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Abstract. Recent studies have found that solar ultraviolet (UV) radiation significantly shifts the mass
loss and nitrogen dynamics of plant litter decomposition in semi-arid and arid ecosystems. In this study,
we examined the role of photodegradation in litter decomposition by using the DayCent-UV biogeochemi-
cal model. DayCent-UV incorporated the following mechanisms related to UV radiation: (1) direct photoly-
sis, (2) facilitation of microbial decomposition via production of labile materials, and (3) microbial
inhibition effects. We also allowed maximum photodecay rate of the structural litter pool to vary with lit-
ter’s initial lignin fraction in the model. We calibrated DayCent-UV with observed ecosystem variables
(e.g., volumetric soil water content, live biomass, actual evapotranspiration, and net ecosystem exchange),
and validated the optimized model with Long-Term Intersite Decomposition Experiment (LIDET) observa-
tions of remaining carbon and nitrogen at three semi-arid sites in Western United States. DayCent-UV
better simulated the observed linear carbon loss patterns and the persistent net nitrogen mineralization in
the 10-year LIDET experiment at the three sites than the model without UV decomposition. In the
DayCent-UV equilibrium model runs, UV decomposition increased aboveground and belowground plant
production, surface net nitrogen mineralization, and surface litter nitrogen pool, but decreased surface
litter carbon, soil net nitrogen mineralization, and mineral soil carbon and nitrogen. In addition, UV
decomposition had minimal impacts on trace gas emissions and biotic decomposition rates. The model
results suggest that the most important ecological impact of photodecay of surface litter in dry grasslands
is to increase N mineralization from the surface litter (25%), and decay rates of the surface litter (15%) and
decrease the organic soil carbon and nitrogen (5%).

Key words: arid and semi-arid grassland ecosystems; DayCent-UV model; Long-Term Intersite Decomposition
Experiment; photodegradation; shortgrass; solar ultraviolet radiation; surface litter decomposition.
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INTRODUCTION

The carbon (C) and nitrogen (N) balance
between the atmosphere and terrestrial bio-
sphere is driven by the two fundamental pro-
cesses of production and decomposition (Olson
1963, Moorhead et al. 1999). The physical and

biological mechanisms behind production such
as photosynthesis and photosynthate allocation
are relatively well understood (Cramer et al.
1999). It is well known that solar radiation, pre-
cipitation, temperature, and N availability are
key controlling parameters on net primary pro-
duction (Cramer et al. 1999, Nemani et al. 2003).
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However, the mechanisms behind litter decom-
position, particularly in arid systems, are not
fully clear (Dirks et al. 2010, Austin 2011, King
et al. 2012). Decomposition is the primary con-
troller on the cycling of C and N among plants,
soil, and the atmosphere (Melillo et al. 1982,
Moorhead et al. 1999). Decomposition releases N
for plant production and microbial activity (Par-
ton et al. 2007) and releases CO2 into atmosphere
(~53–57 Pg/yr [C], Harmon et al. 2011) at much
higher rate than fossil fuel carbon emission
(~7.8 Pg/yr [C], Ciais et al. 2013). Thus, small
changes in litter and soil decomposition rate
could result in large variation in atmospheric
CO2 concentration (Adair et al. 2008, Bond-
Lamberty and Thomson 2010).

Plant litter decomposition influences the for-
mation of soil organic matter (SOM), the miner-
alization of organic nutrients, and the carbon
balance in terrestrial ecosystems (Moorhead
et al. 1999). In mesic ecosystems, the rate of litter
decomposition is determined by litter chemistry
especially lignin content (phenolics) and lignin
to nutrient ratios (Meentemeyer 1978, Melillo
et al. 1982). Usually, litter with low carbon to
nitrogen (C/N) ratio and low lignin content
decomposes fast, and roots, which have more
recalcitrant compounds (e.g., lignin), decompose
slowly (P�erez-Harguindeguy et al. 2000, Zhao
et al. 2014). This pattern is predicted by tradi-
tional decomposition models that focus on the
roles of microbes on decomposition. These mod-
els mainly use climate variables (i.e., precipita-
tion and temperature) and litter quality variables
(C/N, the lignin to nitrogen ratio [lignin/N]) to
simulate litter mass loss patterns (Meentemeyer
1978, Parton et al. 1987).

In semi-arid/xeric ecosystems, however, litter
decomposition is faster than predicted by models
which are only driven by climate and litter chem-
istry (Whitford et al. 1981, Moorhead and Cal-
laghan 1994, Moorhead et al. 1999, Parton et al.
2007, Foereid et al. 2011). Furthermore, in arid
systems a portion of decomposing surface litter
does not immobilize nitrogen and the decompo-
sition rate is often unrelated to initial N contents
(Parton et al. 2007, Gallo et al. 2009). These pat-
terns suggest that abiotic processes rather than
microbial activity may be an important driver of
decomposition in arid ecosystems (Parton et al.
2007). Indeed, field experiments show that

abiotic photodegradation has significant impacts
on litter decay (e.g., mass loss rate, CO2 emis-
sions, and litter chemistry) in arid deserts (Day
et al. 2007), in semi-arid grasslands and shrub-
lands (Austin and Vivanco 2006, Rutledge et al.
2010), and in high-latitude forest ecosystems
(Moody et al. 2001). Day et al. (2007) concluded
that ultraviolet-B (UV-B) is responsible for 14–
22% of total litter mass loss in arid and hot sites.
Foereid et al. (2011) found that up to 14% of net
primary productivity (NPP) is photodegradable
in dry and high radiation ecosystems. Gallo et al.
(2006) concluded that UV radiation alone, or in
combination with microbial activity, is as effec-
tive at decomposing litter in arid ecosystems as
microbial activity alone in mesic ecosystems.
The mechanistic detail of photodegradation

remains uncertain (King et al. 2012). It is reported
that UV radiation may directly photolyze a mole-
cule through fragmentation, intramolecular rear-
rangement, or electron transfer (King et al. 2012,
Lee et al. 2012). UV radiation may also indirectly
photolyze a non-light-absorbing molecule by pro-
moting the production of reactive intermediates
(e.g., singlet oxygen and hydroxyl radical) created
from some molecules (often triplet oxygen) receiv-
ing energy transferred from radiation absorbing
photosensitizers (George et al. 2005, Messenger
et al. 2009, Cory et al. 2010, Feng et al. 2011, King
et al. 2012). However, uncertainties exist sur-
rounding the specific carbon compounds that are
affected by photodegradation, with some evidence
for higher loss rates from either cellulosic or lignin
pools (Rozema et al. 1997, Austin and Ballar�e
2010, King et al. 2012, Song et al. 2013, Austin
et al. 2016). UV radiation may also have important
indirect impacts on decomposition: (1) facilitating
microbial decomposition via the generation of
labile material from photodegradation (Gallo et al.
2006, Henry et al. 2008, Andrady et al. 2011, Liu
et al. 2014, Almagro et al. 2015, Baker and Allison
2015, Austin et al. 2016) or facilitating leaching by
breaking down cell walls and releasing fats and
lipids (V€ah€atalo et al. 1998, Day et al. 2007, Lin
and King 2014); and (2) decelerating decomposi-
tion by reducing microbial populations and respi-
ration (Gehrke et al. 1995, Zepp et al. 1998,
Hughes et al. 2003), altering microbial community
composition by selecting species that can tolerate
extreme climate conditions, repair DNA efficiently,
or synthesize photoprotective pigments (Gehrke
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et al. 1995, Moody et al. 2001, Pancotto et al. 2003,
2005), reducing N immobilization (Lin et al.
2015b, Wang et al. 2015) and reducing extracellu-
lar enzyme activity (Gallo et al. 2009).

