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Abstracts 

 

Various electrolyte additives containing trimethylsilyl (TMS) motif have been reported to remove HF 

formed by the decomposition of LiPF6-based electrolyte and suppress dissolving transition metal from 

the cathode in Li-ion batteries (LIBs). Among them, tris(trimethylsilyl)phosphite (TMSP) was used as 

a multi-functional additive that increases the cycle performance of LIBs by forming a stable cathode 

electrolyte interphase (CEI) layer by decomposing before the electrolyte as well as scavenging HF 

which present in electrolytes. However, we found that TMSP-containing electrolyte exhibited poor 

performance compared to baseline electrolyte that does not have a TMS motif on 80% Ni-containing 

LiNixCoyMnzO2 (NCM) electrodes. At this, we compared the cycle performance of TMSP-containing 

electrolyte using not only NCM electrode with 80% Ni content but also 60% electrode and LiCoO2 

(LCO) cathode with 80% nickel content. In addition, we propose the causes and mechanism of 

deterioration of additives with TMS motifs using NMR, SEM, and TEM analysis. 
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1. Introduction 

 

1.1. Principles Lithium-ion battery 

 

Lithium ion battery (LIB) is kind of rechargeable battery that lithium ions transfer from the cathode to 

the anode through the charging, and are in the spotlight as an energy storage device with great energy 

density and operating voltage and no memory effect. 

Lithium ion battery consists of cathode material, anode material, electrolyte and separator, and cathode 

active material is the most significant constituents for determining the capacity of a battery (Figure 1). 

Cathode such as LiCoO2 (LCO) and LiNixCoyMnzO2 (NCM111), which were widely used up to this 

time, showed excellent rate property or stability. However, these cathode materials have limitations that 

cannot achieve the high energy density required by the growing power grid/utility-energy storage 

systems (ESS), electric vehicles (EV) and electronic mobile devices (Table 1). To attain high 

gravimetric and volumetric energy, high capacity high nickel (Ni) oxide (LiNi1−x−yCoxMnyO2, 1−x−y ≥ 

0.8) is measured as the main materials for great energy density lithium-ion batteries. When Ni content 

is 60% (1−x−y = 0.6), the cathode can produce 170mAh/g, but when Ni content increases to 80% 

(1−x−y = 0.8), the cathode can produce 200mAh/g or more. [1]–[5] 
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Figure 1. Schematic of the commercialized secondary LIB. [6] 

 

 

 

 

 

Table 1. Characteristics of Commercial LIB cathode active materials. [7] 
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1.2. High nickel cathode problems and improvement plan 

 

High nickel cathode shows reversible capacity exceeding 210 mAh/g at a charge voltage of 4.3V 

versus Li/Li+, but suffers from harmful phase transition compared to Li/Li+ at 4.0V and above. The 

oxidation of H3-phase lattice oxygen results in irreversible O2 evolution from the cathode material and 

serious structural breakdown of cathode particles occurs. [8]–[13] Moreover, because the Ni2+ ion is 

transferred into the Li slab and the radius of Li+ and Ni2+ is similar, a cation mixture occurs in which 

the location conversion of Ni2+ and lithium ion takes place. Lithium ions thus cannot re-intercalation to 

the ordinary position through the prolonged cycle, resulting in capacity decay, mechanical degradation 

and thermal weakness. [14]–[17] Lithium species, which forms near the surface of the cathode, is very 

easy to react with H2O, CO or CO2 in the air, so lithium residue such as Li2O, LiOH and Li2CO3 are 

generated on the cathode materials surface. [18] These residual lithium cause uneven SEI layer by 

unanticipated chemical reactions with electrolyte solvents, and the gelation occurs, increasing the pH 

of the cathode slurry, which causes electrode failure. [16], [17], [19]–[23] Washing process and surface 

coating were considered to overcome the negative effects of lithium residue paper on high nickel 

cathode materials. [23]–[25] However, these strategies have not fully addressed the degradation of high 

nickel cathode occurred by lithium residue species. [23], [26], [27] The cleaning process reduced the 

amount of lithium in a high nickel cathode structure and also diminished the amount of lithium on the 

cathode surface. [28] The building of the expected cathode electrode interphase (CEI) layer by cathode 

electrolyte additives can make performance improvement of high nickel cathode while solving the 

problem related to residual lithium compounds. 
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Figure 2. Charge and discharge dQ/dV plot of three kinds of NCM cathodes with graphite anode full-

cells with notated phase transformations. [29] 

 

 

 

 

Figure 3. Cation mixed Ni2+ maintaining its physical structure during lithiation and delithiation. [30] 
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Figure 4. Capacity retention according to nickel content and microcracking on High nickel cathode. 

