
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Electrical Engineering Theses and Dissertations Electrical Engineering 

Summer 8-2020 

Learning Deep Architectures for Power Systems Operation and Learning Deep Architectures for Power Systems Operation and 

Analysis Analysis 

Mahdi Khodayar 
mahdik@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/engineering_electrical_etds 

 Part of the Computer Engineering Commons, Electrical and Electronics Commons, Power and Energy 

Commons, and the Signal Processing Commons 

Recommended Citation Recommended Citation 
Khodayar, Mahdi, "Learning Deep Architectures for Power Systems Operation and Analysis" (2020). 
Electrical Engineering Theses and Dissertations. 41. 
https://scholar.smu.edu/engineering_electrical_etds/41 

This Dissertation is brought to you for free and open access by the Electrical Engineering at SMU Scholar. It has 
been accepted for inclusion in Electrical Engineering Theses and Dissertations by an authorized administrator of 
SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_electrical_etds
https://scholar.smu.edu/engineering_electrical
https://scholar.smu.edu/engineering_electrical_etds?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_electrical_etds/41?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


LEARNING DEEP ARCHITECTURES FOR POWER SYSTEMS

OPERATION AND ANALYSIS

Approved by:

Dr. Jianhui Wang
Professor

Dr. Behrouz Peikari
Professor

Dr. Khaled Abdelghany
Professor

Dr. Harsha Gangammanavar
Assitant Professor

Dr. Feng Chen
Associate Professor

DocuSign Envelope ID: 0B7E0035-3862-4C30-B3EC-E3A6348228F5



LEARNING DEEP ARCHITECTURES FOR POWER SYSTEMS

OPERATION AND ANALYSIS

A Dissertation Presented to the Graduate Faculty of the

Bobby B. Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Electrical Engineering

by

Ph.D., Electrical Engineering, Southern Methodist University

August 4, 2020

M.Sc., Artificial Intelligence, Khajeh Nasir Toosi University of Technology

nofacenoname123456789@gmail.com
Typewritten text
B.Sc., Software Engineering, Khajeh Nasir Toosi University of Technology

nofacenoname123456789@gmail.com
Typewritten text
Mahdi Khodayar



Copyright (2020)

All Rights Reserved

iii



ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my adviser, Prof. Jianhui Wang

for his invaluable guidance during my project. His high standard way of thinking and doing re-

search shaped me and made me grown. I would like to equally thank Dr. Khaled Abdelghany at

the Civil and Environmental Engineering Department of SMU as well as Dr. Feng Chen at the

Department of Computer Science in University of Texas at Dallas for their valuable inputs and

guidance during my research on machine learning and deep neural architectures. I would also like

to thank Dr. Behrouz Peikari and Dr. Harsha Gangammanavar for their effort on reviewing my

work and giving valuable comments on the mathematical and experimental contents of this thesis.

Mahdi Khodayar

iii



Learning Deep Architectures for Power SystemsOperation and Analysis

Advisor: Dr. Jianhui Wang

Doctor of Philosophy degree conferred August 4, 2020

Dissertation completed May 5, 2020

With the rapid increase in size and computational complexities of power systems, the need for

powerful computational models to capture strong patterns from energy datasets is emerged. In this

thesis, we provide a comprehensive review on recent advances in deep neural architectures that

lead to significant improvements in classification and regression problems in the area of power en-

gineering. Furthermore, we introduce our novel deep learning methodologies proposed for a large

variety of applications in this area. First, we present the interval deep probabilistic modeling for

wind speed forecasting. Incorporating the Rough Set Theory into deep neural networks, we create

an accurate interval model for point prediction of intermittent wind speed datasets. Then, we de-

velop a graph convolutional neural network for the spatiotemporal prediction of wind speed values

in multiple neighboring wind sites. Our provided numerical results show the great improvement of

prediction accuracy compared to classic deep learning. Using the concept of graph convolutions,

we also develop a new conditional graph variational autoencoder to learn the probability density

of future solar irradiance given the historical solar irradiance of multiple photovoltaic energy sites.

This study led to the state-of-the-art performance in probabilistic solar prediction in power sys-

tems domain. Moreover, we introduced a novel multimodal deep recurrent structure that makes

use of both system-wide power and voltage measurements as well as load parameters for accurate

real-time load modeling. The numerical results show the significant improvement of this method

compared to classic deep learning in estimating dynamic load parameters of smart grids. Moreover,

we develop deep dictionary learning as a new paradigm in machine learning for energy disaggrega-
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tion and behind-the-meter net load decomposition. The presented work leads to the best accuracy

in comparison with recent sparse coding and dictionary learning-based decomposition methods in

the literature. Finally, a novel deep generative model is introduced to learn the probability density

of the measurements on the nodes and edges of a power grid. Using this model, we take a large

number of samples from the probability distribution of the structure of power systems, hence, gen-

erating synthetic power networks with the same topological and physical behaviors as the original

power system. Our simulation results on real-world datasets show the great improvements of the

proposed approach compared to the data-driven approaches in the recent literature.
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Chapter 1

Introduction

With the rapid growth of power systems measurements in terms of size and complexity, dis-

covering statistical patterns for a large variety of real-world applications such as renewable energy

prediction, demand response, energy disaggregation, and state estimation is considered a crucial

challenge. In recent years, deep learning has emerged as a novel class of machine learning al-

gorithms that represents power systems data via a large hypothesis space that leads to the state-

of-the-art performance compared to most recent data-driven algorithms. This study explores the

theoretical advantages of deep representation learning in power systems research. We review deep

learning methodologies presented and applied in a wide range of supervised, unsupervised, and

semi-supervised applications as well as reinforcement learning tasks. We discuss various settings

of problems solved by discriminative deep models including Stacked Autoencoders and Convolu-

tional Neural Networks as well as generative deep architectures such as Deep Belief Networks and

Vatriational Autoencoders. The theoretical and experimental analysis of deep neural networks in

this study motivates long-term research on optimizing this cutting-edge class of models to achieve

significant improvements in the future power systems research.

1.1. Literature Review

The reliability and accuracy of data-driven models in power systems operation and analysis

closely rely on the selection of data representation (i.e., features extracted from the underlying

data) [17]. As a result, most of the concerns regarding the application of classic data-driven mod-

els in power systems is focused on the design of preprocessing techniques using unsupervised di-

mensionality reduction algorithms including the principal component analysis (PCA) [26], linear

discriminant analysis (LDA) [99], and t-distributed stochastic neighbor embedding (t-SNE) [252].

Such feature extraction techniques dramatically increase the time and memory complexity of data-
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driven algorithms and lead to insufficient accuracy as they mainly cannot capture highly nonlinear

and highly varying patterns inside the ambient space of the data [17].

Recent machine learning studies on wind forecasting [111, 115, 144, 148], photovoltaic (PV)

power prediction [86,112,200,246], state estimation [162,220], power grid synthesis [117], and en-

ergy disaggregation [74, 95, 118] show that developing data-driven models with less dependencies

on explicit preprocessing methods (e.g., PCA) leads to dramatically better performance in terms

of classification and regression accuracy. Instead of having an explicit preprocessing approach, the

deep learning studies form a composition of multiple nonlinear latent layers in a multi-layer artifi-

cial neural network (ANN). The ANN parameters (i.e., weights and biases) are generally trained in

a greedy unsupervised layer-by-layer fashion [184], where each layer performs a nonlinear feature

extraction on the features computed by its previous layer.

Based on the theoretical aspects, deep learning algorithms proposed in power engineering ap-

plications are generally categorized into three major classes:

1) Discriminative deep ANNs aim to directly learn a highly nonlinear decision boundary between

different classes and regression regions of the power system data [108]. In this category, the Rec-

tified Linear Unit (ReLU) ANN [59] is presented for real-time reliability management response.

Due to its high generalization capacity and low computational complexity, the ReLU ANN is

also utilized for online small signal stability assessment [27], faulted line localization [141], and

phasor measurement unit (PMU) based event classification [121]. Moreover, the Stacked Au-

toencoder (SAE) is developed as a highly nonlinear version of the PCA for unsupervised pat-

tern recognition for wind energy prediction [32, 111, 239], PV power forecasting [67], fault di-

agnosis [238], and transient stability assessment [204]. In addition, the Long Short-term Mem-

ory (LSTM) ANN is presented as a supervised temporal feature extractor with a deep recurrent

formulation to model the sequential behavior of the time-dependent power systems measure-

ments [118, 264]. In this area, LSTM-based sequential models are proposed for wind and PV

power forecasting [52, 202, 263, 264], load modeling using system-wide measurements [46], real-

time power fluctuation identification [230], power demand forecasting [205], energy disaggrega-

tion [118], reneasble energy pridiction [34, 52], as well as fault detection [251].
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Convolutional Neural Network (CNN) is another major class of discriminative models that

are powerful to capture coherent structures in power system measurements due to their convo-

lutional and pooling operations [189]. Learning statistical convolution filters, the CNN extracts

strong correlations between data points in both space and time domains [192]. The mixture of

convolutional and pooling layers in this type of deep neural networks incorporates the spatial char-

actristics of measurements into their temporal features to solve spatiotemporal tasks in the area of

renewable energy forecasting [112, 160], transient stability analysis [192], harmonic components

analysis [189], fault detection [30], and short-term voltage stability assessment [240].

2) Probabilistic deep ANNs consider feature learning as a procedure to find a parsimonious set

of hidden variables that best describe the probability density function (PDF) of the data. The PDF

is further mapped to the target class/value of the problem. In this group, the Deep Belief Network

(DBN) is a well-known probabilistic graphical model that learns the PDF of the data given its

conditionally independent latent features. The features are learned by Gibbs sampling in order

to provide an accurate estimation of the probabilistic behavior of the input data for probabilistic

applications that need to address large uncertainty factors in the data. DBN is mainly applied

to wind and solar power prediction [221, 235], transient stability assessment [261], day-ahead

and week-ahead load prediction [75], as well as probabilistic state estimation [90]. Moreover,

in this category of models, the Generative Adversarial Network (GAN) is presented that takes

samples from an estimated PDF and compares the generated samples with the actual data in the

dataset to increase the accuracy of the learned PDF. As this model can efficiently learn the major

characteristics of the PDF, it is recently introduced to important outlier and fault detection problems

for small-sample wind turbines [146] and smart grid cyber attack detection [6]. Furthermore, since

GANs can synthesize the data by taking samples from the estimated PDF, these models are recently

employed for model-free renewable scenario generation problems [37]. In this line of research, the

Variational Autoencoders (VAEs) are presented as a novel version of deep generative ANNs that

learn the PDF of the data by learning a high dimensional latent variable which is mapped to the

original data samples in the dataset. VAE is shown to estimate accurate synthetic samples for

power grid synthetic [119], unsupervised anomaly detection in energy time series [175, 262], and
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Electric Vehicle load generation [170].

3) Deep Reinforcement Learning (DRL) algorithms are a major class of machine learning ap-

proaches that seek to learn an optimal policy based on the feedback from the environment com-

puted by a reward function. This function reflects how much the problem’s objective is satisfied

based on the current state of the system. In contrast to the conventional deep learning that merely

estimates a discrete target function for classification and continuous target funtion for regression,

DRL aims to decline a general error function defined by the experience in a fully observable or

partially observable environment. Hence, this method solves more general classes of problems

compared to the classic deep learning. Due to its feedback-based nature, DRL is widely employed

for control problems including voltage control [58], adaptive emergency control [88], as well as

self-learning control for energy efficient transportation [180]. Also, DRL is applied to optimiza-

tion problems for learning the optimal bidding strategies in electricity markets [236,244], demand

response strategies for energy management [89, 212, 242], as well as finding the optimal wind and

storage cooperative schedule to decrease the effect of the uncertainty in renewable generation in

smart grids [181]. Moreover, this class of methodologies are recently introduced to cyber attack

detection and recovery [227], dynamic power allocation [165], and power system data integrity

defense [9].

This chapter reviews the three major categories of deep neural networks in the domain of power

systems research. First, the deep discriminative appraoch is introduced in Section 1.2. Various

variations of this machine learning class of models is explained, and compared both mathemati-

cally and experimentally using several real world power systems datasets. Section 1.3 introduces

probabilistic deep learning methods such as the classic DBN and its Gaussian variation as well as

the recently proposed GANs and VAEs. The applications and theoretical advantages of these tech-

niques are discussed in this section. Then, in Section 1.4, the chapter reviews DRL algorithms and

their vast area of applications in power systems optimization and control. Finally, the conclusions

are provided in Section 1.5.
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1.2. Discriminative Deep Learning

Discriminative modeling is one of the major areas in machine learning that tends to estimate a

function fθ parameterized by θ ∈ Rp that directly maps an input to the true output of the problem.

Let us Consider a training dataset Dtr = {(x1, y1), (x2, y2), ..., (xn, yn)} that contains n training

samples (xi, yi) with input xi corresponding to the true output/label yi, and a test dataset Dts =

{(xn+1, yn+1), (xn+2, yn+2), ..., (xn+m, yn+m)} with m unobserved test samples. The goal is to

learn the optimal parameter θ∗ where the average distance between fθ∗(x) and y is the lowest for

all samples (x, y) ∈ Dtr. The test error is the average error between the trained fθ∗(x) and y for

all (x, y) ∈ Dts.

To obtain a nonlinear mapping between the inputs and outputs, the classic Multilayer Percep-

tron (MLP) defines an input layer h0 ∈ Rd0 and L computational layers {h1, h2, ..., hL}where each

layer hi ∈ Rdi (i ∈ [1, L]) is a nonlinear function of previous layer defined by hi = gi(W ihi−1+bi)

where gi is a nonlinear transformation function usually computed by a sigmoid or hyperbolic tan-

gent function, W i ∈ Rdi × Rdi−1 is the weight matrix and bi ∈ Rdi is the bias of the activation

function in layer hi. Using the hidden layers, the MLP provides a nonlinear transformation be-

tween the input h0 = x and output hL = y in the dataset.

To train each layer hi, the gradient descent (GD) method moves parameters W i and bi in the

opposite direction of the gradient of the training error with respect to W i and bi, respectively. As

the gradients dramatically decline with the increase in L, there is a trade-off between the number

of computational layers L and the strength of GD to update the model. As L becomes larger to

address more complex problems, GD becomes ineffective due to the vanishing gradients. Hence,

the classic MLP does not provide sufficient generalization capability to accurately solve complex

real-world problems. As a result, discriminative deep learning is proposed to efficiently train deep

ANNs with L > 1 in order to have a high capacity mapping fθ while providing an effective training

procedure to update the parameters.

5



1.2.1. Rectified Linear Unit ANN

ReLU ANN defines a rectified linear unit activation function ReLU(x) = max(0, x) at the

computational layers of MLP rather than using the classic nonlinear activation functions. Since the

gradient of ReLU(x) with respect to a positive input x is always 1 regardless of x, this function

solves the vanishing gradient problem of the MLP. Hence, this model is applied to power systems

applications that require highly nonlinear feature extraction.

Table 1.1 summarizes the applications of discriminative modeling in the power systems area.

As shown in this table, a ReLU ANN is implemented in [59] to estimate the cost of real-time

resource allocations decisions in operation planning of the modified IEEE-RTS96 single area net-

work [72]. Also, in [27], various ReLU ANN architectures are trained to learn the small signal

stability assessment of the classic 16-machine 68-bus test system [195]. As shown in [27], when

the number of layers increase from 2 to 6, the assessment accuracy is significantly increased since

the ReLU ANN’s hypothesis space becomes largers. In addition, the ReLU ANN is applied to real-

time faulted line localization in IEEE 39-bus and 68-bus power systems which resulted in 98% and

93% location accuracy rate for line to ground and double line to ground faults, respectively. Fur-

thermore, in [121], ReLU ANNs are shown to yield 98.17% accuracy for the classification of 6

events including generation loss, load loss, as well as line to ground faults in the IEEE 68-bus

system.

1.2.2. Stacked Autoencoder

To train a deep ANN with input h0 and L computational layers hi (i = 1, 2, ..., L), the SAE

trains L AEs {AEi}Li=1. Each AEi is a MLP ANN with one hidden layer with an encoding acti-

vation function fenc where a high-dimensional input hi−1 ∈ Rdi−1 is encoded into a lower dimen-

sional latent feature vector hi = fenc(h
i−1) ∈ Rdi which is further mapped back (decoded) to the

original input hi−1 in the output layer oi = fdec(h
i) using the decoding function fdec. Hence, the

GD error ofAEi is computed by ||oi−hi−1||22 to train the weightW i
enc and bias bienc of its encoding

layer as well as the weight W i
dec and bias bidec of its decoder. To update the parameters of the SAE,

starting from i = 1, each AEi is trained and the trained encoder parameters W i
enc and bienc are used
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to initialize W i and bi of the layer i, respectively. Finally, the whole SAE ANN is trained using

GD on the training data Dtr.