Several studies have investigated the effective
wavelength range of solar radiation for pho-
todegradation and found that both UV-B (280–
320 nm) and the rest of the solar spectra (Austin
and Vivanco 2006), or both UV radiation (280–
400 nm) and shortwave visible radiation (400–
500 nm or 400–550 nm; Austin and Ballar�e 2010,
Brandt et al. 2009) have significant contribution
to photodegradation. Although UV-B radiation
has higher per photon energy than UV-A radia-
tion, the abundance of UV-B reaching the ground
is much smaller than that of UV-A due to the
preferential absorption of shorter wavelength UV
by the stratospheric ozone. As a result, the over-
all role of UV-A radiation on photodegradation is
comparable to that of UV-B radiation (King et al.
2012). Therefore, more recent studies have been
using the UV radiation (280–400 nm) instead of
UV-B radiation alone as the wavelength range for
photodegradation research (Baker and Allison
2015, Lin et al. 2015a, b, Wang et al. 2015).

In this study, we examined the role of pho-
todegradation in litter decomposition using Day-
Cent-UV which is the extension of the DayCent
biogeochemical model with a photodecay sub-
model. The widely tested hypotheses supporting
flows related to UV radiation induced direct pho-
tolysis, facilitation effects, and microbial inhibition
effects were incorporated in DayCent-UV. In this
study, DayCent-UV was used to simulate the
semi-arid shortgrass steppe ecosystem at three
western US sites. First, the model parameters were
adjusted to match the observations of soil water
content, plant growth pattern, actual evapotranspi-
ration (AET), and net ecosystem exchange (NEE)
at a calibration site. Second, the model was config-
ured to simulate the LIDET decomposition experi-
ment from the 1990s for six common litter types at
the three arid sites. A subset of the photodegrada-
tion-related parameters were optimized for each
species individually and across species using a glo-
bal optimization algorithm that combines scatter
search and non-linear trust region optimization
algorithms. Third, DayCent-UV with optimized
parameters was validated at the other two sites.
Finally, the long-term (i.e., 90 yr) impacts of pho-
todegradation on ecosystem processes such as

plant productivity, C and N pools, N mineraliza-
tion, and trace gas emissions were explored.

METHODS

Sites and data
CPER.—DayCent-UV was calibrated with the

measurements made at the United States Depart-
ment of Agriculture—Agricultural Research Ser-
vices (USDA-ARS) Central Plains Experimental
Range (CPER) site (latitude: 40.816° N, longi-
tude: 104.749° W, elevation: 1646 m). CPER site
is a Long Term Ecological Research (LTER) site
located at the western edge of the Central Great
Plains in Colorado. CPER has mean annual pre-
cipitation of 434 mm, mean annual air tempera-
ture of 9.31°C, and mean annual total solar
radiation of 462.63 W/m2 between 1990 and
1999. Much of the precipitation occurs from April
to June (43%; Parton et al. 2012). The vegetation
at CPER site is dominated by Bouteloua gracilis
(C4 grass) with a mixture of other C4 and C3
grasses, shrubs, forbs, and cacti (Parton et al.
2012). Long-term mean annual aboveground net
primary productivity (ANPP) is 97 g/m2 (dry
mass; Heisler-White et al. 2008), and mean leaf
area index is low (<1, Brandt et al. 2007). The
pastures were subjected to zero, moderate, and
heavy grazing treatments with 0%, 40%, and
65% of annual forage production removed,
respectively (Parton et al. 2012).
Four types of measurements were made and

averaged at daily time resolution at CPER site
between 2001 and 2003. The measurements were
NEE, AET, volumetric soil water content (VSWC),
and aboveground live biomass. Both NEE and
AET were measured or estimated using the
Bowen ratio energy balance (BREB) system
(Model 023/CO2 Bowen ratio System, Campbell
Scientific Inc., Logan, UT, USA; Irmak et al. 2008,
Parton et al. 2012). Volumetric soil water content
for top 0–15 cm soil was measured using water
content reflectometers (Model CS615, Campbell
Scientific; Parton et al. 2012). Aboveground live
biomass during growing season (i.e., late April to
end of September) was measured in nine ran-
domly selected one-meter squared quadrants
around the BREB towers (Parton et al. 2012).
LIDET.—Long-Term Intersite Decomposition

Experiment (LIDET, Harmon 2013) is a 10-year
(1990–1999) study of litter decomposition and

 ❖ www.esajournals.org 3 December 2016 ❖ Volume 7(12) ❖ Article e01631

CHEN ET AL.



nutrient dynamics in response to substrate quality
and macroclimate (Gholz et al. 2000, Parton et al.
2007). LIDET data were provided by the HJ
Andrews Experimental Forest research program,
funded by the National Science Foundation’s
Long-Term Ecological Research Program (DEB 08-
23380), US Forest Service Pacific Northwest
Research Station, and Oregon State University.
The experiment was conducted at 28 sites in North
and Central America that reflected a wide variety
of natural ecosystems and climates (Long-Term
Intersite Decomposition Experiment Team 1995,
Gholz et al. 2000). All 28 sites had nine common
litters, fine roots from three species and leaf from
six species covering a wide range of initial litter
chemistry, and one “wildcard” litter type at each
site (Long-Term Intersite Decomposition Experi-
ment Team 1995, Adair et al. 2008). Although the
litterbag method used by LIDET has known limi-
tations, including the relatively low sampling
intervals (i.e., 1 yr for LIDET); light attenuation by
cumulated litter and soil on litterbags; higher and
more stable moisture inside litterbag both at dry
and wet sites; and potential exclusion of macro-
fauna by the mesh of litterbag (Hutchinson et al.
1990, Virzo De Santo et al. 1993, Kurz-Besson
et al. 2005), it remains the best available method
for investigating long-term decomposition pat-
terns (Adair et al. 2008).

The three LIDET sites used in this study were
Central Plains Experimental Range in Colorado
(CPER) and Sevilleta (SEV) and Jornada (JRN) in
New Mexico. The sites are dry and receive high
UV radiation, and surface litter decomposition
rates at these sites were not well explained by
macroclimate and litter quality only (Parton et al.