[31] 

 

 

 

 

Figure 5. (a) Schematic of the transformation of high-nickel cathode material surface materials in the 

atmosphere. (b) The configuration of the film layer of the high-nickel cathode surface. [32] 
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1.3. Apply TMSP electrolyte additive to High nickel cathode 

 

Through the various electrolyte additives, tris(trimethylsilyl) phosphate (TMSP) with good electron 

donation properties helps form CEI, which is inevitably produced by reaction with H2O of the LiPF6 

usually selected in electrolytes components in LIB, protecting the cathode surface from attacks from 

HF. [33], [34] Silicon in trimethylsilyl (TMS) functional group of TMSP has a high effect of reducing 

the acidity of electrolyte in response to fluorine anions of HF, reducing the solubility of conversion 

metals, and decreasing the resistance lithium fluoride quality (LiF) of CEI. In addition, phosphorus (III) 

structure of phosphate products can react with harmful HF overreactions forming P=O based 

compounds and phosphate-HF derivatives, and through reduced reactivity of POF3, various acids, such 

as H2PO3F and HPO2F2, can be produced through further hydrolysis. The TMS group added to the newly 

prepared LiPF6 electrolyte was considered to have no negative effect on battery cycle performance. 

In this paper, we indicate important things of the degradation of the role of expected TMS functional 

group in high nickel NCM811 cathode combined with anode which is graphite. A relative experiment 

of phosphite structure and boron-centered (B-core) comparatives with or non-TMS moieties in high 

nickel (NCM622 and NCM811) is led to inspect whether integrating TMS motifs into additives is useful 

method to ensure high performance of high nickel Ni-based cathode. The compatibility of TMS moiety 

with high nickel cathode is detected through electron microscopy, X-ray photoelectron spectroscopy, 

transmission electron microscopy, flight time secondary ion mass analysis, etc. Finding the function of 

additives existence of TMS moiety helps to build a stable interface layer that extends the life of the LIB 

with the High nickel cathodes and functional additive motifs that can clean unwanted HF. 
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Figure 6. HF, O2, H2O scavenging process and function of CEI layer formed by TMSP. [35] 
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2. Experimental 

 

2.1. Sample preparation 

 

Two types of Ni-rich layered oxide cathodes were used for the electrochemical evaluation of full cells 

coupled with graphite anodes (namely, LiNi0.6Co0.2Mn0.2O2 (NCM622)|graphite and 

LiNi0.8Co0.1Mn0.1O2 (NCM811)|graphite). NCM622 was prepared by mixing 92.5 wt % NCM622 as the 

active material, 4.5 wt % conducting materials (3 wt % carbon black (C65) + 1.5 wt % graphite (SFG6L)) 

and 3 wt % poly (vinylidene fluoride) (PVDF, Solef 5130) binder. The graphite anode coupled with the 

NCM622 cathode was composed of 96.6 wt % artificial graphite (S360) as the active material, 1 wt % 

artificial graphite (S360) as the conducting material and 2.5 wt % binder (1.4 wt % styrene-butadiene 

rubber (SBR, BM-451B, Zeon Co., Ltd.) and 1 wt % sodium carboxymethyl cellulose (CMC, MAC-

350H, Nippon Paper Industries Co., Ltd.). The NCM811 cathode was composed of 94 wt % NCM811, 

3 wt % carbon black (Super P) and 3 wt % PVDF (KF9300). The artificial graphite anode (SG17) 

coupled with the NCM811 cathode was composed of 95 wt % as the active material, 1 wt % carbon 

black (Super P) as the conducting material, and 4 wt % binder (2 wt % SBR and 2 wt % CMC). The 

mass loadings of the cathode and graphite were as follows: NCM622 (18 mg cm-2)|graphite (8.3 mg cm-

2) and NCM811 (10.2 mg cm-2)|graphite (7.1 mg cm-2). The baseline electrolyte presented that 1 M 

LiPF6 dissolved in a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl 

carbonate (DMC) (2/4/4, vol %) solvent with 1 wt % vinylene carbonate (VC). All solvents and salt 

were purchased from Soulbrain Co., Ltd. Additive-containing electrolytes were prepared by introducing 

0.5 wt % TMSP (Sigma Aldrich, >95%), tris(trimethylsilyl) phosphate (TMSPa, Sigma Aldrich, >98%), 

tris(trimethylsilyl) borate (TMSB, Sigma Aldrich, >99%) or trimethylphosphite (TMPi, Sigma Aldrich, 

>99%) to the baseline electrolyte. All the electrolytes were confirmed to contain less than 10 ppm of 

water by Karl Fischer titration (C20, Mettler Toledo). 
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2.2. Electrochemical testing 

 

The prolonged cyclic test of NCM cathode material such as NCM622 or NCM811 and LCO was 

performed using 2032 coin cells. The separator, which is 20 mm thick and 38% porous, was employed. 

