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Abstract 

Functional adhesives are essential components in a variety of application fields from daily life to 

high-tech industries, including precision manufacturing, aerospace, flexible electronics, and wearable 

devices. However, conventional functional adhesives based on chemically reactive, hot-melt, and 

viscoelastic adhesive materials generally form uncontrollable mechanical contact, producing bulky, 

contaminated, or damaged contact interfaces. To address these issues, bioinspired adhesive 

architectures exhibiting robust, reversible, and residue-free adhesion properties have been proposed. 

The extraordinary adhesion properties are due to the presence of nano- or micro-hair arrays with 

protruding tips that maximize van der Waals interactions between surfaces. The photolithography 

process followed by the replica-molding process has allowed the production of bioinspired artificial 

adhesives with robust adhesion and high structural stability in a simple, precise, and highly 

reproducible way. Nevertheless, the manufacturing process narrows the selection of materials to 

thermal- or UV-curable polymers whose inherently poor thermomechanical and electrical properties 

hinder the application of bioinspired adhesives in advanced industrial fields. 

One-dimensional (1D) nanomaterials including carbon nanotubes (CNTs), metallic nanowires, and 

nanorods have been actively studied as nanofillers to enhance the mechanical, electrical, and thermal 

properties of polymeric materials. Yet, the existing methods for the application of nanomaterials are 

not suitable for fabricating three-dimensional (3D) microarchitectures since the high viscosity of 

nanomaterial–polymer mixtures inhibits the successful formation of the structures. Furthermore, the 

rough morphology of the nanomaterials hinders the formation of intimate contact interfaces resulting 

in low adhesion strength. 

In this dissertation, we present novel design strategies for bioinspired nanocomposite adhesives, in 

which 1D nanomaterials are integrated into 3D microarchitectures. The strategies include 

microarchitecture designs, nanomaterial selections, and optimization of integration processes that 

allow microarchitectures to have enhanced thermal or electrical properties while maintaining superior 

adhesion performance. 

In Chapter 2, we propose high-temperature compatible adhesives based on an integration of 

mushroom-shaped microarchitectures and CNT-based nanocomposites. The nanocomposite 

microarchitectures are prepared by a photolithography process followed by replica-molding 

techniques in which polydimethylsiloxane (PDMS) matrices are reinforced with CNT fillers. The 

excellent thermomechanical properties of the CNTs enable the mushroom-shaped adhesive 

architectures to have exceptionally enhanced thermomechanical stability compared to pristine PDMS. 

Moreover, the manufactured adhesives exhibit robust adhesion performances even when exposed to 

elevated temperatures of ~350 °C; thus, they could be utilized as versatile high-temperature 

compatible adhesives with high reversibility. 
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In Chapter 3, we propose a flexible, transparent, and electrically conductive adhesive composed of 

tentacle-like adhesive architectures and selectively coated percolating silver nanowires (AgNWs). The 

integrated design provides robust mechanical and low-resistance electrical contacts by forming 

intimate contact interfaces. The contact interfaces enable efficient electrical connections with active 

electrodes through attachment without the use of additional contact processes such as mechanical 

clamping, chemical adhesives, or vacuum deposition, with the contact remaining stable even when 

highly bent. The superior features of bioinspired conductive adhesives are demonstrated in self-

attachable transparent heaters that can form a direct, seamless contact between its AgNWs and the 

target substrates, providing direct heat-transfer pathways for precise temperature control of the 

substrate while minimizing energy loss. 

 

Keywords: Adhesion, Bioinspired adhesives, Nanocomposites, Silver nanowires, Carbon nanotubes 
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Chapter 1. Introduction 

1-1. Research Background 

1-1-1. Functional Adhesives 

Functional adhesives are adhesives with advanced properties, such as high durability, impact 

resistance, thermal stability, or electrical conductivity.1-4 They are essential components of a wide 

range of applications ranging from daily life to advanced industries, including precision 

manufacturing, aerospace devices, and flexible electronics.5-7 High-temperature compatible adhesives 

are used to maintain close and intimate physical contact between two surfaces at high temperatures (> 

150 °C).4 The most widely used commercial product of this type is a Kapton tape consisting of silicon 

adhesives with polyimide films.8,9 The composition provides high thermal stability up to 250 °C as 

well as superior chemical resistance, which enables it to be utilized in various high-temperature 

precision manufacturing processes. Electrically conductive adhesives are used to form intimate 

electrical contacts or junctions between active components of electrical devices. For this purpose, 

composite adhesives with conductive metallic (Au, Ag, Cu, and Ni) or carbon fillers are mainly 

utilized.2,10 These conductive adhesives enable easy and fast electrical connections, grounding, and 

electromagnetic shielding. The development of various advanced industries is expected to increase the 

demand for functional adhesives with excellent thermal and electrical properties. 

Conventional adhesives are commonly organized into two broad classes: reactive and non-reactive. 

The chemically reactive adhesives bond two surfaces through chemical reactions that require pre-

mixing two polymers or additional external stimuli (UV, heat, moisture).11,12 Typical non-reactive 

types are hot-melt adhesives (HMAs) and pressure-sensitive adhesives (PSAs).13,14 HMAs are 

composed of thermoplastic materials that require high temperatures for bonding two surfaces. PSAs 

require uniform pressure for strong adhesion since their performance relies only on their 

viscoelasticity. Although these conventional methods can form strong mechanical adhesion between 

the surfaces, they have the following three limitations. First, additional solvents, heat, or pressure 

required for chemical reaction or hardening can damage the surfaces; thus such adhesives are not 

suitable for stimuli-sensitive substrates (e.g., skin). Second, the tacky nature of adhesives leaves 

residues on the surface after removal, which causes contamination or defects, lowering productivity, 

especially in continuous manufacturing processes.8 Third, they have low reusability that may cause 

increased production costs and potential environmental problems. To overcome these limitations, new 

adhesives that form robust, damage-free, clean, and highly reusable contact interfaces with diverse 

substrates are in demand. 
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1-1-2. Bioinspired Adhesives with 3D Microarchitectures 

Nature has various contact mechanisms in biological systems.15-21 Among the various species, 

gecko lizards, beetles, flies, and spiders have extraordinary adhesive properties of robust, reversible, 

and directional adhesion on their toes (Figure 1.1).15,22-24 They attach themselves to and move on 

vertical walls or ceilings while bearing their body weight as well as without leaving any sticky 

residues. Over the last several decades, many studies have reported that their extraordinary adhesion 

is due to their unique toe surface topographies, which are millions of arrays of micro- and nanoscopic 

foot hairs (setae) with protruding tip structures.24 The unusual adhesion capability, called dry adhesion, 

works according to the combination of the hairs and tips. The hairy structures with a high aspect ratio 

maximize the van der Waals interactions since they can be conformally and closely attached to the 

substrates based on the contact splitting effects.23 Tip structures extruded from the end of the hairs 

enhance the adhesion by increasing the contact area and distributing stress uniformly at the contact 

interface.25 During removal, independently attached hairs withstand higher stress until they are 

separated since stored elastic repulsive energy is not easily transferred to the near hairs.26,27 Based on 

the described mechanism, the patterned surface with hairy arrays with protruding tips has strong, 

infinitely usable, and clean adhesion-forming residue- or damage-free contact interfaces with various 

substrates. 

 
Figure 1.1. Micro- and nanoscale terminal structures for dry adhesion mechanism in various 

biological systems. Reproduced with permission from ref.24 © 2000 Springer. Reproduced with 

permission from ref.23 © 2003 National Academy of Sciences. 

To mimic the contact mechanism of dry adhesives, extensive studies on the artificial adhesive 

architectures were conducted.28-30 Early research aimed to realize the excellent adhesion of dry 

adhesives by synthesizing micro- or nano-hair arrays using polymeric materials. The polymer-based 

artificial hair or pillar arrays have been fabricated by top-down fabrication techniques, such as 

photolithography, electron-beam lithography, and soft lithography. The development of the fabrication 
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process enables precise control over structural parameters of diameter, aspect ratio, angle of tilt, and 

density of the hairs in a precise yet simple and reproducible manner.26 In theory,25 the adhesion 

strength of the manufactured artificial adhesives is given by 

 =   ()                 (1.1) 
where W is the work of adhesion between the two contacting surfaces, E is the elastic modulus of the 

material, R is the radius of the hairs, ν is the Poisson’s ratio of the material. Based on Equation 1.1, it 

may be concluded that the structural and material properties of pillar arrays should be optimized to 

improve the adhesion strength. However, there are two trade-offs in the optimization in terms of a 

structural design. First, a high aspect ratio of the pillar structures ensures improved adhesion but 

compromises the structural stability and adhesion repeatability. Second, the adhesion strength of the 

pillars is proportional to the elastic modulus of the polymer. However, pillar arrays made of harder 

materials result in lower surface adaptability, providing a significant reduction in the nanoscopic 

contact area. With these existing optimization strategies, it is difficult to enhance the adhesion of 

simple pillar patterns having flat- or round-shaped ends. 

To overcome the limitations of the simple pillar shapes, many researchers focused on controlling 

3D tip geometries (Figure 1.2).31-35 Inspired by nature, artificial dry adhesives with various sub-

micron tip structures including spatulae, mushroom (symmetric spatulae), triangular, and conical 

shapes have been developed.33,36 The various tip shapes not only provide enhanced adhesion but also 

additional functions such as directional adhesion, suction effect, or hydrophobicity.16,29,37,38 Among 

them, the mushroom-shaped (symmetric circular-shaped) tip structures were reported to have the best 

adhesion (Figure 1.3).33,39  

 
Figure 1.2. Artificial micro- and nanopillar arrays having protruding tip structures synthesized by 

polymeric materials. Reproduced with permission from ref.33 © 2007 Wiley-VCH. Reproduced with 

permission from ref.31 © 2009 National Academy of Sciences. 
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Figure 1.3. Comparison of bioinspired adhesive architectures with different tip structures. 

Reproduced with permission from ref.39 © 2007 American Chemical Society. 

The excellent adhesion properties of mushroom-shaped dry adhesives with protruding tips have 

high potential in various applications such as robotics, precision manufacturing, and biomedical 

devices.5,40,41 However, previous studies on dry adhesives have used limited polymeric materials, such 

as polyurethane (PU), polyurethane acrylate (PUA), and polydimethylsiloxane (PDMS).35,42 Despite 

the advantages of good processability, these materials limit their practical applications in advanced 

industries due to low thermal stability and electrical insulation.43,44 Conventional functionalization 

methods such as surface coating or chemical treatment are difficult to apply since they hinder the van 

der Waals forces of the structures.45,46 Although various advanced thermal and electrical fields require 

functional adhesives, few studies have been conducted on improving the functionality of 

microstructure-based dry adhesives with superior adhesion properties, such as reversible, damage-free, 

and clean adhesion. 

1-1-3. Bioinspired Adhesives Based on 1D Nanomaterials 

Over the past decades, one-dimensional (1D) nanomaterials including nanotubes, nanowires, and 

nanorods have been actively studied due to their unique mechanical, thermal, electrical, or optical 

properties.47,48 Their excellent features originate from the extremely high aspect ratio—they have 

nanoscale diameters and microscale lengths (Figure 1.4).49,50 Among them, carbon nanotubes 

(CNTs)51,52 and silver nanowires (AgNWs)53-55 attract the most attention of academia and industry. 