Due to the unsupervised feature learning at each AE, the SAE model is suitable for situations

where the training data is limited or contains remarkable uncertainty and noise factors. Hence, this

method respectively outperforms the MLP, Nonlinear Autoregressive Exogenous (NARX) ANN,

and Time Delay ANN (TDANN) by 23.66%, 21.54%, and 14.81% in terms of the Mean Abso-

lute Percentage Error (MAPE) for short-term wind speed prediction [32, 111, 239]. Moreoever, as

shown in Table 1.1, the SAE outperforms ReLU in both classification tasks (e.g., stability assess-

ment [27] and PMU event classification [121]) as well as regression tasks with large data variations

(e.g., wind and PV power prediction [67, 239] and load forecasting [205]). Furthermore, due to its

powerful greedy layer-wise training process, the SAE yields an average transformer fault diagnosis

accuracy of 95.4% in the IEC 60599 and IEC TC 10 databases [60]. In addition, SAE improves the

transient stability analysis accuracy of extreme learning machines (ELMs) by 6.59% in the IEEE

39-bus system [204].

1.2.3. Long Short-Term Memory Network

LSTM is a widely used deep recurrent ANN that extracts powerful temporal features from a

time series x1, x2, ..., xT . At each time step, 0 ≤ t ≤ T , LSTM observes a sample xt and updates

its temporal memory Ct that describes the state of the time series at t, and produces a temporal

feature vector ht that summarizes LSTM’s temporal information after the observation xt. The

recursive structure of LSTM features is defined by:

it = σ(Wi.[ht−1, xt] + bi)

ft = σ(Wf .[ht−1, xt] + bf )

ot = σ(Wo.[ht−1, xt] + bo)

C̃t = tanh(WC .[ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(1.1)
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where it is the input gate that decides the magnitude of information flow into the time-dependent

memory Ct using the sigmoid activation σ with weight Wi and bias bi. ft is the forget gate that

determines how much information needs to be removed from Ct using weightWf and bias bf . ot is

the LSTM’s output at time t using weight Wo and bias bo while ht is the extracted tempoal feature

at time t. At each time step t, the memory is updated by C̃t as a nonlinear function parameterized

by WC and bC .

In contrast to the classic recurrent MLPs, the LSTM does not encounter the vanishing gradi-

ent problem; hence, can be efficiently trained using GD. As a result, as shown in Table 1.1, this

method is applied to a large variety of time-dependent applications such as wind, PV, and load pre-

diction [52, 67, 75, 239] as well as load modeling [46] and power fluctuation identification [230].

As Table 1.1 shows, the LSTM generally outperforms both ReLU and SAE in the domain of time-

dependent applications due to its recurrent structure and powerful temporal memory. In [264],

a novel attention mechanism-based LSTM is developed to improve the hourly solar energy pre-

diction of MLP by 6.17% and 0.27 in terms of MAPE and Root Mean Squared Error (RMSE),

respectively. Also, the LSTMs in [263] and [202] have shown the state-of-the-art performance

in wind prediction tasks. Moreover, in [46], a LSTM is defined in a multimodal neural architec-

ture to simultaneously capture the temporal characteristics of dynamic load parameters as well as

the voltage and power changes in the IEEE 68-bus test system [195]. It is shown that the LSTM

captures real-time dynamic behaviors of load parameters with 38.42% and 25.64% better RMSE

and MAPE, respectively, compared to the TDNN method due to its larger hypothesis space and

overcoming the overfitting problem. Similar accuracy improvements are recently reported in other

time-dependent applications including power fluctuation identification [230], data-based line trip

fault prediction [251], and industrial load forecasting [205].

1.2.4. Convolutional Neural Network

CNNs contain a two dimensional input layer I , a set of hidden convolution and pooling layers,

and a fully connected output layer. Each neuron in the convolution layer is a nonlinear kernel that

divides the input into small slices called receptive fields. The output of convolution operation at

8



the k-th kernel in the l-th convolution layer is computed by:

fkl (p, q) =
∑
c

∑
x,y

ic(x, y).ekl (u, v) (1.2)

where ic(x, y) is the (x, y) element of the c-th channel of input I , and ekl (u, v) is the (u, v) element

of the k-th kernel of layer l. The pooling layer sweeps an average or maximum function over small

patches of the convolution output in (1.2) to further reduce the dimension of the extracted features

which enhances the sparsity of the kernel parameters and avoids overfitting on the training set.

Finally, the fully connected layer maps the extracted features to the target label of the underlying

classification or regression task.

As the convolution and pooling layers process their local input patches simultaneously, the

CNN yields the state-of-the-art performance in tasks where the local spatial and temporal corre-

lations of the data play a crucial role. Therefore, this model outperforms ReLU ANNs as well as

SAE and LSTM in applications where the data has a strong spatiotemporal structure such as the

wind and PV power prediction [67, 239] as well as PMU event classification [121]. In [112], this

model is applied to 6-hr ahead spatiotemporal solar irradiance prediction which obtains 21.62%

and 16.78% better RMSE and MAPE, respectively, compared to the LSTM due to modeling the

correlation between the radiation at neighboring solar sites by the convolution operation in (1.2). In

addition, in [192], CNN is applied to the transient stability assessment of the IEEE 39-bus system.

In a short period of time after a disturbance, the bus voltage phasors sampled from PMUs from var-

ious points of the system are given to the CNN to judge if the system is stable, aperiodic unstable

or oscillatory unstable. CNN’s classification accuracy is 98.7% while recent variations of support

vector machines and decision trees lead to 95.2% and 92.1% accuracies. Furthermore, CNN is

shown to yield promising results in fault diagnosis [30], harmonic power grid analysis [189], and

voltage stability assessment [240].
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1.3. Probabilistic Deep Learning

In contrast to discriminative deep learning where an explicit function maps x to y where

(x, y) ∈ Dtr, the objective of probabilistic deep neural architectures is to capture the PDF P (x)

for all samples in the dataset Dtr. Then, an explicit function is learned to map P (x) to P (y|x),

hence learning the true output y for all samples (x, y) ∈ Dtr.

1.3.1. Deep Belief Network

The DBN is a deep MLP with input h0 and L computational layers hi (i = 1, 2, ..., L). Each

layer hi is a Restricted Boltzmann Machine (RBM) RBM i, a generative graphical model that

encodes the PDF of its input layer hi−1 into its latent feature vector hi. At each RBM i i =

1, 2, ..., L, the conditional PDF of the j-th neurons in the visible layer hi−1 and hidden layer hi is

computed by:

P (hij = 1|hi−1) = σ(
∑
k

W i
kj.h

i−1
k + bij)

P (hi−1
j = 1|hi) = σ(

∑
k

W i
jk.h

i
k + bi−1

j )

(1.3)

To train W i, the Contrastive Divergence method [115] is employed that adds the gradient of

P (hi−1) with respect to W i to increase the likelihood of observing the visible vector hi−1 given

the latent vector hi. Similar approach is used to train bi and bi−1 in an unsupervised fashion. When

the unsupervised training is done for all layers, a dense layer o = hL+1 is added on top of the last

layer hL and the whole neural network is trained by the supervised GD simialr to the SAE.

Table 1.2 shows the large variety of DBN’s applications in power systems area. As shown

in this table, the DBN leads to accurate wind and PV power prediction results due to capturing

uncertainties in the energy time series [115]. Moreover, DBN shows a promising performance

in transient stability classification with 94.69% accuracy in the Central China Regional Power

Grid [261]. Furthermore, in [90], this method is recently applied to the state estimation of the US

PGE69 Distribution Network that led to a remarkably small MAPE of 0.091% which shows the

large hypothesis space and low bias of this probabilistic model.
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1.3.2. Generative Adverserial Network

Assuming a training set Dtr, GAN is an unsupervised deep ANN that learns P (x) s.t. x ∈ Dtr

using a generator ANN G(z) that observes some input noise z ∼ P (z) and outputs a sample x′

drawn from the generators PDF Pg. The produced sample x′ as well as the training samples x ∈ Dtr

are given to a discriminator ANN D, a binary classifier which decides if the generated sample x′

comes from the true PDF P (x) or the PDF of generated samples Pg. Training the generator and

discriminator simultaneously, we improve the generator to create realistic samples by decreasing

the distance between the real PDF P (x) and the generated PDF Pg. To train the discriminator D,

the following unsupervised objective is applied:

max
D

Ex∼P (x)[log D(x)] + Ex′∼Pg [log(1−D(x′))] (1.4)

Here, D(x) is trained to differentiate between the samples generated from G(z) and the true sam-

ples x ∼ P (x). Using (1.4), to simultaneously optimize ANNsG(z) andD, the following min-max

objective is optimized using the GD method:

minG maxD JD,G = Ex∼P (x)[log D(x)]

+ Ez∼P (z)[log(1−D(G(z)))]

(1.5)

To test the model on a testing set Dts, the Kullback-Leibler (KL) divergence is used as a distance

metric between the estimate PDF and the true PDF of samples x ∈ Dts.

As shown in Table 1.2, GAN leads to a promising performance in a diverse set of complex

classification problems including fault detection [65] and cyber attack classification [6], as well as

regression problems such as scenario generation for the wind and solar power [37]. Compared to

the classic DBN, GAN has a larger hypothesis space which leads to higher generalization capac-

ity. Hence, as Table 1.2 shows, GAN outperforms DBN in both fault detetcion and cyber attack

classification. Moreover, since GAN explicitly models the joint PDF of the data, it can be directly

applied to realistic data synthesis problems such as power grid synthesis [119, 146] while DBN
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does not have such a capability.

1.3.3. Variational Autoencoder

Similar to GANs, the objective of VAE is to learn the PDF P (x) s.t. x ∈ Dtr in an unsupervised

fashion. The VAE consists of an encoder ANN qθ(z|x) parametrized by θ and a decoder ANN

pφ(x|z) with parameters (weights and biases) φ. The encoder maps x into the latent representation

z which has a Gaussian distribution estimated by qθ(z|x). Then, to find the optimal z that is

powerful enough to best reconstruct x, the decoder maps z into the actual input x. Hence, training

the VAE consists of maximizing the likelihood of x as well as minimizing the KL divergence KL

of the distribution of z (i.e. qθ(z|x)) and its actual distribution N(0, I) where I is the identity

matrix. Therefore, the loss function of the VAE is computed by:

JV AE =
∑

x∈Dtr

KL[qθ(z|x)||N(0, I)]−

Eqθ(z|x)[log pφ(x|z)]

 (1.6)

Training the VAE using GD, the decoder pφ(x|z) provides an accurate estimation of the data PDF

P (x) when marginalized over all valid z.

As shown in Table 1.2, the VAE is applied to learn the conditional PDF of future wind speed/power

given its previous measurements for short-term wind prediction [221]. Moreover, similar technique

is applied in [117] and [235] to hourly and 6-hour ahead prediction of PV power with 2.07kW and

6.53kW better RMSE compared to the DBN, respectively. In addition to regression, VAE outper-

forms DBN in complex classification tasks with 3.45% accuracy improvement in transient stability

assessment [261] and 5.74% better fault detection accuracy [146].) Moreover, VAE is utilized to

learn the PDF of the physical and topological characteristics of power networks for power network

synthesis. As shown in Table 1.2, VAE generates realistic power networks that accurately imitate

not only the topological properties (e.g., diameter and density) but also the power flow statis-

tics (maximum, minimum, and median flow) of the large-scale transmission network in CUSPG
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dataset [197].

1.4. Deep Reinforcement Learning

Besides classification and regression, deep ANNs are employed in Reinforcement Learning

settings where the problem is modeled as a Markov Decision Process (MDP) (S,A, Pa, Ra) with

the state set S, action domain A, and state transition probability Pa(s, s′) = P (st+1 = s′|st =

s, at = a) to model the likelihood of going from state st at time t to state st+1 at time t + 1.

This transition leads to observing the immediate reward Ra(st = s, st+1 = s′) from the problem’s

environment. The goal is find the optimal policy π∗(st) that determines action at to maximize

the expected discounted reward sum Ravg = E
[∑∞

t=o γ
tRa(st, st+1)

]
. The discounting factor

0 ≤ γ ≤ 1 decides the contribution of the historical rewards to Ravg. The optimal policy π∗(s) for

a state s ∈ S is computed by:

π∗(s) =a Q(s, a) (1.7)

where Q(s, a) is the optimal state-action value function that estimates the reward of taking action

a in state s.

1.4.1. Deep Q-network (DQN)

DQN [58] directly learns Q(s, a) and employs (1.7) to find the optimal policy. To provide

high generalization power and low estimation bias, the DQN implements Q(s, a) by a deep neural

network QANN that observes an input 〈s, a〉 and outputs Q(s, a). To train QANN , the Temporal

Difference (TD) error δ is defined as the difference between the current Q(s, a) and the value

function after the transition to s′ computed by:

δ = Q(s, a)− (Ra(st = s, st+1 = s′) + γmax
a
Q(s′, a)) (1.8)

To train the DQN (i.e., minimize δ), the Huber loss is computed by J(δ) = 1
2
δ2 if |δ|≤ 1 and

J(δ) = |δ|−1
2

otherwise. Applying GD, one can minimize J(δ) with respect to the weights and

biases of QANN .
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Table 1.3 shows the applications of DLR in the power engineering domain. As shown in this

table, DQN is recently applied for optimal voltage control of a 200-bus system [58]. Moreover,

this model shows a promising load shedding result of 26MW for optimal emergency control of

the IEEE 39-bus system [88]. Furthermore, DQN is employed for power grid cost efficiency

with transportation energy optimization, and showed 14.1% improvement compared to the classic

binary control method [180]. The high generalization power of this method has encouraged the

researcher to apply DQN for various real-world applications ranging from electricity marketing

[244] and demand-response learning [89] to smart grid scheduling [181] and cyber attck detection

[227].

1.4.2. Double DQN (DDQN)

To reduce the overestimation effect of the state-action value Q(s, a) in (1.8), the DDQN uses a

target deep ANN parameterized by θ′ to compute the update value maxaQ(s′, a) while the state-

action Q(s, a) is computed by a deep ANN with the original DQN parameters θ. As shown in

Table 1.3, this method improves the classic DQN with 2.2% improvement in cost efficiency for

transportation energy optimization [180] and £43 ∗ 103 improvement in electricity market bidding

profit [244].

1.4.3. Deep Deterministic Policy Gradient (DDPG)

DDPG is an actor-critic DRL algorithm. The actor µ(s) models the policy as a deep ANN that

observes a states s and generates the corresponding continuous action a. The critic Q is a deep

ANN that estimates Q(s, a) for the state-action input < s, a >. To compute the state’s value, the

actor’s output is given to the critic to calculate Q(s, a). Similar to DQN, The critic’s TD-error

function JQ is computed using the Bellman equation:

JQ =
(
Q(s, µ(s))− (Ra(s, s

′) + γQ′(s′, µ′(s′)))
)2

(1.9)
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where Q′ and µ′ are the target critic and actor deep ANNs, respectively. The target ANNs Q′ and

µ′ are time delayed copies of Q and µ that slowly track the learned state-action values. The actor’s

loss function Jµ is computed by Q(s, µ(s)) which is maximized to increase the DDPG’s return

while JQ is minimized. To learn Q and µ using GD, the gradients of JQ and Jµ with respect to

their weights and biases are computed, respectively. Moreover, the target networks Q′ and µ′ are

updated by respectively adding a small fraction of their corresponding parameters in the original

networks Q and µ at each DRL episode. Table 1.3 shows the significant experimental advantage

of DDPG compared to DQN-based methods. While DQN cannot handle high-dimensional action

spaces, the DDPG learns policies in these conditions. Thus, DDPG is shown to generally provide

better accuracy in both regression problems such as autonoumous voltage control [58], emergency

control [88], strategic bidding [244] as well as classification tasks including cyber attack detection

[227] and data integrity protection [9].

1.5. Conclusion

With the growing time and memory complexity of power system applications, the need for

advanced statistical pattern recognition tools has lead to the use of deep learning methodologies.