2007, Adair et al. 2008). The LIDET CPER site
was the same location as the USDA-ARS CPER
site that was used to calibrate the DayCent-UV
SOM decomposition submodel. The other two
sites, SEV and JRN, were used to test the perfor-
mance of the calibrated DayCent-UV model. The
annual aboveground net primary production for
SEV and JRN sites was 83 and 130 g/m2 (dry
mass; Peters et al. 2013), respectively. The cli-
matic characteristic and ecosystem type for the
three selected LIDET sites are summarized in
Table 1.
The six common leaf litter species (Acer saccha-

rum [ACSA], Drypetes Glauca [DRGL], Pinus resi-
nosa [QUPR], Quercus prinus [THPL], Thuja plicata
[THPL], and Triticum aestivum [TRAE]) were used
to calibrate and validate the model performance
in this study. The initial values of litter quality
indices for these six species are listed in Table 2
(extracted from Adair et al. 2008).
It is noted that other than LIDET, there are

other long-term litter decomposition data set
available such as Decomposition Study (DECO;
Berg et al. 1993) in Europe and Eastern United
States and Canadian Intersite Decomposition
Experiment Team (CIDET; Trofymow et al. 1995)
in Canada. Since we have more prior knowledge
of the soil, plant, and management strategies
at the collocated CPER site and the other two
LIDET sites have a similar environment, we
chose LIDET as the data source for this study.

UV radiation parameterization
The solar UV (280–400 nm) radiation is the

sum of the solar UV-B (280–320 nm) and UV-A
(320–400 nm) radiation. Both the UV-B and UV-

Table 1. Climatic characteristic and ecosystem type for the three selected LIDET sites (Gholz et al. 2000, Adair
et al. 2008).

Site Lat. (°) Lon. (°)
Elev.
(m)

MAT
(°C)

MAP
(mm)

SR
W/m2

AET
(mm) DEFAC CDILT

Ecosystem
type

Central Plains
Experimental
Range (CPER)

40.82° N 104.77° W 1650 8.60 440 462.6 430 0.19 0.243 Dry grassland

Sevilleta National
Wildlife Refuge (SEV)

34.33° N 106.67° W 1572 13.17 255 520.6 252 0.10 0.136 Shrubland/desert

Jornada Experimental
Range (JRN)

32.50° N 106.75° W 1410 17.15 298 526.1 292 0.13 0.216 Shrubland/desert

Notes: All climatic variables were averages of the 10-year LIDET study period (1990–1999). CDILT is the Lloyd and
Taylor (1994) climate decomposition index. DEFAC is a complex climatic factor related to decomposition in the CENTURY
model. The terms “Lat.,” “Lon.,” and “Elev.” are the abbreviation of latitude, longitude, and elevation. The terms “MAT,”
“MAP,” and “SR” stand for mean annual temperature, precipitation, and solar radiation. The term “AET” stands for actual
evapotranspiration.
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A radiations reaching the Earth’s surface depend
on the site location, their top of the atmosphere
counterparts (constant if earth–sun distance is
normalized), clouds, total column ozone, aero-
sols, surface albedo, and atmospheric profiles. In
addition, the solar total radiation (280–2800 nm,
TSR) at ground also depends on the abundance
of column water vapor and trace gases. When all
these data are available, it is possible to directly
simulate both UV and TSR with the assistance of
a radiative transfer model such as MODTRAN
(http://modtran5.com/, Berk et al. 2006, Ander-
son et al. 2009). But for most sites, it may be diffi-
cult to prepare all of these data. Therefore, less
accurate but simple approaches were developed
to simulate daily TSR from daily temperature
and site location (Bristow and Campbell 1984,
Thornton and Running 1999) and to simulate
daily UV from daily TSR with linear regression
(Escobedo et al. 2010). In this study, the MOD-
TRAN (v5.3) model was set up to simulate the
daily TSR and daily UV for a whole year at three
sites with the site-specific locations and total col-
umn ozone, the standard atmosphere profile,
aerosol loading, and surface albedo, and a wide
variety of cloud optical thickness (i.e., 0.0–7.8).
The regressions showed that the ratios between
daily UV and daily TSR are around 6.02–6.08%
(R2s around 0.99) at CPER, SEV, and JRN sites. It
should be noted that since standard atmospheric
parameters are used, these ratios only represent
the typical or average cases at these sites and
may be slightly different in real cases.

DayCent model
Original DayCent.—DayCent (Parton et al. 1998,

Del Grosso et al. 2001, 2011) is a daily time step
biogeochemical model that simulates exchanges

of water, carbon and nutrients (nitrogen [N], phos-
phorus [P], and sulfur [S]) among the atmosphere,
soil and plants as well as plant phenology and
management events (e.g., fire, grazing, cultivation,
and organic matter addition). The DayCent model
inputs (Del Grosso et al. 2011) include daily
weather data (e.g., minimum and maximum tem-
peratures, precipitation, and solar radiation), soil
properties by layer (e.g., bulk density, field capac-
ity, wilting point, texture, root fraction, and satu-
rated hydraulic conductivity), site latitude and
longitude and weather, crop cultivar parameters
(e.g., temperature and water stress functions, res-
piration, growth, and death rates, and relative C
allocation among plant parts), and management
information. The four primary submodels are
plant production, soil carbon and nutrient dynam-
ics, soil water and temperature dynamics, and
trace gas fluxes (Del Grosso et al. 2001, 2011). The
DayCent model has been used extensively to sim-
ulate ecosystem dynamics for agricultural ecosys-
tems (Del Grosso et al. 2005, Stehfest et al. 2007),
grasslands and savannas (Parton et al. 2011,
2012), and forest systems (Savage et al. 2013) and
has been tested extensively against observed data
sets (e.g., nitrous oxide emission, crop yield, and
soil C and N [Del Grosso et al. 2008]).
Plant production (NPP) is a function of genetic

potential, solar radiation, phenology, water and
temperature conditions, and nutrients availabil-
ity (Del Grosso et al. 2008). The allocation of
NPP among plant components (e.g., shoots and
mature and juvenile roots for crop/grass) is
controlled by vegetation type, phenology, and
water/nutrient stress (Del Grosso et al. 2008).
The death rate of plant parts is controlled by soil
water, temperature, season, and plant-specific
senescence parameters (Del Grosso et al. 2011).

Table 2. Initial values of litter quality indices for the six common leaf litter species in the LIDET experiment
(extracted from Adair et al. 2008).

Species Litter type Abbreviation
Water-soluble
extractives† (%)

Cellulose
(%)

Lignin
(%) C/N

Acer saccharum (Sugar Maple) Broadleaf ACSA 47.68 27.33 15.87 61.83
Drypetes Glauca (Drypetes) Broadleaf DRGL 40.23 39.82 10.91 24.25
Pinus resinosa (Red Pine) Conifer PIRE 20.60 44.58 19.18 92.72
Quercus prinus (Chestnut Oak) Broadleaf QUPR 27.22 39.38 23.51 50.55
Thuja plicata (Western Redcedar) Conifer THPL 22.31 35.92 26.67 83.12
Triticum aestivum (Wheat) Graminoid TRAE 6.72 73.15 16.21 133.32

† Water-soluble extractives mean labile C contents in litter.
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The SOM submodel simulates carbon and
nutrient flows for the surface and SOM pools
(structural and metabolic litter, and active, slow,
and passive SOM; Parton et al. 1987, 1988). Major
controls on these flows include litter lignin con-
tent and C/N ratios, temperature/water decompo-
sition factors, and soil texture (Del Grosso et al.
2001). The nutrient pool is supplied by decompo-
sition of SOM, N fixation, and external nutrient
addition such as fertilization and atmospheric N
deposition (Del Grosso et al. 2001). The C and N
fluxes between litter and SOM pools in DayCent
are summarized in Appendix S1.