CNTs have superior mechanical stiffness (tensile strength of 11–63 GPa), heat resistance (thermally 

stable up to 2000 °C), and thermal conductivity (2800–6000 W m-1 K-1), which are due to the hollow 

cylinder structure of the hexagonal carbon atom lattice. AgNWs have the best electrical conductivity 

(63 MS m-1) among metallic nanomaterials; AgNW-based percolating networks simultaneously 

exhibit low sheet resistance, high optical transmittance, and high flexibility. These excellent features 

of CNTs and AgNWs are in high demand in advanced thermal and optoelectronic applications. 
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Figure 1.4. 1D nanomaterials with extremely high aspect ratio. SEM images of (a) MWCNTs (b) 

AgNWs. Reproduced with permission from ref.49 © 2019 MDPI. Reproduced with permission from 

ref.50 © 2014 American Chemical Society. 

Excellent properties of the 1D nanomaterials can be utilized to improve the functionality of 

bioinspired adhesives with 3D microarchitectures. However, conventional nanomaterial-application 

methods such as nanocomposite molding, spray-coating, and spin-coating are not suitable for 

microstructure manufacturing processes. To fully demonstrate the functionality of microstructures and 

nanomaterials, the following must be considered. First, nanomaterials make the molding process 

difficult since they increase the viscosity of polymer mixtures. To address this, the concentration of 

nanomaterials in polymer mixtures should be optimized to satisfy the processability requirements. 

Second, when the nanomaterials are coated on the surface of microstructures, they hinder the intimate 

contacts because of their rough morphology. To solve this, nanomaterials should be selectively 

applied to certain areas to ensure both functionality of nanomaterials and the adhesion of 

microstructures at the same time. Although a variety of studies will be required to solve these 

problems, few studies are yet to be done to develop processes that integrate nanomaterials with 

bioinspired adhesive architectures. 

 

1-2. Outline of the Dissertation 

The research goal of this dissertation is to propose novel bioinspired nanocomposite adhesives with 

enhanced thermal or electrical properties based on the new design strategies integrating 1D 

nanomaterials with bioinspired 3D microarchitectures. For this purpose, we introduce new approaches 

for optimizing the nanomaterial composition and structural parameters of microarchitectures that 

enable the microarchitectures to have enhanced thermal or electrical properties while maintaining 

superior adhesion performance, as summarized in Figure 1.5. 
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Figure 1.5. Schematic illustration of the research outline. 

In Chapter 2, we present a high-temperature compatible adhesive based on a novel design of 

mushroom-shaped microarchitectures reinforced with MWCNTs of different concentrations. The 

MWCNT/PDMS composite adhesives exhibit remarkably better adhesion even when they are 

thermally annealed at temperatures up to 350 °C. We demonstrate a strong potential of bioinspired 

adhesives as versatile high-temperature reversible adhesives. In Chapter 3, we propose a flexible, 

transparent, and electrically conductive adhesive that is based on a distinctive design of regular grid 

patterns into which bioinspired adhesive architectures and percolating AgNWs are integrated. Based 

on the integrated design, the proposed adhesive forms reliable low-resistance electrical contacts, 

strong mechanical adhesive contacts, and ultra-clean contacts with active device components. The 

superior features of bioinspired conductive adhesives are demonstrated in smart interconnectors and 

self-attachable transparent heaters. Finally, in Chapter 4, we summarize the key achievements with 

suggestions for future work. 
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Chapter 2. High-Temperature Compatible Adhesive 

This chapter includes the published contents: 

M. Seong, C. Jeong, H. Yi, H.-H. Park, W.-G. Bae, Y.-B. Park, and H. E. Jeong, Appl. Surf. Sci. 2017, 

413, 275-283. © 2017 Elsevier. 

2-1. Introduction 

High-temperature compatible adhesives with robust adhesion strength, high reversibility, and high 

thermomechanical stability are essential components in various advanced applications such as flexible 

electronics, biochemical devices, and aerospace.4,6,56-59 For example, commercially available 

polyimide tape has been widely utilized as a high-temperature protective film and interlayer dielectric 

due to its high thermomechanical stability.60-63 However, chemical-based adhesive mechanisms 

commonly used in polyimide tape cause surface contamination by residues after separation. These 

inherent limitations significantly reduce the reusability of the adhesives and hinder the precise 

manufacturing of delicate devices. As a solution to the existing limitations, diverse bioinspired 

artificial adhesive surfaces based on nano- and microarchitectures were actively studied over the past 

decade.5,31,37,38,42,64-70 These bioinspired adhesive architectures have demonstrated superior adhesion 

performance with reversible adhesion to surfaces with varying roughness and clean adhesion without 

causing surface contamination or damage.29,35,64,67,70-73 Especially, hairy arrays with extruded fine tip 

structures provide strong, reversible, and clean adhesion in the vertical and horizontal directions.31,69,70 

The extraordinary and superior adhesion properties of the bioinspired 3D architectures enable various 

applications including therapeutic adhesives, grippers, and robots.5,40,41 Despite the high interest of a 

variety of industries, most of the existing studies on bioinspired adhesive architectures focused on a 

limited number of polymers such as polydimethylsiloxane (PDMS), polyurethane (PU), and 

polyurethane acrylate (PUA) because of their good processability.42 Their low thermomechanical 

stability and low heat resistance, however, significantly limited the application temperature range (less 

than 200 °C).74 Moreover, the high-temperature adhesive behavior of polymer-based 

microarchitectures has not been studied sufficiently.  

We developed high-temperature compatible adhesives based on a bioinspired adhesive architecture 

composed of multiwalled carbon nanotube (MWCNT) nanocomposites having a robust, reversible, 

and clean adhesion even at elevated temperatures. Multiwalled carbon nanotubes (MWCNT) were 

utilized as a nanofiller based on their superior thermomechanical stability. Pillars and tips of the 

mushroom-shaped microarchitectures were precisely manufactured by a replica-molding process with 

a polymeric matrix reinforced by optimized concentrations of the MWCNTs. The proposed adhesive 
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architectures provide excellent structural integrity, improved thermomechanical stability, and high 

adhesion strength even when exposed to elevated temperatures up to ~350 °C. 

 

2-2. Results and Discussion 

2-2-1. Structural Characterization of the Fabricated Nanocomposite Dry Adhesives 

Figure 2.1 shows a schematic of the bioinspired composite dry adhesives with mushroom-like 

micropillar arrays. These arrays act as a versatile and effective form of dry adhesive as they offer 

strong adhesion both in the normal and shear directions without applying an external load.5 First, a 

bilayer stack of the top SU-8 layer and bottom sacrificial LOR layer was formed on a Si wafer by the 

serial spin-coating of LOR and SU-8 on the substrate. The thickness of the LOR and SU-8 layers 

determines the tip thickness and pillar height of the mushroom-shaped micropillars, respectively.69 

Then, a microhole pattern was formed in the SU-8 layer. Subsequent undercut formation in the LOR 

layer generated a Si master with uniform negative patterns of mushroom-like micropillars (Figure 

2.2a).  

 
Figure 2.1. Schematic of the fabrication procedure of the nanocomposite dry adhesives with 

MWCNT/PDMS mixtures. 
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Figure 2.2. Bioinspired MWCNT/PDMS nanocomposite dry adhesives. (a) A photograph of the 

fabricated Si master with negative patterns of mushroom-like micropillars. (b) A photograph of the 

fabricated nanocomposite dry adhesives made of mixtures of PDMS and 2 wt% MWCNT. 

Finally, flexible nanocomposite adhesives were obtained through the replica molding of the 

patterned Si master with MWCNT/PDMS mixtures containing different concentrations (wt%) of 

MWCNT (Figure 2.2b). The fabricated adhesives were cut into circular specimens for a series of tests. 

Nanocomposites incorporating CNT in a polymeric matrix exhibited excellent thermal and 

mechanical stability and high thermal conductivity, owing to the excellent physical properties and 

unique structures of CNT.75,76 Thus, the fabricated nanocomposite dry adhesives are expected to have 

improved heat resistance and thermal-mechanical stability as compared with pure polymeric dry 

adhesives, and therefore, are expected to be usable at high temperatures.  

Figure 2.3a shows photographs of the fabricated dry adhesives made of pristine PDMS and 

nanocomposites with three different concentrations of MWCNT (0.5, 1.0, and 2.0 wt%). As shown, 

circular dry adhesive pads with 9-mm diameter and 1-mm thickness were successfully prepared. 

Except for the transparent pristine PDMS adhesive, all MWCNT/PDMS composite adhesives 
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appeared black without any visual differences. The microstructures of all adhesive samples were 

investigated by scanning electron microscopy (SEM). Figure 2.3b shows the SEM images of the 

samples. Mushroom-like micropillars were successfully formed with good structural integrity and 

uniformity even in the sample with the highest MWCNT concentrations. The resulting micropillar 

arrays had a neck diameter of ~20 µm, tip diameter of ~22 µm, spacing of ~20 µm, and height of ~10 

µm. The tip thickness was ~1 µm. As shown in Figure 2.3b, all the resulting composite dry adhesives 

have pillar arrays with identical geometries regardless of the MWCNT loading concentrations. Cross 

sections of the adhesive pads were also investigated by SEM. As shown in Figure 2.3c, the pristine 

PDMS adhesive showed a smooth cross section without any nanofiller material, whereas uniformly 

dispersed MWCNTs were observed in the matrix of the nanocomposite adhesives. More MWCNTs 

were observed in the adhesive samples with higher MWCNT loading concentrations. 

 
Figure 2.3. Pristine PDMS and nanocomposite dry adhesives with different MWCNT concentrations. 

(a) Photographs of the pristine PDMS and the nanocomposite adhesives with 0.5, 1.0, and 2.0 wt% 

MWCNT. (b) SEM images of the pristine PDMS and the nanocomposite adhesives with different 

MWCNT concentrations, corresponding to each adhesive shown in (a). (c) SEM images of the cross 

sections of each adhesive, corresponding to samples shown in (a)–(b). 
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2-2-2. Thermal Stability Analysis of the Nanocomposite Dry Adhesives 

Although polymeric dry adhesives exhibit strong adhesive forces and high scalability, they can be 

typically used only in a limited temperature range because of the thermal degradation of polymeric 

materials when exposed to relatively high temperatures for a long time.77-79 The adhesion and 

thermomechanical behaviors of polymeric dry adhesives at high temperatures have not been fully 

studied so far. To evaluate the thermal stability of the fabricated nanocomposite dry adhesives, a 

thermogravimetric analysis (TGA) was performed for adhesive samples with different MWCNT 

concentrations. To reflect the real conditions in which dry adhesives may be utilized, the TGA tests 

were performed in air instead of under nitrogen-purged conditions. The tendency of thermal oxidative 

degradation of PDMS in air is different from that in nitrogen.43,77 Figure 2.4 shows the resulting TGA 

and derivative thermogravimetric (DTG) curves of the pristine PDMS adhesive and the 

nanocomposite adhesives.  

 
Figure 2.4. Thermal stability of bioinspired PDMS and nanocomposite dry adhesives. (a) 

Thermogravimetric analysis (TGA) and (b) derivative thermogravimetric (DTG) curves of the neat 

PDMS and nanocomposite adhesives with different concentrations of MWCNT in air. 
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Figure 2.5. Photographs of the pristine adhesives and the nanocomposite adhesives with 1.0 wt% 

MWCNT after thermal annealing at high temperatures from 200 °C to 400 °C. 