Galvanostatic cycles of the entire cell consist of the cathode and graphite were tested between 2.7V and 

4.3V at 25°C (WBCS 3000). The entire cell was cycled at C/10, standard cycling at C/5 for 3 cycles at 

25 °C, and 1C for the following cycling with the same temperature condition. For NCM622 and 

NCM811, 1C matches to 185 mAh/g and 200 mAh/g, one-to-one. To examine the amount of leakage 

current of the electrolyte containing TMSP in the cathode, the half-cell NCM811 was conducted at 4.4V 

versus Li/Li+. 
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2.3. Characterization 

 

The residual electrolyte was rinsed from the electrode sample using DMC for post-analysis. The 

differences between composition of the solid electrolyte interphase (SEI) after the TMSP and the unused 

200 cycles were confirmed by the flight time secondary ion mass spectrometry (TOF-SIMS) at 

pressures below 1.1 x 10-9 mbar using a pulse 25 keV Bi+ primary beam of 1 pA. The results gained by 

TOF-SIMS were standardized by dividing the entire sum for standardization. A rectangular with a zone 

of 100 μm x 100 μm was perceived by deepness. A configuration of elements in the surface of electrode 

was identified by XPS (ThemoFisher, K-Alpha, hν = 1486.6 eV), which is investigating the substance. 

After 200 cycles test, electrodes and electrodes for XPS were set in sealed Al pouches in glove boxes 

and rapidly loaded to the XPS device. To check the additional reaction of TMSP with residue species, 

Li2CO3 or LiOH which was purchased by Sigma Aldrich was mixed to DMC as TMSP. The solution 

was stored for 24 hours at 25°C. After that, 31P NMR spectroscopy was conducted after filtration of the 

solution (400MHz, Bucker Avance 3HD). Tetrahydrofuran (THF)-contains d8 NMR solvents. Sectional 

samples for micro-cracking observation of NCM811 cathode were processed by the ion milling method 

(Hitachi IM4000). [36] Furthermore, the structural change of NCM811 was detected by STEM (JEM-

2100Fm JEOL). Electronic energy loss spectrophotometric measurements were made to examine the 

transformation in the cathode structure with the valence state of Mn, Ni and Co. VSP-300 Galvanostats 

and potentistat were used to measure total cell impedances. The exact amount of lithium residue species 

formed on NCM cathode surface was detected by potentiometer titrator (888 Titrando). 
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3. Results and Discussion 

 

3.1. Characteristics of additives with TMS moiety and degradation in High nickel cathode 

 

Figure 7a shows the chemical structure of organic phosphoric compounds and organoborone 

compounds with or without highly affinity TMS groups for HF to react Si-F bonds. [37], [38] The 

combination of Si atoms and O2 atoms in TMSP, TMSPa and TMSB additive is greatly decomposed by 

the reaction among TMS functional group and HF (Figure 7b). In Figure 7b, the phosphorus (III) atoms 

of phosphoric acid compounds such as TMSP and TMPi act as removing HF that occurs the SEI and 

CEI attack and the make resistant film through reactions with lithium ions. Another unexpected result 

of HF on cycle performance is that metal ions are decomposed from cathode to electrolyte by HF attacks. 

[39] Figure 8 shows that TMS motifs in TMSP, TMSPa and TMSB easily capture fluorine anions in HF. 

Comparing the comparative peak area (x) of HF for the intensity of internal reference additive (C6F6) 

shows that TMSP has strong reactivity than TMSB and TMSPa for HF. Comparison between TMS-

containing additives for NCM811 cathode capable of achieving great energy LIB was studied in the 

battery system of NCM811|graphite. Cells with non-TMSP electrolyte presented 88.6% Coulombic 

efficiency (CE) after pre-cycling, and 86.4% diminished capacity retention when cycling for 200 cycles. 

TMPi which has not TMS functional group maintained a discharge capacity of 85.3% similar when 

using the reference electrolyte. But, with TMS functional group comparatives showed a significant 

capacity dissipation in the entire cell when cycling was repeated (Figure 7d-f). Furthermore, the addition 

of TMSP and TMSPa provided poorer discharge capacities (194.8 mAh/g and 194.2 mAh/g) compare 

to baseline electrolyte (197.9 mAh/g) after pre-cycling. The existence of TMS functional group is likely 

to have caused this phenomenon because the electrochemical reversibility of the entire cell is not 

maintained. 

