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Numerical schemes for solving the Burgers equation
by
Alam, Md. S., Kawamura, T.,
Kuwahara, K. and Takami, H.
Department of Applied Physics

Faculty of Engineering
University of Tokyo

§l. Introduction

In this paper we discuss a number of numerical methods
applied to solve the Burgers equation. This equation has the
essential features of the Navier-Stokes equation, i.e., it
contains both the advection and the diffusion terms. Therefore
the Burgers equation serves as a touchstone of numerical methods

for solving the Navier-Stokes equation.

In spite of many extensive investigations on Numerical
solution of the Navier-Stokes equation, we still can not say
definitely which method is most suitable and which result is
most reliable, since we have very few exact solutions for flows
of essentially nonlinear nature. On the contrary, exact analyt-
ical solutions are available in a number of cases for the Burgers
equation. Therefore we can compare the numerical results with
them and can examine the merits and demerits of various numerical

methods.

In this paper we apply a number of numerical methods based
on the finite-difference approximation and also the Fourier
method to an initial- and boundary-value problem of Burgers
equation. We compare the results with one another and with the

exact solution, and discuss the merits of these numerical methods.

§2. Analytical solution

We shall consider the Burgers equation for u=u(x,t):



T tus = v —5 (0<x<1l, t>0), (2.1)

where v is a positive constant, under the initial and boundary

conditions
u(x,0) = sin 7 x, . - (2.2)
u(0,t) = 0, u(l,t) = 0. (2.3)

It is well known that this problem can be solved by the trans-

formation

X .
P(x,t) = exp-[%; f u(g,t)dgl. (2.4)

In fact, eq.(2.1) is transformed into the diffusion equation

2
N _ .,y (2.5)
ot S

the solution of which is given by

1
Vanvt

qj(xlt) =

o 2
J V(g0 exp{- Y83 g, (2.6)

Therefore, we can get the solution of our problem (2.1)~(2.3)
in the following explicit form:

_2v 3y
u(x,t) = 0 ox

f (X-E)w(E,O)eXp{-(x-£)2/4vt}dg
= -5 = ' . (2.7)

[e0]

[
J (£, 0)expl{-(x-£) 2/4vt}dE

This solution is shown in Fig.l for the values of t ranging from
0 to 1.0 and for v=0.01l. The numerical integration of eq. (2.7)
has been performéd'by trapezoidal rule with Ax=1/40. Initial
sinusoidal profile of u is deformed both by advection and by

diffusion. With this exact solution we shall compare our results
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obtained by means of various numerical methods based on finite-

difference approximation and by the Fourier method.

§3. Finite-difference and Fourier methods

We shall discuss here a number of finite-difference methods
and the Fourier method used for solving our problem stated above

(also see Table 1).

Explicit method E-1 Equation (2.1) is discretized by use of

forward difference in t and centered difference in x.

Explicit method E-2 The same as in E-1, but after rewriting

the advection term u ju/3x in conservation form 8(u2/2)/ax.

1)

Explicit method E-3 MacCormack's scheme for eq.(2.1).

Formal order of accuracy is higher than those of E-1 and E-2.

Explicit method E-4 The same as above, but for the equation

of conservation form.

Implicit method I-1 Standard Crank-Nicolson's scheme for

eq.(2.1).
Implicit method I-2 The same as above, but for the equation

of conservation form.

Characteristic method C-1 First determine the x—coordinate.gg
of the point of intersection of the line t =nAt and the charac- ’
teristic line issuing backward from mesh point (jAx, (n+l)At),
the direction of which is tentatively given by the value of u at
the mesh point (jAt, nAt) (see Fig.2). Then, by use of the
interpolated values of u at points (EQ, nAt), integrate along the
characteristic line the equation ’

2

= v 3_123 (3.1)
oX

9|2
e

according to Crank-Nicolson's implicit scheme. In order to

determine the final values of u at the mesh points on the line



166

t = (n+l)At, iterative procedure is necessary, in which the values
of u as well as the directions of the characteristic lines are

improved until they converge.

Characteristic method C-2 The essential idea is the same as
n+l of the

in C-1, but we first determine the x-coordinates gj
points of intersection of the line t= (n+l)At and the character-

istic lines issuing from the mesh points on the line t =nAt (see
Fig.3), and then integrate eq.(3.1) according to Crank-Nicolson's
scheme to determine the values of u at these points. The values
of uq+l are computed in terms of them by interpolation. Further-
more? we use mesh points spaced nonuniformly in the x-direction,
i.e., we take the coordinate of the nth grid point as v/n/N
instead of n/N in C-1, where N is the total number of mesh
intervals. On the other hand, time interval At is fixed to be

constant.