The thermal analysis data is summarized in Table 2.1. The pristine PDMS adhesive exhibited its 

typical thermal oxidative degradation behavior in air.77,80 The material started losing weight at 

~100 °C because of the release of the moisture absorbed on the PDMS. The temperature at the onset 

of decomposition and the temperature at the main decomposition peak are 300 °C and 498 °C, 

respectively, for the PDMS adhesive. Significant improvements in thermal stability and heat 

resistance were observed for the nanocomposite dry adhesives. The onset temperature increased to 

348 °C and 350 °C for 0.5 and 1.0 wt% nanocomposite adhesives, respectively; the values are ~50 °C 

higher than the onset temperature of the pristine PDMS adhesive. The onset temperature of the 

nanocomposite adhesive with 2.0 wt% MWCNT was 392 °C, which is higher than that of the pristine 

PDMS adhesive by 92 °C. Thus, the thermal stability of the dry adhesives was drastically enhanced 

upon the incorporation of MWCNT into the PDMS matrix. The temperature at the main 

decomposition peak also greatly increased with the increase in MWCNT loading—from 498 °C for 

the pristine PDMS adhesive to 510, 536, and 535 °C for 0.5, 1.0, and 2.0 wt% nanocomposite 

adhesives, respectively. Nanocomposite adhesives with higher MWCNT concentrations showed a 

lower decomposition rate at the main decomposition peak (MDRT, maximum decomposition rate 

temperature) and a higher residual char yield (Table 2.1). These differences in the thermal behaviors 

between the pristine PDMS and the nanocomposite adhesives resulted in noticeable visual differences 

in the adhesives after thermal treatment. When the PDMS adhesive was cooled after thermal 

annealing at 100–250 °C, no visual differences were observed, as shown in Figure 2.5. However, 

after heat treatment at 300 °C and subsequent cooling, randomly oriented cracks were generated on 

the surface of the pristine PDMS adhesive. When the annealing temperature exceeded 350 °C, the 

PDMS adhesive shrunk with severe surface cracks and crumbled easily even with a low external 

pressure. In contrast, no surface cracks were observed up to higher annealing temperatures in the case 

of the nanocomposite adhesives. As shown in Figure 2.5, no visual differences, including surface 
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cracks, were observed in the nanocomposite adhesives annealed at 300 °C. Although surface 

expansion was observed after annealing at 350 °C, no surface cracks formed in the nanocomposite dry 

adhesives. The composite adhesives started shrinking and cracking upon thermal annealing beyond 

400 °C. These results clearly indicate that the MWCNT/PDMS nanocomposite adhesives have 

remarkably improved thermomechanical stability and heat resistance as compared with those of the 

pristine PDMS adhesive. This is because the MWCNTs in the PDMS inhibit the mobility of the 

siloxane chains and interrupt the molecular rearrangement of the PDMS chain, improving the thermal 

stability of the MWCNT/PDMS nanocomposites.81 

Table 2.1. Results of the TGA analysis of the pristine and nanocomposite dry adhesives with different 

MWCNT concentrations (0.5, 1.0, and 2.0 wt%) in air. 

Specimens 
Approximated 
onset temp. 
(ºC) 

Temperature at 
the oxidation 
peak (ºC) 

Temperature at 
the main 
decomposition 
peak (ºC) 

Decomposition 
rate at the main 
decomposition 
peak (% ºC-1) 

Residue 
char yield 
(%) 

PDMS 300 364 498 0.48 40.9 

0.5 wt% 
MWCNT 
/PDMS 

348 410 510 0.29 50.0 

1.0 wt% 
MWCNT 
/PDMS 

350 419 536 0.19 56.7 

2.0 wt% 
MWCNT 
/PDMS 

392 435 535 0.18 58.9 

 

2-2-3. Evaluation of Adhesion Properties of the Fabricated Nanocomposite Dry Adhesives 

To investigate the effects of MWCNT concentrations and thermal annealing on the adhesion 

strength, the macroscopic pull-off strength was measured for dry adhesives of four different MWCNT 

concentrations (0, 0.5, 1.0, and 2.0 wt%) using custom-built equipment. The pristine PDMS and 

nanocomposites adhesives were annealed at six different bake temperatures (100, 200, 250, 300, 350, 

and 400 °C) for three annealing periods (30, 60, and 120 min). Then, the samples were cooled to room 
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temperature before measurements. In all, 76 experimental sets, including four controls, were 

conducted. Figure 2.6 and 2.7 show the pull-off strength of dry adhesives with different MWCNT 

concentrations depending on thermal annealing conditions. The pristine PDMS adhesive without the 

heat treatment exhibited an adhesion strength of ~19.2 N cm−2 (Figure 2.6a). When it was baked at a 

slightly higher temperature of 100 °C, the changes in adhesions between samples with different 

annealing times were imperceptible. The average adhesion values were ~19.4, 18.4, and 20.7 N cm−2 

after 30, 60, and 120 min of annealing, respectively. However, when the PDMS adhesive was baked at 

200 °C, a notable change in adhesion strength was observed. Interestingly, the thermal treatment of 

the PDMS adhesive at 200 °C resulted in a significant enhancement in the pull-off strength (~27.5–

29.1 N cm−2) for all baking periods (30, 60, and 120 min).  

 
Figure 2.6. Adhesion performances of the bioinspired nanocomposite dry adhesives at room 

temperature after thermal annealing from 100 °C to 400 °C for different annealing times from 0 to 2 h. 

(a–d) Measurement of the pull-off strength of the (a) pristine PDMS dry adhesives and nanocomposite 

dry adhesives with MWCNT concentrations of (b) 0.5 wt%, (c) 1.0 wt%, and (d) 2.0 wt% versus 

thermal annealing time. 
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Figure 2.7. Demonstration of bioinspired nanocomposite dry adhesives at room temperature after 

thermal annealing from 100 °C to 400 °C for different annealing times from 0 to 2 h. (a) A photograph 

showing the firm attachment of a 5-kg dumbbell against a glass substrate using a nanocomposite dry 

adhesive (2 wt% MWCNT) that was annealed at 300 °C for 1 h. (b–d) Measured pull-off strengths of 

the pristine PDMS and the nanocomposite dry adhesives with different MWCNT concentrations as 

functions of the annealing temperature for different heat treatment times of (b) 30 min, (c) 60 min, 

and (d) 120 min.  
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In theory,82,83 the pull-off force for the flat tip (P) is given by 

 = ()√8         (2.1) 
where N(Pp) is the number of pillars in contact at preload PP, and R is the radius of the flat tip. 

K=E/(1- ν2) is the effective Young’s modulus of the surface, and E and ν are the Young’s modulus and 

Poisson’s ratio of the material, respectively. W is the work of adhesion of the interface, given as  

 = 4   +              (2.2) 
where the superscripts d and p indicate the dispersion and polar components of the surface tension γ, 

respectively. From Equation 2.1 and 2.2, it can be seen that the pull-off strength can be increased by 

utilizing a material with higher elastic modulus and high surface tension as long as the number of 

micropillars in contact N(PP) remains same. The results of our contact angle (CA) tests show that the 

surface tension of the pristine PDMS remains almost same even after thermal treatment under 

different annealing conditions (Table 2.2). However, the elastic modulus of the PDMS increases with 

the annealing temperature. A previous study reported that the elastic modulus of PDMS increased 

from ~1.32 MPa for 25 °C to ~2.97 MPa for 200 °C annealing.84 According to Equation 2.1, this 

~2.25-fold increase in the elastic modulus should result in an ~1.5-fold increase in the pull-off 

strength, assuming Poisson’s ratio of PDMS as a constant. This theoretical prediction is in good 

agreement with our experimental observations. The enhancement of the pull-off force for the samples 

after thermal treatment at 200 °C is considered induced by the resulting increase in the elastic 

modulus. As the elastic modulus is still relatively low (~2.97 MPa), the number of micropillars in 

contact can be assumed constant for the PDMS adhesive after 200 °C annealing. The pull-off strength 

of the PDMS dry adhesives starts decreasing significantly when baked at 250 °C. The pull-off force 

monotonically decreased to ~18.4 N cm−2 and ~14.4 N cm−2 after 30 min and 60 min of annealing, 

respectively, and was further reduced to ~4.0 N cm−2 after baking for 120 min; this value is only ~20 % 

of that of the PDMS adhesives without thermal treatment. Moreover, the pristine PDMS adhesive 

exhibited significantly diminished adhesion capability even after a relatively short exposure (30 min) 

to temperatures over 300 °C. Interestingly, this temperature corresponds to the onset temperature of 

pristine PDMS. As shown in Figure 2.5 and Table 2.1, when the PDMS is exposed to temperatures 

over 300 °C, thermal oxidative degradation is accelerated, and surface cracking and crumbling occurs, 

resulting in significantly diminished pull-off strength.  
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Table 2.2. Contact angles of water and glycerol on various surfaces and the calculated surface tension 

values by the harmonic mean method. 

Specimens Baking 
conditions 

Contact angle (°) Surface energy (mJ m-2) 

DI water Glycerol γd γp γ 

PDMS 

Control 110.6 ± 1.1 98 ± 0.8 18.73 1.78 20.51 

200 ºC, 1h 109.8 ± 1.3 97.6 ± 1.3 17.89 2.31 20.20 

250 ºC, 1h 110.9 ± 0.5 98.8 ± 0.6 17.75 2.00 19.75 

0.5 wt% 
MWCNT 
/PDMS 

Control 110.7 ± 2 98.1 ± 0.9 18.74 1.75 20.49 

200 ºC, 1h 109.4 ± 1.4 97.9 ± 0.3 16.55 2.90 19.45 

250 ºC, 1h 110.8 ± 0.9 97.7 ± 0.6 19.77 1.41 21.18 

300 ºC, 1h 105.3 ± 0.8 97.4 ± 1.6 10.82 7.01 17.83 

1.0 wt% 
MWCNT 
/PDMS 

Control 110.5 ± 2.5 98.3 ± 0.5 17.93 2.07 20.00 

200 ºC, 1h 110.1 ± 0.4 98 ± 0.5 17.71 2.27 19.98 

250 ºC, 1h 110.4 ± 2 98.4 ± 0.7 17.53 2.23 19.76 

300 ºC, 1h 105 ± 0.7 97.6 ± 1.2 10.14 7.54 17.68 

2.0 wt% 
MWCNT 
/PDMS 

Control 110.4 ± 1.2 98.1 ± 0.3 18.12 2.04 20.16 

200 ºC, 1h 110.1 ± 0.3 98.3 ± 0.1 17.13 2.47 19.60 

250 ºC, 1h 110.2 ± 0.8 98.1 ± 0.5 17.72 2.24 19.96 

300 ºC, 1h 104.4 ± 2.9 96.6 ± 2.7 10.75 7.41 18.16 

 

Nanocomposite adhesives without heat treatment had pull-off strengths comparable with the 

strength of the PDMS adhesive (see Figure 2.7b–d for direct comparison). The average pull-off 

strengths of the nanocomposite adhesives loaded with 0.5, 1.0, and 1.5 wt% MWCNT were ~19.2, 

18.5, and 19.5 N cm−2, respectively. This is because the elastic modulus of MWCNT/PDMS 

nanocomposites with small amounts of MWCNT (0.5–2 wt%) differs only slightly from that of the 

pristine PDMS.85,86 When the nanocomposite adhesives were baked at 100–200 °C, they exhibited 

overall adhesion tendencies similar to those of the PDMS adhesives, regardless of the loading 

concentrations of MWCNT. The noticeable increase in pull-off force after thermal treatment at 200 °C 

was also observed for all nanocomposite adhesives because of the increase in the elastic modulus after 

annealing at 200 °C. Overall, the effects of the MWCNT loading on the adhesion behaviors were 
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marginal when the adhesives were baked in a temperature range from room temperature to 200 °C. 