This novel class of methods can be mainly categorized into discriminative, generative, and rein-

forcement learning approaches. This review studies the deep discriminative models that provide

an explicit method to map their complex input directly to the problem’s solution. Due to their high

generalization capacity, these models are widely applied to stability assessment, fault detection, as

well as renewable generation prediction. Then, deep generative approaches are reviewed that pro-

vide a probabilistic approximation of data PDFs; hence, learning complex probabilistic structures

for a wide range of power engineering applications including state estimation, renewable scenario

generation, and power grid synthesis. Finally, deep reinforcement learning algorithms are dis-

cussed that seek to optimize an objective using the observed rewards captured from the problem’s

environment. The theoretical and experimental analysis of the employed method motivates future

research in the area of deep learning to further extend the applications of this powerful class of

models in new perspectives of power engineering.
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Table 1.1. Discriminative Deep Learning in Power Systems Applications.

Applications Dataset Model Performance Metric Result
Reliability Management

Response [59]
IEEE-RTS96

ReLU
Coefficient of determination (R2 Score)

0.964

SAE 0.951

Stability Assessment

[27], [204], [189], [192], [240]
IEEE 39-bus

ReLU
Classification Accuracy

94.1%

SAE 92.6%

CNN 97.8%

Fault Detection

[27], [238], [251], [30]
IEEE 39-bus

ReLU
Detection Accuracy,

Location Accuracy Rate

93.20%,

91.12%

SAE
94.18%,

91.71%

CNN
96.09%,

94.31%

PMU Event Classification

[121]
16-machine 68-bus Test System

ReLU

Classification Accuracy

94.11%

SAE 95.07%

LSTM 96.34%

CNN 98.17%

Hourly Wind Power Prediction

[111], [32], [239], [264], [202], [34]
Western Wind Dataset

ReLU

RMSE, MAPE

1,38%,

1.74%

SAE
1.24%,

1.68%

LSTM
1.13%,

1.53%

CNN
1.07%,

1.26%

Hourly PV Power Prediction

[112], [67], [264], [52], [160]
National Solar Radiation Database

ReLU

RMSE, MAPE

1.29%,

1.54%

SAE
1.09%,

1.37%

LSTM
0.97%,

1.10%

CNN
0.85%,

0.92%

Load Modeling [46] 16-machine 68-bus Test System
ReLU

RMSE, MAPE
0.0435,

0.0120

LSTM
0.008,

0.0071

Hourly Load Forecasting [205] Industrial Power Demand Dataset
ReLU

Normalized RMSE
0.069

SAE 0.051

LSTM 0.032

Power Fluctuation Identification

[230]
Market Trading Reports

ReLU
MAE, MAPE

0.042,

107.91%

LSTM
0.038,

105.72%

Energy Disaggregation [74], [118]
Reference Energy Disaggregation

Dataset

SAE
Precision, Recall, F-score

84.63%,

61.04%,

70.62%

LSTM

89.83%,

65.72%,

75.93%
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Table 1.2. Probabilistic Deep Learning in Power Systems Applications.

Applications Dataset Model Performance Metric Result

Wind Speed Prediction [221]
Shangchuan Island

Wind Farm

DBN
RMSE, MAPE

0.5494,

6.39%

VAE
0.4832,

4.81%

PV Power Prediction [112], [235]
North China Baoding

Dataset

DBN
RMSE, MAPE

17.55 kW,

3.76%

VAE
15.48 kW,

3.63%

Transient Stability

Assessment [261]

Central China Regional

Power Grid

DBN Classification

Accuracy

94.69%

VAE 98.14%

Hourly Load Forecasting

[75], [170]

Texas Urbanized Area

Dataset

DBN
RMSE, MAPE

0.4851, 5.81%

VAE 0.4032, 5.02%

State Estimation [90]
US PG&E69 Distribution

Network

DBN MAPE, Maximum

Absolute Error

0.091, 0.073

VAE 0.084, 0.069

Fault Detection [146], [175], [262], [225], [65]
Northern China Wind

Farm (SCADA)

DBN
Classification Accuracy

79.11%

VAE 84.85%

GAN 87.32%

Cyber Attack Detection [6] 5-bus Smart Grid
GAN

Classification Accuracy
95.34%

VAE 92.18%

Renewable Scenario

Generation [37]

Wind & Solar Integration

Dataset

GAN Kullback–Leibler

Divergence

0.61

VAE 0.52

Power Grid Synthesis [119]
Columbia University

Synthetic Power Grid (CUSPG)

GAN Topological Distance,

Power Flow Distance

0.678, 3.41 MW

VAE 0.0512, 3.06 MW

Table 1.3. Deep Reinforcement Learning Applications in Power Systems.

Applications Dataset Model Performance Metric Result
Voltage Control

[58]

Realistic 200-bus

System (SCADA)

DQN
Average Control Reward

161.54

DDPG 124.83

Emergency Control

[88]
IEEE 39-bus

DQN
Load Shedding

26 MW

DDPG 23 MW

Transportation Energy

Optimization [180]

California Freeway

Performance Measurement System (PeMS)

DQN Cost Efficiency

(compared to binary control)

14.1%

DDQN 16.3%

Electricity Market [244], [236] Synthetic Market Dataset
DQN

Profit(£)
5.2 * 10ˆ5

DDQN 5.63 * 10ˆ5

DDPG 5.86 * 10ˆ5

Demand-Response

Strategy Learning [89]- [242]

Steel Powder

Manufacturing

Dataset

DQN
Operation Cost($)

161.93

TD-based

Actor-Critic

DRL

134.85

Power Scheduling [181]
Shaanix Wind Farm

Dataset

DQN
Average Income($)

$ 4268.17

Improved DQN $ 4730.21

Cyber Attack

Detection [227], [9]
IEEE 9-bus System

DQN Transient

Energy

0.120 p.u.

DDPG 0.056 p.u.
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Chapter 2

Interval Deep Generative Neural Network for Wind Speed Forecasting

In recent years, wind speed forecasting is considered as a challenging task required for the

prediction of wind energy resources. As a highly varying data, wind speed time series requires

highly nonlinear temporal features for the prediction tasks. However, most forecasting approaches

apply shallow supervised features extracted using architectures with few nonlinear hidden layers.

Moreover, the exact features captured in such methodologies cannot decrease the wind data un-

certainties. In this chapter, an interval probability distribution learning (IPDL) model is proposed

based on Restricted Boltzmann Machines and Rough Set Theory to capture unsupervised temporal

features from the wind speed data. The proposed model contains a set of interval latent variables

tuned to capture the probability distribution of wind speed time series data using contrastive diver-

gence with Gibbs sampling. A real-valued interval deep belief network (IDBN) is further designed

employing a stack of IPDLs with a fuzzy type II inference system (FT2IS) for the supervised re-

gression of future wind speed values. In order to automatically learn meaningful unsupervised

features from the underlying wind speed data, real-valued input units are designed inside IDBN

to better approximate the wind speed probability distribution function compared to classic DBNs.

The high generalization capability of our unsupervised feature learning model incorporated with

the robustness of IPDLs and FT2IS leads to accurate predictions. Simulation results on the Western

Wind Dataset reveal significant performance improvement in 1-hr up to 24-hr ahead predictions

compared to single-model approaches including both shallow and deep architectures, as well as

recently proposed hybrid methodologies.

2.1. Introduction

In recent years, wind power has received a noticeable attention as a clean source of energy

due to the environmental concerns. In the last decade, the global wind markets have grown by an
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average of 28 percent per year in terms of total installed capacity [179]. In many power systems,

the stability and reliability of power generation and the reduction in emission of greenhouse gas

are crucial issues to consider. The prediction of wind power which is generally considered as a

highly varying time series, plays a key role in addressing such challenges. Since the wind power

generated by a wind turbine is highly dependent on the atmosphere meteorology and wind speed,

improving the accuracy of wind speed forecasting methods leads to the improvement of wind

energy predictions [31]. Therefore, a large variety of time series forecasting methodologies is

introduced in the recent literature in order to predict wind speed time series. The wind data has a

stochastic and chaotic quality, thus, it is a very complex task to forecast the velocity of wind using

linear approaches [57]. In addition, the length of the forecasting horizon has a negative correlation

with the accuracy of forecasting methods. Ultra-short-term wind forecasting refers to wind data

prediction in the range of a few minutes to one hour ahead [168]. This task is mainly applied for

electricity market clearing, real-time grid operations, and regulation actions. Short-term forecasts

are mainly for a period starting from one hour to several hours ahead. This type of prediction is

generally for unit commitment and operational security in the electricity market. Medium-term

and long-term forecasting refers to longer time horizons [24].

In the technical literature, wind forecasting methodologies are mainly classified into four cat-

egories: 1) Persistence model has a naı̈ve smoothness assumption on the target function. In this

approach, the future wind speed is considered to be equal to the wind speed in the forecasting

time [260]. This method is the simplest and the most economical wind forecasting approach and

is therefore widely employed by electrical utilities. The performance of Persistence model de-

grades rapidly when the forecasting time horizon is extended; hence, this model is only reliable

for ultra-short-term purposes. 2) Physical methods are based on numerical weather prediction

(NWP) using temperature, pressure, and obstacles as the weather parameters [135]. NWP outputs

accurate estimations for long-term predictions mainly utilized for large-scale areas. The major

drawback of numerical weather prediction models is the high time and memory complexity to

produce results. This leads to serious issues when the model encounters unexpected errors during

prediction. Hence, this methodology is not reliable for short forecasting horizons. 3) Statistical
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methods find the mathematical relationship between the online data of wind speed time series.

Statistical models include auto regressive (AR), auto regressive moving average (ARMA), auto

regressive integrated moving average (ARIMA), Bayesian approach, and gray predictions. [231]

presents a hybrid AR approach using a K-nearest neighbor (KNN) regression model for short-term

wind speed forecasting. Historical data samples are used to learn the coefficients of a KNN re-

gression approach to capture variation patterns of the wind speed time series. Finding K nearest

neighbors significantly increase the computational burden of the prediction method; hence, this

approach has high computational complexity. Moreover, this method can suffer from the curse of

dimensionality problem as the number of parameters grow exponentially with the growth in input

size. The authors of [62] applied multiple variations of ARMA to forecast both wind speed and

wind direction tuples. Although this model is applied for hourly wind data prediction, it cannot

give accurate estimations for longer time horizons due to the linear assumptions in wind data pat-

terns. In [97], the authors introduce a Bayesian forecasting approach based on structural break

modeling that can incorporate domain knowledge about wind data. The model is applied for ultra-

short-term wind prediction of utility-scale wind turbines. The linear charactristics of the presented

structural break method restricts the ability of this model to address more challenging prediction

problems with longer forecasting time horizons. 4) Artificial intelligence (AI) techniques including

artificial neural networks (ANNs) [8,28,64,107,134,145,177,191,254], support vector regression

(SVR) [83], and fuzzy methods [63, 150] led to novel methodologies for wind prediction. ANNs

are widely applied learning mathematical models that can capture the relationships between the

input data and the forecasted wind speed values. In the relevant literature, ANNs are utilized for

time series prediction of different weather variables in various time scales and yield satisfactory

results when compared to traditional algorithms [177]. Feed-forward ANN [64,134,191] recurrent

ANN [28], radial basis function (RBF) ANN [107, 254], ridgelet ANN [8] and adaptive wavelet

ANN [145] are recently proposed for wind speed and wind power forecasting. ANN-based ap-

proaches have been widely applied in the time series forecasting domain due to their capability

to represent complex non-linear relationships between the input and output variables. Moreover,

SVR [83] is introduced in the domain of short-term wind prediction as a kernel-based methodology
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that utilizes input features obtained from the generalized principal component analysis (GPCA).

SVR implicitly learns features in a high dimensional space applying the kernel trick. The presented

model in [83] extracts error-prone hand-engineered features captured by the GPCA for short-term

forecasts. In recent years, fuzzy methods are also introduced in the domain of AI for wind predic-

tion. The authors of [63] presented a two-stage adaptive neuro-fuzzy inference system that maps

weather data collected from NWP to wind power values for short-term wind prediction. Obtaining

NWP measurements is computationally complex; hence, this methodology cannot be applied for

short-term purposes. In [150], a fuzzy version of support vector machines (SVMs) is developed

for short-term wind speed forecasting. The proposed fuzzy manifold learning approach addresses

the noise sensitivity issues in SVM; however, the accuracy improvement is not noticeable as the

applied maximum margin SVM is more suitable for classification problems rather than regression

tasks.

The AI methodologies introduced in recent literature can be viewed in two categories, shallow

architectures and deep learning models; 1) Shallow models including feed-forward [64, 134, 191]

and recurrent ANNs [28] and their different variations such as RBF [107, 254], adaptive wavelet

ANN [145], and nonlinear autoregressive networks [12] are designed using single hidden layer

to capture temporal features. In contrast to deep methodologies, such models are not capable of

automatically learning unsupervised features from the data. Therefore, they require error-prone

feature selection for the prediction model. 2) Deep learning architectures are able to train several

layers of hidden computational units with high generalization capability. In very recent literature,

[111] applied deep stacked auto-encoders (SAEs) for short-term wind forecasting. Denoising auto-

encoders are employed for the dimensionality reduction of wind speed time series. [248] applies

a Bernoulli deep belief network (DBN) for the problem of short-term wind prediction. The deep

architectures outperform conventional learning models including AR-based methods, ANNs, and

SVR due to the following reasons: a) Problem complexity – When the target function is smooth

enough, it can be estimated by applying shallow features with a low level of abstraction. However,

in the case of wind prediction, the intermittent wind data is highly varying; thus, the smoothness

assumption in the shallow models will lead to poor forecasting accuracy. b) Sample complexity
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– In some regression problems, the size of the training dataset is small; thus, training shallow

networks is preferred because using more complex deep networks with large parameter spaces will

lead to the overfitting issues. However, in the case of wind prediction problems, the overfitting

problem can be effectively avoided using ample wind data available for training. c) Error-prone

feature selection – Most methodologies including ANN-based approaches [8,28,64,107,134,145,

177, 191, 254], kernel-based models [83], and fuzzy methodologies [63, 150] need tediously hand

engineered features. These models require sufficient prior knowledge about the specific domain

in order to select reliable features from the wind data. However, DBN and SAE can leverage

the unsupervised data to initialize model parameters; hence, they can be viewed as regularization

techniques.

The prediction made by various regression methodologies have an irreducible uncertainty [83]

that should be handled to increase accuracy for the applications of scheduling, maintenance, and

resource planning in the wind energy generation [31]. However, deep networks introduced in the

recent literature assume that the input data is clean. Moreover, these methods cannot model real-

valued data as they assume Bernoulli distributions for the input variables. In this chapter, a novel

interval probability distribution learning (IPDL) model is proposed for learning nonlinear temporal

features from the time series data in order to address these issues. Our IPDL model is proposed

as a graphical generative learning approach based on the Restricted Boltzmann Machines [77] and

the Rough Set Theory [143, 173] to capture interval unsupervised features from the underlying

input time series. IPDL consists of two subsets of visible (observable) and hidden nodes in a fully

connected structure. Each visible unit is connected to the set of all hidden units and vice versa. The

visible units contain input variables, that is, the exact noisy speed values collected from the wind

data. The hidden units contain interval upper- and lower-bound values to extract inexact (rough)

patterns from the input vector. An interval based energy function is defined on each configuration

of binary values for all visible and hidden nodes. A probability distribution function is learned

by decreasing the energy function while increasing the probability of observed input vectors in

the wind speed time series dataset. It is shown that the conditional probability of visible and hid-

den layers can be easily decomposed to simple factors calculated with low computational burden.
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Moreover, an unsupervised learning algorithm is presented based on contrastive divergence with

Gibbs sampling to efficiently learn the IPDL parameters. In order to tune the parameters, IPDL’s

energy function is decreased using the gradient of an unsupervised loss function. Furthermore, an

interval deep belief network (IDBN) with real-valued input vectors is proposed using a stack of

IPDLs that capture probability distribution of wind data. A hybrid wind speed forecasting frame-

work, DeepHybrid, is designed using IDBN wind features and a fuzzy type II inference system

(FT2IS) for the supervised regression of future wind speed values. The supervised loss function is

differentiable with respect to all the IDBN model parameters; hence, the whole forecasting frame-

work can be tuned in an end-to-end fashion using gradient-based methodologies.

