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Abstract

The development of models for process outcome prediction using event logs has evolved with

a clear focus on performance improvement. In this thesis we take a different perspective, focusing

on obtaining interpretable predictive models for outcome prediction. In particular, we propose a

method based on association rule mining, which results in inherently interpretable classification

models. While association rule mining has been used with event logs for process model approxi-

mation and anomaly detection in the past, its application to outcome-based predictive model is

novel. The proposed method defines how to pre-process logs, obtain the rules, prune the rules

to a limited number that can be handled by human decision makers, and use the rules to predict

process outcomes. The experimental results on real world event logs show that in most cases the

performance of the proposed method is aligned with the one of traditional approaches, with only

a slight decrease in some cases. We argue that such a decrease of performance is an acceptable

trade-off in return for a predictive model that is interpretable by design.
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I Introduction

A business process comprises the series of operations conducted by an organization to achieve

a given business goal. Business goals are the backbone of the organization to define the major

objective of establishment and describe the essence of business. Typical examples of business

process are patient diagnosis and treatment in a hospital or raw materials procurement in a

traditional manufacturing companies. While performing these actions, organizations monitor

their productive efficiency, modifying the business process to increase the probability of business

goal accomplishment whenever necessary. Business process management (BPM) comprises a set

of management tasks intended to guarantee that the process outcome maximizes the organiza-

tion’s benefit and to reduce the risk of missing the goal, e.g., analysis of bottlenecks of diagnosis

waiting time in a hospital to enhance patient satisfaction or supply chain optimization in a

procurement process to achieve cost reduction [2].

As business processes are executed, events capturing the activities executed in them can be

generated and stored in a database. Process mining is a technique that aims at understanding

these events and utilizing them to analyze the outcome and conformance of business processes [2].

Process mining includes process discovery, to discover visual models of the business processes,

conformance checking, to check the extent to which the events generated by the execution of a

process fit a process model, and process enhancement, i.e., analyzing event data to decide how to

improve a process. Process mining is an academic discipline that has recently gained increasing

traction in industry. The global process analytics market size was USD 190.14 Million in 2018

and the market capitalization is projected to grow at USD 4,759.24 Million by 2026 [3].

One of the emerging process mining techniques [4] is predictive process monitoring, which

aims at building predictive models of various aspects of interests in a process. Regarding “aspects

of interest in a process”, predictive models are trained using event logs, i.e., collections of events

logged during the execution of business processes, to predict the next activity that will be

executed in running process cases [5], the expected time at which process cases will terminate [6],

or a given outcome of process cases, for instance whether they will satisfy or not given execution

constraints or service level objectives. More in general, any recorded information about events

or activities could be the objective of a predictive model. For instance, a synthetic process

outcome label may be defined by a data analyst based on domain-specific attributes available

in an event log.

Beyond creating more accurate and higher performing predictive models, the data mining

research is increasingly shifting its focus towards explainability and interpretability of predictive

models. Predictive models that lack transparency provide users with answers, but leave them

without a real understanding of the input and output causal relation behind the model [7]. As

decision makers, users would like to perceive the logic of predictions from the moment a predictive

model is created. This allows users to feel more confident when using the predictions to take

decisions and when defending, if necessary, the decisions that they have taken. Explainability
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and interpretability are obviously relevant also for predictive process mining where users, for

example, may require to understand why a particular model predicts a particular activity to be

the next one that will be executed based on the previously occurred events.

There are two ways to approach interpretability of machine learning models [7], i.e., inter-

pretable model extraction and post-hoc explanation. The former implies to generate models that

are inherently interpretable, such as rule-based models and, to a lesser extent, decision trees.

The latter aims at explaining what type of knowledge has been acquired by models during the

training, e.g., explaining the values obtained for weights and biases in a neural network in a

human-interpretable way [8]. Post-hoc explanation exploits knowledge from the parameters of

trained models and presents the acquired information in human-interpretable manners to the

users. One way to interpret traditional machine learning method is understanding the input

feature weight in terms of frequency, coverage, and accuracy to trained model by adding or

excluding the features. Post-hoc explanation is also typical in deep learning models, which have

been for long considered black box, where providing global explanations is more challenging than

with more traditional machine learning techniques because of the complex structure, i.e., layers

and hyperparameters, of the learning model.

In the predictive process monitoring field, several approaches to understand the trained

model following the post-hoc explanation paradigm have been proposed. Previous research

has mainly utilized deep learning models and calculated the feature importance weight from

parameters from model layers, e.g., in the case of next activity prediction with Gated Graph

Neural Networks (GGNN) [9] or estimating the running case outcome using LSTM models [10].

In case of the next activity prediction, parameters in neural networks are modified to classify

historical executed activities weight into hierarchical groups to measure their impact on next

activity prediction. Other examples of post-hoc explanation in predictive monitoring will be

discussed more in depth in Chapter 2.4.

In this thesis, we propose to adopt a different paradigm to achieve explainability of mod-

els, i.e., interpretable model extraction. In particular, we consider the use case of predicting

process outcomes using an association rule-based prediction model. Association rules provide

a monotonic representation of relations in a dataset that delivers intuitive comprehension to

users [11]. In the proposed approach, in a pre-processing stage, case and event level attributes,

including process outcomes, are encoded into input vectors; then association rules are extracted

and, specifically, we consider only the rules that contain the outcome labels in their consequent.

Next, significant rules sorted by support level are pruned in order to retain a limited number of

rules to determine (predict) the outcome of running cases. Depending on the number of rules

that they satisfy, incomplete/running cases are classified either to have a positive or negative

outcome.

We also propose a visual approach to support user interpretability of the predictive models.

This approach comprises a way to visualize the rules composing a prediction model and a different

way to visualize effectively how the rules of the model are activated (or not) to predict the
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outcome of each individual running case. The significant association rules construct visualization

method of predictive model in network graph form which has features and its frequency as node

and edge respectively. For predicted case explanation, event and case attributes are illustrated

in a dependency graph from start to final event and label-rule list with colored attributes and

rules which fulfill the condition.

The thesis is organised as follows. Chapter II reviews background and the related work.

Chapter III formalises the problem of outcome prediction, discussing the proposed approach

and introducing the proposed framework of in detail. Experimental results on real world event

logs and visualization methods are presented in Section IV and conclusions are finally drawn in

Section V.
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II Background and related work

In this chapter research background and related work are discussed to reveal where this research

is positioned. We review here the literature about business process management and process

mining and, more specifically, research contributions in the area of predictive monitoring, which

is the focus of this thesis. This chapter is organized as follows. Section 2.1 reviews the busi-

ness process and process mining in the general scope. Outcome predictive monitoring, one of

the research topics on process mining, is discussed in Section 2.2. Section 2.3 introduces the

application of association rule mining in the predictive data mining field as well as in process

mining and the papers regarding interpretable predictive models in process mining are discussed

in Section 2.4.

2.1 Business process management and process mining

In this section, first, we will discover what is process mining and business processes management.

Then, the main use cases of process mining will be analysed, i.e., process discovery, conformance

checking, and predictive monitoring.

Considering the relation between process mining and business process, it would be advised

to figure the definition of business process before discussing process mining. Business process

is a standardized set of activities from an organization, for example, a company or hospital,

which operates through flows of events to achieve business goals [12]. One example scenario

of business process is patient diagnosis process in hospital. To manage operation efficiency, a

hospital records activities of patients from the beginning of diagnosis and treatment to the end

of process (patient dismissal). For example, the process for a single patient may begin with

reserving a doctor appointment and include seeing a doctor, collecting medicine from pharmacy,

and finishing with payment.

Figure 1: BPMN 2.0 example

A hospital may design the patient diagnosis process as shown in Figure 1 and observe how

patients act regarding to the business process model, which is the blueprint of the process. Each

patient’s behavior according to the business process model is an instance of this process. [12]

Table 1 is an event log of patients in the patient diagnosis process. The event log may have

been collected, for instance, from the logs of the information systems of the hospital supporting

the execution of the process. The event log contains a patient identifier, activity, and timestamp
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Case ID Activity Timestamp

0001 Reserve doctor appointment 10/15/20 09:30 AM

0001 Start diagnosis 10/15/20 10:00 AM

0001 End diagnosis 10/15/20 10:20 AM

0001 Receive payment 10/15/20 10:35 AM

0001 Write prescription 10/15/20 10:55 AM

0002 Receive payment 10/15/20 10:10 AM

0002 Reserve doctor appointment 10/15/20 10:25 AM

0002 Start diagnosis 10/15/20 10:57 AM

0002 End diagnosis 10/15/20 11:06 AM

0002 Reserve department appointment 10/15/20 11:12 AM

0002 Receive payment 10/15/20 11:24 AM

Table 1: Hospital patient care system event log

information. The patient identifier indicates the process case (or instance) to which an event

belongs and it is also called case id.