The land surface submodel of DayCent simu-
lates soil temperature with depths as well as
water flow through the plant canopy, litter, and
soil profile (Parton et al. 1998, Del Grosso et al.
2011). The N-gas submodel of DayCent simulates
soil N2O, NOx, and N2 gas emissions from nitrifi-
cation and denitrification (Del Grosso et al. 2000,
2011, Parton et al. 2001).

DayCent-Photosyn.—DayCent-Photosyn (Straube
2011) incorporates the SIPNET (Simple Photo-
synthesis and Evapo-Transpiration) model (Bras-
well et al. 2005), a simplified Farquhar plant
photosynthesis and respiration model (Savage
et al. 2013). Compared to earlier versions of Day-
Cent, DayCent-Photosyn adds the capability of
simulating the gross primary production and
includes a carbon storage pool that is fueled by
photosynthesis and supports the maintenance
respiration, actual NPP, and growth respiration.
The calculation of actual NPP and growth respi-
ration in DayCent-Photosyn follows the strategy
used by DayCent, but the demanded C of the
two processes is withdrawn from the carbon
storage pool.

DayCent-UV.—Traditional decomposition mod-
els fail to accurately predict the atypical linear pat-
tern of aboveground litter mass loss in the arid
environment, suggesting that photodegradation
should be considered in a decomposition model
(Parton et al. 2007). Other studies have suggested
the following direct and indirect effects of solar
UV radiation on surface plant litter decomposition:

(1) UV photodegradation increases litter bio-
degradability by increasing labile C supply
(Wang et al. 2015) and produces C-based gases
(Brandt et al. 2009, Lee et al. 2012). The most effi-
cient wavelength range for photodegradation (i.e.,
UV and shortwave visible spectra) has strong

correlation with the absorption spectrum of lignin
but not cellulose (Austin and Ballar�e 2010). Some
studies observed significant lignin loss when litter
was exposed to UV radiation and concluded that
lignin is preferentially degraded by photodegra-
dation (Day et al. 2007, Henry et al. 2008, Austin
and Ballar�e 2010, Liu et al. 2014). Wang et al.
(2015), however, did not observe lignin loss with
UV exposure but without microbial decomposi-
tion and suggested that the significant decrease in
lignin content when litter was exposed to UV
radiation was a combined effect of abiotic and
biotic decomposition. One reasonable explanation
is that the UV radiation absorbed by lignin may
change its chemical structure and increase its
accessibility to microbial enzymes (Wang et al.
2015, Austin et al. 2016).
(2) UV radiation decelerates decomposition by

reducing microbial population and respiration
(Gehrke et al. 1995, Zepp et al. 1998, Hughes
et al. 2003, Pancotto et al. 2003). The reason of the
reduction is that the decomposers, microbes, can
be directly and indirectly damaged by UV radia-
tion via the absorption of photons by DNA (Cald-
well et al. 1998, Fern�andez Zenoff et al. 2006).
UV-A light indirectly damages DNA by produc-
ing reactive oxygen intermediates which can
cause strand breaks and DNA–protein cross-links
(Kielbassa et al. 1997, Kurbanyan et al. 2003,
Fern�andez Zenoff et al. 2006). The absorbed UV-B
radiation can also cause direct DNA damage
by dimerization of pyrimidine with two major
photoproducts: cyclobutane pyrimidine dimers
and pyrimidine (6-4) pyrimidone photoproducts
(Mitchell and Karentz 1993, Caldwell et al. 1998).
Based on these mechanisms, three kinds of

modifications were incorporated into DayCent-
UV: (1) adding photodegradation fluxes from the
cellulosic (intermediate) pool to increase abiotic
mass loss of litter (Similar to the traditional
microbial decomposition, the litter’s lignin con-
tent controls the maximum photodegradation
rate [maxphoto]); (2) allowing a fraction of the
photodegradation flux to enter the labile pool to
facilitate litter decomposition; and (3) slowing
the labile pool’s decomposition and increasing
the turnover rates between the surface active
pool and slow pool to simulate the inhibitive
effect of UV radiation on microbial activity.
More specifically, DayCent-UV includes the

following modifications (Fig. 1): (1) a direct C
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loss as CO2 due to photodecomposition of
standing dead material, (2) a direct C loss as CO2

during the breakdown of large structural com-
pounds in surface litter, (3) a transfer of C and N
from photodegraded surface structural litter to
surface metabolic litter; (4) a reduction of the
decomposition rate of the surface metabolic by
higher UV radiation via the metabolic decompo-
sition reducer (mdr); and (5) an enhancement of
the turnover rates between the surface active
(“MICROBE C” in Fig. 1) and the surface slow
(“SLOW C” in Fig. 1) by higher UV radiation via
the microbial turnover increaser (mti). The added

flows (1) and (2) increase abiotic mass loss of lit-
ter due to photodegradation. The added flow (3)
facilitates litter decomposition by providing
more labile materials. The modified flows (4) and
(5) simulate the effects of UV radiation on micro-
bial activity. The equations which describe the
flows of C and N in DayCent-UV (Appendix S2)
and the estimation of daily solar radiation from
daily minimum and maximum temperatures
(Appendix S3) are presented in the online mate-
rial. The impact of lignin content on photodecay
rate has been implemented in DayCent-UV
(Appendix S2).
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Fig. 1. Surface carbon pools and flows represented in DayCent-UV. The pools are shown in rectangular boxes;
the flows between the pools are shown by arrowed lines; and the CO2 flux associated with the flows are shown
by arrowed curves. The numbers near the end of curve arrows are the fraction of C flow that is lost to the
atmosphere as CO2 flux. The abiotic factors that control the decomposition process include UV (soil surface solar
UV radiation), soil temperature, soil moisture, and pH. The term mdr is the metabolic decomposition reducer,
which is negatively related to the ground level solar UV radiation. The term mti is the microbial turnover rate
increaser, which is positively related to the ground level solar UV radiation. Microbe C is another name for the
active C pool.
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Simulation of LIDET experiment in DayCent-UV
We calibrated DayCent-UV to simulate the

LIDET experiment for six leaf litter types at three
sites (i.e., CPER, SEV, and JRN). DayCent-UV has
four distinct pools to represent surface organic
matter: structural and metabolic pools that repre-
sent plant litter, and active (microbe) and slow
pools that represent decomposing organic matter
(Fig. 1). To configure the model for these experi-
ments, the surface pool was cleared at the begin-
ning of the simulation with a fire event, and
100 g of organic matter was added to surface
structural and metabolic pools with the C/N ratio
and lignin fraction matching the leaf litter for the
LIDET experiment (Adair et al. 2008). To simu-
late the conditions of LIDET litter bags, no new
litter from standing dead and dead fine roots
was allowed to enter any surface pools during
the 10-year period. Similarly, the surface pools
were not allowed to mix with SOM pools. The
quantities of organic C and N in the four surface
organic matter pools were tracked during the
simulation as remaining C and N fractions of the
initial litter.