The contributions of the proposed architecture can be viewed in two areas: a) Machine Learn-

ing: The development of a novel interval probability distribution learning system and the incor-

poration of the Rough Set Theory with generative deep learning models to extract robust highly

nonlinear features from the input data. b) Wind forecasting: The application of an unsupervised

feature extraction model (rather than the hand-engineered or shallow features applied in previous

methodologies), as well as fuzzy type II systems, in nonlinear manifold learning from wind data

for supervised target function (future wind values) estimation.

The proposed deep learning framework has the following contributions:

1. A new probability distribution learning model, IPDL, is presented based on the Rough Set

Theory and deep learning for the robust unsupervised feature extraction of time series data.

The proposed generative model is proved to capture the joint distribution of input variables.

Moreover, the inference and learning algorithms for the devised model are presented. To the

best of our knowledge, our proposed IPDL is the first generative deep learning model that

can capture interval knowledge from the data.

2. Real-valued input units are proposed for the interval DBN that can more accurately capture

the wind speed patterns compared to previously applied DBN [248] in the literature. The

classic DBN applied in the domain of time series prediction assumes that the input variables

are sampled from a Bernoulli distribution while our novel IDBN model considers real-valued

input variables; hence, the proposed architecture can more accurately model the temporal
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data for real-world applications.

3. The proposed model can extract meaningful features from the input in an unsupervised man-

ner. Thus, unlike other AI approaches including ANNs [8, 28, 64, 107, 134, 145, 191, 254],

SVR [83], and fuzzy methodologies [63, 150] that are based on the supervised regression

methods, no prior knowledge about the wind data is needed for the feature extraction.

4. In contrast to fuzzy networks in the literature [103,140,154] which are randomly initialized,

the proposed framework finds the optimal initialization for the fuzzy system’s membership

functions using the deep learning-based unsupervised processing of the data in the generative

IPDL stack of IDBN. The proposed IPDLs act as a generalization technique on the system’s

weights and biases; therefore, as shown in the simulation results, the proposed framework

can more accurately address the uncertainties in the data. Moreover, as discussed in the

simulation results, our model outperforms the fuzzy type-1 short-term prediction methodol-

ogy [111] due to capturing input signal distributions as well as interval Type-2 rules.

The chapter is organized as follows: In section 2.2, the concept of wind speed data analysis

is discussed. Section 2.3 describes the novel interval probability distribution learning model de-

vised for unsupervised feature learning for deep neural architectures. The inference and learning

algorithm of the proposed model is explained in this section. In section 2.4 the proposed time

series forecasting approach, DeepHybrid, based on Deep Learning, Rough set theory and Fuzzy

systems is introduced. Simulation results and comparison of the proposed approach with recent AI

methodologies, including shallow ANNs and deep ANNs, are described in section 2.5. Finally, the

conclusions and future works are provided in Section 2.6.

2.2. Wind Speed Data Analysis

Wind speed is a non-linear time series with many fluctuations; therefore, approaches based

on the smoothness assumption such as Persistence method would not have an appropriate per-

formance in order to be applied for the prediction tasks of long horizons. The proposed nonlin-

ear method is a data-driven approach that captures statistical patterns from the input wind speed

data. Identifying the optimal structure of data-driven models is a vital issue considered by in-
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Figure 2.1. Structure of the interval probability distribution learning model with input x

put variable selection methods. In the recent literature, there are several papers such as [145]

that have applied an autocorrelation function (ACF) to obtain the cross-correlation of wind speed

time series at various time samples. Since only the linear dependence of a variable with itself

can be computed by ACF and the wind speed data has a highly non-linear nature, Mutual Infor-

mation (MI) is utilized as an effective approach to computing the non-linear correlations in the

data as well as the linear correlations. Assuming two random variablesXandY , the entropy of

Xdenoted byH(X)computes its uncertainty andH(X, Y )is the joint entropy of XandY .The Con-

ditional entropy computed by H(Y |X) = H(X, Y ) − H(X) shows the uncertainty of Y given

that the variable X is observed. MI between two random variables is a non-linear function to

measure the amount of information possessed about a variable when the other variable is ob-

served. MI is calculated byI(X, Y ) = H(Y ) − H(Y |X) and is the reduction in the uncertainty

of variableY given the observation of variableX . Consideringv(t)as the wind speed value at timet,

the MI betweenv(t− l+ 1)andv(t+ 1)is calculated consideringl >= 1as the time-lag. In order to

select input variables for the prediction method, the wind speed data corresponding to the time-lags

with MI greater than the thresholdτ > 0 are selected as the input set for our algorithm to highlight

the correlation in the wind speed time series.
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2.3. Interval Probability Distribution Learning

In this section, first, the Rough Set Theory is explained. Then, the proposed interval probability

distribution learning model is introduced based on deep learning and the Rough Set Theory. The

proposed generative model is proven to capture probability distribution of its input data. Moreover,

an inference approach and a learning algorithm is proposed to tune the interval upper- and lower-

bound parameters of the presented model.

2.3.1. Rough Feature Extraction

The Rough set theory is a mathematical method introduced by Pawlak [143, 173] to deal with

uncertain knowledge. An Information SystemSis defined by a 4-tuple 〈U,A, V, f〉. Here, the

universe of primitive objects U is a finite non-empty set, andAis a finite non-empty set containing

the attributes. Each attributea ∈ Ais associated with a domain set VaandV =
⋃
a∈A Va.Sdefines

a total information functionf : U × A → V , and for every a ∈ Aandx ∈ U ,f(x, a) ∈ Va.

Suppose thatM ⊆ A, then two objectsx, y ∈ U are indiscernible from each other in S by the set

M , if and only if for everya ∈ M ,f(x, a) = f(y, a).M ⊆ Ahas a binary indiscernibility relation

IND(M)onUwhich is called. The rough set theory defines two approximations for any concept

setX ⊆ Uand attribute setM ⊆ A. Using the knowledge ofM ,Xcan be approximated by the

M-lower approximationMXand M-upper approximationMX:

MX = ∪{O ∈ U |M : O ⊆ X} (2.1)

MX = ∪{O ∈ U |M : O ∩X 6= ∅} (2.2)

and the M-boundary region of setXis defined by

BNDM(X) = MX − MX (2.3)

Here,MXis the set of all objects inUwhich can be certainly classified as members ofXwith respect

to the set of attributes M .MXis the set of objects inUwhich can possibly be classified as members
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ofXwith respect to the set of attributes M . The boundary region is the set of objects that can-

not certainly be classified toXonly by employing the set of attributesM .BNDM(X)describes the

vagueness ofX . IfBNDM(X) = ∅thenXis crisp (exact) with respect toM and ifBNDM(X) 6= ∅

thenXis called a rough (inexact) set.

2.3.2. Interval distribution learning model

A probabilistic generative model is introduced to learn the probability distribution of an input

vector x ∈ RD using a visible layer with observable units and a latent representation layer (hidden

layer). The hidden layer h ∈ RH reduces the dimensionality of the input data by capturing the

most important characteristics of x inside h. Motivated by the Rough Set Theory, here, the latent

units h are approximated by upper- and lower-bound estimations denoted by h and h, respectively.

Each feature h is a linear combination of h and h; hence the activation of the j-th unit at the latent

representation layer can be computed by hj = αjhj + βjhj with αj and βj coefficients for each

hidden unit j. As shown in Fig. 2.1, the proposed IPLD is an energy-based generative model with

the following energy function:

E
(
x, h, h;α, β

)
= −

(
αh

T
Wx+ βhTWx

)
− cTx− (αb

T
h+ βbTh) (2.4)

where W
H×D

and WH×D are the upper- and lower-bound weights, respectively. cD×1 is the bias

vector for the input vector, b
H×1

is the upper-bound bias approximation for h while bH×1 is its

lower-bound estimation. The coefficients αH×1 and βH×1 decide the contribution of upper- and

lower-bound hidden vectors on the total output h of this system. The energy function can be

written as:

E
(
x, h, h;α, β

)
=−

(∑
j

∑
k

αjW j,khjxk +
∑
j

∑
k

βjW j,khjxk

)

−
∑
k

ckxk −

(∑
j

αjbjhj +
∑
j

βjbjhj

) (2.5)
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where 1 ≤ j ≤ H and 1 ≤ k ≤ D are the indices of hidden units and visible units, respectively.

A joint probability distribution function is defined on the configuration of random variables x, h,

and h:

P
(
x, h, h;α, β

)
= exp

(
−E

(
x, h, h;α, β

))
/Z (2.6)

Here, Z is a partition function that normalizes the probability for all configurations of (x, h, h) to

sum to 1. When the energy of a specific configuration is large, the probability of that configuration

occurring in the system is small, while the probability associated with a low energy in (3.6) is large.

When the energy of a configuration (x, h, h) is decreased, its likelihood in the model is increased.

Therefore, the distribution of the input x is captured if the model learns to decrease the energy

of observing x for the samples in the dataset by learning the values of h and h. Our IPDL can

be viewed as a Markov Network in which the joint probability distribution function of visible and

hidden units can be factorized as computed by:

P
(
x, h, h;α, β

)
∝ exp

(
αh

T
Wx+ βhTWx+ cTx+ αb

T
h+ βbTh

)
= exp

(
αh

T
Wx

)
exp

(
βhTWx

)
exp

(
cTx
)

exp(αb
T
h) exp

(
βbTh

) (2.7)

As shown in (3.7), the joint probability density associated with the IPDL model is factorized into

upper-bound factors i.e. exp
(
αh

T
Wx

)
and exp(αb

T
h), lower-bound factors i.e. exp

(
βhTWx

)
and exp(βbTh), and the input configuration factor exp

(
cTx
)

. The upper- and lower-bound factors

indicate how much the latent variables h and h are aligned with their corresponding bias variables

b and b, while the input configuration factor shows whether the input variables are aligned with

the corresponding bias c or not. If large values are assigned to both xk and ck, the probability

of configurations corresponding to that assignment grows, while the energy function is decreased.

However, if xk and ck have opposite values (xk has high/low values while ck contains low/high

values), the energy E
(
x, h, h;α, β

)
is increased leading to the decrease in the probability of the

associated configurations P
(
x, h, h;α, β

)
.
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2.3.3. Inference in IPDL

In order to do inference in the proposed probabilistic network, the probability of latent vector

h given input x is computed:

P (h | x) =
∏
j

P (hj | x) =
∏
j

P (αjhj+βjhj)

=

exp
(
αh

T
Wx+αb

T
h+βhTWx+βbT h+cT x

)
Z∑

ĥ∈{0,1}H
exp

(
αĥ

T
Wx+αb

T
ĥ+βĥ

T
Wx+βbT ĥ+cT x

)
Z

=

∏
j exp

(∑
j αjW j.hjx+ αjbjhj

)
exp

(∑
j βjW j.hjx+ βjbjhj

)
∑

ĥ1∈{0,1} . . .
∑

ĥH∈{0,1} exp
(∑

j αjW j.ĥjx+ αjbjĥj

)
exp

(∑
j βjW j.ĥjx+ βjbjĥj

)
(2.8)

Here, since the nodes inside the latent representation layer are mutually independent, the denom-

inator in (3.8) can be written as a multiplication of individual expressions each corresponding to

one specific hidden unit:

∏
j

∑
ĥj∈{0,1}

exp

(∑
j

αjW j.ĥjx+ αjbjĥj

)
exp

(∑
j

βjW j.hjx+ βjbjĥj

)
(2.9)

Therefore, the conditional probability of (3.8) can be computed as:

P (h | x) =
∏
j

(
exp

(
αjW j.hjx+ αjbjhj

)
1 + exp

(
αjW j.hjx+ αjbjhj

) )∏
j

(
exp

(
αjW j.hjx+ αjbjhj

)
1 + exp

(
αjW j.hjx+ αjbjhj

) )
(2.10)

The conditional probability in (3.10) can be further written as the multiplication of conditional

probability of the upper-bound hidden units hj and lower-bound hidden units hj; hence, the con-

ditional probability of latent representation given the input vector in (3.10) is expressed as:

P (h | x) =
∏
j

P
(
hj|x;αj

)
P (hj|x; βj) (2.11)
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where the conditional probability of upper-bound hidden representation given the input x and the

upper-bound coefficient αj is computed using:

P
(
hj|x;αj

)
=

exp
(∑

j αjW j.ĥjx+ αjbjĥj

)
1 + exp

(∑
j αjW j.ĥjx+ αjbjĥj

) = sigm
(
αjW j.x+ αjbj

)
(2.12)

Here, sigm denotes the nonlinear sigmoid function. Similar to (3.12), the lower-bound conditional

probability is written as
(
hj
∣∣ x; βj

)
= sigm

(
βjW j.x+ β

j
b
j

)
.

2.3.4. Learning Algorithm for IPDL

Assuming similar contribution for the upper-bound and lower-bound hidden units (αj = 1 −

βj = 0.5), the feed-forward computation of conditional probabilities P (hj|x) and P (hj|x) in

(3.11) and (3.12) are the following:

P
(
hj|x

)
=



sigm
(
W jx+ bj

)
if W j ≥ W j and bj ≥ bj

sigm
(
W jx+ bj

)
if W j ≥ W j and bj ≥ bj

sigm
(
W jx+ bj

)
if W j ≥ W j and bj ≥ bj

sigm
(
W jx+ bj

)
Otherwise

P
(
hj|x

)
=



sigm
(
W jx+ bj

)
if W j ≤ W j and bj ≤ bj

sigm
(
W jx+ bj

)
if W j ≤ W j and bj ≤ bj

sigm
(
W jx+ bj

)
if W j ≤ W j and bj ≤ bj

sigm
(
W jx+ bj

)
Otherwise

(2.13)

As computed in (3.13), the probability of hj being 1, is a function of upper-bound parameters W

and b if the net value W jx+ bj fed to the upper-bound hidden unit is greater than the lower-bound

net value W jx+ bj; otherwise, the lower-bound parameters W and b contribute to the computation
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of the conditional probability P
(
hj|x

)
. Similar behavior is considered in (3.13) for the probability

of lower-bound unit hj being 1. IfW and b lead to smaller net value compared toW and b , then the

upper-bound parameters are applied for the computation of P
(
hj|x

)
; otherwise the corresponding

lower-bound parameters are employed for the feed-forward algorithm to obtain h having the input

x.

In order to train the upper-bound and lower-bound parameters using T number of data samples

inside the training set Dtr =
{
x(t)

∣∣ 1 ≤ t ≤ T
}

, an unsupervised log-probability loss function is

computed:

J
(
Dtr
)

=
1

T

T∑
t=1

−log(P (x(t))) (2.14)

Here, J(Dtr) is our supervised error function defined on the data Dtr that should be optimized

tuning the parameters. In order to update any parameter θ, the stochastic gradient of J with respect

to θ is computed by:

∂ − log(P (x(t)))

∂θ
= Eh

[
∂E
(
x(t), h, h

)
∂θ

∣∣∣∣∣ x(t)

]

+Eh

[
∂E
(
x(t), h, h

)
∂θ

∣∣∣∣∣ x(t)

]

+ Ex,h,h

[
∂E
(
x(t), h, h

)
∂θ

]
(2.15)

where E is the expected value operation notation. The first two expectation terms,

Eh

[
∂E(x(t),h,h)

∂θ

∣∣∣∣∣ x(t)

]
and Eh

[
∂E(x(t),h,h)

∂θ

∣∣∣∣∣ x(t)

]
, on the right hand side of (3.15), can be effi-

ciently computed; however, the third term, Ex,h,h

[
∂E(x(t),h,h)

∂θ

]
, is computationally intractable as

the number of input variables and hidden units grow. Hence, the third expectation operation in

(3.15) is replaced by a point estimate at a single data point x̃. Fig. 2.2 shows the flowchart diagram

of the proposed algorithm of training the IPDL model with maximum number of epochs epochmax

and learning rate ?. Here, θt represents model parameters at time step t. In order to obtain x̃ for the

time step t, first h and h are sampled feeding a data point from the training set x(t) to the IPDL and
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using the conditional probabilities defined in (3.13). Then, applying (3.11), sampling of h is done

quiet efficiently to obtain a latent representation h̃ and the corresponding upper- and lower-bound

estimations, h̃ and h̃. Finally, the hidden vector sample h̃ is applied to compute the input vector

sample point x̃ using the following formulation:

P
(
x̃k

∣∣∣ h̃, h̃) = sigm(
∑
j

(h̃
T

jW j,k + h̃
T

jW j,k) + ck) (2.16)

Notice that (3.16) assumes W j,k ≥ W j,k. If W j,k < W j,k , similar formulation can be used swap-

ping W j,k and W j,k parameters. In order to tune IPDL using (3.15), the expectations operations of

(3.15) are estimated by:

Eh

[
∂E
(
x(t), h, h

)
∂θ

∣∣∣∣∣ x(t)

]
≈
∂E
(
x(t), h̃, h̃

)
∂θ

Ex,h

[
∂E
(
x(t), h, h

)
∂θ

]
≈
∂E
(
x̃, h̃, h̃

)
∂θ

(2.17)

where the upper-bound and lower-bound hidden samples are computed by:h̃ ∼ P
(
h
∣∣ x = x̃

)
h̃ ∼ P (h | x = x̃) (2.18)

The proposed algorithm decreases the energy function E at the training observation
(
x(t), h̃, h̃

)
while increasing it at the sample values

(
x̃, h̃, h̃

)
obtained from the model. Hence, at each

iteration t, the model distribution gets closer to the real distribution of the data.