To depict all events and connections not only single case trace, event log could be also

described in graphical form, i.e., using a dependency graph. Figure 2 is an example of an

event log in graphical form using process analysis program ’DISCO’. The first graph in Figure

2 represents the frequency of activities and subsequence, while the second one concentrates on

mean event duration between two activities. The green node at the left top and the red node

at the right bottom of the graph are the start and end node of the process. Regarding the first

graph, the darker node color and thicker edge mean the activity and the activity sub sequence

more frequently occurred in an event log, respectively. In case of the second graph, mean event

duration of sub sequence is presented along each edge. Also in this case the value determines

the thickness of edges. By glancing these graphs, we could inspect basic knowledge from the

event log and notice interesting facts such as activity importance in frequency level, multiple

traces observed, or possible bottleneck points.

Naturally after perceiving and obtaining the business process data, the attempt to analyze

and utilize the data are followed, i.e., Business Process Management. Figure3 is the business

process management life cycle, which represents broad scope to prospect interest for organization

improvements. From design phase to optimize phase, each phase along life cycle are correlated

and dependant. Design and model phase are about how to conduct business process in the

organization and depict observed process instance into graphical notation, such as the ones

shown in Figure1. Based on the designed process and figured model, real process execution is

followed. The monitoring phase is critical to detect and check whether recorded process instances

follow the model as intended which contains estimating time to finish the process or prediction
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Figure 3: Business process life cycle

on potential amount of resource to execute the process. Along with the analysis and monitoring

result, business process are continuously optimized and enhanced [13]. In terms of life cycle at

business process, this thesis is positioned at the monitoring phase which predicts outcome of

process instance aiming improvements with explainable reasoning.

From the extracted knowledge from event logs, there are three main point of research area

in the process mining. Brief explanation of research area is followed.

• Process discovery

• Conformance checking

• Improvements/Enhancement

2.1.1 Process discovery

Process discovery aims at discovering models from the event log. One of the representative

method is α-algorithm which figures out relation between activities in event log by time se-

quence order [14]. Between a pair of activities 4 types of relations could be discovered such as

direct succession, causality, parallel, and choice depends on observed sequence patterns. Then

visualization model in network graph depicts obtained activity relations and aggregates possible

options of process in event log. Figure 1 shows BPMN 2.0 example with nodes, edges, and gates

to describe traces along activity relations.
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2.1.2 Conformance checking

The next research topic of process mining is conformance checking, which points at comparing

discovered process model and event log to check conformance and discrepancy. The method

which detects behavior of traces between process model and measures the difference to event

log is called alignment-based conformance checking [15]. Each trace found in event log has a

fitness score which is a cost to modify trace to match the process model by counting mismatch

or omitted activities. Through calculating holistic event log fitness score, the performance of

discovered process model in terms of reenacting recorded traces and depict event log can be

measured.

2.1.3 Improvements/Enhancement

The last type of process mining research area is enhancement and improvement in real business

process with extracted knowledge from process model and event log. The main theme of this

thesis, predictive process monitoring, is allocated at this area and will be introduced at the next

section.

2.2 Predictive process monitoring

One perspective to enhance the business process is predictive process monitoring. Predictive

process monitoring is predictions and recommendations on future executed activity or required

input data to minimize the likelihood of violation on business constraints and business goal [4].

There are different aspects of a process that can be predicted: 1) the next occurred activity, 2)

execution time of process, or 3) outcome of running cases.

2.2.1 General framework

The general predictive monitoring framework is described in Figure 4. The framework consists of

two main phases to get prediction results, which are training (offline) phase and testing (online)

phase respectively. Building predictive models from event log to implement test case is the

purpose of training phase. Therefore the testing phase is about preparation steps of ongoing

test case for applying the predictive model.

There are 4 detailed steps in training phase from event log to predictive models. The first

step is case filtering by certain prefix length and prefix log generation. Among the cases which

has longer case length than given prefix length, prefixes of each case are extracted to construct

prefix log. Bucketing homogeneous case within prefix log is the next step. The homogeneity

criteria is defined by similarities of process state. The third step is encoding feature vectors of

cases in buckets as proper input format for predictive models. Building predictive model using

machine-learning model is the last step of training phase [16].

The testing (online) phase is about prediction on live and running case. In this phase to

pre-process test case for predictive model bucketing based on filtered prefix and feature vector
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encoding in training phase are reused. Encoding feature vectors is followed after clustering test

cases considering similarities to buckets. The final step of framework is applying predictive

model to pre-processed ongoing test case and getting prediction result.

2.2.2 Encoding features and predictive model

There are possible combinations of feature vector encoding techniques and machine-learning

model selection for predictive model. By standardized form, there are 4 types of sequence en-

coding, last-state, aggregation,index-base, and tensor-based encoding. Sequence encoding tech-

niques are vary by snap shot point of prefixes and information amount to consider. Last-state

encoding takes the last event data of the case, on the other hand, aggregation and index-base

encoding retains all event data of given prefixes. Depends on expression shape, aggregation en-

coding represents entire event sequence data into single entity. Index-base encoding enumerates

series of data by distinguish able entities. And tensor-based encoding is extension of index-based

encoding in 3-dimension matrix for deep learning algorithm, for example recurrent neural net-

work (RNN) or long short-term memory (LSTM). In encoded feature vector, attributes in each

case and event are recorded by data types. Attributes with continuous values are written down

in as-is, on the other hand, categorical values are one-hot encoded. The most literature select

different training model which is already developed in machine learning or deep learning area

such as random forest, extreme gradient boosting, RNN, or etc. This is the predictive process

monitoring along general framework and detailed prediction step explanation. Related literature

will be introduced.

2.2.3 Next activity prediction and timestamp monitoring

Regarding activity and timestamp monitoring, Evermann et al. [5] implements LSTM and RNN

deep learning model mainly used for natural language processing to predict next activity. This

thesis is the early research to combine deep learning algorithm to predictive monitoring field. Tax

et al. [17] suggest to implement deep neural network, LSTM model to estimate next activity and

timestamp of next event. Since this thesis forecast sequence of upcoming events along timestamp

until the end event, remaining cycle time could also be calculated by difference between predicted

last event timestamp to predicted next event timestamp.

2.3 Outcome predictive process monitoring

Regarding outcome-oriented predictive monitoring, Teinemaa et al. [16] provide a general

framework for outcome-based process monitoring and an insightful benchmark comparing the

performance of different approaches from the perspective of sequence encoding, trace bucketing,

and classification algorithms.

Notable approaches in this field are the ones presented by Di Francescomarino et al. [18],

which adopts trace clustering before predictive classification on running cases, and Senderovich
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Figure 4: Predictive process monitoring workflow [1]

et al. [19], which adopts inter-case feature encoding to capture case interaction scenarios while

predicting the the remaining time of patient treatments.

More recently, Wang et al. [20] have suggested an approach based on deep learning, i.e.,

bidirectional LSTM with attention mechanism, that outscores other classification algorithms

traditionally adopted in this field, such as random forests and gradient boosting machines. In

summary, previous works in this field have mainly experimented with different classification

algorithms and feature encoding techniques to develop more accurate predictive models, rather

than focusing on model interpretability.

2.4 Explainable predictive model in process mining

Regarding interpretable (explainable) predictive models in process mining, Brunk et al. [21]

propose a method to predict the next event in a trace based on dynamic bayesian networks, which

are an example of inherently interpretable classification techniques. Harl et al. [9] propose to use

gated graph neural networks to predict binary process outcomes by transforming an event log

into a graph adjacency matrix and feature maps. The trained models in this case is interpretable

because each event is scored for its similarity to others in the training set. Therefore, events

with higher score are intended to bear a stronger impact on the outcome. Finally, Galanti et

al. [10] adopt Shapley value theory to explain factor influence on the outcome of traces predicted

using an LSTM model.
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2.5 Association rule mining

Another main research theme of this thesis is about association rule mining. Association rule

mining is rule-based machine learning method to extract relations between items among trans-

actions based on item frequency and confidence within rules [22].