Model parameterization
Use of generalized parameters will likely lead

to poor model performance and tuning input
variables of the model is needed to better repre-
sent site-specific conditions (Del Grosso et al.
2011). Following the suggested order of model
calibration (Del Grosso et al. 2011) and the avail-
able observed data, the input parameters related
to the soil water content, plant growth pattern,
evapotranspiration, and photosynthesis were
adjusted. Plant production, photosynthesis, and
soil water submodels were calibrated with
observed daily net ecosystem carbon exchange,
soil water (0–20 cm depth) and AET rates, and
seasonal changes in live biomass from 2001 to
2003 (Parton et al. 2012). The photodecay mod-
ule in DayCent-UV was calibrated with LIDET
litter decay observations from the Colorado site.
LIDET observations from two sites in New Mex-
ico (SEV and JRN) were used as an independent
validation of the ability of DayCent-UV to simu-
late mass loss and nitrogen release from surface
litter.

Observed soil texture and soil water data at
CPER site (Parton et al. 2012) were used to
estimate the field capacity, wilting point, and

minimum water content for the different soil lay-
ers. The soil physical properties for each soil layer,
such as bulk density, saturated hydraulic conduc-
tivity, snow melt parameter, and live root frac-
tions, were also adjusted. The snow equivalent
precipitation amount was adjusted (increased by
75%) in the winter to early spring period based on
observed daily rain gauge and lysimeter data
showing that the rain gauge substantially under-
estimated water inputs for snow events. The scal-
ing factor for potential evapotranspiration and the
damping factor (a multiplier that controls unsatu-
rated water flux between adjacent soil layers)
were reduced, and the duration of each rain event
was increased in order to better represent the
observed daily soil water data and AET data
(2001–2003). Daily maximum and minimum air
temperatures and precipitation data (1969–2010)
at CPER site were obtained from multiple sources
(Parton et al. 2012, Parton 2013, National Centers
for Environmental Information, NOAA 2015,
National Water and Climate Center, NRCS,
USDA 2015, Rangeland Resources Research Unit,
ARS 2015) with the highest quality possible. We
used the soil physical properties (field capacity,
wilting point, bulk density, etc.) at CPER site and
the observed site-specific solar and weather data
for the SEV and JRN sites’ computer runs. The
solar radiation and maximum and minimum air
temperatures and precipitation data of the SEV
and JRN sites were from multiple sources (Jor-
nada Basin LTER 2012, Moore 2014, National
Centers for Environmental Information, NOAA
2015, Physical Sciences Division, ESRL, NOAA
2015).
The main data sets we used to parameterize

the plant growth submodel include the observed
seasonal change in live leaf biomass (2001–2003),
daily observed daytime and nighttime NEE data
(2001–2003), and observed historical plant pro-
duction data at CPER site (Lauenroth 2013). The
live biomass data and NEE data were used to
parameterize the plant phenological controls on
plant growth and maximum photosynthesis rate
(e.g., reduced growth and photosynthesis rates
at the end of the growing season). The live bio-
mass data were used to parameterize the impact
of soil water stress on plant growth. The 30-year
observed plant production data were used to
adjust temperature growth curves and atmo-
spheric N deposition inputs. The net effect of the
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model parameter changes was to increase the
impact of drought stress on plant growth, reduce
the impact of nitrogen stress on plant growth,
and replicate the observed seasonal live biomass
patterns showing highest live biomass in June
and a sharp decrease in live biomass in July. We
also made a change to the equations which simu-
late enhanced SOM decay rates following rainfall
events during the growing season based on the
observed NEE data sets.

Because there is no observed solar radiation
data for the equilibrium runs and daily solar radi-
ation and temperatures are correlated, the model
uses daily temperature data to estimate the daily
total solar radiation and applies a site-specific
monthly cloud and aerosol adjustment coefficient
to get the total solar radiation estimate. The model
used observed solar radiation data sets (Physical
Sciences Division, ESRL, NOAA 2015) to calibrate
the 12 solar radiation monthly adjustment coeffi-
cients. The same calibration process was used for
CPER, JRN, and SEV sites.

The LIDET mass and nitrogen remaining data
from the six different surface litter decay results
from CPER site were used to parameterize UV lit-
ter decay parameters. We used a model optimiza-
tion program to calculate the optimal values of
the parameters. It is a global optimization method
that combines the scatter search framework
(Laguna and Mart�ı 2003) and gradient-based non-
linear trust region optimizer (Conn et al. 2000,
Ugray et al. 2007). We defined a non-dimensiona-
lized objective function for the optimization
method to evaluate the performance of DayCent-
UV parameters on fitting multiple types of obser-
vational variables (i.e., surface remaining C and N
fractions). The same numerical optimization pro-
cedure was used to determine the parameters for
the plant production submodel. The detailed
design of the optimization method is found in the
online material (Appendix S6). The optimal value
for the model parameters were used if the optimal
values made biological sense. If optimal values
did not make biological sense, we manually
adjusted some of the optimal parameter values
based on general biological knowledge. In gen-
eral, however, the optimization process was quite
useful for identifying the critical parameters
which impact the fit to the observed data sets.
The values for the model input parameters
changes made during model optimization process

are found in online material (Appendices S4 and
S5) and on the Century website (http://www.
nrel.colostate.edu/projects/daycent/). The Century
website contains all of the information needed to
run DayCent-UV for CPER, JRN, and SEV sties.

RESULTS

Model performance on ecosystem variables
The details of DayCent-UV performance on

ecosystem variables are described in online mate-
rial (Appendix S7). Generally, the modeled and
observed VSWC in the first 0 to 20 cm soil layer,
aboveground live biomass, and AET agreed well
(with R2 ranged from 0.44 to 0.50) in the
3-year period (i.e., 2001–2003). It is noted that the
modeled and observed NEE had a less agreement
(R2 = 0.2301) in the same time period.

UV model verification and validation
The performance of the DayCent-UV model

was examined by comparing model results to the
observed C and N fraction remaining vs. time for
the six common litter species in the 10-year LIDET
experiment (i.e., 1990–1999) at CPER calibration
site (Fig. 2). A scatterplot of the DayCent-UV sim-
ulation vs. data as a function of plant species is
shown in Fig. 3. The observed time series of
remaining C fraction showed that some of the spe-
cies followed a more exponential pattern of C loss
(ACSA and DRGL), while the other species dis-
played a more linear pattern for C release vs. time.
There were considerable species differences in the
C loss rates with DRGL and TRAE losing the most
C, although species DRGL and TRAE did not
have common traits such as the initial C/N ratio
and lignin content. There was also a general pat-
tern of less C loss with increasing lignin content of
the litter (THPL had the highest lignin content
and the lowest C loss). The comparison of the
observed vs. simulated C remaining vs. time sug-
gested that DayCent-UV consistently overesti-
mated the decomposition rate in the early stage
(i.e., first 3 years). The scatterplot of observed and
simulated C remaining for all of the species
(Fig. 3A) showed that the model tended to under-
estimate C remaining when observed C remaining
was greater than 0.5 and overestimate C remain-
ing when observed C remaining was less than 0.3.
The model performance of DayCent-UV, which
allows maxphoto (the maximum photodecay rate)
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to linearly vary with litter’s initial lignin content
(Appendix S2), varied by litter species. The model
results showed that DayCent-UV had the best per-
formance on species THPL (0.13 [RMSE for C],
0.17 [RMSE for N]) followed by ACSA (0.10, 0.27),
QUPR (0.12, 0.19), TRAE (0.16, 0.32), PIRE (0.16,
0.26), and DRGL (0.14, 0.32). There was no obvi-
ous correlation between the model performance
and the initial C/N ratios and lignin content of
litter.