Using (3.15), (3.16), and (3.17), the learning rule of the upper-bound weight parameter is computed

by:
∂E(x, h, h)

∂W j,k

=

[
∂E

∂W j,k

(
−
∑
j

∑
k

αjW j.hjxk

)](
I
(
hj ≥ hj

))

+

[
∂E

∂W j,k

(
−
∑
j

∑
k

αjW j.hjxk

)](
I
(
hj < hj

))
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=
(
−αjhjxk

)
I
(
hj ≥ hj

)
+
(
−βjhjxk

)
I
(
hj ≥ hj

)
(2.19)

Here, I is the indicator function. The lower-bound weights as well as the bias vectors can be tuned

similar to (3.19) using the gradient of the interval energy function defined in (3.5).

2.4. DeepHybrid Wind Forecasting Method

The proposed deep hybrid methodology consists of an interval deep belief network with rough

pattern recognition and fuzzy type II inference system. Fig. 2.3 shows the structure of the proposed

DeepHybrid model. First, as discussed in Section II, a feature selection algorithm based on Mutual

Information is applied to the historical wind speed time series and the time lags more correlated to

the future wind data are selected as the D-dimensional input variable vector < x1, x2, . . . , xD >.

An interval deep belief network, using IPDL generative models with real-valued input variables is

proposed in order to extract nonlinear features from the unlabeled wind speed distribution. The

IDBN contains L number of IPDLs stacked together to extract temporal features. These features

are learned by maximizing the log-likelihood of the IPDL models as an unsupervised approach

to initialize the weights and biases of a multi-layer neural network. The initialization process can

also be viewed as a regularization task, where the randomly-initialized parameters are moved to a

good initial subspace. The resulting activations received from the IDBN for each data sample are

fed to Gaussian membership functions with interval standard deviations to be utilized by a fuzzy

type II takagi sugeno kang (TSK) inference system. The TSK is employed as a regression model

to approximate the future time series values. The basic difference of the proposed TSK system

compared to the Mamdani is the use of crisp sets in the consequent part. Thus, the calculation

of the output signal is computationally simpler than Mamdani structures which require more time

complexity due to the use of membership functions that are further deffuzied.

2.4.1. DeepHybrid Structure and Algorithm

The proposed AI methodology, DeepHybrid, consists of three stages:

a) Unsupervised Probability Distribution Learning– Fig. 2.3 depict the structure of the pro-
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posed DeepHybrid model. First, an interval DBN is designed using a stack of the proposed IPDL

model and a TSK fuzzy system. In contrast to classic DBNs [248], here, real-valued input units are

considered for the initial IPDL in the stack in order to more accurately learn the probability density

of real-valued wind data. The IPDLs are trained consecutively with no supervision and using raw

unlabeled wind speed time series with no preprocessing; hence, this step does not require any prior

knowledge from the problem domain to extract features from the time series. Each IPDL is trained

using (3.17), (3.18) and (3.19).

Considering L number of IPDL models in the stack of the IDBN, the network should train L

generative models consecutively. The input to the first IPDL in the stack, IPDL1, is the observed

time series data x =< x1, x2, . . . , xD > . This model learns features h1 from the input data x. The

i-th IPDL, IPDLi, receives the features obtained from its previously trained IPDL, i.e. IPDLi−1,

denoted by hi−1, and learns the target representation hi that is fed to the following IPDL model.

b) Supervised IDBN tuning – The IDBN is fine-tuned applying linear regression after the L-th

layer with the desired prediction output as the supervised signal. The initial membership function

parameters are set by clustering the representation hL obtained from IDBN, that is, the features

obtained from the L-th IPDL model. The supervised squared error loss function is applied at this

stage.

c) FT2IS learning and DeepHybrid fine-tuning – The hybrid predictor is fine-tuned applying

stochastic gradient descent (SGD) method in an end-to-end manner. As the output of the proposed

network is differentiable with respect to the IPDL models’ upper-bound and lower-bound param-

eters, as well as the FT2IS model, the whole system can be trained efficiently in an end-to-end

manner. The proposed learning procedure in Fig. 2.2 works as a regularization technique on the

parameters and helps the IPDLs to find accurate initialization for DeepHybrid’s interval weights

and biases. In contrast to fuzzy networks in the literature [103, 140, 154] which are randomly

initialized, the proposed framework finds the optimal initialization for the fuzzy system’s mem-

bership functions applying the generative IPDL stack; hence, the proposed architecture can more

accurately address the wind data uncertainties.
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Figure 2.2. Flowchart diagram of the training algorithm of IPDL.
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Figure 2.3. Structure of DeepHybrid with L=3.

2.4.2. Deep Belief Network for Real-valued data

As Fig. 2.3 depicts, hL contains deep temporal features extracted by the IDBN. The input data

(wind speed samples) is real-valued; therefore, the binary units in classic RBMs applied in [248]

is not an effective choice due to assuming Bernoulli distribution for the time series signal. This

motivates us to propose more complex real-valued input vector with Gaussian noise in order to

model the wind speed distribution with higher estimation precision. As a result, the new energy

function is defined by:

−logP
(
x, h, h

)
∝ E

(
x, h, h;α, β

)
= −

(
H∑
j=1

D∑
k=1

xj
σj

(
αjW j,khj + βjW j,khj

))

+
D∑
k=1

(xk − ck)2

2σi2
−

(
H∑
j=1

αjbjhj +
H∑
j=1

βjbjhj

) (2.20)

where σ is the standard deviation vector of the Gaussian visible layer x =< x1, x2, . . . , xD >. The

conditional probability of the i-th visible unit, xi, having value r given vectors h and h is computed

by:

P
(
xi = r

∣∣ h, h) =
1√

2πσi
exp

−
(
r − ci − σi(

∑
j αjhjW j,i + βjW j,ihj)

)2

2σ2
i

 (2.21)

36



In order to initialize the weight and bias parameters of the IDBN, log-likelihood of the model is

maximized with σi = 1 to facilitate the training procedure applying Markov chain Monte Carlo to

calculate expectations in (3.15).

2.4.3. Fuzzy Regression Method

In this study, four interval features, hL=
[
hL1 , h

L
2 , h

L
3 , h

L
4

]
are extracted and utilized for the re-

gression of the target function, i.e. the future time series values. The dimensionality reduction

of DeepHybrid that compressed the D−dimensional input x into the 4-dimensional hL, helps the

FT2IS to avoid the curse of dimensionality which is a crucial issue for fuzzy systems. The ex-

tracted rough features are given to an FT2IS employed as a regression model to estimate future

time series values. The proposed FT2IS is considered as a TSK system with type II membership

functions in the premise part and crisp values in the consequent part. The differentiable property of

Gaussian membership functions is the motivation for choosing such functions in the dissemination

part. This characteristic helps the regression model to train the parameters of membership func-

tions using updating algorithms that work based on the gradient of the loss function, such as the

stochastic gradient descent applied in the last stage of training IDBN. Therefore, the whole model

can be trained in an end-to-end fashion. For each feature hLk there are three Gaussian membership

functions µµ̃Ãjk(h
L
k ) computed by:

µµ̃Ãjk
(
hLk
)

= e
− 1

2

(
hLk−cjk
σσ̃jk

)2

(2.22)

Here, Ãjk represents the fuzzy type II sets of the j-th membership function for the k-th feature.

Each membership function µµ̃Ãjk is associated with the k-th representation unit hLk and the j-th

rule, with an exact mean value cjk and interval standard deviation σσ̃jk. The i-th rule of this fuzzy

structure is considered as:
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IF hL1 is Ãj1andh
L
2 is Ãj2 and h

L
3 is Ãj3 and h

L
4 is Ãj4

THEN gi
(
hL
)

= αi0 + αi1h
L
1 + αi2h

L
2 + αi3h

L
3 + αi4h

L
4

(2.23)

Here, gi
(
hL
)

is a linear combination of featureshL=
[
hL1 , h

L
2 , h

L
3 , h

L
4

]
calculated in the consequent

part. The regression output of the system considering the singleton fuzzifier and Center Average

defuzzifier is computed as:

O =

∫
f1∈[f1,f

1
]

. . .

∫
fM∈[fM ,f

M
]

1∑M
i=1 f

igi∑M
i=1 f

i

(2.24)

where f i and f
i

are defined by:

f i
(
hL
)

= µ
Ãi1

(
hL1
)
∗ µ

Ãi2

(
hL2
)
∗ µ

Ãi3

(
hL3
)
∗ µ

Ãi4

(
hL4
)

f
i (
hL
)

= µÃi1
(
hL1
)
∗ µÃi2

(
hL2
)
∗ µÃi3

(
hL3
)
∗ µÃi4

(
hL4
)

(2.25)

Here, * is a product operator utilized as the T-norm function. The firing of the i-th rule can be

expressed as:

ri =
f i + f

i∑M
i=1 f

i +
∑M

i=1 f
i (2.26)

In this chapter, the Nie-Tan type reduction [138] is employed for the sake of its non-iterative

solution. Hence, the regression output is computed by:

o =

∑M
i=1 (f i+f

i
)gi −

∑M
i=1 sgn(mi)∆figi∑M

i=1 (f i+f
i
)−

∑M
i=1 sgn(mi)∆fi

(2.27)

where mi = gi −
∑M
i=1 f

i
gi∑M

i=1 f
i and ∆fi = f

i − f i.

2.4.4. Supervised End-to-end Training

After pre-training the IDBN, hL vector is obtained and the K-Means algorithm is applied as
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an unsupervised clustering method on hL activations to determine the initial mean values of the

Gaussian membership functions. The number of clusters is set to the number of membership

functions considered for hL. In this method, the supervised error function is defined as:

JSup =
1

2

T∑
t=1

(Ot − Vt)2 + EReg (2.28)

where T is the number of training samples, Ot is the DeepHybrid output and Vt is the target output

of the t-th training sample. Here, EReg is the regularization error term defined by:

EReg =
λ

2
[
L∑
l=1

Hl∑
i=1

Hl−1∑
j=1

(W
l

i,j)
2

+ (W l
i,j)

2
] (2.29)

where 0 < λ < 1 is the regularization coefficient. The Momentum technique is employed for SGD

in order to increase the learning speed especially for the free parameters of real-valued IDBN.

The gradients of JSup with respect to the free parameters in the consequent part are calculated as

follows:
∂JSup
∂αik

=
∂JSup
∂et

∂et
∂Ot

∂Ot

∂gi

∂gi
∂αik

∂gi
∂αik

=


1 k = 0

hLk k 6= 0

(2.30)

where et = Ot − Vt is the error of the t-th training sample. The gradients of the mean and the

interval standard deviation parameters of the membership functions are computed as:

∂JSup
∂cjk

=
MHL∑
i=1

∂JSup
∂et

∂et
∂Ot

[
∂Ot

∂f i
∂f i

∂µ
Ãik

∂µ
Ãik

∂cjk
+
∂Ot

∂f
i

∂f
i

∂µÃik

∂µÃik
∂cjk

]

∂JSup
∂σjk

=
MHL∑
i=1

∂JSup
∂et

∂et
∂Ot

∂Ot

∂f
i

∂f
i

∂µÃik

∂µÃik
∂σjk

∂JSup
∂σjk

=
MHL∑
i=1

∂JSup
∂et

∂et
∂Ot

∂Ot

∂f i
∂f i

∂µ
Ãik

∂µ
Ãik

∂σjk
(2.31)
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where M is the number of assigned membership functions to each FT2IS input; thus, MHL is

the total number of type II rules defined in the proposed system. The derivatives
∂µÃik
∂cjk

,
∂µÃik
∂σjk

,

and
∂µ

Ãik

∂σjk
are obtained applying the membership definition in (2.22). In order to update the rough

features (interval weights and biases of IDBN), partial derivatives of JSup with respect to the

upper- and lower-bound parameters of each rough unit are computed by similar formulation written

in (3.19). One advantage of the proposed IPDL and FT2IS models is the differentiability with

respect to the input; thus, the parameters of the whole deep network can be tuned end-to-end.

2.5. Simulation Results

2.5.1. Dataset

The wind speed time series measured for a wind site in Colorado is selected from the Western

Wind Dataset [224] created by the National Renewable Energy Laboratory (NREL) and 3TIER.

Weather Research and Forecasting (WRF) is applied in order to obtain the underlying dataset.

WRF is a mesoscale NWP system used for atmospheric research and operational prediction tasks.

The wind speed data available in the Western Wind Dataset has speed values from 2004 to 2006

with a 10-min interval between consecutive historical samples. DeepHybrid is trained using two

experimental settings: 1) Offline training: during this stage, the model is trained using the 2004

and 2005 time series data. In order to validate our model while tuning the parameters, 15% of the

2005 dataset is chosen uniformly from each season for the validation set. The training stops when

the relative change in the validation RMSE is less than 5% in three consecutive training epochs.

Only one hybrid model is trained and validated using the data of various seasons. Clustering wind

data into different seasons and tuning distinct models each corresponding to a distinct data cluster

is an extension of our proposed model that is considered as a future work. 2) Online training: In

this stage, DeepHybrid is already trained using the offline setting. During this stage, the model is

evaluated using the new test samples of 2006 dataset. While testing, the neural network is trained

at each step when a new unobserved sample is seen and the actual wind speed value is revealed.

For each year, there are 52560 wind speed values measured in 10-min intervals; therefore, suf-
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ficient data is available for training and testing the proposed approach. Fig. 2.4 depicts the highly

varying wind speed time series of 2005. Several statistical tests such as Kolmogorov-Smirnov,

Anderson-Darling, and Chi-Squared result that the wind speed data has Weibull probability distri-

bution with 7.32 m/s mean value and 2.15 shape factor.

Figure 2.4. The 2005 wind speed values of Colorado wind site.

2.5.2. Input Variable Selection

Fig. 2.5 shows the MI for lagl = 1 tol = 100. It is shown that the correlation among the wind

speed measurements decreases as the time-lag is increased. Wind speed data corresponding to the

time-lags with MI greater thanτ = 0.4 are selected as the input set to highlight the correlation

among the wind speed data. This would result in incorporating time-lags from l = 1 to l =

24. Suppose the model is at time tand the wind speed value of a future time horizon is going

to be forecasted, the input set is a 24+23=47 dimensional vector < v(t − 23),∆v(t − 22),v(t −

22),. . . ,v(t) >with wind speed sequential differences ∆v(t) = v(t)− v(t− 1).

2.5.3. Evaluation Criteria

The Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE) are em-

ployed in order to evaluate the results obtained by the proposed model. The RMSE of M test
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Figure 2.5. Mutual Information of various time-lags of 2005 dataset.

samples is calculated as:

RMSE =

√√√√ 1

M

M∑
n=1

err(n)2 (2.32)

and the MAPE is expressed as:

MAPE =
1

M

M∑
n=1

∣∣∣∣err (n)

t (n)

∣∣∣∣× 100% (2.33)

where err (n) = t (n)− o(n) is the test error for the n-th sample, t (n) is the target value and o(n)

is the output for time step n.

2.5.4. Simulation Settings

The proposed DeepHybrid model takes a 47-dimensional input vector resulted by the Mutual

Information as the feature selection algorithm. The number of activation units at each layer is

chosen from the set ϕ = {5, 10, 15, . . . , 45} with five as the gap between consecutive members.