Transactions Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Table 2: Market basket transactions

Here is an example scenario about how to get association rules. If we would like to know

which products in market are bought together by customer, association rule mining can be a

method to figure relations between items. Table 2 is a market basket transactions record and

each row is items bought by different customers. According to the table 2, multiple items and

itemsets are observed in single transaction and the item patterns are also appeared in other

transactions. For instance, customer who bought beer and diaper bought bread at the same

time and this comply with transaction 2 and 4. This relation can be represented in the rule 1.

{Beer, Diaper}→ {Bread} (1)

Left side of the arrow is called antecedents and the right side is consequent of the rule.

Considering this rule occurred in 2 transactions among total 5 transactions, we can get support

level of the rule as 2/5. Whether to check the rule occurrence is not coincidence, confidence

level is calculated by dividing frequency of antecedents to consequent. In this case confidence

level of the rule is 3/4 since rule antecedents and consequent are observed 3 and 4 transactions

respectively. Support and confidence level are vary by possible rule candidates and the rule

which has higher coefficient than threshold would be important rule to remind.

Regarding the application of association rules in event log analysis, we highlight the work

by Djenouri et al. [23], which applies frequent itemset mining to extract frequent itemsets in

an event log that could approximate the relationship among activities normally captured by a

process model. Previously, Maggi et al. [24] have applied association rule mining to extract rules

that are then used to build process models. Finally, Böhmer and Rinderle-Ma [25] propose a

trace anomaly detection technique that exploits association rules mined from an event log. The
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support of association rules, in particular, is used to discriminate between normal and anomalous

traces.

Association rule mining has already been adapted to create an inherently interpretable pre-

dictive model in other research fields. Mencía et al. [26] propose general methods for multi-label

classification using association rule mining. They stress, in particular, that association rules

highlight common causal relations in the data, which cater to better explainable predictions.

In the health care field, Ji et al. [27] adopted fuzzy rule mining combined with causality rank

of infrequent adverse drug reaction to distinguish relationship between target drug and adverse

event response probability. In [28], next-day stock price movement as a categorical outcome

(e.g., up, down, or hold) has been predicted using association rules extracted from historical

stock movements.

In summary, most approaches in the literature for outcome-based predictive process mining

are targeting performance improvement. Several recent papers address explainability of process

predictive model, but only from a post-hoc perspective, mainly developing an interpetative stage

to explain a deep learning predictive model. Association rule mining has been applied to process

model approximation and anomaly detection, but not for obtaining inherently interpretable

predictive models, which is the focus of the method proposed in this thesis.
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III Problem definition and Framework

In this chapter problem definition and framework are discussed to issue two problems and suggest

the solution respectively. The problems are about the implementation of association rule mining

technique to outcome predictive monitoring and the general framework will be suggested to

solve the expected problems which contains pre-processing and outcome prediction phase to

create label classification model. This chapter is organized as follows. Section 3.1 introduces the

problems about the rule-based predictive monitoring development and performance compared

to the baseline models. The rule-based outcome predictive process monitoring framework is

discussed in Section 3.2. Section 3.2.1 introduces the pre-processing phase, the first part of the

framework, and the classification model creation and logic in the model are discussed in Section

3.2.2.

3.1 Problem definition

An event log EL contains events. An event e is a tuple e = 〈c, {(di, vi)}i=1,...,D〉, where c is the
case id and (di, vi) are a set of D attributes and their values. We refer E as the universe of events,

and to Vi as the domain of attribute di, which can be discrete, Vi = {vi,j}j=1,...,J , or continuous,

Vi = [vi,min, v1,max] ⊆ R. The case id, activity and timestamp attributes are normally present

in all event log. We refer to them using the letters c, a, and t, respectively, and use a dotted

notation to reference them when needed, e.g., e.c to refer to the case id of event e. For instance,

the event e = (45, assess, 2020.1.2, Alice, amount = 1000, type = deep) captures the fact that,

in a process case associated with loan request number 45 (e.c), the resource Alice has executed

a deep assessment (e.a) of a loan request of 1000 USD on January 2nd, 2020 (e.t).

Note that any continuous domain Vi can be mapped into a discrete domain V̂i = {v̂i,j}.
For instance, the loan amount in the example above can be mapped into three 3 levels (high,

medium, low) according to the amount requested. We therefore introduce an attribute-specific

discretisation function disci : Vi −→ V̂i, with disc(vi) = v̂i,j .

The sequence of events generated in a given case form a trace σ = [e1, . . . , en], where ∀i ∈
[1, n], ei ∈ E , ∀i, j ∈ [1, n], ei.c = ej .c, i.e., all events belong to the same case, and ∀i ∈ [1, n−1],

ei.t < ei+1.t, i.e., events in a trace are ordered in ascending order using the timestamp attribute.

The universe of all traces is denoted by S. Note that attributes of events ei belonging to a trace σ

may be the same ∀ei ∈ σ. We refer to these attributes as case-level attributes. For instance, the

amount requested in a loan request process is a case-level attribute. In the remainder, we refer

to DE and DC as the set of event- and case-level attributes in an event log EL, respectively, and

we assume that (i) all events in EL have the same event-level attributes DE and (ii) all events in

EL belonging to the same trace have the same case-level attributes DC . Given a trace σ and an

integer l < n, the prefix function pr returns the first l events of σ, that is, pr (σ, l) = [e1, . . . , el].

Now, let us assume that all attributes of events in EL are discrete, that is, continuous

attributes in an event log have been discretised if needed. For each attribute di, we define the
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attribute itemizer function itai : D −→ {0, 1}J , which maps an attribute di into a sequence of J

binary items, obtained by one-hot encoding the value of an attribute within its domain, that is

itai (di) = {dummyj}j=1,...,J , with:

dummyj =

1 if di = vi,j

0 if di 6= vi,j

The event itemizer ite : E −→ {0, 1}n maps an event into the set of items derived from its

event-level attributes: ite(e) =
⋃
di∈e it

a(di), with di ∈ DE .

The trace itemizer itt : S −→ {0, 1}n maps a trace, possibly incomplete, into the set of items

derived from its events and from case-level attributes: itt(σ) =
⋃
di∈DC it

a(di)
⋃
ei∈σ it

e(ei).

Given a prefix length L, we define an item matrix TL containing, in each row, the items

generated by a prefix in an event log:

TL =


itt(pr(σ1, L))

...

itt(pr(σN , L))


Let us refer to the columns of TL as X1, . . . ,XP . Let us also define a labeling function

y : S −→ Y mapping a trace σ ∈ S to its class label y(σ) ∈ Y, with Y being the domain of

the class labels. For outcome predictions, Y is a finite set of categorical outcomes. Consistently

with the literature [16], we consider binary outcomes, i.e. Y = {0, 1}. Note that all prefixes

generated from a trace σ have the same class label.

An outcome classifier oc : X1× . . .×XP −→ S is a function mapping the items of a (possibly

incomplete) trace into its class label, that is, oc(itemt(σ)) = y.

A machine learning-based (ML-based) classifier (mlbc) is an oc developed using machine

learning classification techniques, such as a decision tree or an artificial neural network. In other

words, a ML-based classifier uses the items Xp as features to train a model that predicts the

outcome label of traces. The literature typically has focused on this type of techniques to solve

the outcome prediction task in predictive monitoring [29].