The observed N data had larger differences
among the litter species and large unexplained

changes in the observed N remaining vs. time
(e.g., N remaining for PIRE goes from 0.65 in 1994
to 1.1 in 1995 and then decreases to 0.5 in 1996;
Fig. 2). The observed fraction of N remaining
showed a general pattern of decreased N with
increasing time for most species; however, for
TRAE and PIRE, it increased to greater than 1.0
(up to 1.4) at 5 years after the beginning of the
experiment. DayCent-UV simulated the observed
pattern of increased N losses with time. The over-
all RMSE values for the model vs. data compar-
ison were higher for N remaining compared to C

Fig. 2. The time series of remaining C and N (fraction) in litter bags for six litter species (i.e., ACSA, DRGL,
PIRE, QUPR, THPL, and TRAE) from DayCent-UV (solid lines for C and dashed lines for N) and from the annual
observation of LIDET experiment (squares for C and triangles for N) at Colorado (CPER) site.
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remaining (RMSE = 0.16 for N vs. 0.12 for C).
DayCent-UV tended to underestimate the fraction
of N remaining for DRGL and ACSA and overes-
timate the fraction of N remaining for PIRE and
TRAE (Figs. 2 and 3). DayCent-UV was unable to
predict some of the observed species differences
in the N remaining; however, there was no overall
bias in modeled remaining N fraction.

We used DayCent-UV (optimized using the
CPER site data) to simulate C and N remaining
data for SEV and JRN sites as an independent
validation test. For SEV and JRN, the model was
driven with site-specific parameters, such as
site’s location, soil profile, solar radiation, and
weather data, which were adjusted to reflect
the environment at the testing sites. Comparison
of DayCent-UV results vs. observed C and N

remaining for the different plant species at SEV
and JRN sites (Fig. 4) showed that the model did
a good job simulating the litter C remaining for
the different species (RMSE [across-species two-
site average C] = 0.12). These results were simi-
lar to the modeled C remaining vs. the observed
data at CPER site (parameterization/calibration
site) (RMSE[CPER] = 0.12) and showed the same
bias with an overestimation of C loss for
observed C remaining values >0.5 and an under-
estimation of C loss for observed C remaining
<0.3. The results for N remaining had much
higher RMSE compared to the C remaining data
(across-species two-site average RMSE = 0.21 for
N vs. 0.12 for C) consistent with the observed
pattern for CPER site. The RMSE of DayCent-UV
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for C and N at the parameterization and verifica-
tion sites was similar (RMSE for C: 0.12 [SEV]
and 0.12 [JRN]; RMSE for N: 0.04 [SEV] and 0.21
[JRN]). The results also showed that the model
consistently overestimated N release for DRGL
and underestimated N release for PIRE, THPL,
and TRAE species. Both the calibration and vali-
dation data sets showed that when all of the litter
species were considered, the model was not
biased; however, the model did not accurately
simulate some of the observed species-specific
difference in N release.

Because lignin and cellulose are together in
one pool in DayCent-UV, we account for the
effects of lignin on photodegradation by impos-
ing a linear relationship between plant initial lit-
ter lignin content and the maximum photodecay
parameter (maxphoto). The linear equation we
use to represent the impact of lignin is shown in
the online material (Appendix S2). Analysis of
the results showed that the impact of radiation
on photodecay decreased with increasing lignin
content of the litter. Including the impact of lig-
nin content on photodecay increased the fit of
DayCent-UV to the observed C release data
(RMSE for remaining C decreased from 0.16
without the lignin impact to 0.12 using the lignin
content equation, data not shown). When com-
paring the maxphoto values for six litter species
optimized individually and optimized across
species, they were significantly different on some
species (i.e., ACSA and QUPR), but the RMSEs
for the across-species optimization were not sig-
nificantly increased (see Table 3) even though
the number of parameters being adjusted was
greatly reduced (i.e., from 6 to 2).

Effects of photodecay module on spatial and
temporal C and N patterns at three LIDET sites
DayCent-UV matched the LIDET observations

better than DayCent-Photosyn for both C and N
in most time periods and had much higher N
loss compared to DayCent-Photosyn. While the
observations showed a linear decrease in C for
the first 6 years of the experiment and greatly
reduced decomposition rates in the last 4 years,
both DayCent versions released C with expo-
nential patterns (Fig. 5). Compared with Day-
Cent-Photosyn, DayCent-UV showed slightly
slower C decomposition rate in the early stage
but showed over 10% more C loss in the later
stage. The observations showed balanced N
mineralization and immobilization in the first
2 years and net N release in the remaining
years. DayCent-UV showed a persistent net N
release in the entire 10-year period with the
final N remaining fraction at around 0.55, while
DayCent-Photosyn showed slight net N immo-
bilization in most time periods except for in the
first 2 years, in which period net N release was
simulated.
Species averaged C and N remaining vs. time

for LIDET observations for CPER, SEV, and JRN
sites (Fig. 6) showed that observed C remaining
points at three sites were less variable than N
remaining; DayCent-UV captured this pattern.
However, the observations had a more linear pat-
tern of C remaining vs. time in the first 6 years
than DayCent-UV, which predicted an exponen-
tial C pattern across the entire period. Both obser-
vations and model results showed linear pattern
of N remaining vs. time. The model predicted
faster than observed C decomposition rates in the

Table 3. The maxphoto values as well as the corresponding RMSE values of remaining C and N fractions for the
six litter species at Colorado (CPER) site obtained by optimizing individual species (three subcolumns under
column DayCent-UV optimized on individual species) and by optimizing across species (three subcolumns
under column DayCent-UV optimized across species) using DayCent-UV.