The IDBN can contain 2 up to 5 IPDLs as the initial hidden layers of the hybrid model. The

iteration number of the underlying experiment is an important factor to avoid overfitting. Here, a

maximum number of 80 iterations is considered to train our model. Also, a stopping criterion for

the training procedure is satisfied when the validation process varies less than a threshold value

equal to 0.05 for 5 epochs. This validation procedure can help the model to avoid overfitting since

the performance of the hybrid structure is evaluated by the unseen data. The learning rate η and
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the coefficient of the momentum term γ are set to 0.5. The weight decay parameter λ for the L2

regularization is chosen from the set = {0.2, 0.3, 0.4, 0.5, 0.6} . The optimal λ corresponds to the

least validation error at the end of the training process.

In order to determine the optimal structure of the IDBN, a random search on the fix set ϕ is

done. The optimal model is selected according to the average validation error in 100 runs. Grid

search and heuristic search algorithms could obtain more accurate estimations, however, these

methods lead to high computational complexity. Fig. 2.6 shows the validation RMSE for 1-

hour, 10-hour, and 24-hour ahead wind speed forecasts with the increase in the number of IPDLs.

As shown in this figure, IDBN with two IPDLs yields the minimum error rate for 10-min ahead

prediction. This number is increased to three when the time horizon is extended to 10 hours. As the

complexity of the forecasting task is increased, the optimal number of IPDLs grows. For 24-hour

ahead forecasts, an IDBN with four IPDLs leads to the least error rate. Having more IPDLs than

the optimal choice results in the overfitting issue while considering fewer hidden layers decreases

the generalization capability of the DeepHybrid. The vanishing gradient problem can also grow

the validation RMSE while increasing the number of IPDLs since the supervised error function

cannot be satisfactorily informative when having large numbers of layers.

In order to compare the proposed IPDL with the classic DBN [248] recently introduced in the

literature for multi-step predictions, a DBN with Bernoulli RBMs is trained to replace the pro-

posed IDBN model in the DeepHybrid. As shown in Fig. 2.6, IDBN finds architectures with better

performance on the validation set compared to the DBN model. Moreover, the DBN structure

needs more number of hidden layers. For instance, in 24-hour ahead prediction task, the Bernoulli

DBN requires 5 generative models (RBMs) to reach the optimal solution while the proposed ar-

chitecture consists of 4 IPDL models. Hence, the computational burden of the deep belief network

is decreased while better accuracy is obtained utilizing the proposed interval distribution learning

methodology.

The FT2IS regression model contains four input variables that are resulted by the proposed

IDBN. For each input, there are three Gaussian membership functions. Thus, the number of rules

is 34 = 81. K-means algorithm with three clusters is applied to the IDBN features in order to

43



determine the initial mean values of the membership functions. The standard deviations of these

functions are chosen randomly in [0.01,0.2] as well as the free parameters of the consequent part.

2.5.5. Numerical Results and Comparisons

In this study, the performance of our proposed DeepHybrid method is compared with the Per-

sistence (PR) model as a classic benchmark for ultra-short-term and short-term wind speed fore-

casting. Moreover, the proposed model is compared with both single-model and hybrid approaches

in the recent literature.

Single-model methods apply a single regression architecture to perform the prediction task. In

order to show the effect of deep feature learning on wind data regression tasks, shallow ANN-

based methodologies including Feed-forward Neural Network (FFNN) [64, 134, 191], Time De-

lay Neural Network (TDNN) [28], and Nonlinear Autoregressive Neural Network (NARNN) [12]

are compared with our proposed approach. Very recent literature [111, 248], proposed Stacked

Auto-encoders and Deep Belief Networks and compared their deep ANNs with a variety of AI

methodologies such as FFNN, Support Vector Regression (SVR) [83], NARNN [12], and Adaptive

Neuro-Fuzzy Inference System [154]. Both SAE and DBN showed significant improvements com-

pared to shallow AI models. Moreover, in [150], it is shown that DBN outperforms the Persistence

model and statistical models including Auto-regressive techniques. Motivated by the significant

accuracy improvement of deep learning approaches, i.e., DBN and SAE, our proposed model is

compared with both of these approaches as very recently proposed state-of-the-art methodologies

in this research area.

The hybrid models make use of multiple wind feature extraction and regression methods in

order to increase the prediction accuracy. In this study, DeepHybrid architecture is compared to

the recently proposed hybrid E-GA-APSO-WNN model [224] that applies Ensemble Empirical

Mode Decomposition (EEMD) for noise reduction in wind speed time series data, as well as Ge-

netic Algorithm (GA) incorporated with Particle Swarm Optimization (APSO) as an optimization

method to tune the parameters of a Wavelet Neural Network (WNN). Moreover, our work is com-

pared with the hybrid model proposed for short-term wind speed forecasting in [247] that applied
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Figure 2.6. RMSE of validation for 10-min ahead forecasting with the increase in the number of
IPDLs.
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a compound structure of Extreme Learning Machine (ELM) based on feature selection and param-

eter optimization using hybrid backtracking search algorithm (HBSA). The proposed ELM-HBSA

model in [247] effectively captures the nonlinear characteristics of wind speed signals and outper-

forms ARIMA and SVR-based forecasting models.

2.5.5.1. Deep Learning vs. Shallow Feature Learning:

Tables 2.1 and 2.2 show the RMSE and MAPE criteria for 10-min up to 3-hour ahead wind

speed forecasting. The performance of our proposed approach is compared to both shallow and

deep single-model methods. The RMSE is generally increased with the extension of the forecasting

time horizon. MAPE criterion has also the same behavior. The persistence method yields accurate

results for short-term predictions. The RMSE of PR for 10-min predictions is 0.625 m/s which is

increased to 2.785 m/s for 3-hour ahead forecasts. MAPE result of PR for 10-min predictions is

10.983 which reaches to 30.174 in the 3-hour ahead forecasting task. Therefore, applying PR for

longer term predictions cannot yield reliable performance.

FFNN obtains better results compared to PR. This improvement is more significant for larger

forecasting time horizons. FFNN outperforms PR with 7.04% RMSE improvement in 10-min fore-

casts. This improvement reaches to 24.20% for 3-hour ahead forecasts. The poor performance of

PR in 3-hour ahead predictions is due to the simple smoothness assumption of this model. TDNN

and NARNN models both outperform FFNN since these approaches can model the sequential at-

tributes of time series data while capturing the temporal characteristics of the data. TDNN has

5.80% and 8.32% RMSE and MAPE improvements compared to FFNN, respectively. NARNN

also outperforms FFNN with 12.56% and 11.60% better RMSE and MAPE results, respectively.

NARNN is the best shallow neural architecture compared to the FFNN and TDNN models.

Comparing NARNN with SAE as a deep network, shows the better performance of deep structures

compared to the conventional shallow neural networks. SAE has 7.23% RMSE and 17.82% MAPE

improvements over NARNN. These improvements are further increased to 8.99% and 22.44% for

the RMSE and MAPE results when the DBN model is applied. The better accuracy demonstrates

the better generalization of DBN and SAE due to having more numbers of non-linear hidden layers
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Table 2.1. RMSE of forecasting methods for different time horizons.

Table 2.2. MAPE of forecasting methods for different time horizons.
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and capturing input distribution which helps these models to provide more precise forecasts for the

wind speed as a highly varying target function. DBN yields better accuracy in comparison to the

SAE proposed in [12] since the unsupervised feature extraction is done by generative models that

can better capture the input distribution compared to SAE as a discriminative learning approach.

The proposed hybrid model obtains more accurate results when compared to DBN and SAE. This

model decreases RMSE by 2.7% and MAPE by 23.90% when compared to the DBN proposed

in [248]. The improvements of the hybrid model over DBN are due to: 1) The use of proposed

interval features and FT2IS for regression to handle uncertainties that exist in the wind speed data

by capturing interval knowledge from the time series, and 2) Applying real-valued input units to

estimate the wind speed distribution with higher precision when compared to SAE and DBN with

Bernoulli input variable assumptions.

Fig. 2.7 shows the resulted forecasting values of NARNN and DBN with the actual wind speeds for

3-hour predictions of 72 samples from May 3rd, 2006. As it is shown, DBN improves the results

obtained by NARNN due to learning wind data probability distribution by generative modules. Fig.

2.8 demonstrates the hourly performance comparison of the DBN with Bernoulli RBMs proposed

in [248] and our proposed IDBN model for the test samples of August 25th, 2006. Both approaches

are generative models that aim to learn the distribution of the input data. As shown in this plot,

our deep learning approach yields more accurate outcome compared to the Bernoulli DBN. In this

diagram, the largest absolute error value of the DBN is 0.98 m/s while our model, IDBN, decreased

this error to 0.43 m/s due to the following reasons: 1) The proposed IPDL model learns an interval

latent representation from the data to model the probability density of the data vectors; hence,

our proposed generative model is more robust compared to the classic DBNs including [248] that

assume crisp latent representations. 2) In contrast to the DBN which utilizes binary input units,

our model leverages real-valued input variables designed to learn distributions from the real-valued

wind data. The proposed input units more accurately estimate the conditional probability of wind

speed values given hidden units computing P (x|h, h) in (2.21). The DBN naively assumes a

Bernoulli distribution for all input variables.
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2.5.5.2. Comparison between Hybrid Methods

Tables 2.3 and 2.4 show the RMSE and MAPE of our proposed DeepHybrid model and two

hybrid baselines: E-GA-APSO-WNN and ELM-HBSA. Both baselines apply signal decomposi-

tion for noise reduction while our DeepHybrid model captures interval knowledge from the data

in order to handle wind data uncertainties. The E-GA-APSO-WNN has a better average perfor-

mance over the ELM-HBSA, with a 10.39% and 13.61% MAPE improvements for 1-hour and

3-hour ahead predictions, respectively. The DeepHybrid model outperforms E-GA-APSO-WNN

in all time horizons. DeepHybrid model improves the MAPE result of the E-GA-APSO-WNN by

45.96% for ultra-short-term 10-min ahead forecasts. This significant improvement is due to the au-

tomatic unsupervised deep feature extraction of the proposed deep network. For 3-hr predictions,

DeepHybrid architecture obtains 21.19% and 8.79% less MAPE compared to ELM-HBSA and

E-GA-APSO-WNN, respectively. Besides deep feature extraction, an advantage of the proposed

DeepHybrid model over other hybrid methods is automatically capturing the interval knowledge

from the wind data in order to handle the uncertainties, rather than applying error-prone feature

selection and signal decomposition techniques to handle the noise.

Fig. 2.9 and Fig. 2.10 depict the RMSE and MAPE results of all single-model and hybrid ap-

proaches for extended time horizons from 1-hr ahead to 24-hr ahead predictions, respectively. As

shown in these figures, the shallow single-model architectures, i.e. FFNN, TDNN, and NARNN,

are dominated by single-model deep learning models, SAE and DBN, in all time horizons. The

SAE and DBN have relatively good accuracy compared to hybrid methods for 1-hr to 7-hr ahead

predictions; however, for larger prediction time steps, the hybrid methodologies have a remarkable

improvement in both RMSE and MAPE. Our Deep Hybrid model outperforms both the E-GA-

APSO-WNN and ELM-HBSA significantly when the time horizon exceeds 5 hours. This leads to

the noticeable gaps between DeepHybrid and other hybrid approaches in the RMSE and MAPE

plots.

2.5.5.3. Effect of Noise on the Performance

In order to show the effect of uncertainties in the wind speed data on the performance of
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Figure 2.7. The 3-hour ahead prediction outputs of NARNN and DBN with the actual wind speeds
from May 3rd 2006.

Figure 2.8. Comparison of the 1-hour ahead prediction outputs of DBN and DeepHybrid model
for the test samples of August 25th 2006.
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our proposed model, two extensions of DeepHybrid model are designed as our baselines; 1-

DeepHybriddense: The first baseline methodology replaces the IPDL models with generative RBMs.

Our proposed DeepHybrid method is compared with this model in order to investigate the effect of

interval feature learning.2- DeepHybridTypeI : The second baseline replaces the FT2IS regression

model of DeepHybrid with a Fuzzy Type I inference system. Our proposed DeepHybrid method-

olgy is compared with this model in order to investigate the effect of capturing interval Type II

rules from the deep network.

The baselines are compared to our DeepHybrid model under various noise conditions. Follow-

ing the robustness experiments in [111] for wind prediction models, a Gaussian noise Gauss (, 2)

is considered with mean = 0 and standard deviation = 0.1 v for each wind speed test sample v.

Fig. 2.11 depicts the Box-and-Whisker plot of the absolute hourly prediction error of DeepHybrid

as well as DeepHybriddense and DeepHybridTypeI . The resulting minimum, median, and maxi-

mum values of boxes corresponding to DeepHybrid are less than the corresponding values for both

DeepHybriddense and DeepHybridTypeI . As shown in Fig. 2.11, applying our Rough feature ex-

traction layer in the DeepHybrid model, leads to 7.08% less maximum absolute error for hourly

predictions compared to the DeepHybriddense extension of our model, which contains no IPDL.

Moreover, the comparison of hourly prediction for DeepHybrid with DeepHybridTypeI shows that

capturing interval knowledge from the wind data using interval memberships in the FT2IS of our

proposed approach improves the prediction accuracy while degrading the maximum of absolute

error by 9.61%.

2.5.5.4. IPDL vs. RBM Comparison

In order to have a fair comparison with respect to the prediction accuracy of the proposed IPDL

methodology and the RBM [248], as the state-of-the-art deep generative model, we define two

baselines, IPDLregand RBM reg. The IPDLreg model is a single-model version of DeepHybrid

including a stack of IPDLs and a linear regression model at the top. RBM reg is the similar structure

built using restricted Boltzmann machines instead of the IPDL models. The number of hidden units

and number of layers are determined using similar approach in section V – D.
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Table 2.3. RMSE of forecasting methods for different time horizons.

Table 2.4. MAPE of forecasting methods for different time horizons.

Fig. 2.12 depicts the performance comparison of the IPDLreg with RBM reg in terms of the

test RMSE. As previously shown in Fig. 2.6, when the forecasting time horizon is extended, more

complex networks with larger number of latent representation layers are needed to achieve high

accuracy; however, having too many layers will decline the performance of both models due to

the vanishing gradients. Here, in Fig. 2.12, the IPDLreg obtains better performance (lower test

RMSE) in a wider region of the structure search space, that is, the IPDLreg is less sensitive to

increasing or decreasing the number of layers. However, the performance of RBM reg is more

dictated by the number of hidden layers. Moreover, the higher accuracy of IPDLreg compared to

RBM reg shows the superiority of the proposed interval distribution learning methodology com-

pared to restricted Boltzmann machines.

2.5.5.5. Running Time Analysis

Fig. 2.13 depicts the offline training time of the DeepHybrid using batch gradient descent

with different batch sizes. The model is implemented on a multi-GPU computer system with two
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Figure 2.9. Average RMSE results of DeepHybrid model with all baselines for 1-hr up to 24-hr
prediction tasks.

NVIDIA GTX980 graphics cards and a 4.2 GHz Quad-Core Processor. The Tensorflow framework

[4] is utilized on the computer system to speed up the proposed deep learning algorithm using

GPUs. As shown in Fig. 2.13, the offline training time increases as the time horizon is extended

since the number of hidden layers grows with the complexity of the corresponding regression

problem. The proposed approach is tuned in a time period less than 10 minutes for 10-min ahead

forecasts; hence, our deep learning framework is applicable to short-term wind speed prediction

tasks. For the applications with time horizons smaller than 10 minutes, the model can be tuned

offline using the historical data before being utilized for real-world applications.

Fig. 2.14 shows the average running time of a single update, that is, observing a new test

sample and updating the model in an online fashion. As shown in this figure, there is negligible

change in the online running time of the model as the length of the forecasting horizon is changed.

The online training time of 10-min ahead prediction is 0.187 seconds which is much lower than

the corresponding time horizon; hence, the proposed model can be efficiently utilized for the short-

term prediction problems.
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Figure 2.10. Average MAPE results of DeepHybrid model with all baselines for 1-hr up to 24-hr
prediction tasks.

Figure 2.11. Box-and-Whisker plot of the absolute hourly prediction error of DeepHybrid,
DeepHybriddense, and DeepHybridTypeI .
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Figure 2.12. Box-and-The test RMSE comparison of IPDLreg and RBM regfor multiple time
horizons.

Figure 2.13. The offline training time of DeepHybrid using batch gradient descent with various
batch sizes.

