novel objects with a humanoid robot.

However, we still got limitation, the multi-task dataset to which our algorithm fitted has many noisy data

and then it could lower the grasping accuracy in real grasping tasks.

But there are many remaining things to do for ultimate grasping. From our experiments, we found

that the direction in which the robot is driven and the final real robot processing is also affected by the

actual real environment factors such as unseen obstackles and hidden hinders. So, a research for solving

it should be focusing on the final operation of the robot which containing the orientation information

and actions with joints in real-time and keep interacts with real-environment via many sensors.
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