The addition of the TMSB gave rise to great potential during pre-cycling, causing the poorest capacity 

at the discharge of 191.6 mAh/g in the middle of the test comparatives (Figure 7c). Great potentials 

may be typically related to slow decomposition from NCM811 material and lithography to graphite 

anode. We estimated the TMSB produced high resistance SEI that interfered with the transmission of 

charges at graphite anode with NCM811 cathode. Determining the effects of TMS functional group on 

cycle ability by High nickel cathode, cycle tests of High nickel oxide cathode with a content of 60%, 

80% and with an electrolyte of 0.5 wt % TMSP were conducted. TMSP addition of 

LiNi0.6Mn0.2Co0.2O2(NCM622)|graphite cells reached 89.1% capacity rate with a high CE of 89.1%, 

99.5% higher than the retention rate obtained using the reference electrolyte (86.2%). 
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Figure 7. Molecular structures of four additives (a) TMSP, TMSPa, TMSB and TMPi. (b) The expected 

effect of TMSP electrolyte additive: HF removal through TMS functional group and phosphite structure 

(c) Voltage profiles of NCM811/graphite during pre-cycling and (d) cyclic performance of 

NCM811/graphite (e) Coulombic efficiency and (f) capacity retention in NCM811/graphite cell system. 
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Figure 8. 19F NMR spectra of (a) 1 M LiPF6 in EC/EMC/DMC (2/4/4, vol %) + 1 wt % water (Ref) and 

addition of the electrolytes, (b) 0.5 wt % TMSP, (c) 0.5 wt % TMSPa, and (d) 0.5 wt % TMSB in 1 M 

LiPF6 and EC/EMC/DMC (2/4/4, vol %) + 1 wt % water stored for 24 h at 25 °C. The x value is obtained 

by comparing the integral intensity of the internal reference C6F6 and HF. 

 

 

 

Figure 9. During 100 cycles (a) cyclic performance, (b) cell Coulombic efficiency, and (c) capacity 

retention of LiCoO2/graphite full cells presence and absence 0.5 wt % TMSP 
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3.2. TMSP performance difference according to cathode type 

 

LiCoO2 (LCO)/graphite containing TMSP additive electrolyte did not record cycle performance 

degradation (Figure 9a). In addition, in Figure 9b,c, better CE and capacity of discharge were obtained 

from electrolytes containing TMSP. The results showed that TMSP does not degrade the capacity 

retention of LCO with a small amount of LiOH content in the entire active material. However, when 

cycling for 200 cycles, TMSP produced severe capacity failures and un-uniform CEI of NCM811 and 

provided disappointing retention of 77.3%, which is poorer than the total cell (86.4%) absence of TMSP 

(86.3%) (Figure 10b,d). The charging and discharging voltage graphs for 200 cycles are presented in 

Figure 11. Obviously, using of NCM811/graphite full cell has brought about a severe drop of the voltage 

plateau with continuous cycles compared to the entire cell without TMSP, representing the negative 

effect of TMSP on NCM811 cathode. Contrary, the middling discharge voltage plateau remained about 

3.7V for the entire cell with an NCM622/graphite at 0.5% TMSP (Figure 11a,b). It might be considered 

that the amount of residue species of the high-nickel NCM increases with its contents. The most 

noticeable difference between NCM622 and NCM811 cathode was 1700 ppm of NCM622 and 4190 

ppm of NCM811 as the amount of LiOH. In Figure 10e,f the flight time secondary ion mass 

spectrometry (TOF-SIMS) showed a bright area present to LiOH and Li2CO3 in NCM811 cathode. The 

results show that the NCM811 cathode contains a huge amount of lithium residue species. However, 

NCM622 cathode presented a comparatively low content of LiOH and Li2CO3 in cathode due to 

comparatively un-strong OH- and CO3
- peak intensity. NCM622 at 1700 ppm LiOH undergo unwanted 

decomposition of TMSP (Figure 12). TMSP did not participate in the reaction with residual lithium 

which constructs in CEI at the cathode. CEI derived from TMSP mitigated continuous electrolyte 

decomposition and reduced micro-cracking of NCM622 cathode. The increased content of LiOH in 

NCM811 particles was combined by primary particles of hundreds of nanoscale size and caused 

reactions with PF5 produced by the self-analytical decomposition of LiPF6 (Figure 12b). In Figure 12b, 

this reaction reinforced the production of HF that attacked SEI and CEI during repetitive cycling. Even 

worse still, it is possible that the LiOH of NCM811 occurred the decomposition of TMSP to produce 

TMSOH and insoluble compound Li3PO4. 
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Figure 10. (a,c) Electrochemical cycle test of NCM622/graphite and (b,d) NCM811/graphite. 2D TOF-

SIMS images of surface mapping of the pristine cathode. The intensity of (e) OH- and (f) CO3
- which 

presented in the NCM622 or NCM811 electrode. 
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Figure 11. Voltage profiles of full cells that consist of (a) NCM622/graphite and (b) NCM811/graphite 

by cycles (1st, 10th, 50th, 100th, and 200th cycle) in the baseline electrolyte and 0.5 wt % TMSP-added 

electrolyte. 