Species

DayCent-UV optimized on individual species DayCent-UV optimized across species

Maxphoto
(lg C/kJ [UVsoil])

RMSE (remaining
C fraction)

RMSE (remaining
N fraction)

Maxphoto
(lg C/kJ [UVsoil])

RMSE (remaining
C fraction)

RMSE (remaining
N fraction)

ACSA 5.756 0.095 0.272 15.721 0.095 0.274
DRGL 16.241 0.145 0.338 21.862 0.137 0.318
PIRE 14.898 0.174 0.230 11.629 0.164 0.257
QUPR 10.630 0.114 0.120 6.264 0.119 0.186
THPL 0.000 0.116 0.167 2.351 0.129 0.166
TRAE 19.086 0.170 0.279 15.303 0.165 0.316
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first 3 years than is shown by the observations,
but fit the observation points well for both C and
N in the later years (Fig. 6). DayCent-UV showed
small but distinguishable differences at three sites
for both C and N remaining over time with the
highest C and N loss at JRN site. The annual solar
radiation at CPER site (462.63 W/m2) was lower
than both at SEV site (520.59 W/m2) and at JRN
site (526.10 W/m2). CPER site generally had the
lowest C decomposition rate followed by SEV
and JRN sites, although the observed data points
were noisy and somewhat intertwined. N release
was also the slowest for CPER site. DayCent-UV
manifested the same pattern as observations
for both C and N after 3–4 years. But at the early
stage (i.e., the first 3–4 years), the model showed
more variable C and N decomposition rates
between sites.

Ecological impacts of photodegradation
Photodecay directly changed the C and N

dynamics in surface pools. These changes may
indirectly influence other ecosystem processes.
To present the ecological impacts of photodegra-
dation, the 90-year (1900–1989) average of the
modeled ecological variables were calculated for
CPER model runs with (i.e., DayCent-UV) and
without (i.e., DayCent-Photosyn) the photodecay
module (Table 4). Including the photodecay
module caused increases in aboveground and
belowground plant production, surface litter net
N mineralization, and litter N, but soil organic C
and N, soil net N mineralization, and surface lit-
ter C all decreased (Table 4). The model results
also showed minimal differences (less than 1%)
in biotic decomposition rates, and trace gas
fluxes (data not shown). The biggest impact of
including photodecay were increases in surface
litter N mineralization rates by 25%, and surface
litter N pools (8%). The decreases in organic soil
C and N were a result of the decreased amount
of surface litter transferred below ground
(greater losses of surface litter and standing dead
to the atmosphere due to photodecay). The simu-
lated large increases in surface litter N mineral-
ization were consistent with the observed LIDET
litter N release pattern and DayCent-UV simula-
tion results in Fig. 5B.

DISCUSSION

Generally, DayCent-UV fitted the major
observed patterns of soil water content in the top
20-cm, aboveground live biomass, and AET well
(R2 values between 0.44 and 0.50; Appendix S7:
Fig. S1). However, model results did not fit well
with observed NEE (R2 = 0.23). If we align
modeled and observed NEE with precipitation
data in the growing season, it is seen that the
model underestimated some CO2 pulses (nega-
tive NEE) after big rain events. The mechanisms
(Ma et al. 2012, Moyano et al. 2013) behind these
respiration pulses (or “Birch Effect”) include the
following: (1) re-hydrating of dormant microbes;
(2) death of microbial biomass and releases of
intracellular osmolytes accumulated during the
dry period; (3) breaking down of soil micro-
aggregates, which exposes the protected organic
matter; (4) microbial cell lysis, which releases
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cytoplasmic solutes, and uncouples enzymatic
activity from cellular respiration; and (5) releas-
ing rapidly decomposable molecules made avail-
able via photodegradation and/or extracellular
enzymes decomposition accumulated during dry
periods. DayCent-UV assumes that soil carbon
decay rates are increased (three time normal
values) following rainfall events in order to rep-
resent the pulse rainfall effect on heterotrophic
respiration, yet the model underestimated CO2

pulses following rainfall events. This suggests
that the model needs to include a new fast labile
pool that decomposes rapidly following the rain-
fall events since the size of the CO2 pulses is
similar for each rainfall event during the grow-
ing season independent of the time since rain-
fall (Parton et al. 2012). Alternatively, this may

indicate that photodegradation transfers recalci-
trant C to the labile pool even during dormant
dry periods as suggested in field studies (Ma
et al. 2012, Yanni et al. 2015).
Generally, DayCent-UV fitted the observed

remaining C vs. time pattern well for both indi-
vidual species and across-species averages
(Figs. 2, 5A, and 6A). Since the model were only
run at three sites with similar dry environment
conditions, a comprehensive evaluation of model
performance should be performed in more
diverse environments in the future. DayCent-UV
overestimated the C release in the first three years
but showed good matches with the observed data
during the last four years of the LIDET experi-
ment. In the middle stage (i.e., 4–6 yr), DayCent-
UV had lower C decomposition rates and showed
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a more exponential pattern for remaining C than
the observed linear pattern in the LIDET data.
DayCent-UV only considers instant photodegra-
dation, and the amount of C released is propor-
tional to the solar UV radiation intensity and size
of the litter structural pool (for correcting the
amount of solar UV radiation intercepted by
litter). As a result, materials are photodegraded
faster in the earlier stage and slower in the middle
and later stages in model results. The discrepancy
between model and observation suggests that a
cumulative effect of solar UV radiation exposure
should be considered in the early and middle
stages. A cumulative effect, which means that the
impact of UV on mass loss increases over time,
has been suggested by other studies. For example,
Foereid et al. (2010) concluded that the increasing
litter degradability is a more important mecha-
nism for photodegradation than direct light-
induced mass loss. King et al. (2012) further con-
cluded that the significance of this facilitation
effect heavily depends on length of exposure.
Day et al. (2015) showed that photodegradation
increased its impact on decomposition as litter
aged.

Compared to remaining C results, DayCent-
UV showed larger discrepancy for remaining N,
but it was able to predict the observed general
pattern of N release with time (Fig. 5—averaged
over species N release at CPER). The model per-
formance on simulating individual species’ N
pattern was worse (Figs. 3B and 4B). Some spe-
cies such as PIRE and TRAE released N slower
than observations, while some species such as
DRGL released N faster than observations in the
entire experiment. In DayCent-UV, the relative

C/N ratios between source and target pools and
mineral N pools determine N flows between lit-
ter pools (Appendix S1). It is possible that the
model parameters that control how much N is
immobilized or mineralized are not optimal for
some species. Since mdr and mti influence the
microbial pool size and the N flow is generally
tie to the C flow in DayCent-UV (Appendix S1),
DayCent-UV has already indirectly incorporated
the UV inhibition effects on microbial N immobi-
lization (Smith et al. 2010, Lin and King 2014,
Lin et al. 2015b, Wang et al. 2015) and the UV
facilitation effects by providing more microbial
decomposable N compounds (Foereid et al.
2010). The only direct change for N in litter pools
is when photodegradation releases C as CO2

from surface structural, and the associated N
flows into surface metabolic. The poorer perfor-
mance on remaining N vs. time for individual
species indicates that DayCent-UV does have the
mechanisms to represent species-specific litter N
dynamics in arid environments. Observed litter
N release data are much more variable than
model results (Fig. 2 shows large temporal
changes in N release). There have been studies
exploring some other potential mechanisms for
N in high solar (UV) radiation environment.
Some study has suggested that C-use efficiency
may be reduced to allow net N release (Zhao
et al. 2014). Others have suggested that direct
N photodissolution or photodegradation may
occur (Mayer et al. 2012).
DayCent-UV matched the observed C remain-

ing slightly better than DayCent-Photosyn in the
early stage (i.e., 1–3 yr) but matched much better
in the latter stage (i.e., 5–10 yr) (Fig. 5A). Even

Table 4. Average ecological variables (related to plant productivity, N mineralization, and surface and soil C and
N pools) from a 90-year simulation at CPER without and with photodecay (i.e., DayCent-Photosyn and
DayCent-UV, respectively).