However, a noticeable difference in adhesion behaviors was observed between the PDMS and the 

nanocomposite adhesives for annealing temperatures over 250 °C. The nanocomposite adhesives 

showed high adhesion of ~27.1–28.5 N cm−2 after baking at 250 °C for 30 min, similar to the 

adhesives annealed at 200 °C. Surprisingly, the nanocomposite adhesives maintained the high level of 

pull-off strength even after a long baking time (~120 min). For example, the average pull-off of 

nanocomposite adhesives loaded with 2 wt% MWCNTs were ~28.5, 27.2, and 23.5 N cm−2 for 30, 60, 

and 120 min of annealing, respectively, at 250 °C. Although the adhesion strength decreased with the 

increase in baking time, the strength was still higher than that of the pristine PDMS (~19.2 N cm−2) 

adhesive and that of the nanocomposite adhesive with 2 wt% MWCNT (~19.5 N cm−2) without 

thermal treatments. These superior adhesion properties after high-temperature annealing were 

observed for all nanocomposite adhesives with different MWCNT concentrations, and their adhesion 

strengths were nearly identical, regardless of the MWCNT loading percentages. The nanocomposite 

adhesives exhibited a high level of adhesion even after annealing at 300 °C. They exhibited a pull-off 

strength of ~17.4–18.9 N cm−2 and ~13.3–15.1 N cm−2 for 30 min and 60 min of baking, respectively. 

Furthermore, the nanocomposite adhesives exhibited an adhesion of ~8.0–8.6 N cm−2, which is ~41–

44 % that of nanocomposite adhesives without thermal treatment, even after 120 min of baking at 

300 °C. When the annealing temperature increased to 350 °C, the pull-off strength notably decreased 

to less than 10 N cm−2 as shown in Figure 2.7. Nonetheless, a fair adhesion of 5.7–8.1 N cm−2 was 

still observed with the nanocomposite adhesives for a relatively short annealing time of 30 min. These 

results demonstrate that the nanocomposite dry adhesives have superior heat resistance and 

thermomechanical stability, and thus can be used as a reversible and contamination-free high-

temperature adhesive.  

To characterize the adhesion behaviors of the nanocomposite adhesives, adhesion measurements 

were carried out for the different adhesives subjected to prolonged elevated temperatures without 

cooling. For the measurements, the adhesive and the Si substrate were placed on a hot plate, which 

was then heated to a target temperature. Thereafter, the adhesive and the substrate were left on the hot 

plate for different periods (1, 10, 20, 30, 60, and 120 min) while maintaining the temperatures. Then, 

the pull-off strengths of the samples were measured by bringing the dry adhesive in contact with the 

Si substrate. As shown in Figure 2.8, the pristine PDMS and the nanocomposite adhesives showed 

similar pull-off tendencies in the temperature range from room temperature to 200 °C. In this 

temperature range, both the PDMS and the nanocomposite adhesives exhibited a high adhesion 

strength without adhesion degradation even under prolonged continuous heating (~120 min). However, 

when the adhesives were heated to higher temperatures ranging from 250 °C to 300 °C, the 

nanocomposite adhesives showed better adhesion performance than that of the pristine PDMS 

adhesives. The initial pull-off strength of the pristine PDMS adhesives measured after heating to 
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250 °C for 1 min was ~12.9 N cm−2. However, it decreased rapidly with the heating time as shown in 

Figure 2.8a. The pull-off strengths were just ~4.1 N cm−2 and 0.7 N cm−2 for 60 and 120 min of 

heating, respectively. In case of the nanocomposite adhesives, the initial pull-off strengths measured 

after 1 min of heating at 250 °C was ~13.1–14.0 N cm−2 depending on samples with different 

MWCNT concentrations. Although the adhesion decreased with heating times, the degradation rate 

was much smaller than that of the PDMS adhesive. Furthermore, they still exhibited high levels of 

adhesion even after prolonged heating for more than 1 h. The pull-off strengths after 60 and 120 min 

of heating were ~9.3–10.0 N cm−2 and ~6.4–8.1 N cm−2, respectively. When the heating temperature 

reached 300 °C, the differences between the adhesion performances of the PDMS and the composite 

adhesives were more obvious. The nanocomposites exhibited a pull-off strength of more than 8 N 

cm−2 up to 20 min of heating and 2.2–4.1 N cm−2 even after longer heating times of 30 and 60 min. In 

contrast, the pristine PDMS adhesive exhibited rapidly decreasing adhesion tendencies with 

increasing heating times and nearly no adhesion after 30 min of heating at 300 °C (Figure 2.8).  

 
Figure 2.8. Adhesion performances of the bioinspired nanocomposite dry adhesives under prolonged 

elevated temperatures conditions from 25 °C to 400 °C without the cooling of the adhesives and the Si 

substrate. (a–d) Measured pull-off strengths of the (a) pristine PDMS dry adhesives and 

nanocomposite dry adhesives with MWCNT concentrations of (b) 0.5 wt%, (c) 1.0 wt%, and (d) 2.0 

wt% under prolonged high-temperature conditions as a function of the heating time. 
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These results confirmed the superior thermal stability and high-temperature adhesion capabilities of 

the nanocomposite dry adhesives in comparison with pristine polymeric dry adhesives. When the 

heating temperature increased to 400 °C, the adhesion forces were not observed for the PDMS and the 

composite adhesives, except for short-term heating for 1 min. The thermomechanical stability and 

high-temperature adhesion performances of the bioinspired nanocomposite dry adhesives can be 

further enhanced by optimizing the species, sizes, and concentrations of nanofiller materials in the 

composites, and this will be explored in our future work. 

2-3. Conclusion 

In summary, we have presented a soft nanocomposite dry adhesive that can be used at high 

temperatures reversibly and repeatedly. The nanocomposite dry adhesives with uniform mushroom-

like micropillar arrays were prepared by a simple replica-molding technique with MWCNT/PDMS 

mixtures over a large area of a full 4-inch wafer. The fabricated nanocomposite dry adhesives made of 

MWCNT/PDMS mixtures showed notably enhanced thermomechanical stability while maintaining 

strong pull-off adhesion even after thermal annealing–cooling cycle at high temperatures of up to 

350 °C. Furthermore, they exhibited superior adhesion performances and heat resistance even under 

prolonged high-temperature conditions. The superior thermal stability and high-temperature adhesion 

capabilities of the nanocomposite dry adhesives originated from the excellent thermal and mechanical 

properties of MWCNT in the composite. This soft nanocomposite dry adhesive can serve as a 

versatile high-temperature, reversible, contamination-free adhesive for a broad range of 

applications—from advanced electronic devices to specialized adhesives for extreme environments.  

 

2-4. Experimental Section 

2-4-1. Preparation of MWCNT/PDMS Mixture 

For the preparation of the MWCNT/PDMS mixture, multiwalled carbon nanotubes (MWCNT, 

CM250, Hanhwa Chemical, Korea) with diameters of 4 nm and lengths of 70–80 μm were first 

dispersed in chloroform by sonication (for 1 h). Then, polydimethylsiloxane (PDMS) prepolymer 

(Sylgard 184A, Dow Corning) was mixed with the dispersed solution at different ratios (0, 0.5, 1.0, 

and 2.0 wt%) of MWCNT using a magnetic stirrer. The MWCNT/PDMS mixtures were placed on a 

hot plate at 100 °C for 24 h to evaporate the chloroform. After the chloroform was completely 

evaporated, a PDMS curing agent (Sylgard 184B, 10:1 ratio by weight for the PDMS prepolymer and 

curing agent) was added to each MWCNT/PDMS mixture, which was then mixed by using a 

magnetic stirrer. 
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2-4-2. Fabrication of Bioinspired Composite Dry Adhesives with Mushroom-Like Micropillar 

Arrays 

A silicon wafer was first baked at 70 °C for 10 min in a convection oven for dehydration.69 A lift-

off resist (LOR 10B, Microchem Corp, USA) was then spin-coated on the Si wafer (2000 rpm, 30 s), 

followed by baking on a hot plate at 200 °C for 10 min. Subsequently, a photoresist (SU-8 3010, 

Microchem Corp, USA) was spin-coated on the LOR layer (2000 rpm, 30 s), followed by 5-min soft 

baking at 100 °C. The wafer was then exposed to UV (λ = 365 nm, dose = 250 mJ cm−2) light with a 

photomask having a microhole array. After UV exposure, the wafer was baked further at 100 °C for 3 

min. Subsequently, the UV-exposed SU-8 layer was developed using an SU-8 developer (Microchem 

Corp, USA) for 5 min; it was then rinsed with isopropyl alcohol and blow-dried with nitrogen. The 

LOR layer was removed selectively with AZ 400 K (AZ Electronics Materials Corp, USA) for 60 s to 

form an undercut for a protruding tip of the mushroom-like micropillars. Finally, the substrate was 

rinsed with deionized water and blow-dried with nitrogen. For surface hydrophobization, the 

fabricated Si master was passivated with C4F8 gas. For fabricating the bioinspired composite dry 

adhesives with mushroom-like micropillar arrays, the prepared MWCNT/PDMS mixtures with 

different concentrations of MWCNT (0, 0.5, 1.0, and 2.0 wt%) were poured onto the Si master. The 

master covered with the mixtures was then placed in a vacuum chamber and degassed for 10 min in 

several tens of mTorr. Subsequently, the Si master was placed in a convection oven and cured at 70 °C 

for 2 h. Finally, the cured PDMS replica was carefully removed from the master. 

 

2-4-3. Thermogravimetric Analysis (TGA) 

A TGA was carried out using TGA Q500 analyzer (TA Instruments, USA) for MWCNT/PDMS 

composite samples with different concentrations of MWCNT. First, 15 mg of the PDMS and 

nanocomposite adhesives with different concentrations of MWCNT (0.5, 1.0, and 2.0 wt%) were 

prepared, and the samples were placed in the furnace of the analyzer. Experimental data were obtained 

by increasing the temperature from ambient temperature to 800 °C at a heating rate of 20 °C min−1 

under air-purged conditions.  

 

2-4-4. Surface Tension Characterization 

To evaluate the surface tension of the PDMS and the nanocomposites after various thermal 

treatments, the static CAs on each planar sample were measured with a drop shape analyzer (SDLAB 

200TEZD, FEMTOFAB, Korea) at room temperature by using the probing liquids deionized (DI) 

water and glycerol. The measurement for each liquid was repeated five times at random positions on 

the specimen to average the CA. The surface tension values of the PDMS and the nanocomposites 
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were then calculated by the harmonic mean method. 

 

2-4-5. Pull-off Force Measurements 

Macroscopic pull-off forces of the bioinspired nanocomposite dry adhesives were evaluated using 

custom-built equipment in a controlled temperature range 25–400 °C and a relative humidity of 40%. 