An association rule mining-based (ARM-based) classifier (armb) is an oc developed using

association rule mining techniques. Specifically, given a training set of traces in an event log

Strain, developing an armb implies first to extract association rules from an item matrix TLext
extended with items generated from the class labels y. We define 2 label itemizer functions

itl,0 : S −→ {0, 1} and itl,1 : S −→ {0, 1} that map a trace σ ∈ S into an item capturing its

class label value generated as follows:

itl,0i (σ) =

1 if y(σ) = 0

0 if y(σ) = 1

and
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itl,1i (σ) =

1 if y(σ) = 1

0 if y(σ) = 0

The extended item matrix is now defined as follows:

TLext =


itt(pr(σ1, L)), it

l,0(pr(σ1, L)), it
l,1(pr(σ1, L))

...

itt(pr(σN , L), it
l,0(pr(σN , L)), it

l,1(pr(σN , L)))


The association rules extracted from TLext are then used to predict the outcome of new

incomplete traces in the future. An association rule r (simply a rule in the remainder) is a

relation between two disjoint set of items in TLext, namely the antecedent X and the consequent

Y , that is, r : X −→ Y .

In this thesis, we tackle the following two problems:

• Devise a method to develop an ARM-based classifier to solve the outcome prediction task

in process predictive monitoring;

• Compare the performance of the ARM-based classifier with state-of-the-art ML-based

classifiers for the same prediction task.

The first problem is addressed in the next section, while the second one is addressed by

Section IV, which presents the experimental evaluation of the proposed method to develop an

ARM-based classifier.

3.2 Framework

The framework of this research is depicted in Figure 5. The initial steps concern acquiring an

event log and pre-processing it for the outcome prediction task. The pre-processing phase is

discussed in detail in Section 3.2.1. The remaining phases are presented in Section 3.2.2.

3.2.1 Pre-processing

A first pre-processing step concerns the discretisation of continuous attributes in an event log.

Values of attributes with continuous domains are clustered into 3 groups, usually labelled ’small’,

’medium’, and ’large’, using the 33% and 66% percentiles as thresholds, e.g., a value is mapped

to the categorical value ’medium’ if it falls in a percentile comprised between the 33% and 66%.

Next, to train and test ML-based predictive models, an event log is pre-processed using

prefix-length bucketing and index-based encoding [30]. That is, we create a different model for

each prefix length, trained/tested using prefixes pre-processed to obtain a fixed-length features

vector. All attributes of an event log are pre-processed using one-hot encoding. Note that in

our framework all attributes are discrete.
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Figure 5: Framework

For ARM-based models, the objective of pre-processing is to obtain an extended item matrix

from which rules can be extracted. Similarly to the case of ML-based models, we consider prefix-

length bucketing and index-based encoding, that is, we create different item matrices for each

prefix length. Figure 6 shows an example of pre-processing an event log where the continuous

attributes are first discretised and then attributes are one-hot encoded to obtain an item matrix.

3.2.2 Outcome prediction

As ML-based models, we consider gradient boosting machines (XGboost) and random forests.

Both classifiers have shown to perform well in event log predictive monitoring use cases [19].

The details about the hyperparameterisation of these models are given in the next section before

introducing the experimental results.

Outcome prediction in the case of ARM-based is comprised of 2 steps, i.e., (i) rule extraction

and pruning and (ii) label classification.

Rule extraction and pruning

Rules are extracted from the extended item matrix using the apriori algorithm [31], which is

an exact method that, given a minimum support level in input, guarantees that all rules with

equal or higher support level are discovered. Let us refer to R as the set of rules extracted

by applying apriori on TLext. Association rule extraction algorithms are parameterised using the

minimum support level and the confidence level. The support of a rule is defined as the number

of observations (or transactions) in a dataset for which the rule holds. Let us define the function

sat : S ×R −→ {0, 1} that captures whether a rule r = X −→ Y holds for a given trace σ (for

the sake of clarity we omit any reference to the prefix length from now on):

sat(σ, r) =

1 if X,Y ⊆ itemt(σ) ∪ item0(σ) ∪ item1(σ)

0 otherwise.
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Case ID Activity​ Timestamp​ C1 C2​ E1 E2 Label​

1​ A​
2010-10-12

07:00:00
G​ 84​ Empty​ 10​ 1​

1​ B​
2010-10-12

18:57:34
G​ 84​ False​ 1​

2​ A​
2010-10-12

18:57:58
O​ 1698​ Empty​ 15​ 0​

2​ C​
2010-10-12

19:00:23
O​ 1698​ Empty​ 0​

3​ E​
2010-10-28 
18:29:56​

G​ 126​ False​ 1​

3​ B​
2010-10-28 

18:30:03
G​ 126​ Empty​ 1​

<Original event log>

Case 
ID

C1_G C1_O​
C2_
small​

C2_
medium​

C2_
large

Activity1
_A

Activity1
_E

Activity2
_B

Activity2
_C

T1_
small

T1_
medium

T1_
long

T2_
small

T2_
medium

T2_
long

E1_1_
Empty​

E1_1_
False​

E1_2_
Empty​

E1_2_
False​

E2_1_
small​

E2_1_
medium​

E2_1_
large​

Label_1​ Label_0​

1​ 1​ 0​ 1​ 0​ 0​ 1 0 1 0 0 1 0 1 0 0​ 1​ 0​ 0​ 1​ 1​ 0​ 0​ 1​ 0​

2​ 0​ 1​ 0​ 0​ 1​ 1 0 0 1 1 0 0 1 0 0​ 1​ 0​ 1​ 0​ 0​ 1​ 0​ 0​ 1​

3​ 1​ 0​ 0​ 1​ 0​ 0 1 1 0 0 0 1 0 1 0 0​ 1​ 1​ 0​ 0​ 0​ 0​ 1​ 0​

<Merged pre-processed event log>

Case ID
Activity1

_A
Activity1

_E
Activity2

_B
Activity2

_C
E1_1

_Empty
E1_1

_False
E1_2

_Empty
E1_2

_False
E2_1

_small
E2_1

_medium
E2_1

_large
Label

1 1 0 1 0 1 0 0 1 1 0 0 1

2 1 0 0 1 1 0 1 0 0 1 0 0

3 0 1 1 0 0 1 1 0 0 0 0 1

Case ID T1_small T1_medium T1_long T2_small T2_medium T2_long Label

1 0 1 0 1 0 0 1

2 1 0 0 1 0 0 0

3 0 0 1 0 1 0 1

Case ID C1_G C1_0 C2_small C2_medium C2_large Label

1 1 0 1 0 0 1

2 0 1 0 0 1 0

3 1 0 0 1 0 1

<Event attributes categorization>

<Timestamp categorization>

<Case attributes categorization>

Figure 6: Example of pre-processing to obtain extended item matrix
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Then, the support of a rule is defined as:

sup(r) = sup(X ∪ Y ) =

∑
σ∈EL sat(r, σ)

|EL|

where |EL| is the number of traces in an event log.

The confidence conf(r) of a rule is the proportion of observations that contain the antecedent

X which also contain the consequent Y , that is:

conf(r) = sup(r)/sup(X)

where sup(X) = |{σ ∈ EL : X ⊆ itemt(σ)}| is the number of traces for which the antecedent

X holds.

Next, we need to prune the rules discovered to obtain a set of rules that are relevant for

outcome prediction and limited in number so that can be handled by human decision makers [32].

In our framework, we distinguish among three types of pruning, which are applied in sequential

order, i.e., the label pruning, the cross-label pruning, and the intra-label pruning (see Figure 7).

Label pruning. The label pruning (or outcome pruning) addresses the need to retain only

relevant rules for outcome prediction. In this case, rules are relevant when they can be used to

predict the outcome of process cases. We translate this requirement into a policy that retains

only rules containing the items derived from the case outcome label in the consequent, i.e.,

for which item0(σ) ∈ Y or item1(σ) ∈ Y . This type of rules, in fact, capture the fact that a

combination of values assumed by a given set of attributes (i.e., the antecedent items) imply with

a certain level of support the values, possibly among other attributes, of the attribute capturing

the value assumed by the outcome label for a case. Let us refer to R0 ⊆ R and R1 ⊆ R as the

set of rules containing the item item0(σ) and item1(σ), respectively.

Cross-label pruning. The cross-label pruning addresses the fact that, after having applied

label pruning, the sets R0 and R1 may contain rules that have the same antecedent X. These

rules are not significant for the outcome-based predictive monitoring, because in practice they

are not able to discriminate between the values assumed by the label. In other words, with this

type of rules, a given combination of attribute values in the antecedent can be used to imply

both values of the outcome label.