Ecological variables DayCent-Photosyn DayCent-UV Difference (%)†

Plant productivity (above ground) (g C�m�2�yr�1) 48.73 49.29 +1.14
Plant productivity (below ground) (g C�m�2�yr�1) 51.04 51.79 +1.47
Surface net N mineralization (g N�m�2�yr�1) 0.67 0.84 +25.03
Soil net N mineralization (g N�m�2�yr�1) 3.66 3.55 �2.84
Surface litter C pools (g C/m2) 113.98 95.47 �16.24
Surface litter N pools (g N/m2) 3.09 3.32 +7.41
Surface biological decay rate (yr�1) 0.22 0.22 +0.20
Soil C pools (g C/m2) 1093.05 1039.35 �4.91
Soil N pools (g N/m2) 64.33 61.31 �4.70

† Difference (%) = (DayCent-UV � DayCent-Photosyn)/DayCent-Photosyn 9 100%.
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though the two models showed similar perfor-
mance in the early stage, the mechanisms and
the C distribution among the four surface litter
pools are quite different. DayCent-UV reduced
surface structural C with CO2 loss and added C
from surface structural into surface metabolic.
The UV inhibition effect (mdr) reduces the sur-
face active (microbes) pool by reducing the con-
sumption of surface metabolic litter. The UV
increases the turnover between surface active
and slow pools (via mti) and subsequent CO2

loss. As a result, we saw that DayCent-UV had a
significantly larger surface metabolic pool but
significantly smaller surface active and slightly
smaller surface structural and slow pools than
DayCent-Photosyn (data not presented). Addi-
tionally, the cumulative CO2 loss from surface
slow and the continuous photodegradation of
surface structural caused lower surface litter C
remaining in DayCent-UV.

The performance of DayCent-UV on N remain-
ing was much better than that of DayCent-Photo-
syn especially in the later stage (Fig. 5B). The final
remaining N fractions from DayCent-Photosyn,
DayCent-UV, and observation were approxi-
mately 0.90, 0.55, and 0.45, respectively. Parton
et al. (2007) showed that N release from UV
impacted dry sites had much faster N release com-
pared to all of the other ecosystems. DayCent-UV
generally simulated the persistent net N release
found in the observations due to the photodegra-
dation-induced N flow from surface structural to
surface metabolic that reduced the intensity of N
immobilization from extraneous sources.

The observed negative relationship between the
initial lignin fraction of litter (Table 2, column 6)
and the individually optimized photodecay rate
(Table 3, column 2, maxphoto) suggests that lignin
is not the chemical compound that is susceptible
to UV degradation. Bontti et al. (2009) also found
the strong negative relationships between initial
lignin content vs. mass loss and suggested that
lignin does not enhance photodegradation. Some
field studies did not observe increased lignin loss
(Lin and King 2014) or did not find change in
lignin (Brandt et al. 2007) under UV exposure.
The photodegradation flows in DayCent-UV are
imposed on standing dead and surface structural
pools, which contain both lignin and cellulose.
Therefore, we speculate that cellulose is the
major chemical compound susceptible to UV

degradation. Some studies reported that degrada-
tion of cellulose and/or hemicellulose is responsi-
ble for litter mass loss under UV exposure
(Rozema et al. 1997, Brandt et al. 2007, 2010).
Alternatively, we speculate that photodegradation
breaks down encrusting lignin and exposes pro-
tected cellulose for biological decomposition
(Henry et al. 2008, Austin and Ballar�e 2010,
Brandt et al. 2010, Frouz et al. 2011). Talbot et al.
(2011) found that chemical protection due to the
cross-linking between lignins and polysaccharides
allowed lignin to control the total decay rates. Lin
et al. (2015a) used the two-dimensional nuclear
magnetic resonance (2D NMR) method to analyze
the litter exposed in the field for up to 1 year and
found that UV exposure significantly decreased
the litter hemicellulose fraction by causing partial
degradation (i.e., some lignin structural units and
linkages were reduced), not necessarily complete
breakdown, of lignin structures.
DayCent-UV equilibrium model runs for Col-

orado (CPER) site were used to evaluate the
ecosystem impact of photodegradation. Pho-
todegradation (in DayCent-UV) increased above-
ground and belowground plant production,
surface net N mineralization, and surface litter N
pool, but decreased surface litter C, soil net N
mineralization, and organic soil C and N (see
Table 4). Photodegradation of standing dead and
surface structural promoted direct C loss from
the two pools, enhanced the cellulose accessibil-
ity to microbial decomposition, and increased
the amount of labile material entering the surface
metabolic pool. The decline in organic soil C and
N and surface litter C is because more surface C
was lost as CO2 and less C and N were mixed
from surface litter into the soil. Photodegradation
greatly increased N mineralization from surface
structural to surface metabolic supporting exper-
imental studies (Lin et al. 2015b, Wang et al.
2015). Photodegradation also increased the total
surface N pool because N stayed in the litter as a
result of photodecay. This also increased the net
N mineralization from the surface pools because
microbes need less extraneous mineral N to
decompose high C/N ratio materials. Soil net N
mineralization decreased because of the reduced
input of C and N from surface litter layer into the
mineral soil layer. However, the large increase in
surface net N mineralization (+25%) more than
compensated for the slight reduction (�2.84%) in
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soil N mineralization, and the total soil and sur-
face net N mineralization slightly increased.

CONCLUSIONS

The calibrated DayCent-UV model fitted the
major observed patterns of soil water content in
the top 20 cm of soil, aboveground live biomass,
and AET (R2 between 0.44 and 0.50) at CPER but
missed some CO2 spikes after heavy rain events
in the observed NEE (R2 = 0.23). DayCent-UV
better fitted the observed LIDET C and N loss
patterns than DayCent-Photosyn especially in
the later stage. DayCent-UV fitted the observed
remaining C vs. time pattern well for both indi-
vidual species and across-species averages at
three (semi-)arid LIDET sites and predicted the
observed pattern of N release with time. How-
ever, larger discrepancy for remaining N vs. time
than for remaining C vs. time for individual
species suggests that some mechanisms of pho-
todegradation on N dynamics may be missing.
The slight overestimation of C release in the
early stage (i.e., years 1–3) and the underestima-
tion in the later stage suggest that the cumulative
effect of solar UV radiation exposure should be
considered. The negative relationship between
litter’s initial lignin fraction and the individually
optimized photodecay rate suggests that cellu-
lose rather than lignin may be the chemical
compound that is responsible for UV degrada-
tion. The DayCent-UV equilibrium model runs
showed that UV decomposition increased above-
ground and belowground plant production,
surface net N mineralization, and surface litter N
pool, but decreased surface litter C, soil net N
mineralization, and organic soil C and N.
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