 

 

 

Figure 12. Schematic of overall effects of using TMSP in NCM622 and NCM811. 
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The LiOH-occurred decomposition of TMSP interfered with the net function of TMSP to construct 

uniform CEI to ensure cathodic stability. [40] On the NCM811 positive surface, un-uniform CEI did 

not protect from HF, exacerbated the disassembly of the dissolving TM and produced inhomogeneities 

in the levels of charging and discharging among the cathode particles. As a result, NCM811 active 

material with TMSP suffered irreversible stress-induced micro-crack (Figure 13a,b). NCM811 The 

electrolyte diffusion into a micro-crack of secondary particles continues unwanted decomposition of 

electrolyte in cathode materials and byproduct causes electrical disconnections between cathode 

particles. Different from TMSP electrolytes that triggered severe micro-crackers, in the baseline 

electrolyte, micro-cracks of NCM811 cathode was not severe after pro-longed cycles (Figure 13d,e). In 

Figure 13c,f, NCM811 cathode had a relatively greater thickness of 0.5wt% TMSP (46.6 mm) than that 

of cathode using baseline electrolyte (45.3 μm). In addition, uneven CEI formed by TMSP-contained 

electrolytes may worsen structure conversion (H2 → H3) for the NCM811 cathode. 

 

 

 

 

 

Figure 13. Cross-sectioned SEM images of NCM811 cathodes with (a,b,c) 0.5 wt % TMSP-added 

electrolyte and (d,e,f) baseline after 200 cyclic test. 
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3.3. Proposed mechanism of TMSP decomposition by residual lithium 

 

The influence of TMS functional group reaction between phosphite structure containing residue 

lithium species was examined by NMR study, and residual lithium which is LiOH and Li2CO3 was used 

to DMC solvent with TMSP additive and DMC solvent with TMPi additive, and the subsequent solution 

was stored for 24 hours. The TMSP peak, which was clearly visible in a solution without residual lithium, 

looked the same when Li2CO3 was added, but the TMSP peak completely disappeared when LiOH was 

added at 113.9 ppm (Figure 14a). [41] TMSP with non-maximum phosphatase (III) is liable to react 

with an oxygen molecule to produce a stable phosphate compound of TMSPa. [42] Due to the high 

degeneration of TMSP, it forms bis(trimethylsilyl)phosphite ((TMSO)2PHO) by reacting with the 

moisture of DMC solvent. This substance reacts with moisture and oxygen again to form (TMSO)2OPO- 

and ((TMSO)2OPOPO(TMSO)2). [41], [43], [44] Especially TMSPa in PO4 detected around -13.6 ppm, 

(TMSO)2PHO at 7.56 ppm and ((TMSO)2OPOPO(TMSO)2) at -24.9 ppm which does not discovered 

when TMSP with LiOH solution. It is the reason why the electron-like TMS served as a receptor for 

OH- in LiOH mixed to DMC with TMSP. Moreover, TMSP is mostly converted to TMSOH, so there is 

no peak in the spectrum corresponding to LiOH, an insoluble compound such as Li3PO4. This 

phenomenon is the same in TMSB with LiOH solution (Figure 15). However, when using TMPi additive 

in DMC solution, the TMPi peak does not change adding residual lithium LiOH or Li2CO3 (Figure 14b). 

TMPi is an additive that does not have a TMS group. Comparing the data of the 31P NMR could be 

incidental with TMS moiety in TMSP additive that has chemical reaction with LiOH, a residual species 

of the high-nickel cathode. The possible responses between TMSP with LiOH include the production 

of TMSOH and Li3PO4 and may experience additional reactions with an oxygen molecule, as shown in 

Figure 14c. The TMSOH hydrolyzed PF5 produced from the self-analytical decomposition of LiPF6 and 

generate HF, and the sensitive molecule POF3 produced by the reaction of TMSOH and PF5 may induce 

deterioration DMC and EMC which is linear carbonate solvents in the electrolyte. 
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Figure 14. Spectra of 31P NMR the (a) DMC with 2 wt % TMSP additive and (b) DMC with 2 wt % 

TMPi additive which added 2.5 wt % residue lithium species (LiOH/ Li2CO3). (c) TMSP decomposition 

caused by LiOH residual lithium (d) Anticipated reaction mechanisms on carbonate-based solvents 

through TMSOH produced from the chemical reaction in TMSP and LiOH. 
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To deep understand the response between the TMS moiety fixed in high nickel cathodes and LiOH, an 