After this pruning, there may still be two or more rules within the same group, i.e., R0 or

R1, that have the same antecedent. For instance, given r1 and r2 having the same antecedent X,

r1’s antecedent may only contain the class label item, e.g., Y = item0(σ) ,while the consequent

of r2 may also contain additional items, e.g., Y = item0(σ)∪A, with A ⊆ itemt(σ). Among the

rules having the same antecedent, we retain the one with conviction closest to 1. The conviction

conv(r) of a rule can be interpreted as the expected frequency at which the antecedent X occurs

in a trace without the consequent Y , that is, the frequency at which a rule is likely to make a

wrong prediction:
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Intra-label 

pruning

Antecedent Consequent Support

Activity1_A, T2_small​ Label 0 0.8

C1_G​, Activity2_B Label 0 0.8

E1_2_​False Label 0 0.7

C1_G​ Label 0 0.9

Antecedent Consequent Support

Activity1_A, T2_small​ Label 1 0.9

C2_​medium​ Label 1 0.7

E2_1_​Medium Label 1 0.8

E2_1_​Medium, T1_small Label 1 0.9

Rules with consequent having 
labels

<ℛ0>

<Label 1 rule>

Remove common rules for unique
rules of labels

Obtain representative K number 
of rules after k-means clustering 

Antecedent Consequent Support

C1_G​, Activity2_B Label 0 0.8

E1_2_​False Label 0 0.7

C1_G​ Label 0 0.9

Antecedent Consequent Support

E1_2_​False Label 0 0.7

C1_G​ Label 0 0.9

K-means 

clustering

Antecedent Consequent Support

Activity1_A, T2_small​ Label 0 0.8

C1_G​, Activity2_B Label 0 0.8

E1_2_​False Label 0 0.7

C1_G​ Label 0 0.9

Antecedent Consequent Support

Activity1_A, T2_small​ Label 1 0.9

C2_​medium​ Label 1 0.7

E2_1_​Medium Label 1 0.8

E2_1_​Medium, T1_small Label 1 0.9

Label

pruning

Cross-label 

pruning

<ℛ1>

<ℛ0,𝑥>

<ℛ1,𝑥> <ℛ0,𝑥,𝑘>

<ℛ0,𝑥>

Figure 7: 3-step rule pruning process

conv(r) =
1− sup(Y )

1− conf(r)

where sup(Y ) = |{σ ∈ EL : Y ∈ itemt(σ) ∪ item0(σ) ∪ item1(σ)}| is the number of traces for

which the consequent Y holds. Let us refer to R0,x and R1,x as the label 0 and label 1 set

of rules obtained after applying cross-label pruning, respectively. Note that, by construction,

R0,x ∩R1,x = ∅.
Intra-label pruning. The final pruning step is optional and is applied in those cases where

the number of rules retained after cross-label pruning is still high. The intra-label pruning

applies k-means clustering [33], an unsupervised clustering algorithm, to obtain k clusters of

rules. Within each cluster obtained, the rule with the highest support is retained as cluster

representative. We refer to R0,x,k and R1,x,k as the label 0 and label 1 rules obtained after

applying the intra-label pruning, respectively.

In the experiment, we consider k = 20, that is, we prune the number of rules to 20. We

argue, in fact, that 20 is a number of rules that can be understood by a human decision maker.

In Section IV we also propose a way to visually depict these 20 rules organically using network

graphs, to improve their understanding and interpretability for human decision makers.

Label classification.

After having obtained a final set of rules for each label through rule extraction and pruning,

the next step is to determine how these rules are used to classify the outcome of process cases.
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We propose two methods ,namely SBOP (Support-Based Outcome Prediction) and RSOP (Rule

Satisfaction-based Outcome Prediction).

For the sake of simplicity, when not strictly necessary, in the remainder we refer to R =

R0 ∪ R1 as the pruned set of rules obtained after applying all 3 pruning steps, written as the

union of rules containing the label 0 (R0 ) and label 1 (R1 ) item in the consequent. Given a trace

σ, let us also refer toRσ ⊆ R as the set of rules that hold for σ, i.e., Rσ = {r ∈ R : sat(r, σ) = 1}.
When needed, we will also refer to R0

σ ⊆ R0 and R1
σ ⊆ R1 as the set of rules that hold for σ

having label 0 and 1 in their consequent, respectively.

In SBOP, the predicted label of a trace σ is the label y ∈ {0, 1} characterised by the highest

rule satisfaction average weighted using rule support:

ySBOP (σ) =

1 if
∑
r∈R1

σ
sup(r)∑

r∈R1 sup(r)
>

∑
r∈R0

σ
sup(r)∑

r∈R0 sup(r)

0 otherwise

The SBOP method fails when no pruned rules are found for one specific label, i.e., R0
σ = ∅

or R1
σ = ∅. In this case, in fact, the denominator of one of the two terms in the condition of

ySBOP collapses to 0.

RSOP addresses this limitation by determining the predicted label only considering one set

of rules at a time. There are therefore two versions of RSOP, i.e. RSOP0 and RSOP1, depending

on which set of rules is considered. For RSOP0, given a threshold T , a trace σ is assigned the

predicted label 0 if the average number of rules in R0 that hold for σ weighted by their support

is greater than T . The label 1 is assigned otherwise:

yRSOP0(σ) =

0 if
∑
r∈R0

σ
sup(r)

|R0| > T

1 otherwise

Similarly, in RSOP1 the label 1 is assigned to a trace if the average number of rules that

hold for σ in R1 weighted by their support is greater than T , and label 0 is assigned otherwise:

yRSOP1(σ) =

1 if
∑
r∈R1

σ
sup(r)

|R1| > T

0 otherwise.

In the experiments, we use the value T = 0.7, which signifies that a trace is assigned a given

label if it satisfies at least 70% of the rules containing that label in the consequent. This value

has been set empirically after pilot experiments.
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IV Evaluation

The evaluation of the proposed predictive monitoring framework and visualizing rule-based

monitoring are discussed in this chapter. Section 4.1 presents the datasets used in our evaluation,

along with the hyperparameters of ML-based classifiers and the parameter values used for ARM.

The performance comparison between rule-based and traditional outcome predictive models is

presented in Section 4.2. Finally, Section 4.3 discusses rule visualisation and interpretation,

suggesting, in particular, a visualisation approach for rules based on network graphs and process

instance on a dependency graph.

4.1 Datasets, model parameters and hyperparameters

We consider 5 event logs publicly available at https://data.4tu.nl/: the BPIC 2011, BPIC

2015_1,2,31, and the Sepsis event logs. The BPIC 2011 is an event log about medical area

information in a Dutch academic hospital. BPIC 2015 are logs from a process of building permit

requests at different Dutch municipalities. The Sepsis event log refers to a process of sepsis

diagnosis and treatment in a hospital. These logs have been chosen because they contain an

outcome label and have been used by previous research on outcome-based process predictive

monitoring [16]. Table 3 shows the descriptive statistics of these event logs. Note that event

logs differ widely for number of activities, number of attributes and label class proportion.

# activities # cases # variants
# categorical

Case attributes

# continuous

case attributes

# categorical

event attributes

# continuous

event attributes
# outcome 0 cases # outcome 1 cases

BPIC 2011 677 1143 981 4 6 5 0 683 460

BPIC 2015_1 289 1199 1100 8 1 3 0 910 289

BPIC 2015_2 304 832 828 8 1 3 0 670 162

BPIC 2015_3 277 1409 1349 8 1 3 0 1122 287

Sepsis cases 16 846 846 23 1 2 3 671 378

Table 3: Descriptive statistics of event logs used for evaluation

In all logs, given a temporal linear temporal logic constraint predicated on the order and

occurrence of activities, the outcome label is set to 1 for cases satisfying the constraint and to 0

for other cases. In the BPIC 2015 event logs, the constraint is that activity ’send confirmation

receipt’ is eventually followed by activity ’retrieve missing data’. In BPIC11, the constraint is

that either the activity ’ca-19.9 tumormarker’ or ’ca-125 mbv meia’ occur in a trace. In the

Sepsis event log, the constraint is simply that the activity ’Release A’ does not occur in a trace.