Characteristic method C-3 We use spatial mesh spacing which

is variable in time. Initial spacing of the mesh points is
uniform. The mesh points on the line t= (n+l)At are determined

as its intersections with the characteristic line issuing from

the mesh points on t=nAt (see Fig.4). The time interval At is
fixed.
Fourier method We expand the solution in a Fourier series as
-
u(x,t) = ) un(t)si11nnx ’ (3.2)
n=]1

and substitute it into eq.(2.1). If we assume that all the
Fourier coefficients except ul(t), uz(t), ceey uN(t) to be zero,
we get a system of ordinary differential equations for un(t):

dun N n~-1

=& = z(n wew - ) ku_u
k=n+1 k=1

2 2
) —vr n"u
n

(n=1, 2, ..., N). (3.3)

These equations are to be solved numerically by the Runge-Kutta
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method.

§4. Numerical results and discussion

We have fixed the value v=0.01 throughout. We shall show
and discuss the results of computation performed with the param-
eters Ax=1/40 (N=40 in the Fourier method) and At=1/80. This
pair of values guarantees stability in the framework of the
linear theory*. The summary of the computation performed with

various values of the parameters is given in Table 2.

Figures 5 and 6 show the profiles of u computed by the
methods E-1 and E-2 respectively. We find some damping a little
more than that in the exact solution. It is clear that the
result by E-2 is better than that by E-1.

Application of E-3 gives better result as is expected from
the order of accuracy of this scheme (Fig.7). However, there
appears a sharp peak on the profile near the boundary x=1. On
the other hand, the method E-4 gives a smooth profile which
agrees well with the exact solution (Fig.8).

*The stability criterion for the linear difference equa-

tion
n+l n a At, n n At n n, n
u. = u, - = —(u.,.,-u. + v (u.,,=2u.+u. .) 4.1
J j 2 Ax( j+1 j—l) (Ax)2 j+1 i j-1 ( )
isz)
At 1 1 .2
V—mZ3 and v 2 5 alt. (4.2)
(Ax)
In our case, the critical value for At is
— s 1 1, _ 1
(At)C = m1n(§—2— ’ '5—0') = -EE - (403)

Here the constant a is put to be equal to 1, since 0<u<l in our

problem
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It should be noted that the value of At exceeding the
critical value (At)c given by the linear stability theory does
not necessarily give rise to exponential: growth of the modes of
large wave numbers. Fig.9 shows this point. Such growth does
not appear when we apply the method E-~1 even with At=1/40

( >(At)c). Very fast damping has occurred instead.

Fig.1l0 shows the result obtained by the method I-1. Over-
shooting occurs also in this case. The result is much improved
by I-2 (Fig.1ll).

Now in characteristic methods, the effect of advection and
diffusion is taken into account separately, and each effect is
computed according to a scheme suitable for expressing respective
physical mechanism. In fact, the results computed by C-1
(Fig.1l2), C-2 (Fig.13) and C-3 (Fig.14) are good.

Fig.1l5 shows the result obtained by the Fourier method.
The Fourier series (3.2) has been truncated at the 40th term,
i.e., we have taken N=40. This is in a sense eguivalent to
taking Ax=1/40 in finite-difference methods. The result is
fairly good except the occurrence of wavy pattern superposed

on otherwise smooth profile.

Computation with N=16 and At=1/10 has revealed an inter-
esting phenomenon. As Fig.l6 shows, oscillation appears at about
t=0.4, and its growth seems to invalidate the numerical solution.
After some time, however, the oscillation begins to die out until
a realistic pattern is recovered. Examination of the behavior of
each Fourier component makes this change of pattern clearer. We

have shown this in Fig.17.

Lastly, in order to see the accuracy of the results in more
detail, we have shown in Fig.1l8 the relative errors of the

numerical solutions, which is defined by

e =2 (4.4)
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where u and u, denote the values of the exact and approximate

solutions respectively.

§5. Conclusion

From the numerical computation shown above, we conclude

the following.

The results obtained by E=-2, E-4 and I-2 are better than
those by E-1, E-3 and I-1 respectively. This fact suggests that,
if we use finite-difference method and if the formal order of
accuracy is the same, we should adopt the schemes based on the

equation written in conservation form.

By comparison of the relative errors (Fig.1l8) we can say
that the characteristic methods are superior to the conventional
finite-difference methods. The method C-2 is found to be the
best in view of its high accuracy and not very large amount of
computing time. For general purpose, however, the method C-3
should be regarded as preferable, since the position of, say,
shock formation is not known beforehand in general problems. 1In
fact, changing the mesh spacing is automatically done in C-3, in
such a way that we have finer spacing for steeper portion of
u-profile. On the other hand, difficulty will arise when one
applies C~3 to two- or three-dimensional problem, because in
this case the mesh spanned by variable mesh points will become
strained in a complicated way so that determination of their new
positions by interpolation require large amount of computing time.
This is the most important point that must be overcome in attack-

ing multi-dimensional problems by means of the method C-3.