Figure 2.14. The online training running time of DeepHybrid.
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2.6. Conclusions

In this chapter, a hybrid wind forecasting model based on Deep Learning, Rough set theory

and Fuzzy Set theory is proposed. A generative unsupervised probability distribution learning

model is designed based on the Restricted Boltzmann Machines with real-valued inputs in order

to learn powerful features from the wind data probability distributions. The Rough Set theory

is incorporated with deep generative models to design the proposed interval distribution learning

architecture. Moreover, the inference and learning algorithms of the proposed architecture are dis-

cussed. An interval deep belief network with upper-bound and lower-bound parameter estimations

is further devised based on the proposed distribution learning model and the fuzzy type II infer-

ence systems. The fuzzy system is applied for the supervised prediction of the underlying target

function using the features obtained from the proposed IPDL. The Differentiability of the IPDL

and FT2IS leads the model to tune the whole parameters in an end-to-end fashion using super-

vised desired output signals. The Generalization capability of the unsupervised feature learning

method combined with the noise invariant feature extraction of rough layers and the robust fuzzy

rule learning method, leads to accurate target function approximation for time series prediction.

Unlike previously proposed deep networks which assumed Bernoulli input variables, the proposed

model leverages real-valued input units that are suitable for learning powerful features from the

real-valued wind speed time series. Simulation results show significant improvement of the pro-

posed IPDL model and its novel learning algorithm compared to recently proposed shallow and

deep architectures, including DBN, as well as recent hybrid methodologies. Moreover, the effect

of the proposed methodology in handling data uncertainties is investigated. It is shown that the

proposed IPDL can obtain more robust deep features compared to RBM due to using real-valued

input variables as well as interval upper-bound and lower-bound parameters. The Planned future

work and improvements include learning arbitrary activation functions for the input units of gen-

erative deep models, learning the contribution factors of the upper-bound and lower-bound latent

units using Bayesian machine learning techniques, and devising Ensemble architectures using the

proposed learning methodology as well subspace clustering techniques in order to learn time series

features with higher diversity.
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Chapter 3

Convolutional Graph Auto-encoder: A Deep Generative Neural Architecture for Probabilistic

spatiotemporal Solar Irradiance Forecasting

Machine Learning on graph-structured data is an important and omnipresent task for a vast

variety of applications including anomaly detection and dynamic network analysis. In this chapter,

a deep generative model is introduced to capture continuous probability densities corresponding to

the nodes of an arbitrary graph. In contrast to all learning formulations in the area of discriminative

pattern recognition, we propose a scalable generative optimization/algorithm theoretically proved

to capture distributions at the nodes of a graph. Our model is able to generate samples from the

probability densities learned at each node. This probabilistic data generation model, i.e. convo-

lutional graph auto-encoder (CGAE), is devised based on the localized first-order approximation

of spectral graph convolutions, deep learning, and the variational Bayesian inference. We apply

our CGAE to a new problem, the spatiotemporal probabilistic solar irradiance prediction. Multiple

solar radiation measurement sites in a wide area in northern states of the US are modeled as an

undirected graph. Using our proposed model, the distribution of future irradiance given historical

radiation observations is estimated for every site/node. Numerical results on the National Solar

Radiation Database show state-of-the-art performance for probabilistic radiation prediction on ge-

ographically distributed irradiance data in terms of reliability, sharpness, and continuous ranked

probability score.

3.1. Introduction

In recent years, the rapid exhaustion of fossil fuel sources, the environmental pollution con-

cerns, and the aging of the developed power plants are considered as crucial global concerns. As

a consequence, the renewable energy resources including wind and solar have been rapidly inte-

grated into the existing power grids. The reliability of power systems depends on the capability
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of handling expected and unexpected changes and disturbances in the production and consump-

tion, while maintaining quality and continuity of service. The variability and stochastic behavior

of photovoltaic (PV) power caused by the solar radiation uncertainty lead to major challenges

including voltage fluctuations, as well as local power quality and stability issues [111, 214, 218].

Hence, accurate solar irradiance forecasting for PV estimation is required for effective operation of

power grids [96]. The studies in the area of solar irradiance and PV power forecasting are mainly

categorized into four major classes:

1) The persistence model is applied as a baseline that assumes the irradiance values at future

time steps is equal to the same values at the forecasting time. Due to such a strong smoothness

assumption, the persistence scheme is only effective for intra-hour applications [218].

2) Physical models employ physical processes to estimate the future solar radiation values using

astronomical relationships [81], meteorological parameters, and numerical weather predictions

(NWPs) [176]. In [130], an hourly-averaged day-ahead PV forecasting approach is presented based

on least squares optimization of NWPs using global horizontal irradiance (GHI) and the zenith

angle. Some NWPs make use of the clear sky radiation modeled by earth-sun geometry [166] or

panel tilt/orientation along with several meteorological parameters such as temperature or wind

speed [147]. Other works apply cloud motion vector (CMV) frameworks [43] for accurate short-

term predictions, using static cloud images [157], satellite images [92], or the sensor networks [21].

3) Statistical and Artificial intelligence (AI) techniques are recently presented for a number

of solar irradiance and PV power estimation/regression problems. As discussed in [13], the non-

stationary and highly nonlinear characteristics of solar radiation time series lead to the superiority

of AI approaches over the traditional statistical models. Machine learning algorithms are employed

as target function approximators, to estimate future solar irradiance or PV power. Highly nonlin-

ear regression methodologies including ANNs [42, 113] and support vector machines/regression

(SVM/R) [132] have been employed for short-term purposes. [132] presents a benchmarking of

supervised neural networks, Gaussian processes and support vector machines for GHI predictions.

In [217], [133] a bootstrapping approach is presented to estimate uncertainties involved in the pre-

diction of wind/solar time series. Here, a number of Extreme Learning Machine (ELM) ANNs are
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trained as regression models using resampled training data. The uncertainties in solar/wind data

and the model uncertainties are modeled as two classes of uncertainties to provide probabilistic

predictions. This model has low generalization capability as both uncertainties are associated with

a strong prior knowledge that forces the uncertainties to be Gaussian. [255] employs k-nearest

neighborhood (k-NN) method to find days with similar weather condition. Kernel Density Esti-

mation (KDE) is further applied to estimate the probability density function (PDF) of PV for the

neighbors of k-NN. [211] provides a comprehensive review of non-parametric methods that em-

ploy k-NN to find the expected value of their assumed probability distribution functions for solar

irradiance and PV forecasting. [39] applies k-NN for short-term predictions with less than 20-

min ahead horizons. Also, [87] employs k-NN and gradient boosting with various meteorological

measurements such as surface pressure, total cloud cover, and relative humidity for 24-hr ahead

forecasts.

Quantile Regression (QR) is another statistical method employed in non-parametric prediction

models. In recent literature, QR is well-studied for the estimation of statistical parameters (e.g.

mean and variance) of predefined probability distributions for future solar values [211]. In [71],

the ELM neural network utilizes a QR-based parameter estimation for hourly solar predictions.

Also, [215] employs the combination of QR and ELM for very short-term applications with 5-min

horizon length. In [131], a probabilistic prediction model is proposed based on linear QR, com-

bining the point prediction obtained by a deterministic forecasting approach with the information

retrieved from ground measurements. Moreover, QR is recently utilized as a non-parametric model

in combination with physical methods [211]. In [70], a combination of QR and NWP is presented

for daily predictions. Furthermore, [101] proposes an intra-day prediction approach based on mul-

tiple QR in combination with the radial basis functions and the alternating direction method of

multipliers.

As discussed in [54, 115], fuzzy logic has been recently applied to capture the uncertainties

exits in solar datasets. In [36], fuzzy systems are incorporated with neural networks to accurately

estimate the real values of future solar irradiance under different sky and temperature conditions.

Moreover, [152] presents a fuzzy clustering algorithm to find days with similar irradiance patterns.
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The solar data corresponding to similar days is further fed to an ELM optimized by Genetic Al-

gorithm (GA) in order to compute daily irradiance predictions. Evolutionary algorithms including

GA, Ant Colony [211], and Particle Swarm Optimization [54] help fuzzy systems and ELM to

find near-optimal solutions by avoiding erroneous parameter settings caused by poor local optima

solutions.

Bayesian approaches have been widely applied to solar prediction problems. In [23], two

advanced probabilistic models are proposed based on Bayesian inference for short-term PV pre-

diction. Moreover, new probabilistic indices are presented to compare probabilistic approaches in

such a way that the estimated PV values are partially anticipated by the forecasters in their quality-

assessment procedures. [16] presents a Naı̈ve Bayes model for the prediction of daily PV energy

production. The model uses daily average temperature, total sunshine duration, as well as total

global solar radiation to predict future power generation. Furthermore, [40] presents a multi-ahead

prediction Multi-Layer Perceptron Neural Network, whose parameters are estimated by a proba-

bilistic Bayesian learning technique. The Bayesian model computes the confidence intervals and

estimates the error bars of the Neural Network predictions.

Ensemble methods aggregate a set of predictors (i.e. base learners) to increase the prediction

accuracy of individual prediction models. As shown by [80], several top-entry PV forecasting mod-

els employ ensemble frameworks including QR Forest (QRF) with Gradient Boosting Decision

Trees [223], Multiple QR [253], and Gradient Boosting Machines incorporated with NWP [210].

The ensemble models generally use bagging techniques that apply bootstrap sampling to obtain

data subsets for training the base learners [253]. Also, some ensemble approaches apply the boost-

ing algorithm which improves the performance of base models by combining them together using

a particular cost function (i.e. majority vote) [223], [210]. These techniques decrease prediction

variance; hence, prevents the prediction model from overfitting on the training set. In this line of

research, [22] proposed a novel probabilistic prediction model based on a competitive ensemble

of various base predictors for short-term forecasting of PV power. Three probabilistic methods

including Bayesian model, Markov Chain model, and QR were trained as base predictors in order

to obtain an ensemble of the predictive distribution with optimal sharpness and reliability met-
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rics. The simulation results of ensemble models show improvement in these metrics compared to

single-model methodologies; however, such models need more computational power and increase

the time complexity of the predictor [211].

In this chapter, a new problem, probability distribution learning in graph-structured data, is

solved as a recent pattern recognition challenge. First, generative modeling (learning mathematical

patterns from a dataset for the aim of generating new samples under the observed data distribution)

is introduced as an optimization problem where the probability of observed data in a given dataset is

maximized. Then, our novel graph learning model, Convolutional Graph Auto-encoder (CGAE), is

presented that is mathematically proved to learn continuous probability density functions from the

nodes in an arbitrary graph. Our CGAE is defined based on the first-order approximation of graph

convolutions (for learning a compact representation from an input graph) and standard function

approximation (more specifically, deep neural architectures with high generalization capacity).

The proposed deep learning model is able to generate new samples corresponding to each node,

after observing historical graph-structured data, while learning the nodal distributions.

In this study, the problem of spatiotemporal probabilistic solar radiation forecasting is pre-

sented as a graph distribution learning problem solved by the CGAE. First, a set of solar measure-

ment sites in a wide area is modeled as an undirected graph, where each node represents a site and

each edge reflects the correlation between historical solar data of its corresponding nodes/sites.

CGAE is applied to the graph in order to learn the distributions corresponding to the solar data

at each site/node. Our CGAE is mathematically guaranteed to efficiently generate samples cor-

responding to the future solar irradiance values. The samples generated by this model result in a

probabilistic solar radiation forecast for the future time step.

The key contributions of this work are: 1) Our CGAE is the first model devised in the area

of machine learning, for the problem of nodal distribution learning in graph-structured data. The

presented work is a universal model/algorithm that can be applied to any arbitrary graph for the

probability approximation problems. 2) This is the first study of generative modeling for the predic-

tion of renewable resources. Although generative adversarial networks have been applied in [37]

for the problem of scenario generation of renewable energy production, this category of machine
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learning models has not been studied for the prediction tasks as these models do not estimate the

probability densities of future observations given the historical measurements. The previous pre-

diction works including all ANNs [42], [217], [133], regression [211], and kernel methods such

as SVMs and SVRs [132], as well as all KNN-based methodologies [255], follow discriminative

modeling [116], and no generative modeling was introduced in the literature of solar forecasting.

Also, in similar areas such as probabilistic load forecasting, most approaches including ANNs [54]

and Quantile Regression models [249] are discriminative rather than generative. As shown by

the mathematical proof, our generative model leads to accurately understanding the underlying

distribution of solar data, while discriminative modeling cannot provide such capability. 3) A

spatiotemporal probabilistic forecasting framework is presented that makes use of the knowledge

obtained from neighboring solar sites to enhance the prediction reliability and sharpness. 4) In con-

trast to previous ANN-based approaches [42], [217], [133] that merely apply shallow architectures,

i.e. models with a small number of hidden layers, here, our model is able to have as many latent

layers as it needs in order to provide the optimal generalization capability to increase the valida-

tion accuracy. As a result, the generalization capability and the learning capacity of our proposed

deep network are much higher than previous works. Increasing the number of layers in previous

models, even with the existence of a regularization error term, is infeasible as it would lead to the

vanishing gradient problem. However, here, we solve the issue of having low gradient magnitude

that arises in ANN architectures. 5) CGAE is compared with state-of-the-art temporal approaches

including Quantile Regression [131], Kernel Density Estimation [255], and Extreme Learning Ma-

chine [217], [133] in terms of reliability, sharpness, and Continuous Ranked Probability Score

(CRPS) using the National Solar Radiation Database (NSRDB) [188]. Moreover, CGAE is com-

pared with recently proposed state-of-the-art spatiotemporal models including Space-time Cop-

ula (ST-Copula) [209], spatiotemporal QR-Lasso (ST-QR-Lasso) [5], Compressive spatiotemporal

Forecasting (CSTF) [208], and spatiotemporal Support Vector Regression (ST-SVR) [132], [11].

As shown by the simulation results, CGAE outperforms all temporal as well as spatiotemporal

methodologies for 0.5-hr up to 6-hr ahead predictions. CGAE improves the average reliability of

the best temporal benchmark, ELM, by 3.64% in hourly predictions which grows to 4.49% in 6-hr
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ahead forecasting. Moreover, CGAE improves the CRPS of ELM by 3.35% for hourly predictions

which is further increased to 5.22% in 6-hr ahead forecasts. Among spatiotemporal approaches,

CGAE outperforms all approaches by improving the best spatiotemporal benchmark, ST-SVR, by

2.46% in hourly predictions which is further increased to 4.35% for 6-hr ahead forecasts. CGAE

also improves the CRPS of ST-SVR by 1.12% and 4.19% for hourly and 6-hr ahead predictions,

respectively. Furthermore, the average widths, as well as the entropies of CGAE’s prediction inter-

vals show the significant improvement of prediction sharpness of the proposed method compared

to the state-of-the-art benchmarks.

The chapter is organized as follows: In Section 3.2 the problem of probabilistic solar irradiance

forecasting is defined. In section 3.3, first, our proposed generative modeling paradigm is defined

mathematically. Then, our CGAE model is formulated and its application for solving the fore-

casting problem is explained. Theoretical guarantee of the proposed methodology is available in

this section. Section 3.4 explains the performance metrics and shows numerical results on a large

dataset. Finally, the conclusions and future works on generative modeling are presented in Section

3.5.

3.2. Problem Formulation for Probabilistic Solar Irradiance Forecasting

The solar irradiance time series measured at 75 solar sites in northern states of the US near

the Lake Michigan are collected in the National Solar Radiation Database (NSRDB) [188] by the

National Renewable Energy Laboratory. Fig. 3.1 depicts the latitude-longitude map of solar sites

where the spatiotemporal solar radiation data is collected. The data at each site contains the GHI

time series with 30-min intervals from 1998 up to 2016. Fig. 3.2 is the plot of GHI values at the

solar site 14 in 2015. As shown here, GHI increases from 8:00 to 13:00, and then, decreases until

it reaches zero from about 18:00 to 20:00. Generally speaking, we have larger GHI around the day

200 (mid-July), and as we go further, the GHI declines.

The spatiotemporal data is modeled as an undirected graph where each node represents a solar

site and each edge reflects the correlation between the corresponding nodes/sites. Let us define a

weighted graph G = (VG, EG) where VG is the set of nodes vi i = 1, 2, ..., n and EG is the set
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of edges ek l connecting vk to vl. The weighted adjacency matrix A is defined by the following

formulation:

A(k, l) =


e−D(k,l) MI (k, l) ≥ α

0 MI (k, l) < α

(3.1)

Figure 3.1. Latitude-Longitude map of 75 solar sites in the NSRDB.