ARM requires to specify a support threshold and a rule confidence threshold. Since each

event log has different complexity in terms of number of activity labels or variants , different

values of these parameters must be considered for each event log. For the BPIC 2011 event log,

we consider 0.8 as minimum support threshold and 0.7 as confidence threshold. The minimum

support threshold for BPIC 2015 is 0.6 and the confidence threshold is set to 0.7. For the Sepsis
1Note that there are 5 different instances of this event log, with data from different municipalities. We consider

the instance numbered as 1, 2, and 3.
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event log, we consider 0.9 as both minimum support and confidence threshold.

Note that a higher support/confidence threshold is likely to lead to the discovery of a lower

number of more meaningful rules for a predictive model. However, in some cases too high

thresholds may lead to discover no rules at all. At the same time, lowering the support threshold

increases the memory requirements of the rule extraction algorithms. The threshold values that

we have chosen aim at striking a balance between number of rules discovered, meaningfulness

of rules, and memory requirements of rule discovery. In one particular case (Sepsis), which was

particularly demanding in respect of the memory required for rule extraction, we were not able

to successfully complete the rule extraction task with a threshold lower than 0.9.

As far as hyperparameters of machine learning classifiers are concerned, for Random Forest

(RF) we consider the implementation in the Python package ’Scikit-learn’ [34], with the number

of estimators set to 100. For XGBoost (XGB), we consider 500 estimators, 0.1 learning rate,

and 4 as maximum tree depth.

We consider prefixes between 2 and 10 for all event logs. For example, if prefix length is

equal to 5, then our proposed approach, RF and XGB are trained and tested on a dataset

containing all the prefixes of length 5 in the event log, that is, partial traces considering the

first 5 events of traces with at least 5 events. To cope with sampling bias, we consider 10-

fold cross-validation. The proportion of train and test set sampling in every replication of the

experiment is 70% to 30%. The code to reproduce the experiments is publicly available at

https://github.com/ghksdl6025/rule-based-predictive-monitoring.

4.2 Results and discussion

Before comparing the performance of ML-based and ARM-based classifiers, we compare the

performance of the proposed ARM-based classifier with and without the optional intra-label

pruning discussed in Section 3.2. This allows us to validate the proposed pruning policy and

also to elect the best performing method for each event log. Table 4 shows the average number

of rules extracted after label pruning and cross-label pruning for all event logs, i.e., the size of

R0,x and R1,x. It can be seen that in some cases the number of rules retained is still well above

20.

Figure 8 and 9 compare the performance (precision, recall, and F1-score) obtained by ARM-

based classifiers that consider the rules retained before and after the intra-label pruning. Note

that, since our ARM-based method separates rule extraction by label, we also present the results

separated by label. We also remind here that after the intra-label pruning, only k = 20 pruned

rules are considered for all methods of label classification.

It can be noted that the 2 corresponding lines (with/without intra-label pruning) for a given

method, i.e., RSOP0, RSOP1, or SBOP, often overlap, particularly at lower prefixes. Generally,

it is not possible to elect whether intra-label pruning policy works better for all methods. In

some cases, for instance for the BPIC 2015 event logs, the intra-label pruned rules achieve a

better performance than the corresponding group of rules not pruned. This can be explained
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Figure 8: Performance with/without intra-label pruning - BPIC 2015 event logs
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Figure 9: Performance with/without intra-label pruning - BPIC 2011 and Sepsis event logs
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Prefix length

Event log Label 2 3 4 5 6 7 8 9 10

BPIC 2011 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 4.0 9.4 17.6 79.2 148.8 557.2 1,375.8 4,484.2 6,606.4

BPIC 2015_1 0 21.0 34.6 32.4 40.8 56.4 59.6 60.2 77.6 85.6

1 8.0 25.6 24.8 92.4 106.6 103.2 121.6 140.4 131.0

BPIC 2015_2 0 65.8 128.2 143.4 149.4 202.2 185.4 208.6 208.4 207.2

1 15.0 20.4 19.8 20.4 30.2 31.8 39.4 38.6 34.0

BPIC 2015_3 0 61.8 109.8 155.8 185.4 239.2 226.4 222.6 268.0 282.0

1 24.0 46.8 57.0 58.4 56.4 60.4 58.6 82.2 108.0

Sepsis cases 0 1,517.6 5,654.8 4,412.0 7,153.6 9,606.4 9,084.8 9,339.2 16,116.8 14,343.2

1 2,709.6 1,948.4 2,846.4 406.4 413.6 244.8 610.4 1,222.4 1,375.2

Table 4: Average number of unique rules per event log and outcome label before intra-label

pruning

considering that, before intra-label pruning, the set of retained rules may also contain spurious

rules with lower support and/or conviction, which may perturb the prediction task, while the

20 rules extracted after intra-label pruning are more effective in leading to a correct prediction.

The performance of the proposed ARM-based classifiers compared against the one of ML-

based classifiers is shown in Figure 10 and 11. Note that, for each ARM-based method, in these

figures we consider the best performing set of rules, i.e., before or after intra-label pruning, as

highlighted by the results of Figure 8 and 9.

Before diving into the interpretation of individual experiment results, we highlight the fol-

lowing two general issues:

• ML-based classifiers (RF and XGB) generally represent an upper bound for the perfor-

mance of the classification model. This should not surprise since, as we stressed in the

Introduction, the proposed ARM-based classification approach trade-offs the interpretabil-

ity of a rule-based model for performance in the classification task;

• It does not make sense to compare and discuss the performance of different models when

this is low. In this regard, let us consider the Sepsis event log label 1 experiment (bottom-

right in Figure 11). In this case, the classification performance is low for all approaches

at all prefix lengths, about 50% lower on average than the corresponding performance

on label 0. Such a situation simply signals that building a high performing outcome

predictive model for label 0 traces in this event log is very challenging and that both the

ML- and ARM-based approaches considered in this thesis fail at this task. Therefore, in

the remainder of this section we will not focus further on this particular experiment.

Based on these results, we highlight the following insights regarding our proposed approach:

1. Except the case of Sepsis label 1 discussed above, in all experiments there is at least one

ARM-based label classification method showing comparable performance with ML-based

approaches;
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Figure 10: ARM-based and ML-based outcome classification performance - BPIC 2015 event

logs
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Figure 11: ARM-based and ML-based outcome classification performance - BPIC 2011 and

Sepsis event logs
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2. Even at early prefix lengths, at least one of the ARM-based label classification methods

shows a performance level comparable with ML-based approaches;

3. The SBOP label classification method, when applicable, shows generally a better perfor-

mance than the RSOP methods.

The last insight listed above focuses on the different level of performance achieved by ARM-

based label classification methods. In general, it is not possible to elect a best-performing

method. For the BPIC 2011 event log, the performance of the two methods is comparable for

label 1, but for label 0 only RSOP can be applied, because the number of rules found for label 0

is always 0. In other words, it is only possible to classify as label 1 those cases that do not satisfy

any of the rules extracted for label 1. For the BPIC 2015 event logs, SBOP outscores RSOP0

and RSOP1 at all prefixes for both labels, showing a remarkable performance at early prefixes.

For Sepsis (label 0), RSOP0 appears to outscore SBOP at all prefixes, with a performance level

aligned to those of ML-based approaches at all prefixes.

4.3 Visualising association rules

4.3.1 Predictive model

The last step in our evaluation is to propose an approach for visualising the rules used for outcome

prediction in a more interpretable way. While association rules are inherently interpretable and

a basic interpretation of rules can be operated by skimming a printed list of rules, having a

low number of meaningful rules that can be visualised effectively can dramatically increase their

interpretability by human decision makers [32]. In the proposed framework, the low number

of meaningful rules is guaranteed by the rule pruning discussed earlier, whereas an effective

technique for rule visualisation, based on network graphs, is presented next.

The visualisation of rules that we propose is based on the following principles:

• Two network graphs are built for a specific event log at a given prefix length, one for the

rules predicting label 0 (R0,x,k) and one for the rules predicting label 1 (R1,x,k);

• Owing to the fact that each graph represents all the rules for a given label, each graph is

built only with information related to the antecedents X of the rules; In particular, each

node is an item that appears in at least one rule and edges connect two items (nodes) that

appear together in the antecedent of a rule;

• The thickness of nodes represents the frequency of appearance of an item in rules relative

the total number of items in the rules;

• Four types of items are identified and different colours are assigned to the corresponding

nodes in a graph: items derived from an activity label, from timestamps, from other case-

level attributes, or from other event-level attributes;
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Figure 12: BPIC 2015_1 event log network graph for different labels

• The thickness of edges represents the relative frequency at which the two nodes linked by

an edge appear together in one rule, relative to the total number of rules.