A circular adhesive patch (diameter = 9 mm, thickness = 2 mm) was attached to a flat Si wafer under 

a controlled preload of 20 N and lifted using a motorized stage at a speed of 2 mm s−1 until separation. 

For statistical significance, adhesion measurement was conducted 10 times for each sample under 

identical conditions. 
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Chapter 3. Transparent and Electrically Conductive 

Adhesive 

This chapter includes the published contents: 

I. Hwang, M. Seong, H. Yi, H. Ko, H.-H. Park, J. Yeo, W.-G. Bae, H. W. Park, and H. E. Jeong, Adv. 

Funct. Mater. 2020, 30, 2000458. © 2020 Wiley-VCH. 

3-1. Introduction 

With the recent development of low-dimensional nanomaterials such as nanowires, carbon 

nanotubes (CNTs), and graphene, flexible and transparent conductive electrodes (FTCEs) are being 

developed.87-90 In contrast to the conventional transparent electrodes based on brittle and non-flexible 

materials such as indium tin oxide (ITO), these nanomaterials-based electrodes exhibit high 

mechanical flexibility while maintaining high electrical conductivity and optical transparency.91-95 

This is owing to the superior mechanical and electrical properties of the nanomaterials. Based on the 

high mechanical flexibility, optical transparency, and electrical conductivity, FTCEs are key elements 

of the emerging flexible optoelectronic devices including flexible displays,96 touch panels,97,98 

heaters,99,100 solar cells,101-103 electronic skins,104-106 and smart windows.107 

In these flexible devices, the FTCEs should form a close, intimate mechanical contact and adhesion 

with various active components of the flexible devices to ensure stable, low-resistant electrical 

contacts.108 Flexible optoelectronic devices rely on the stable and intimate electrical and mechanical 

contacts between electrodes and active device components.109 Unstable contact formations at the 

interfaces of the electrodes and active device components can cause malfunctions and performance 

degradation of electronics and efficiency reduction of energy devices, adversely affecting device 

reliability.7,110 However, FTCEs based on percolating nanomaterial network typically cannot adhere to 

other surfaces with its nanomaterials-coated side as the coated nanomaterials hinder the conformal 

contact of the FTCEs with the substrates.46,111 Thus, additional contact formation steps are necessary 

for the conventional FTCEs. Conventional contact formation methods include the use of soldering,112 

conductive adhesives,7 or mechanical clamper.113 Alternatively, conductive metal electrodes can be 

formed directly on the specific active regions of flexible devices using vacuum evaporation114 or 

solution coating.115 While these approaches for forming mechanical and electrical junctions are well-

established, they have several limitations. For example, it is challenging to form an accurate, thin 

contact with soldering because of the viscous fluid nature of the solder paste.112 Moreover, solder 

pastes are not transparent, which limits their utilization in specific regions of flexible transparent 
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devices.112 The mechanical fixation using a sprung metal clip is typically bulky and is not suitable for 

thin, flexible devices. In addition, the mechanical clamping can damage the surface physically.113 

Fixations using conductive tapes and pastes (e.g., Ag paste) generally contaminate the surface and 

increase contact resistance owing to the adhesive chemicals at the contacting interfaces.7 Metal 

deposition can damage the active layer of devices and also requires expensive vacuum processes.114 

Solution coating of conducting nanomaterials on a semi-finished device is also challenging owing to 

the solvent compatibility and solvent-induced damage.115 Notwithstanding extensive researches into 

flexible transparent electrodes, FTCEs that can simultaneously form low-resistant electrical contacts 

and strong mechanical adhesive contacts with damage-free, clean contact interfaces, and junctions 

have rarely been explored.  

Herein, we report a self-attachable, flexible, transparent, and conductive electrode (AF-TCE) that 

can simultaneously form strong mechanical adhesive contacts and low-resistant electrical contacts 

with diverse planar and curvilinear surfaces of flexible devices. The AF-TCE has a distinctive design 

of regular grid patterns into which bioinspired adhesive architectures and percolating silver nanowires 

(AgNWs) are integrated. Based on the integrated design, the AF-TCE can form low-resistant electrical 

ohmic contacts and ultra-clean, damage-free contact interfaces with active components of flexible 

devices by attaching it onto the components even when they are highly bent. Moreover, specific 

electronic circuits can be formed on the surface of the AF-TCE by depositing AgNWs selectively. 

This enables interconnections among the diverse electronic components on its surface. The 

advantages of the proposed AF-TCE are demonstrated by utilizing it for flexible electronics. 

 

3-2. Results and Discussion 

3-2-1. Design of the Self-Attachable, Flexible, Transparent Conductive Electrode 

Figure 3.1 shows a conceptual schematic of the AF-TCE proposed in this study. The AF-TCE 

consisted of four main device components: the grid pattern, tentacles, extruded tips, and selectively-

deposited percolating AgNWs (Figure 3.1a, b). The grid pattern functions as the main framework of 

the AF-TCE (Figure 3.1a). It enables the precise control of the optical and electrical properties of the 

AF-TCE. However, the grid pattern cannot exhibit an adequate adhesion to substrates or active 

components of flexible devices. To achieve this, we integrated adhesive architectures available in 

nature into the grid pattern (Figure 3.1b, c). Nature has developed diverse adhesion mechanisms 

based on unique structures.15-21 For example, Drosera (sundews) has tentacles with glandular heads 

that cover the leaf surface (Figure 3.1c).116,117 The long hairy tentacles provide structural flexibility 

and increase the contact area with objects, which facilitate the capture of insects. Geckos also have 

hierarchical hairs with protruding tips (Figure 3.1c), which provide strong dry adhesion by 
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maximizing van der Waals interaction.24,69,118 Among the many unique features of gecko foot hairs, the 

protruding tips play critical roles in maximizing the adhesion strength by uniformly distributing stress 

at the contact interfaces. Structures similar to the tentacle structures of Drosera and the tip structures 

of gecko foot hairs were harnessed in our design of the AF-TCE with the objective of forming robust 

electrical and mechanical adhesive contacts with various active components of flexible devices 

(Figure 3.1d). The AgNW networks that are selectively deposited on the grid pattern provide 

conductive percolating paths across the entire surface of the AF-TCE (Figure 3.1b, d). 

 
Figure 3.1. Design of self-attachable flexible transparent conductive electrode. (a) Schematic 

illustration showing grid structure with bioinspired adhesive structures of AF-TCE, on which AgNW 

percolating networks are deposited selectively, (b) conceptual schematic showing an enlarged view of 

the structure of AF-TCE. The tentacles and protruding tips are generated along with the regular grid 

patterns, whereas the AgNWs are deposited along the grid. (c) structures of sundew (top) and gecko 

foot hairs (bottom), (d) a conceptual illustration showing the AF-TCE that conformably attach to 

active components of flexible devices. The inset shows a cross-section of AF-TCE in contact with 

active device components. 

 The AF-TCE was developed by the replica molding of a Si master having a negative grid pattern, 

with an ultraviolet (UV)-curable polymer (Figure 3.2). Briefly, negative patterns of grids with 
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tentacles and protruding tips were prepared on a Si wafer by photolithography using a bilayer of 

photoresist (PR) and lift-off resist (LOR). An AgNW solution was then deposited in the trench of grid 

patterns. Replica molding of the patterned Si master with the UV-curable elastic polyurethane acrylate 

(e-PUA) added with a plasticizer (Triton) yielded the AF-TCE. Instead of using e-PUA and AgNWs, 

other materials can be used for fabricating the AF-TCE. For example, stretchable polymers such as 

polydimethylsiloxane, Ecoflex, and hydrogel, can be used for the matrix.119-122 Carbon-based 

nanomaterials such as CNTs and graphene can be utilized for the conductive networks.88,123 

 
Figure 3.2. Schematic of fabrication process of self-attachable, flexible, transparent, and conductive 

electrode. 

The resulting AF-TCE resembles a highly flexible and transparent thin film (Figure 3.3a, b). 

Microscopically, tentacle structures were generated on each side of the grid (Figure 3.3c, d). The grid 

was 40 µm in width, 10 µm in height, and 400 µm in center-to-center pitch (Figure 3.4). The tentacle 

size was 30 µm in head diameter, 5 µm in stalk width, 55 µm in total length, and 40 µm in pitch. In 

addition, the grid and tentacle have protruding tips (Figure 3.3e) with an extruded length and 

thickness of 3 µm and 2 µm, respectively. With the tentacle and tip-integrated grid structures, the AF-

TCE could achieve strong and intimate adhesion to diverse planar and non-planar surfaces without 

using additional adhesives (Figure 3.3b).  
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Figure 3.3. Structures of AF-TCE. (a) Image of the fabricated AF-TCE, (b) image of AF-TCE that is 

intimately attached to curved surface of a light bulb, and (c) SEM images of the fabricated AF-TCE. 

The inset shows that the grid with tentacles and tips is firmly adhered to the bottom substrate. (d) 

SEM image showing the AgNW-coated AF-TCE, (e) 3D confocal microscopy image showing grid 

structure integrated with tentacles and tips. 

 
Figure 3.4. Schematic of the detailed geometrical parameters of AF-TCE. (a) Grid structure with 

bioinspired tentacle structures with the protruding tips of AF-TCE, on which AgNW percolating 

networks are selectively deposited. (b) Enlarged view of a grid line of AF-TCE. 
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The scanning electron microscopy (SEM) analysis results shown in Figure 3.5a reveal that AgNWs 

with an average diameter of 20 nm and length of 20 μm were deposited uniformly over the grid and 

tentacle structures, forming percolating conductive networks. Note that the AgNWs were not coated 

on both the sides (i.e., tip region) of the grids and tentacles to enable a strong self-adhesion of the AF-

TCE (Figure 3.5a-i). When the contacting surface of the tip is covered with AgNWs, its adhesion 

performance could be deteriorated significantly.124 Furthermore, energy dispersive spectroscopy (EDS) 

analyses verified that AgNW percolating networks were selectively deposited along the grid and 

tentacles, without depositions on the wing tip region (Figure 3.5b).  

 
Figure 3.5. Surface topography of AF-TCE (a) (i) SEM image showing AgNWs that are selectively 

deposited along the grid and tentacle of AF-TCE. The inset shows an enlarged SEM image of AgNW 

coated region. (ii) SEM image showing a cross-section of AF-TCE in contact with an Au coated PET 

substrate, (iii) AFM images of AgNW networks that are partially embedded in the underlying e-PUA 

matrix. (b) EDS mapping analysis of AgNWs coated over the AF-TCE. (i) Merged image of carbon 

(C) and silver (Ag) elements of AF-TCE. (ii) C and (iii) Ag elements that are observed over surfaces. 

(iv) EDS spectrum collected from top surface of AF-TCE. 

In general, AgNWs coated on flexible substrates are delaminated from the substrates owing to the 

low adhesion between the nanowires and substrates.111,125 In our case, the AgNWs were partially 
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embedded in the e-PUA after the replica molding process, as depicted by the SEM and atomic force 

microscopy (AFM) images (Figure 3.5a-ii, iii). Therefore, the AgNWs were not delaminated from the 

surface of the AF-TCE even when the electrode was highly bent while the partially exposed side of 

the nanowires could function as conductive pathways. Conductive composites, which typically consist 

of polymeric matrix and conductive fillers, can be utilized for obtaining improved mechanical 

stability under high deformation conditions.123 However, they have limited optical transparency. 