11B NMR study of DMC with 2 wt % tris (trimethylsilyl) borate (TMSB) adding LiOH or Li2CO3 was 

conducted (Figure 15). A peak due to 18.5 ppm of TMSB of DMC + TMSB solution was not detected 

in LiOH because the TMS group of TMSB responded with OH in LiOH. The reaction with H2O of 

LiPF6 salt-induced by TMSOH is figured in Figure 16 of 1 M LiPF6 in EC/EMC/DMC (2:4:4, volume %) 

measurements of 19F and 31P NMR, added or unadded TMSOH when being stored for 24 h. The marked 

double peak was -75.3 ppm and -74.0 ppm due to PF6 anions was shown (Figures 16a,b). Generally, 

PO2F2
- is produced in response to a small amount of water in PF5. [45], [46] Interestingly, strong peaks 

of -84.0 ppm and -85.9 ppm allocated to PO2F2
- were noticed in the addition of TMSOH (Fig. 16c). It 

is possible that PO2F2
- was generated in response to the creation of TMSOH and the formation of TMSF 

(Trimethylfluoroide, TMSF) with PF5. In addition, signals corresponding to the TMSF formed by 

responses from PF5 and TMSOH were detected for 1 M LiPF6 in EC/EMC/DMC (2:4:4, volume %) at 

1 wt % of TMSOH (2/4/4, volume %) (Figure 16b). Figure 17 shows how TMSOH progresses in TMSP. 

In DMC, a spectrum of TMSOH is delivered to identify the formation of TMSOH by the chemical 

reaction between LiOH and TMSP (Figure 17a). 1H NMR analysis showed that 2 wt % of TMSP was 

completely transformed to TMSOH and hexamethyl disiloxane (TMSOTMS) with 2.5 wt % LiOH at 

the DMC solution (Figure 17b). [40], [47] It confirms that LiOH aggressively decomposes TMSP during 

TMSOH generation. Obviously, the reaction between LiOH and TMSP on NCM811 (Figure 12b) ends 

up in the disappointment role of TMSP. 

 

 

Figure 15. Spectra of 11B NMR of DMC with 2 wt % TMSB added 2.5 wt % LiOH/Li2CO3. 
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Figure 16. 19F and 31P NMR spectra of 1 M LiPF6 in EC/EMC/DMC (2/4/4, volume %) (a) absence and 

presence (b) with 1 wt % TMSOH stored after 24h. (c) Anticipated chemical reactions with TMSOH 

and TMSF, POF3 and HF which produced from PF5. 
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Figure 17. 1H NMR spectra of the (a) TMSOH in the DMC and (b) 2 wt % TMSP + 2.5 wt % LiOH in 

DMC after storage for 24 h at 25 ℃. 

 

Additional verification of the undesirable effects of TMSOH is detected through a relative experiment 

of the cycling performance of the full cell consisting of graphite anodes of 0.5 wt % TMSOH and 

NCM811 cathode (Figure 18). In TMSOH-added electrolyte induced generating of HF by hydrolysis of 

LiPF6, which dissolving of transition metal from NCM material and attacking the film of electrodes, 

resulting in lower cycle stability compared to that obtained using reference electrolytes. TMSF peak -

158.6 ppm shows that HF produced from an electrolyte containing LiPF6 can be removed when using 

TMSOH (Figure 19). In Figure 20a, adding TMSP had a bad effect on the oxidation stability of 

electrolytes. The rise in the oxidation current of the TMSP means that unrepairable electrolyte damage 

of 4.4V versus Li/Li+ occurred at NCM811 cathode, and permanent damage of CEI occurred. This 

ununiformed Ni-rich cathode with TMSP additive is supposed to reduce the cycle performance of Ni-

rich cathode combined with a graphite anode. Furthermore, TMSP makes a resistive interface 

(insulating layer (Ri) + charge-transfer resistance (Rct) of CEI and SEI) in NCM811 surface (Figure 

20b). Due to the high reactivity of TMSP to LiOH, an uneven surfactant layer was developed for the 

NCM811 cathode, thus accumulating resistive by-products inside the NCM811 cathode, destroying 

secondary cathode particles. It also shows a resistive film has been built on NCM811 cathode in TMSP-

containing electrolyte. The phase conversion range at about 4.25V (H2 + H3 phase), which added to 

the structural deformation of Ni-rich cathode, enlarged significantly for NCM811|graphite in TMSP-

containing electrolyte (Fig.20c,d) during charging. Clearly, TMSP strengthened unstable H3 phase 

formation, inducing micro-crack of NCM811 cathode. 