On the other hand, Fourier method shows high accuracy for
u (see Fig.18 (h)), although the accuracy must be low for its
space derivatives. The greatest advantage of this method must
be that we can see the time change of each component separately
and therefore can estimate the effect of nonlinear coupling

between different modes to some extent. By Fourier method,
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however, we can not examine the detailed behavior of the solution
locally if the number of components is fixed, as by taking non-
uniform mesh in finite~difference methods. Also we have rather
large amount of computing time to ensure high accuracy as shown
in Table 2.

In conclusion we can say that, in this example C-2 or C-3
is best of all the methods tested in this paper. Also we have
found that large values of At violating the linear stability
condition do not necessarily lead to such exponential growth of
the solution that is inevitable in linear problems. This fact
suggests that one must be careful enough in interpreting the
seemingly realistic results of numerical simulation of nonlinear

phenomena.
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Table 1.
Some of the finite-difference schemes used in this paper, u?

being finite-difference approximant to u(jAx, nAt).

Method E-1
n+l  n lAt n . n _ n At n _,n
uj = uj > A% uj(uj+l uj l) + Vv 2(uj+l 2uj~+u._l).
(Ax)
Method E-2
ntl _ n 1 At n 2 n 2 At n _,n n
uj = uj -7 K;-Huj+l) (uj_l) }+ v (AX)Z( j+1 2uj-+u _l).
Method E-3
predicted values:
wn+1l n At n, n n At n n n
u. =4y, -~ —u.(u. -u. ,)+ Vv—=(u. -2u. +u., ).
j ST R Bl T (ax)2 3t T3 T3-1te
corrected values:
n+l _ i( n  n+l _1 At an+l(ﬁn+l__an+l)
4y o T iy Ty 2 Ax 3 J+1 70
v At (Hn+l__23n+l En+l)
2 (Ax)2 j+1 3j j=1
Method E-4
predicted values:
nn+l n 1 At n, 2 n 2 At n n n
= -= 2= - . — —(u., ~2u., +u. .
u. U5 -7 ix qu) (i )+ v (AX)Z(uJ+l Uy +ug )
corrected values:
n+tl _ 1, n v+l 1 At ¢,vn+l, 2 vn+l, 2
uj = E(uj‘l'uj )"Z‘ A_i{(uj+l) "(uj ) }
V At ,vn+l vn+l  wvn+l
+ = ——=(u, - 2u, +u._ 7).
2 (Ax)2 j+1 j j=-1
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Table 2. Summary of the numerical results
computational At |e I - ua_u] CPU time stability condition
scheme r u [ up to t=1.0 (linear theory)
1/10 diverging -
Method 1/20 diverging - t<'£—
E-1 1/40 very large 0.560 s =50
1/80 very large 0.566.
1/10 diverging -
Method 1/20 diverging -
E-2 1/40 very large 0.545
1/80 very large 0.560
1710 | diverging - At < 0.02254% 1/44
Method 1/20 diverging - Atj=0 03135 1/32
E-3 1/40 30.9 % 0.560 =" L
1/80 | 28.6 0.577 (numerical)
1/10 diverging -
Method 1/20 diverging - At <0.0350%1/29
E-4 1/40 9.7 0.540 " (numerical)
1/80 7.6 0.545
1/10 50.1 0.560
Miiﬁ?d i;ig 23:? gzzgg stable for all At
1/80 42.2 0.621
1/10 13.9 0.546
Miiﬁ?d i;ig Z:i 8:22? stable for all At
1/80 7.8 0.590
1/10 24.9 1.920
e | 1| 1es 2720 | seae cor st e
1/80 4.7 4.920
1/10 diverging -
Method 1/20 diverging -
c-2 1/40 3.7 0.732
1/80 1.7 0.794
1/10 diverging -
Method 1/20 diverging -
c-3 1/40 38.54 1.025
1/80 37.55 1.605
, 1/10 | diverging - At<0.012665%1/78.96
Fourier 1/20 diverging - = .
. . (for diffusion
Method 1/40 diverging - equation)
1/80 1.2 2.134
v=0.01
Ax=1/40 (finite-difference method)

N =40

-11-

(Fourier method)
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Method I-1; Ax=1/40, At =1/80.

Fig.l10.

Method E-1; Ax =1/40, At=1/40> (At)c.

Fig.9.
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At =1/80.

ax=1/40,

Method I-2;

Fig.1ll.
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