Based on the coordinated, integrated structures of the grid, tentacle, tips, and AgNWs, we anticipated 

that the resulting AF-TCE can provide a general strategy to form damage-free, robust, and 

controllable contact interfaces to diverse active layers of flexible devices. Recent studies have 

demonstrated that transferrable top electrodes can form damage-free contact interfaces with junction 

quality similar to that by vacuum-based electrode deposition.126 In addition, they enable the 

decoupling of the fabrication process of the top electrode from the remaining device fabrication 

process. This simplifies the production process of flexible devices substantially. 

 

3-2-2. Mechanical Adhesion and Contact Behaviors of AF-TCE 

To investigate the effect of tentacle and tip structures on the adhesion of the AF-TCE, the adhesion 

strengths were evaluated for three types of electrodes: a grid electrode (G), grid electrode with 

tentacles (GT), and grid electrode with tentacles and tips (GTT) (Figure 3.6). We conducted finite 

element analysis (FEA) to compare the adhesive behaviors of the three different electrodes (G, GT, 

and GTT) in contact with a flat Si substrate when separation occurs. During the separation, the G and 

GT electrodes showed stress concentrations around the grid edges, which could result in low adhesion 

strengths.25 However, the GTT electrode withstood much higher stresses until it was separated from 

the substrate as the tip structures could uniformly distribute the stress at the contact interface. These 

results showed that the adhesion strengths of the AF-TCE could be enhanced not only by the 

increased contact area but also by the uniform stress distribution (Figure 3.7). 

 
Figure 3.6. FEA simulations of adhesive behaviors of (a) grid (G), (b) grid with tentacles (GT), and (c) 

grid with tentacles and tips (GTT) structures in contact with a flat Si substrate when separation occurs. 
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Figure 3.7. Normalized adhesion strengths of G, GT, and GTT structures (the measured adhesion 

strengths of each structure with respect to that of the G structure, P/PG) against a flat Si substrate. 

Adhesion strengths were calculated based on the actual contact area of each structure. 

The self-attachable property of the AF-TCE was evaluated by measuring the adhesion strengths of 

the AF-TCE on a flat Si substrate (pulling rate: 1 mm s-1). Figure 3.8a shows the measured adhesion 

strengths of the different electrodes without coatings of AgNWs. With a preload of 80 kPa, the GT 

electrode showed a higher adhesion strength (151.7 kPa) than that of the G electrode (120.6 kPa) as 

the tentacle structure increased the contact interfaces with the substrate. A grid electrode with tips 

(GTP electrode) also exhibited an enhanced adhesion strength (221.5 kPa) compared to that of the G 

electrode owing to the uniform stress distribution by the tip structure. Interestingly, the GTT electrode 

exhibited a significantly higher adhesion of 477.2 kPa even compared to those of the G, GT, and GTP 

electrodes. This is because the GTT structure enabled the simultaneous utilization of the uniform 

stress distribution effect by the tip structure and the increased contact area effect by the tentacle 

structure. The GTT electrode displayed higher adhesion strengths (177.7 kPa) compared to the G (2.6 

kPa) and GT (23.5 kPa) electrodes even when AgNWs were selectively deposited over the electrodes 

(preload: 80 kPa, AgNW dosage: 111.1 μg cm-2) (Figure 3.8b). The adhesion strength of the GTT 

electrode with AgNW coatings was enhanced further with an increase in the preload and attained 

382.8 kPa under a preload of 2,000 kPa. In contrast to the GTT electrode, the G and GT electrodes 

have saturated adhesion with a preload of over ~400 kPa. 
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Figure 3.8. Mechanical adhesion and contact behavior of the AF-TCE. (a) Representative examples of 

measured adhesion strengths of G, GT, and GTT structures against a Si substrate under preload of 80 

kPa. The retraction speed was 1 mm s-1. (b) Adhesion strengths of G, GT, and GTT structures as a 

function of preload. (c) Normalized adhesion strengths of G, GT, and GTT structures as a function of 

coating dose of AgNWs. (d) Adhesion strengths of G, GT, and GTT structures against different 

substrates. (e) Adhesion strengths of G, GT, and GTT structures with different numbers and head sizes 

of tentacles. (f) Adhesion repeatability and durability of AF-TCE during repeated cycles of attachment 

and detachment. The inset is an image that shows a 3 kg dumbbell attached firmly to a glass substrate 

through the AF-TCE (area: 1.5 × 1.5 cm2). 



32 
 

We also examined the effect of the amount of deposited AgNWs on the adhesion strength for a 

fixed preload of 80 kPa (Figure 3.8c). Higher amounts of AgNWs can result in higher conductivity of 

the AF-TCE. However, the adhesion strength of the AF-TCE was reduced with an increase in the 

amount of AgNWs. This indicates the necessity of optimizing the AgNWs to ensure a balance 

between the self-attachability and conductivity of the AF-TCE. Nonetheless, the GTT electrode could 

maintain a relatively high adhesion strength even after the deposition of AgNWs. The normalized 

adhesion strength (defined as the measured adhesion strength of AgNW-deposited electrode with 

respect to that of the electrode without AgNWs) of the GTT electrode was in the range of 0.165 to 

0.373 depending on the AgNW dose. In contrast, the normalized adhesion strength of the G electrode 

was negligible (0.009–0.022). These results verify that the distinctive design of the GTT electrode 

integrated with the bioinspired adhesive architectures plays a significant role in equipping the 

electrode with robust self-adhesion capability.  

In addition to the Si substrate, the GTT electrode also exhibited remarkably higher adhesion 

strengths for a wide range of substrates including Au, Ag, Glass, and PET, (polyethylene terephthalate) 

compared to those of the G and GT electrodes (Figure 3.8d). The strong self-attachability of the GTT 

electrode to diverse metallic, semiconducting, and polymeric substrates would enable versatile 

applications of the electrode in diverse flexible devices. The adhesion strength of the GTT electrode 

was dependent on the number and size of the tentacle structures (Figure 3.8e). With an increase in the 

number of the tentacle at each side of the unit grid and in the diameter of the tentacle, the adhesion 

strength increased owing to the increased contact area with the substrate. Based on the strong 

adhesion property, the AF-TCE could firmly adhere to diverse substrates as well as hold significant 

weight with high repeatability (Figure 3.8f). 

 

3-2-3. Electrical and Optical Behaviors of AF-TCE 

Flexible transparent electrodes require high electrical conductivity and optical transparency.127 

Figure 3.9 shows the optical and electrical properties of the AF-TCE with a grid filling factor (f = w / 

s, where w and s represent the width and spacing of the grid, respectively) of 0.1. Depending on the 

filling factor and the amount of coated AgNWs, the transmittance (T) and sheet resistance (Rs) of the 

AF-TCE could be modulated in the range of 35–90 % (at 550 nm) and 5 × 100–1 × 105 Ω sq-1 (Figure 

3.10). For example, for an Rs of 100 Ω sq-1, the transmittance of the AF-TCE could be 81.8 % for a 

grid with f of 0.1. For an Rs of 10 Ω sq-1, the transmittance of the AF-TCE could be 76.4 % for a grid 

with f of 0.1 (Figure 3.9).  
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Figure 3.9. Electrical and optical behavior of AF-TCE. (a) Photograph showing that the AF-TCE is 

attached to a curved surface with robust mechanical and electrical contacts. (b) Sheet resistance versus 

transmittance at 550 nm for AF-TCE with a filling factor of 0.1.  

 
Figure 3.10. Theoretical curve and experimental data of electrical and optical behavior of AF-TCE. 

(a–d) Sheet resistance versus transmittance at 550 nm with different filling factors (f = ~0, 0.1, 0.2, 

0.5) and with different grid widths (w) of (a) 10 µm, (b) 20 µm, (c) 40 µm, (d) 80 µm. 



34 
 

When the filling factor (f) and a coating layer of the AgNWs are considered in conjunction, the 

transmittance of the AF-TCE can be expressed as 

 = 1 + ( − 2)1 −  100⁄       (3.1) 
where Ti is the transmittance of the uncoated grid and Tfilm is the film transmittance of the AgNW-

coated film. Based on the percolation theory,128 Tfilm is expressed as 

 = 1 +    , ()⁄       (3.2) 

where Z0 is the characteristic impedance of the free space (377 Ω), σop is the optical conductivity 

(6.5 × 103 S m-1), tc is the critical thickness (160 nm), n is the percolation exponent, and σDC,B is the 

bulk DC conductivity of the AgNW-coated film (2.7 × 106 S m-1). Note that n = 0 for a relatively low 

Rs. Herein, the AgNW-coated film behaves similar to bulk (Rs < σDC,B
-1

 tc
-1). Meanwhile, n = 1.9 for Rs 

≥ σDC,B
-1

 tc
-1. This implies that the film behaviors are in the percolation regime. Applying Equation 3.2 

into Equation 3.1 yields  

 =  1 + ( − 2) 1 −  1 +    , ()⁄        (3.3) 
The experimental results were in good agreement with the theoretical predictions (Figure 3.9, 10).  

For a grid with f of 0.1, the T, RS, and adhesion strength (Pad) of the AF-TCE were evaluated as a 

function of the AgNW dose (Figure 3.11). Without AgNW coating, the AF-TCE exhibited a T of 87.6 % 

and Pad of 477 kPa without displaying electrical conductivity. When the AgNW dose increased to 

111.1 μg cm-2, T, RS, and Pad were 81.3 %, 20 Ω sq-1, and 177.7 kPa, respectively. For an AgNW dose 

of 166.7 μg cm-2, T, RS, and Pad were 76.7 %, 8 Ω sq-1, and 78.9 kPa, respectively. Different ranges of 

T and RS values are required for transparent conductive electrodes depending on the applications: T > 

90% and RS < 10 Ω sq-1 for solar cells,127 T > 80 % and RS < 20 Ω sq-1 for OLED,129 T > 60 % and RS < 

700 Ω sq-1 for touch panel,129 and T > 60% and RS < 100 Ω sq-1 for heater.130 Tunable T between 35 % 

and 90 % and RS between 5 × 100 Ω sq-1 and 1 × 105 Ω sq-1 were achieved for the AF-TCE by 

controlling the f values and coating amounts of the AgNWs. Furthermore, the adhesion strength of the 

AF-TCE could be modulated between 79 and 477 kPa, which is higher than those for previous dry 

adhesives (3–340 kPa).131,132 Therefore, the AF-TCE with adjustable T, RS, and Pad in the practical 

performance ranges can be utilized for diverse flexible optoelectronic and energy devices. 
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Figure 3.11. Sheet resistance, transmittance, and adhesion strength of AF-TCE (f = 0.1) as a function 

of coating dose of AgNWs. 