 

 

 



32 

 

 

 

Figure 18. During 150 cycles (a) Cyclic performance, (b) cell Coulombic efficiency, and (c) capacity 

retention of NCM811/graphite full cells presence and absence 0.5 wt % TMSOH at 25 °C (charge and 

discharge rates: 1C). 

 

 

 

Figure 19. 19F NMR spectra of 2 M LiPF6 in EC/EMC/DMC (2/4/4, vol %) (Ref) presence and absence 

1.5 wt % TMSOH before storage (fresh) and after storage for 10 h at 25 ℃ in the ranges (a) -90 – -80 

ppm, (b) -170 – -150 ppm and (c) -200 – -180 ppm.  
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Figure 20. (a) Leakage current plot for Li|NCM811 half-cells at a constant voltage of 4.4 V vs. Li/Li+. 

(b) Comparison of EIS from the NCM622 and NCM811 with graphite anode after pre-cycle. 

Differential capacity profiles (dQ/dV plots) for NCM811/graphite anode full cells with the (c) baseline 

and (d) 0.5 wt % TMSP-containing electrolyte during charging. The dQ/dV plots are presented for 

selected cycle numbers (1st and 2nd cycles and every 10 cycles) for 200 cycles. 
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3.4. Analysis of degradation 

 

The harmful effects of TMSP on NCM811 cathode were revealed through a transmitting electron 

microscope (STEM) image. In addition, fast Fourier transform (FFT) analysis supports them (Fig. 

21a,b). The phase conversion to electrochemical inert rock-salt (NiO like) phase occurred in large 

quantities of NCM811 on the surface. In Figure 21a, STEM images and FFT patterns show that 

NCM811 cathode baseline electrolyte NiO like phase (A area) about 2.8nm and a clear-layered structure 

(B area) remaining detection part. The rock-salt area was greatly converted to 7.6 nm with electrolyte 

to which TMSP was added, and Ni-O like phase (C area) and layered structure (D area) were identified 

by FFT pattern. The EELS results support the degradation when using TMSP additive on the phase 

transition of NCM811 cathode. [48], [49] The clear peak at about 529 eV indicates the gap between the 

O2 existing in the O site and the transition metals. [50] The NCM811 cathode with reference electrolytes 

showed an unclear O-K peak was observed up to 3 nm. (Figure 21c). However, in the TMSP-containing 

electrolyte, an unclear O-K peak was observed up to about 7 to 8 nm. (Figure 21d). A comparative 

analysis of X-ray diffraction (XRD) in cathode finished cycles presented the intensity ratio of (003)/ 

(104) (I(003)/I(104)) of NCM811 after 200 cycle in the non-containing TMSP (0.397) more higher 

compared to TMSP-containing electrolyte (0.359). [51] Due to cycling of NCM811 with TMSP was 

inhibited during delithiation, reducing the discharge capacity of the entire cell. Moreover, when using 

TMSP on NCM811 cathode, the degree of divisions for (106)/(102) or (108)/(110) was higher (Figure 

22c,d). This severe division means alteration to the rock-salt phase. [52] For NCM811 cathode with a 

TMSP of 0.5%, this result confirms that converted to the rock-salt structure occurred more practically 

and by reducing the mechanical strength of NCM811 cathode, NCM particles experienced micro-

cracking in the process of charging and discharging. To investigate the degradation effect on the cathode 

electrode when using TMSP, evaluation of the 3D depth TOF-SIMS analysis of some species obtained 

from NCM811 cathode cycled using 0.5% TMSP presence and non-electrolyte was conducted. The 3D 

visualization of NCM811 cathode showed an additional strong signal equivalent to P-, PO2
- and PO2F2

- 

at TMSP after 200 cycles (Figure 21e). Obviously, PO2
- peaks were significantly stronger in film of 

NCM811 cathode at TMSP. PO2F2
- peaks were positioned on the CEI surface layer of NCM811 cathode, 

and LiF2
- species existed on both the external and bottom of cathode. This data means that the TMSP 

caused an undesirable chemical decomposition with LiOH at NCM811 and formed phosphorus-rich 

species over additional breakdown. The result also showed that TMSOH reacts with PF5 to produce 

POF3. PO2F2
- was formed through a lateral reaction of POF3 with a bit amount of H2O in batteries in 

Figure 16c. It shows 0.5% TMSP-containing electrolyte has achieved remarkable production of P-, PO2
- 

and PO2F2 like on the cathode face while charging and discharging. This unanticipated reaction 
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encouraged by TMSP additive at Ni-rich cathode is likely to have been further exacerbated by HF 

attacks and phase conversion, as the uniform CEI has not been established. 