A first straightforward way to interpret the rules obtained is to compare the graphs obtained

for label 0 and label 1, respectively, i.e., rules in R0,x,k and R1,x,k, for a given event log at a

given prefix length. A different analysis involves comparing graphs obtained for a given event

log at different prefix lengths. The former allows to identify which items are more relevant in

determining a certain type of outcome. The latter allows to identify, for a given event log, the

importance of items in determining a certain outcome as more information about the execution

of a process cases becomes available.

Figure 12 shows an example of the first approach, comparing the graphs obtained for label

0 and label 1 for the BPIC 2015_1 event log with prefix length equal to 2. Note that items

derived from event-level attributes in this graph are named as attribute_value. Every item in

an item matrix, in fact, is obtained from a specific value vi,j of a given attribute di in an event

log. The name of items derived from case-level attributes is prefixed by (case).

It looks clear that the case-level attribute (case) includes subcases_J is a good predictor of

label 0 outcome, since it appears in the graph for label 0, while it is not present in the one for

label 1. The graphs also signal that the value of the case attribute ’(case) requestcomplete’ is

important to predict the outcome, since an item associated with the label 0 outcome is the one in

which this attribute has value True, while the label 1 outcome is associated with the value False

of this attribute. As far as edges in the graph are concerned, it is possible to notice that for label

0 all the item combinations seem to share a similar relative frequency in the rules, since all edges

have similar thickness. On the contrary, edges’ thickness in the label 1 graph is notably different.

For instance, the edge connecting (case) requestcomplete_False and (case) caseprocedure_None
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Figure 13: Sepsis event log network graph (label 0) for different prefix lengths

has heavier thickness than others, pointing at a higher support of prediction rules involving these

2 items in the antecedent.

Figure 13 shows an example of graphs built for the Sepsis event log, label 0, at two different

prefix lengths (2 and 10). First, it has to be noticed that outcome prediction using the Sepsis

log is more challenging than for the BPIC2015_1 logs. In the proposed ARM-based model,

this translates into a higher number of rules involving a higher number of items in the case of

the Sepsis log. To this end, note that the graphs built for the Sepsis log are structurally more

complex than the ones of the BPIC2015_1 log.

At the level of items (nodes in the graph), we can see that 12 items appear in both graphs.

These can be seen as the more robust items for outcome prediction, since they remain relevant

as more events in a case are executed. It also interesting to note that the importance of nodes

varies by prefix length, as highlighted by the size of the nodes in the graph. For example, the

size of item Crp1_Nan increases at prefix 10, i.e., this item appears more frequently among

all rules at longer prefix length. At the level of edges in the graph, it can be noticed that

connections between nodes become less as the prefix length increases, but, at the same time, the

longer prefix length graph has fewer thick edges. This signals that, as the prefix length increases,

the combination of items determining the antecedents of rules becomes less. Yet, however, all

combinations show a relatively low frequency, i.e., there are no clear-cut groups of items more

likely to appear in the rules to predict label 0. Finally, it is worth noticing that, particularly for

prefix length 10, the item Crp1_Nan appears to be central in the graph, since it is connected

to many other nodes by thick edges. This signals that this item appears frequently in the rules

and it is therefore a good predictor of the label 0 outcome.
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4.3.2 Case prediction

Section 4.3.1 introduces association rules and one visualization method which has network graph

form with rule itemsets and connection frequency as nodes and edges. With this method, decision

maker could prospect relations between items in rule antecedents section regarding to predictive

monitoring in view of holistic association rules. On the other hand this section presents single

process instance and particular satisfied rule visualization method through emphasizing case and

event level attributes in process instance. Figure 14 and Figure 15 shows visualization of case

prediction which has process outcome as label 1 and label 0 respectively.

Process instance and rule visualization consists of 4 main sections, 1) case information, 2)

trace with event level attributes, 3) case level attributes, and 4) association rules by label. Case

information segment shows case id, predicted outcome, and actual outcome of the case. Case ID

is an identifier to indicate following trace images and information are belong to which process

instance. The predicted outcome label derived from rule-based predictive monitoring model is

mentioned in predicted outcome. Actual outcome shows outcome label which satisfies linear

temporal logic constraints.

Trace section which starts with start node (top circle node) depicts series of events with

activity and event level attributes. The first row of the event node is an activity and rest

of the rows are attributes related with the event. The left column of the even node table is

attribute names and the right column is the value of the attribute. For example, in figure 14,

which has 9431949 as case id, first event has 3 event level attributes, ’Resource’, ’Time’, and

’monitoringResource’ and values of the attributes are 560872, Short, and 560872 respectively.

The next section is about case level attributes table, i.e., attributes regarding case informa-

tion not limited to an event. Like in representing event level attributes in event node, first column

describes the name of the case attributes and the other column shows according value of it. In

case of example case, 9431949, there are 9 case level attributes from ’(case) includessubcases’ to

’(case) SUMlegs’.

Regarding last section of visualization method, association rules by label of the case are listed

at the right bottom of the image. After intra-label pruning process, 20 representative rules are

selected to build predictive monitoring model. The association rule antecedents consist the rule

list which has equal consequent. Association rule list could also be changed by different prefix

length.

After getting association rules for predictive monitoring and classification process, there

are rules which comply with information about given case. Case and event level attributes in

accordance with satisfied association rules are colored in blue. Association rules in rule list

section which are observed in the case are colored in yellow. By coloring cells process instance

visualization method emphasize which items and attributes are critical to predict outcome. With

this visualization method inspectors could anticipate predictive monitoring model explainability

through scanning colored attributes in the case and the association rules in the image.
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Case level attributes

Case Information

Label 1 association rules

 Time2_Long 
 (case) caseprocedure_None, Activity1_register submission date request 

 (case) requestcomplete_False, Time1_Short 
 Activity1_register submission date request, Time1_Short 
 Activity1_register submission date request, Time5_Long 

 Activity1_register submission date request 
 Support, Time1_Short 

 (case) requestcomplete_False 
 (case) caseprocedure_None 
 Time2_Long, Time4_Short 

 (case) requestcomplete_False, Time2_Long 
 Time1_Short, Time2_Long 

 Activity1_register submission date request, Time2_Long 
 Time4_Short 

 Time1_Short, Time5_Long 
 Time1_Short, Time4_Short 
 Time2_Long, Time5_Long 

 Time5_Long 
 Activity1_register submission date request, Time4_Short 

 (case) requestcomplete_False, Activity1_register submission date request 

 (case) includessubcases None
 (case) responsibleactor 560464.0
 (case) caseprocedure Uitgebreid

 (case) casestatus O
 (case) lastphase Besluit onherroepelijk

 (case) parts Bouw
 (case) requestcomplete False

 (case) termname None
 (case) SUMleges Large

 register submission date request

 Resource 560872
 Time Short

 monitoringResource 560872

 term 14 or 26 weeks

 Resource 560872
 Time Long

 monitoringResource 2670601

 first phase affected

 Resource 560872
 Time Long

 monitoringResource 2670601

 start phased application

 Resource 560872
 Time Long

 monitoringResource 2670601

 first or second phase

 Resource 560872
 Time Long

 monitoringResource 2670601

 read field phased application

 Resource 560872
 monitoringResource 2670601

Case ID: 9431949 Actual Outcome: 1Predicted Outcome: 1

Figure 14: BPIC 2015 event log process instance and rule visualization: Case outcome label 1
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Label 0 association rules

Case Information

Case level attributes

 (case) requestcomplete_True, Time1_Short, Time2_Long 
 (case) caseprocedure_None, (case) requestcomplete_True 

 Activity1_register submission date request 
 (case) caseprocedure_None, Time1_Short 
 (case) caseprocedure_None, Time2_Long 

 Time2_Long 
 Time5_Long 

 Activity1_register submission date request, Time1_Short 
 Time1_Short 

 (case) caseprocedure_None 
 (case) requestcomplete_True 

 (case) requestcomplete_True, Time2_Long 
 (case) requestcomplete_True, Activity1_register submission date request 
 (case) caseprocedure_None, Activity1_register submission date request 