Next, we investigated the current–voltage characteristics of the AF-TCE in contact with different 

metallic (Au, Ag, and Ti) and semiconducting (p-type Si) substrates (Figure 3.12a). The AF-TCE was 

placed on the substrates with a low preload of 0.1 kPa. Note that the preload was removed during the 

current–voltage measurement. Linear current–voltage curves were observed on the metallic substrates, 

indicating that the AF-TCE could form highly effective ohmic contacts with the metallic substrates 

with a low preload without using conductive adhesive pastes, vacuum deposition process, or high-

pressure application. The AF-TCE formed a rectifying, Schottky contact with the p-type Si substrate, 

as typically observed at metal–semiconductor interfaces. Figure 3.12b shows the current–voltage 

relationships of the AF-TCE in contact with Au substrate under different preloads ranging from 0.1 to 

60 kPa. When the preload increased from 0.1 kPa to 5 kPa, the measured resistance was reduced. This 

indicated that a more intimate electrical junction was formed at the electrode–Au interface owing to 

the application of the higher preload. However, preloads above 5 kPa did not induce a noticeable 

decrease in the resistance. This shows that the AF-TCE could form a robust ohmic contact even under 

a low preload of 5 kPa without requiring the application of high pressure for forming the intimate 

mechanical contact. For the p-type Si substrate, significant variations in the current–voltage curves 

were not observed regardless of the level of preload (Figure 3.12c). This verifies that the AF-TCE can 

form intimate and strong mechanical adhesive contacts and robust electrical contacts with diverse 

metallic and semiconducting substrates with a low preload. 
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Figure 3.12. Electrical contact behavior of AF-TCE (a) Current–voltage characteristics of AF-TCE in 

contact with different metallic and semiconducting substrates. (b, c) Current–voltage behavior of AF-

TCE in contact with an (b) Au and (c) p-type Si substrate for different preloads. 

The contact resistance at the Au–AF-TCE interface was evaluated as functions of the coating 

amount of AgNWs and preload (Figure 3.13, 14). The contact resistance was reduced with an 

increase in the preload. In particular, the contact resistance exhibited significantly reduced and 

saturated values with a preload of 10 kPa. Higher preloads did not induce a noticeable further 

decrease in the contact resistance. Under a low preload (< 0.1 kPa), AF-TCEs with higher doses of 

AgNWs showed higher contact resistance than those with lower doses of AgNWs. This is because the 

surface coated with more AgNWs has higher surface roughness and therefore, has smaller contact 

interfaces with the substrate (Figure 3.5a-iii).133 With a higher preload, the AF-TCE coated with more 

AgNWs could form intimate contacts with the substrate and displayed lower contact resistance than 

the AF-TCE deposited with a lower amount of AgNWs. The contact resistance of 40 kΩ μm could be 

obtained with the AF-TCE with a preload above 10 kPa (Figure 3.13). This is comparable to the 

reported contact resistance values in the previous reports.134 
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Figure 3.13. Contact resistance of AF-TCE coated with different doses of AgNWs as a function of 

preload. 

 
Figure 3.14. Experimental set-up for measuring contact resistance of AF-TCE (a) Schematic of 

experimental set-up for four-point probe-based contact resistance measurement. b) Representative 

examples of measured current (two-probe contact and four-probe contact) and adhesion strength of 

AF-TCE (Rs = 20 Ω sq-1). 

3-2-4. Applications of AF-TCE to Flexible Electronics 

To demonstrate the application of the AF-TCE as a transparent, self-attachable electrode and 

interconnector with ultra-clean, thin interfaces in flexible devices, we used it to connect light-emitting 

diodes (LEDs) on flat and curved substrates. To achieve this, AgNWs were selectively deposited over 

the grid of AF-TCE to form a circuit of separated, repeating conducting paths for the application of 

bias voltage to individual LEDs (Figure 3.15). The AF-TCE was optically transparent (Figure 3.16a). 

When a blue LED was placed on the AF-TCE, the LED turned on immediately (Figure 3.16a-ii, iii). 

A simple placement of the blue LEDs on the surface of the AF-TCE yielded a robust mechanical 
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attachment and electrical connection of the LEDs. The connected blue LEDs could be simply 

disconnected from the AF-TCE without any visible residue on the AF-TCE (Figure 3.16a-iv). After 

detaching the blue-LEDs, white LEDs could be readily connected to the AF-TCE (Figure 3.16a-v, vi). 

The AF-TCE enabled the repeatable electrical connections of multi-color LEDs that represented a 

variety of alphabetic arrangements (A-F-T-C-E), without the use of non-transparent and messy 

conducting adhesive pastes, bulky mechanical sockets, or complicated wired connection (Figure 

3.16b). 

 
Figure 3.15. Conceptual illustration showing reversible interconnection of LEDs using AF-TCE with 

AgNW-based circuits. 

 
Figure 3.16. Application of AF-TCE as smart interconnector. (a) Images showing the demonstration 

of the reversible interconnection of LEDs. (b) Images showing the replacement and repositioning of 

LEDs with different colors, generating different alphabetic arrangements of “A-F-T-C-E.” 
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The AF-TCE was also highly flexible and therefore could be conformably applied to curved 

substrates (Figure 3.17). Even when the AF-TCE was highly bent, the LEDs could be connected 

firmly to curved AF-TCEs. An advantage of the AF-TCE is that specific electronic circuits can be 

formed on the surface of the AF-TCE by selectively depositing AgNWs, thereby enabling 

interconnections of diverse electronic components on its surface. Figure 3.18 shows a simple 

exemplary circuit that can connect LEDs and switches. As illustrated, LEDs and a tact switch could be 

interconnected on the curved AF-TCE and operated normally. Meanwhile, each side of the AF-TCE 

could be attached firmly to the vertical and horizontal glass substrates. 

 
Figure 3.17. AF-TCE smart interconnector applied to curved surface. Images showing LEDs 

conformably attached to a curved AF-TCE with (a) power-off and (b) power-on. 

 
Figure 3.18. AF-TCE smart interconnector with circuit pattern (i) Schematic showing AF-TCE with 

circuit pattern that is self-attached to vertically- and horizontally-aligned glass substrates. The LEDs 

and a tact switch can be straightforwardly connected to the circuit with a low preload. (ii, iii) images 

showing attached LEDs and tact switch in (ii) switch-off and (iii) switch-on states. 
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3-2-5. Applications of AF-TCE to Transparent Heaters 

As a final conceptual demonstration, we utilized the AF-TCE as a flexible transparent attachable 

resistive heater (Figure 3.19). Flexible transparent heaters have attracted substantial attention owing 

to its high optical transparency and applicability to non-planar surfaces for a wide range of emerging 

applications including smart windows and personal thermal management.100,135 This transparent 

flexible heater also should form conformal mechanical contacts with the target substrates while 

ensuring stable electrical connections with the metal contact pads used for the application of bias 

voltage.  

 
Figure 3.19. Conceptual illustration showing application of AF-TCE as self-attachable flexible heater. 

Although previous transparent flexible heaters based on embedded percolating nanowire networks 

demonstrated superior resistive heating performance even under high mechanical deformation, they 

did not exhibit self-attachable capability.100 Accordingly, electrical connections using mechanical 

clippers (Figure 3.20a-i) or Ag paste (Figure 3.20a-ii) were typically utilized without effectively 

considering the interfacing or contact formation technology. We compared the contact formation 

behavior and Joule-heating performance of the AF-TCE (Figure 3.20a-iii) with those of the 

conventional AgNW-based flexible transparent heaters that were electrically connected using alligator 

clips and Ag paste (Figure 3.20a). The alligator clip-based connection requires substantial space as 

discussed above. More importantly, the connections were not uniform across the metal pad, and 

stresses were concentrated at specific points of the pad. Accordingly, non-uniform and localized joule 

heating was observed across the heater’s surface (Figure 3.20b-i). In addition, the connection failed at 

bias voltages above 7 V, revealing the formation of unstable electrical and mechanical contact 

interfaces. Furthermore, noticeable surface damages of the metal contact pad and substrate were 

observed after the alligator clips were removed (Figure 3.20c-i). When we used the Ag paste, the 
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heater showed stable Joule-heating performance (Figure 3.20b-ii). However, the uncontrollable 

viscous fluid nature of the Ag paste mostly yielded untidy and thick interfaces with the heater and 

metal contact pad. Moreover, the Ag paste contact formation is non-reversible, which caused many 

residues to remain on the contact pads after the removal of the heater from the substrate (Figure 

3.20c-ii). Furthermore, the whole surface of the nanowire-coated side of the conventional flexible 

heater could not form close, conformal contacts with the substrates when the alligator clip or Ag paste 

was utilized. 

 
Figure 3.20. Demonstration of AF-TCE-based flexible heater. (a) Electrical connections of 

conventional flexible heater (AgNW-coated PET film) to metal pads for application of bias voltage 

using (i) metal clipper and (ii) Ag paste, (iii) electrical connections of AF-TCE to metal pads without 

using additional devices or materials. (b) IR camera images of conventional heater connected to metal 

pad formed on a glass substrate using (i) metal clipper, (ii) Ag paste at different bias voltages, (iii) IR 

camera images of AF-TCE heater attached on a glass substrate with metal pads at different bias 

voltages. (c) Optical microscopy (left) and 3D profiler (right) images showing the surfaces of metal 

pads connected with (i) metal clipper, (ii) Ag paste, and (iii) AF-TCE after removal of flexible heaters. 
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In contrast to the conventional flexible heater based on simple AgNW coating, the AF-TCE could 

form highly uniform and robust electrical and mechanical junctions with the contact pad as well as the 

whole surface of the substrate (Figure 3.20a-iii). Thus, the whole surface of the glass substrate could 

be uniformly heated with the AF-TCE (Figure 3.20b-iii). Moreover, the AF-TCE could form a direct, 

seamless contact between its nanowire heater and the target substrate. This could provide direct heat-

transfer pathways for precise temperature control of the substrate while minimizing energy loss. The 

nanowires and substrate could be encapsulated by the backing layer of the AF-TCE. This protects 

them from damage and oxidation and thereby enhances the long-term device stability. Furthermore, 

the AF-TCE exhibited substantially clean contact interfaces without leaving visible residues on the 

contact pad and substrate, thereby enabling reversible connections and disconnections (Figure 3.20c-

iii). Figure 3.21a shows the quantitative Joule-heating characteristics of the AF-TCE as a function of 

the bias voltage. A constant DC bias voltage of 3–7 V was applied between the two metal pads while 

the active AgNW heater side of the AF-TCE was attached over the substrate. With the voltage 

application, the average temperature started to increase and attained 32.6 °C, 63.6 °C, and 90.1 °C for 

applied voltages of 3 V, 5 V, and 7 V, respectively. When the voltage was cut off at 400 s, the 

temperature decreased rapidly to room temperature (25.0 °C). The AF-TCE showed stable heating 

performance for stepwise increase in bias voltage from 1 V to 8 V (Figure 3.21b). The Joule-heating 

behavior of the AF-TCE was also stable during the repeated voltage on/off tests at a bias voltage of 5 

V (Figure 3.22). The heating performance of the AF-TCE heater that was intimately attached to a 

curved substrate was also demonstrated (Figure 3.23). 

 
Figure 3.21. Joule-heating characteristics of the AF-TCE (a) Temperature of AF-TCE heater attached 

on a glass substrate as a function of heating time for different bias voltages. (b) Temperature of AF-

TCE attached on a glass substrate as a function of heating time for stepwise increases in bias voltage 

from 1 V to 8 V. 
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Figure 3.22. Temperature of AF-TCE heater attached on a glass substrate during repeated power-on 

and -off cycles (bias voltage= 5 V). 