 

 

 

Figure 21. STEM images of the 200 cycled NCM811 cathodes (a) not containing and (b) containing 

0.5 wt % TMSP with FFT image. 520 eV – 550 eV range of EELS spectra of (c) baseline electrolyte 

and (d) 0.5 wt % TMSP-containing electrolyte. (e) 3D depth TOF-SIMS images for species that P-, PO2
-, 

PO2F2
- and LiF2

- ions of NCM811 cathodes of baseline and with 0.5 wt % TMSP electrolyte. 
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Figure 22. XRD analysis data of the pristine NCM811 cathode and 200 cycled NCM811 cathodes with 

and without 0.5 wt % TMSP additive in the following 2θ ranges: (a) 10–80°, (b) 10–50°, (c) 37.5–39°, 

and (d) 63–67°. 
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Ex-situ-XPS were taken to determine the role of TMSP on the CEI and SEI components. C 1s spectra 

from NCM811 cathode in TMSP-added electrolyte presented -C-H- (284.9 eV), PVDF (286.4 eV), -C-

O- (287.2 eV), -O=C-O- (288.6 eV) and PVDF (290.5 eV). F 1s spectral deconvolution to NCM811 

cathode at TMSP showed a comparatively big intensity of LiF at 684.9 eV. TMSP failed to successfully 

remove HF in LiPF6-based electrolyte due to unwanted reactions with LiOH in NCM811, and may have 

formed LiF in the cathode. Obviously, in Figure 23a, TMSP managed to the construction of P-O derived 

film, representing the presence of unstable CEI encouraged by TMSP in NCM811 cathode (P 2p). The 

results confirm that unanticipated decomposition occurred in TMSP between LiOH at the NCM811, 

resulting in PO2F2
- that could make P-rich film through additional decay (Figure 16c). In O 1s and P 2p 

spectra, the anode with TMSP is covered by a comparatively high proportion of C=O component 

derived using VC conserved after 200 cycles and SEI species derived from TMSP (Figure 23b). 

Undoubtedly, TMSP successfully defends graphite anodes with VC additive despite the fact 

decomposition of LiPF6 in graphite. The F 1s spectrum supports that the Li-F intensity of SEI in the 

anode with a TMSP is weaker than the LiF signal of graphite without TMSP additive. This probable 

due to TMSP's contribution to cleaning up the HF that forms LiF in response to Li-ions. XPS results 

presented that at NCM811 during cycling, TMSP operated the boundary construction of CEI over 

undesirable responses with residual species as LiOH, and the result also displayed that CEI degraded 

the cycle performance of the cathode. 
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Figure 23. XPS spectra for C 1s, F 1s and P 2p of (a) 200 cycled NCM811 cathodes cycled in baseline 

electrolytes and 0.5 wt % TMSP-containing electrolyte. O 1s, F 1s and P 2p of (b) 200cycled graphite 

anodes cycled in baseline electrolyte and 0.5 wt % TMSP. 
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3. Conclusion 

 

Including TMS moieties, the usage of electrolyte additives, in lithium-ion batteries with NCM811 

cathode presented numerous issues, including undesired reactions between residue lithium species, the 

production of TMSOH from LiOH to cathode producing HF in response to PF5, and the accumulation 

of layers of non-uniform interfaces. In particular, HF generated by the reaction between PF5 and 

TMSOH can be accelerated with TMSOH. TMSP-induced CEI for NCM811 cathode caused serious 

micro-cracks of cathode particles by unbalanced charging and discharging reactions and worsened 

permanent phase changes. From the experiment of surface chemistry of electrodes and probable 

reactions, we suggested the basic mechanism of electrolyte additives with TMS moiety, which 

exacerbates the cyclic performance of NCM811 cathode in the cell. My study gives to planning a 

possible mechanism for battery failure and developing the design of electrolyte additives to figure out 

well-established CEI or SEI. We offered the usage of electrolyte additives like trimethylsilyl functional 

groups in lithium-ion full cells with NCM811cathodes has some difficulties, like undesired reactions 

with residual species, forms TMSOH from lithium hydroxide that reacts with PF5 to yield CO2 gas, and 

the buildup of unfavorable CEI layers in NCM811. Remarkably, HF formed from the reaction between 

TMSOH and LiPF6-based electrolyte can be removed by TMSOH. Obviously, TMSP-derived 

interphase motivated micro-cracks on the cathode produced by continuous structural and volume 

changes through cycling and worsened the irreparable phase transition in the cathode. In XPS and NMR 

analysis, we planned the fundamental chemical reactions of the electrolyte additive with TMS 

functional groups degrading the cyclic life span of NCM811 cathode. Our study gives to planning 

thinkable mechanisms for degradation in batteries and to proceeding the strategy to layout additives to 

accumulation a safe interface of cathode and anode. 
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