 (case) requestcomplete_True, Time1_Short 
 (case) caseprocedure_None, Activity1_register submission date request, Time2_Long 

 Activity1_register submission date request, Time2_Long 
 Time1_Short, Time2_Long 

 (case) caseprocedure_None, (case) requestcomplete_True, Time1_Short 
 (case) caseprocedure_None, Activity1_register submission date request, Time1_Short 

 register submission date request

 Resource 560881
 Time Short

 monitoringResource 560881

 enter senddate acknowledgement

 Resource 560881
 Time Long

 monitoringResource 560872

 (case) includessubcases N
 (case) responsibleactor 560872.0
 (case) caseprocedure None

 (case) casestatus G
 (case) lastphase Vergunning verleend

 (case) parts Kap
 (case) requestcomplete True

 (case) termname None
 (case) SUMleges Nan

 enter senddate procedure confirmation

 Resource 560872
 Time Short

 monitoringResource 560872

 register date environmental permit decision

 Resource 560872
 Time Long

 monitoringResource 560872

 enter senddate decision environmental permit

 Resource 560872
 Time Long

 monitoringResource 560872

 enter date publication decision environmental permit

 Resource 560872
 monitoringResource 560872

Case ID: 3685684 Actual Outcome: 0Predicted Outcome: 0

Figure 15: BPIC 2015 event log process instance and rule visualization: Case outcome label 0
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Figure 14 and Figure 15 show two process instances with different outcome label from BPIC

2015 event log. These cases are already pre-processed with filtered by prefix length 6. There

are 3 aspects to interpret the process instance and outcome relation with association rules. The

first possible approach is intra-case level inspection, i.e., selecting colored case and event level

attributes. For example, the first figure, 9431949 as case id, has 4 event level attributes and 1

case level attribute in blue color and these are the emphasized attributes.

Case ID: 9431949

• Event level attributes

– Event 1 Activity: register submission date request

– Event 1 Time: Short

– Event 2 Time: Long

– Event 5 Time: Long

• Case level attributes

– (case) requestcomplete: False

Decision makers are able to catch the important attributes for outcome prediction by scan-

ning single time and know which rules are more useful to explain itemsets and outcome relations.

The second approach is inter-case level interpretation. The second figure, 3685684 as case

id, has actual and predicted outcome label 0. And followings are highlighted attributes.

Case ID: 3685684

• Event level attributes

– Event 1 Activity: register submission date request

– Event 1 Time: Short

– Event 2 Time: Long

– Event 5 Time: Long

• Case level attributes

– (case) requestcomplete: True

– (case) caseprocedure: None

The event level attributes are commonly appeared in both first and second figures which

have different outcome label as 1 and 0 respectively. On the other hand, the value of case level

attribute, ’(case) requestcomplete’ is different. In case 9431949, which outcome label is 1, has

False value for the attribute. However, the value of the same attribute is True in outcome label
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0 case, 3685684. As well as divergent value at the equal attribute, the other case level attribute

is found. Through comparison between process instances with different outcome label, decision

makers may recognize turning point which leads to case outcome.

The last approach of interpretation from process instance and rule satisfaction is analysis on

attributes importance of prefix variance under same case. Figure 16 shows same case’s trace and

case information of figure 14 but different prefix length. This figure represents the attributes and

satisfied rules when the case prefix length is 3. Although case level attributes are served since the

start of the case, new event level attributes are possible to be colored after case progressed. For

example, case id 9431949 in prefix length 6 shows additional colored event attributes compare

to prefix length 3 trace. ’Time’ attribute of 5th event is colored. By connecting newly observed

attributes and satisfied rules, decision makers are able to figure decisive items which appear from

early prefix length or outcome divergence point as the process continues.
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Case Information

Label 1 association rules

Case level attributes

 (case) includessubcases None
 (case) responsibleactor 560464.0
 (case) caseprocedure Uitgebreid

 (case) casestatus O
 (case) lastphase Besluit onherroepelijk

 (case) parts Bouw
 (case) requestcomplete False

 (case) termname None
 (case) SUMleges Large

 Support, Time1_Short 
 Activity1_register submission date request 
 (case) caseprocedure_None, Time2_Long 

 (case) requestcomplete_False 
 Activity1_register submission date request, Time1_Short 

 Time2_Long 
 (case) requestcomplete_False, Activity1_register submission date request 

 Time1_Short, Time2_Long 
 (case) caseprocedure_None 

 (case) requestcomplete_False, Time1_Short, Time2_Long 
 (case) requestcomplete_False, Time2_Long 

 Activity1_register submission date request, Time2_Long 
 (case) caseprocedure_None, Activity1_register submission date request 

 (case) caseprocedure_None, Time1_Short 
 (case) caseprocedure_None, Activity1_register submission date request, Time1_Short 

 (case) requestcomplete_False, Time1_Short 
 Activity1_register submission date request, Time1_Short, Time2_Long 

 (case) requestcomplete_False, Activity1_register submission date request, Time1_Short 
 (case) requestcomplete_False, Activity1_register submission date request, Time2_Long 
 (case) caseprocedure_None, Activity1_register submission date request, Time2_Long 

 register submission date request

 Resource 560872
 Time Short

 monitoringResource 560872

 term 14 or 26 weeks

 Resource 560872
 Time Long

 monitoringResource 2670601

 first phase affected

 Resource 560872
 monitoringResource 2670601

Case ID: 9431949 Actual Outcome: 1Predicted Outcome: 1

Figure 16: Process instance and rule visualization with different prefix length
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V Conclusion

This thesis has introduced an interpretable predictive process outcome monitoring framework

to understand classification logic inside of the predictive model and in-depth analysis with vi-

sualization method. The framework starts from the pre-processing stage on how to modify

event log attributes through continuous attributes discretization and one hot-encoding. After

predictive model creation, two visualization methods are presented for model interpretability:

predictive model and predicted case outcome prediction. The first visualization method deliv-

ers inter-feature relation in frequency measurement from obtained association rules. Directed

follow graph of trace visualization proposes analysis on case outcome prediction with satisfied

association rules along with case and event-level attributes of the particular case.

The proposed framework has been evaluated, all other conditions being equal, against predic-

tive models built using extreme gradient boosting machine and random forest. The performance

obtained by the proposed framework is in most cases only slightly lower than the one of machine

learning-based classifiers. However, a slight decrease in performance can be acceptable in return

for a model that is interpretable by human decision makers. Regarding the rule pruning process

to limit the number of rules, the predictive model with summarized association rules has slightly

lower performance compared to the model that considers all the rules. This peculiar feature of

the rule pruning process is fundamental to create visualized graphs and lead user comprehension

level by deleting redundant and low-impact rules.

The suggested visualization method has been designed to facilitate analysis of the rule-based

predictive model in a comprehensive and detailed specific view by providing association rule

network graph and dependency graph by certain case respectively. The rule network graph

offers a holistic point of analysis on association rules for the predictive model with distinctive

itemsets and feature connections. Distinguishable node and edge attributes in the rule network

graph differ itemsets importance on predicting outcome label and emphasize prominent model

changes across prefix length variation. Predicted case explanation in dependency graph depicts

case and event-level attributes as well as label-rule list. Features related to the outcome label

are highlighted in different colors in both attributes and label-rule list. Users are expected to

look in the specific case and obtain knowledge of each label or various prefix lengths from both

visualization methods.

Future work will pursue multiple perspectives, in terms of both application and extension.

First, we plan to apply the proposed framework to the more general use case of classification.

That is, we intend to use our framework with data different than event logs, studying in partic-

ular to what extent the type of phenomenon that the data represent impacts the applicability

and performance of our framework. Regarding extension, we are planning to develop different

visualization techniques and to evaluate them concerning usefulness and ease of use with pseudo-

experts decision makers, such as university students of BPM subjects. To extend the prospect of

the visualization section in the framework, in particular concerning contextual variables which
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include inter case features or external information out of an event log, developing a comprehen-

sive process visualization method is the other direction of future work. Additional features such

as inter-case or resource-aware features within the event log are anticipated to enhance model

performance and understating the correlation between attributes. Besides, contextual variables

are expected to provide insight to users beyond the limited amount of data from a single event

log.
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