 
Figure 3.23. Image of the heating performance of the AF-TCE heater. Images showing (a) foggy 

surface of curved PET film and (b) clear PET film from which steam was removed by AF-TCE heater, 

(c) IR camera image of AF-TCE conformably attached to curved PET film (applied DC voltage: 5 V). 
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3-3. Conclusion 

In summary, we proposed a flexible transparent conductive electrode that can be strongly attached 

to planar and non-planar surfaces of flexible devices by integrating bioinspired adhesive architectures 

and AgNW networks into regular grid patterns. With its high conductivity and strong physical 

adhesion, the AF-TCE could form stable electrical connections with active components of flexible 

devices, with highly-controlled, thin, and clean contact interfaces, even under deformation conditions 

of the AF-TCE. The optical, electrical, and adhesion properties of the AF-TCE could be controlled 

accurately by modulating the grid pattern, adhesive structures, and deposition dose of AgNWs. 

Moreover, specific electronic circuits could be generated on the surface of the AF-TCE by selectively 

depositing AgNWs on its surface. Although we utilized AgNWs, other conducting or semiconducting 

nanomaterials such as graphene could be utilized for the AF-TCE. Considering that the future 

development of flexible electronics would require more compact, thinner, damage-free, and highly-

controlled contact formation techniques, the AF-TCE is likely to be applied as a smart electrode and 

interconnect for a wide range of flexible devices including flexible display, flexible transistor, 

wearable sensors, smart windows, and flexible solar cells. 

 

3-4. Experimental Section 

3-4-1. Fabrication of the Self-Attachable, Flexible, Transparent, and Conductive Electrode 

 The master mold with the negative pattern of the grid with tentacles and tips was prepared on a Si 

master through photolithography by using a bilayer of photoresist (SU-8 3010, Microchem Corp., 

USA) and lift-off resist (LOR 10B, Microchem Corp., USA).69 First, an LOR was spin-coated on a 

dehydrated Si wafer. This was followed by baking at 200 °C for 10 min. Then, SU‐8 photoresist was 

spin‐coated onto the LOR layer and baked at 100 °C for 5 min. The LOR/SU-8-coated wafer was 

exposed to UV (λ = 365 nm, dose = 250 mJ cm−2) with a photomask having grid-tentacle patterns. The 

development of the SU-8 layer using an SU-8 developer (Microchem Corp., USA) for 5 min yielded 

the negative grid-tentacle patterns. Subsequently, the LOR-layer was selectively removed with an 

LOR developer (AZ 400K, AZ Electronics Materials Corp., USA) for 40 s to form an undercut of 

length 3 μm. An AgNW solution (Flexio Corp., Republic of Korea) containing 0.1 wt% AgNWs in DI 

water with 0.05 wt% hydroxypropyl methylcellulose was then selectively deposited in the trench of 

the grid pattern. The average diameter and length of the nanowires were 20 nm and 20 μm, 

respectively. The deposition dose of AgNWs was controlled by modulating the concentration of 

AgNWs in the solution. The master mold deposited with the AgNW solution was dried at 70 °C for 1 

h to remove the remaining solvent. The AgNWs coated over the top surface of the patterned bilayer 
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(not in the trench) were selectively removed by an adhesive tape. Subsequently, e-PUA solution was 

prepared by mixing the aliphatic urethane diacrylate oligomer (SC4240, Miwon Specialty Chemical, 

Republic of Korea) as a prepolymer, to 15 wt% of bisphenol A (ethoxylated) 10 dimetacrylate 

(BPA(EO)10DMA, M2101, Miwon Specialty Chemical, Republic of Korea) and 6 wt% of 

tri(propylene glycol) diacrylate (M220, Miwon Specialty Chemical, Republic of Korea).42 Then, a 

solution added with 33.3 wt% triton (Triton X-100, Sigma-Aldrich, USA) and 4 wt% of the 

photoinitiator (Darocur 1173, Ciba Specialty Chemical, Switzerland) was dispensed over the master, 

and the drop was covered with a PET film. The e-PUA solutions were cured for 30 min by UV 

irradiation (λ = 365 nm, dose = 300 mJ cm−2). Finally, the cured e-PUA was removed from the master, 

yielding the AF-TCE. To obtain AF-TCEs with specific circuit patterns for interconnecting LEDs 

(SMD LED, INC-5450N6PT, Republic of Korea) and a switch (SMD tact switch, TVAF17, China), 

AgNWs were selectively deposited in the trench of the master mold using a shadow mask with the 

desired circuit patterns during the fabrication process of the AF-TCE.  

 

3-4-2. Surface and Energy Dispersive Spectroscopy Analyses 

SEM and EDS images of the AF-TCE were obtained using an S-4800 microscope (Hitachi, Japan) 

after coating the AF-TCE with a Pt layer (thickness: 5 nm). AFM images of the AgNWs embedded on 

the surface of the AF-TCE were obtained with a Multimode V AFM (Veeco, USA) in the tapping 

mode at a scan rate of 1.0 Hz and a scan resolution of 256 × 256 pixels. Confocal microscopy images 

of the AF-TCE samples were obtained using a multi-photon confocal microscope (LSM 780 

Configuration 16 NLO, Carl Zeiss, Germany). e-PUA added with rhodamine B (Sigma-Aldrich, USA) 

was used to fabricate the AF-TCE samples for confocal imaging.  

 

3-4-3. Measurement of Adhesion Strengths of AF-TCE 

The adhesion strengths of the AF-TCE were evaluated using custom-built equipment. The 

equipment has a motorized part movable along the vertical direction. It was connected to a load cell 

(KTOYO, Republic of Korea). For the adhesion measurement, AF-TCE samples (area: 1 × 1 cm2) 

were mounted on the horizontal surface of the load cell with the samples facing down. The substrates 

were fixed on a mounting stage of the equipment. The AF-TCEs were then brought in contact with the 

substrates with a controlled preload. After applying the preloads, an in-plane strain was applied along 

the vertical direction until the samples were detached from the substrates with a retraction speed of 1 

mm s-1. The adhesion measurements were repeated ten times for each sample, and the averaged values 

are reported. 
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3-4-4. Measurement of Optical and Electrical Properties of AF-TCE 

The optical transmittance of the AF-TCE samples was measured in a wavelength range of 300 to 

800 nm using a UV–Vis NIR spectrophotometer (Cary 5000, Agilent, USA). The sheet resistance of 

the AF-TCEs was measured using a four-point probe surface resistivity meter (CMT‐SR1000N, 

Advanced Instrument Technology, Republic of Korea). The current–voltage characteristics of the AF-

TCE in contact with different substrates were measured using a source measure equipment (6430, 

Keithley, USA). To measure the contact resistances of the AF-TCE, a four-point probe pattern was 

fabricated by sputtering Au on the glass substrates or PET films connected to the source measure 

equipment. The contact resistances were measured by attaching AF-TCE on a prepared probe-

patterned glass substrate after applying different preloads (0.1–200 kPa). The contact resistance 

variations of the AF-TCE in contact with the probe-patterned PET film were measured while applying 

inner or outer bending with different bending curvatures (0–0.67 mm-1). To evaluate the load–current 

behavior, AF-TCE (area: 1 × 2 cm2) was attached on the horizontal flat surface of the load cell with 

the samples facing down. A glass substrate with two separate pads of sputtered Au (thickness of Au: 

100 nm, distance between two pads: 1 cm) was fixed on a mounting stage of the equipment. The 

adhesive AF-TCE samples were then pressed against the substrate under different applied loads 

ranging from -100 kPa to 0 kPa. Subsequently, the AF-TCE sample was pulled along the vertical 

direction until separation occurred with a retraction speed of 0.1 mm s-1. The current across the Au 

pads was simultaneously measured with the source measure equipment during the loading–unloading 

cycle. The load–current behavior of the AgNW-coated PET sample (Rs = 20 Ω sq-1) was also 

evaluated as a control for comparison. 

 

3-4-5. Measurement of Joule-Heating Performance of AF-TCE Heater 

The AF-TCE heater was attached on a glass substrate with two separated Au electrode pads 

(thickness of Au: 100 nm, distance between two pads: 1 cm). The temperature variation and IR 

thermographic data were captured by an infrared (IR) camera (H2640, NEC Avio Infrared 

Technologies corp., Japan) for different bias voltages (1–8 V). The AgNW-coated planar PET film (Rs 

= 20 Ω sq-1)-based heater was used as a control sample for comparison. The AgNW-coated PET film 

heater was connected to the Au pads using a standard mechanical clipper (i.e., alligator clip) or Ag 

paste (ELCOAT, CANS, Japan). 

 

3-4-6. Finite Element Analysis (FEA) 

FEA analysis was carried out to investigate the adhesive behavior of the AF-TCE with different 

geometries (G, GT, and GTT) against substrates under mechanical stimuli using general surface‐to‐
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surface contact interaction (COMSOL Multiphysics 5.4, COMSOL Inc., Sweden). We adopted the 

cohesive zone model (CZM) with the representative volume element (RVE) models and the material 

properties of the AF-TCE.136,137 Over 100,000 free tetrahedral elements were employed in the 

numerical analysis. The loading was simulated by displacement controls of vertical direction to the 

top surfaces.  
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Chapter 4. Conclusion and Perspectives 

 

In this dissertation, we proposed novel design strategies for the production of the bioinspired 

nanocomposite adhesives; 1D nanomaterials are integrated into 3D microarchitectures which allows 

them to have enhanced thermal or electrical functionality while maintaining superior adhesion 

performance. This synergetic integration of microstructure and nanomaterials presents a new solution 

to inherent contact problems of conventional functional adhesives such as surface contamination, 

damage, and low reusability. The presented production process involving nanomaterial-assisted 

replica-molding techniques enables the implementation of submicron nanocomposite structures in a 

precise, simple, and reproducible manner. The superior properties of the produced nanocomposite 

adhesives have been demonstrated in two potential applications: high-temperature compatible and 

electrically conductive adhesives, each discussed in the corresponding chapter.  

For the high-temperature applications, we proposed thermally stable nanocomposite dry adhesives 

that are based on the integration of mushroom-like micropillar arrays and MWCNTs. The fabricated 

nanocomposite dry adhesives made of MWCNT/PDMS mixtures showed notably enhanced 

thermomechanical stability while maintaining strong adhesion performance even after thermal 

annealing–cooling cycle at elevated temperatures up to 350 °C. Furthermore, they exhibited superior 

adhesion performance and heat resistance even under prolonged high-temperature conditions. For the 

application in advanced electronics, we presented flexible transparent conductive adhesives by 

integrating tentacle-shaped adhesive architectures with AgNW percolation networks. With their high 

conductivity and strong physical adhesion, they could form stable electrical connections with active 

components of flexible devices, with highly controlled, thin, and clean contact interfaces, even under 

deformation conditions. These properties have been demonstrated in the smart interconnector and 

self-attachable transparent heater. 

In the future, advanced industries will require thinner, more compact, damage-free, and highly 

controlled contact-formation techniques even in biocompatible and environmentally friendly 

applications. Considering this, we believe that the proposed nanocomposite adhesive architectures 

based on maximized van der Waals interactions will become a key component in various next-

generation devices. In particular, we expect that the developed strategies for the integration of 

nanomaterials and microstructures, such as nanomaterial-based molding processes and selective 

coating, can be extended to various fields since other conducting materials like graphene, metallic 

nanoparticles, and conductive polymers can be applied to the proposed microstructures. Furthermore, 

the contamination- or damage-free contact mechanism allows them to become good candidates for 

skin or tissue adhesives, which will be studied in our future works.  
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