Figure 3.2. Solar Irradiance of 2015 at solar site 14.

where e is the Euler’s number, and the edge weight between the nodes vk and vl is denoted by

A(k, l), while their distance is D(k, l). Also, the normalized mutual information (MI) between
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the historical GHI measurements of these two nodes is denoted by MI (k, l). The edge sparsity

parameter α = 0.8 acts as a threshold on MI values; that is, for each pair of nodes vk and vl, if the

corresponding MI exceeds α, we consider an edge ek l associated with a weight e−D(k,l) while for

the nodes with MI less than α, no edges are considered.

Fig. 3.3 depicts the MI values corresponding to all pairs of solar sites (i.e. nodes in VG).

Considering the latitude-longitude map in Fig. 3.1 and the MI matrix in Fig. 3.3, we can see that the

MI of historical GHI for each pair of sites has high negative correlation with their distance inside

the latitude-longitude space. That is, shorter distances lead to higher solar irradiance correlations,

which further lead to larger edge weights in the modeled graph G.

Fig. 3.4 depicts the structure of our graph with 75 nodes and 464 weighted edges clustered

into six communities using the Girvan–Newman algorithm [69]. Each community consists of a

subset of nodes densely connected to each other with relatively large edge weights due to their

high mutual information. The dense edges inside communities and the sparse edges between the

communities reflect the strong relationship between the distance of the nodes and their MI.

At each time step t, each node vi contains a GHI time series T (vi, t) corresponding to the histor-

ical GHI data used as the input to the forecasting model in order to predict some future GHI value

vi
∗(t′ = t+ k) with forecast horizon length k > 0. The problem is to learn a conditional probabil-

ity distribution P ∗(V ∗(t′)|π) with future GHI tensor V ∗(t′) =< v1
∗(t′), v2

∗(t′), ..., vn
∗(t′) > and

historical GHI tensor π =< T (v1, t), T (v2, t), ..., T (vn, t) >. Considering a training set TS that

contains |TS| historical examples (πj, V
∗
j (t′)) 1 ≤ j ≤ |TS|, we need to estimate P ∗ using the

observed πj and V ∗j (t′) in the j-th training example.

The data of 1998-2015 is considered for training our model while the 2016 dataset is used as a

test set to evaluate our method. Fig. 4. shows the mutual information between a GHI value at the

time t̃ with previous time steps t̃− l with lag 1 ≤ l ≤ 300 for the GHI time series of 1998-2015.

As shown in this plot, the GHI values are more correlated with their most recent lags as well as

the time lags near l ∈ {24, 48, 72, 96, 120, 144}. In this study, in order to make the information in

T (vi, t) useful for the estimation of P ∗, we define T (vi, t) for each node i to be the GHI values

corresponding to the lags where the mutual information is equal or greater than some threshold
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Figure 3.3. Mutual Information matrix for all pairs of nodes in VG. The indices correspond to the
indices of solar sites in 3.1.

Figure 3.4. Structure of the modeled graph G with 75 nodes and 464 edges. The graph is clustered
into six Girvan–Newman communities. The width of each edge reflects the magnitude of MI
between the corresponding nodes.
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τ ≥ 0. Here, τ is a hyperparameter for our model.

Figure 3.5. Mutual Information of future GHI with previous time lags

3.3. Proposed Generative Learning Formulation for Nodal Probability Density Estimation

in Graphs

3.3.1. Generative Learning for PDF approximation

Here, our problem is to capture a probability distribution P (X) over n-dimensional data points

X in a potentially high dimensional vector space X ⊆ Rn. In fact, we want to be able to generate

many samples X∗ as close as possible to X . As the complexity of the dependencies between

variables of X grows, the difficulty of learning the true P (X) increases. Hence, we define a

“latent variable”-based model in which the hidden random vector z ∈ Z embodies the major

characteristics of P (X) (e.g. the PDF of the future GHI, or any desired nodal PDF in a graph-

structured data). More specifically, z is sampled following some unknown distribution P (z) over

the high dimensional space Z. To justify that our approach is generative (i.e. the model can

generate samples X∗ ), we ensure that there exists at least one configuration ẑ ∈ Z that causes

the model to generate some sample X̂ in X . Assuming a family of deterministic functions f(z; θ)

with parameters θ ∈ Θ, each “latent variable-parameter” pair is mapped to a sample in X using

f : Z×Θ→X . We find an optimal θ∗ ∈ Θ such that when z ∼ P (z), the value of X∗ = f(z; θ =

θ∗) is as close as possible to some X ∈ X . In other words, the probability of f creating an output

X∗ similar to the observed data X is maximized; hence, our optimization is written as:
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θ∗ =
arg max

θ

[
P (X) =

∫
f(z; θ)P (z)dz

]
(3.2)

f(z) is a deterministic function of a random variable z ; hence, for a fixed θ, f(z; θ) is a random

variable in the space X . Therefore, P (X) in (3.2) can be written as:

P (X) =

∫
P (X|z; θ)P (z)dz (3.3)

As shown in (3.2), generating X depends on the latent vector z. Using the Maximum Like-

lihood framework, if the model converges to the solution θ∗, our generative model is likely to

produce X∗. Here, f(z; θ) is defined as a Gaussian distribution P (X|z; θ) = N(X|f(z; θ), σ2 ∗ I )

with mean f and a diagonal covariance matrix with entries computed using the hyperparameter σ

as the standard deviation.

Figure 3.6. Structure of CGAE. (a) shows the training process where the model generatesX∗ ' X .
(b) shows the testing process where the trained decoder generates as many samples X∗ ∼ P (X)

as required simply by feeding a random z ∼ N(0, I) to the decoder ANN. The decoder captures
PDF P (X).

In order to solve the optimization (3.2)-(3.3), z should be mathematically defined. Moreover,

an estimation for the integral in (3.2) should be provided. Our main goal is to learn variable z

automatically; that is, we opt to avoid describing the dependencies between the dimensions of Z,

as no prior knowledge is available/required to solve the problem. Thus, the latent vector is set to
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z ∼ N(0, I ) considering Theorem (3.1):

Theorem (3.1): In any space Λ, any complicated probability density function over samples can

be modeled using a set of dim(Λ) random variables with normal distribution, mapped through a

high capacity function.

As a consequence, an approximator can be learned to map z to some required (desired) hidden

variable ξ further mapped to X ∈ X , to maximize the likelihood of samples X in the dataset D.

Here, our f is modeled by an ANN as a standard function approximator capable of learning highly

nonlinear target functions using multiple hidden layers. The first layers of these architectures

provides a non-linear mapping from z ∈ Z (with a predefined simple distribution as discussed in

this section) to ξ (with an unknown complicated distribution). ξ is further mapped to a sampleX ∈

X available in D. Notice that if the model has sufficient capacity (ample number of hidden layers,

as in the case of deep neural networks), the neural network is able to solve the maximization in

(3.1) to obtain θ∗. Let us rewrite our optimization in (3.2) using z ∼ N(0, I ) from Theorem (3.1):

θ∗ =
arg max

θ

∫
N(X|f(z; θ), σ2 ∗ I )N(z|0, I )dz (3.4)

To solve (3.4), a distribution functionQ(z|X) is defined to decide the importance of an arbitrary

configuration ẑ ∈ Z in the generation of a sample X . As a consequence, the expected value of

P (X|z) with respect to z, Ez∼Q [P (X|z)], can be computed using the Kullback–Leibler (KL)

divergence:

KL[Q(z)||p(z|X)] = Ez∼Q [log Q(z) − log P (z|X)] (3.5)

applying the Bayesian rule for P (z|X), (3.5) can be written as:

KL[Q(z)||p(z|X)] = Ez∼Q

[
log Q(z)− log(P (X|z)P (z)

P (X)
)
]

= Ez∼Q [log Q(z)− log P (X|z) − log P (z) + logP (X)]

(3.6)
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This equality is further written as:

logP (X)−KL[Q(z|X)||P (z|X)]

= Ez∼Q [logP (X|z)−KL[Q(z|X)||P (z)]]

(3.7)

In order to generate X (that is, create samples X∗ ≈ X ), our objective is to maximize

logP (X) while minimizing the KL divergence in the left-hand side of (3.7); hence, we minimize

Ez∼Q [logP (X|z)−KL[Q(z|X)||P (z)]] using SGD. Notice that, in the formulation of (3.7), Q

can be viewed as an ANN encoding X into z, while P is an ANN decoding z to obtain X . To

solve the optimization, Q is defined as:

Q(z|X) = N(z|µ(X; Φ),Σ(X; Φ)) (3.8)

with deterministic functions µ and Σ defined by an ANN with free parameters set Φ trained by

SGD. AsQ and P are both dimensional multivariate Gaussian distributions, the termKL[Q(z|X)||P (z)]

in (3.7) is computed by:

KL [Q(z|X)||P (z)]

= KL [N(z|µ(X; Φ),Σ(X; Φ))||N(0, I)]

= 1
2

[
log det(I)

det(Σ)
− d+ tr(Σ) + (0− µ)T (0− µ)

]
= 1

2

[
− log(det(Σ))− d+ tr(Σ) + µTµ

]
(3.9)

Therefore, in order to optimize (3.7), the following optimization problem is solved:

θ∗ = arg max
θ EX∼D

 Ez∼Q[logP (X|z; Φ)]

−KL[Q(z|X; Φ)||P (z; Φ)]

 (3.10)
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Applying the reparametrization technique, (3.10) can be written as:

θ∗ = arg max
θ EX∼D


Eε∼N(0,I)

 logP
(
X|z = µ(X)

+Σ1/2(X) ∗ ε ; Φ
)


−KL[Q(z|X; Φ)||P (z; Φ)]


(3.11)

Fig. 3.6(a) shows the training structure of our generative model based on (3.8) and (3.11) to

generate X∗ ≈ X . The encoder ANN, Q, takes X observed in dataset D and outputs µ and Σ

(see (8)). The error of the encoder ANN is KL[Q(z|X)||P (z)] computed in (3.9). The gradient

of this error function is used by Stochastic Gradient Descent (SGD) method to train this ANN.

After computing µ and Σ using Q, our latent variable z = µ(X; Φ) + Σ1/2(X; Φ) ∗ ε is obtained

using (3.11). Then, z is fed to the decoder ANN, P , to obtain our generated sample X∗ ≈ X .

The error function of this ANN is computed by ||X − X∗||2 to reflect the distance between the

generated sample X∗ and its true (observed) value X . When Q and P are trained by SGD, in order

to generate a new sample X∗ ≈ X , one can simply feed some z ∼ N(0, I) to P and obtain X∗ as

shown in Fig. 5(b).

3.3.2. Convolutional Graph Auto-encoder

In Section III-A, our objective was to learn P (X) in some high dimensional space X by gen-

erating X∗ ≈ X . Here, we aim to learn P ∗(V ∗|π), i.e. PDF of V ∗ in G given π. We present our

CGAE shown in Fig. 3.7 as the first generative model that captures nodal distribution P ∗(V ∗(t′)|π)

in a graph G. Given historical GHI π, our objective is to generate ρ samples V̂ ≈ V ∗ to estimate

P ∗(V ∗|π).

Let us mathematically formalize how CGAE generates V̂ as an estimation for V ∗ :

V̂ = µ(π, z) + ε s.t. z ∼ N(0, 1) , ε ∼ N(0, 1) (3.12)
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both z and ε are white Gaussian noises. µ is implemented by an ANN as in Section III-A.

Assuming z ∼ Q using PDFQ(z), Bayes rule [56] is applied to compute Ez∼Q[logP (V ∗(t′)|z, π)]:

Ez∼Q[logP (V ∗(t′)|z, π)] = Ez∼Q[logP (z|V ∗(t′), π)−

logP (z|π) + logP (V ∗(t′)|π)]

(3.13)

(3.13) is rewritten as:

logP (V ∗(t′)|π)− Ez∼Q[logQ(z)− logP (z|π, V ∗(t′)) =

Ez∼Q[logP (V ∗(t′)|z, π) + logP (z|π)− logQ(z)]

(3.14)

Now, following (3.8), we have Q = N(µ′(π, V ∗(t′)) , σ′(π, V ∗(t′))) where µ′ and σ′ are ANNs

trained alongside µ. Let us denote Q by Q(z|π, V ∗), (3.14) is written as:

logP (V ∗|π)−KL[Q(z|π, V ∗)||P (z|π, V ∗)] =

Ez∼Q[logP (V ∗|z, π)]−KL[Q(z|π, V ∗)||P (z|π)]

(3.15)

Considering (3.15), our objective is to increase E1 = logP (V ∗|z, π) and

E2 = −KL[Q(z|π, V ∗)||P (z|π)]. CGAE is trained by SGD to maximize ET = E1 + E2. This

leads to maximizing the likelihood of V ∗ while training Q to accurately estimate P (z|π, V ∗). Note

that, similar to our optimization in Section III-A, we have P (z|π) = N(0, 1). Our latent vector is

z = µ′(π, V ∗(t′)) +α◦ σ′(π, V ∗(t′)) where α ∼ N(0, 1) and ◦ is the element-wise product opera-

tion. ET is differentiable with respect to the whole parameters of CGAE (including the parameters

in ANNs corresponding to µ, µ′ and σ′ ); hence, the whole CGAE model can be easily tuned by

SGD to maximize ET . In Section III-C, the neural architecture corresponding to our CGAE is

defined based on ANNs.
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3.3.3. CGAE Architecture

CGAE consists of three ANNs; 1- Graph Feature Extraction ANN, which gives us a compact

representation of π stored in G, denoted by R(G), 2- Encoder ANN, Q, that implements µ′ and

σ′ to capture Q(z|π, V ∗), and 3- Decoder ANN, P , that implements µ(π, z) in (3.12), to produce

samples V̂ drawn from the true future GHI distribution P ∗(V ∗(t′)|π).

3.3.4. Graph Feature Extraction ANN (Computing R(G))

At each training step t, the spectral graph convolutions of G, which stores

π =< T (v1, t), T (v2, t), ..., T (vn, t) > inside its nodes, is computed by ψθ ∗ π = UψθU
Tπ. Here,

U is the eigenvector matrix of the normalized Laplacian L = UΩUT and θ ∈ Rn is the parameter

vector for the convolutional filter ψθ = diag(θ) in the Fourier domain. Notice that the Fourier

transformation of π is computed by UTπ. ψθ is defined as a function of L ’s eigenvalues; hence,

our filter is denoted by ψθ(Ω). Estimating ψθ(Ω) by Chebyshev Polynomials [114, 122] Pj , we

have ψω ≈
∑J

j=0 ωjPj(
2

γmax
Ω − I) where γmax is the maximum eigenvalue of L, and ωj is the j

-th Chebyshev coefficient. Therefore, the spectral graph convolution function on G is:

ψω ∗ π ≈
J∑
j=0

ωjPj(
2

γmax

Ω− I)π (3.16)

The convolution in (3.16) is further simplified by δ = ω0 = −ω1 which decreases parameters’

size while γmax = 2 for J = 1 ; As a result, (3.16) can be computed by:

ψω ∗ π ≈ ω0P0(L− I)π + ω1P1(L− I)π = δ(I +D−
1
2AD−

1
2 )π (3.17)

Based on the convolution (3.17), a graph feature extraction neural network (GFENN) with LG

hidden layers is defined to extract spatiotemporal features from GHI observations at all nodes/sites

of G. Here, the output of each layer 1 ≤ k ≤ LG is:

Ok = ReLU(MOk−1Wk)s.t.M = D̃−
1
2 (A+ I)D̃−

1
2 (3.18)
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where D̃i i =
∑

j(A+I)i j . The input of GFENN is O0 = π while the output is G ’s spatiotem-

poral representation R(G) = OLG .

3.3.5. The encoder (Q) and Decoder (P)

Since GFENN captures spatiotemporal features of π, and stores them in R(G), one can view

CGAE as a model estimating P ∗(V ∗|R(G)) instead of P ∗(V ∗|π). In Section III-A, (3.8) showed

that Q can be viewed as an ANN encoding input tensor X into the latent vector z while P is

a decoding ANN that maps z to X . As depicted in Fig. 3.7, Here, the input to the encoder Q is

X = R(G). Our encoderQ is defined by a deep ANN with LQ hidden layers and ReLU activations

for each hidden layer, trained to encode V ∗ into a latent vector z ∈ Z, such that the resulting z can

be decoded back to V ∗. As discussed in (3.15) and also shown in Fig. 3.7, the error function for

the encoder Q is defined by:

ErrQ = KL[Q(z|π, V ∗)||N(0, 1)]

= KL[Q(z|R(G), V ∗)||N(0, 1)]
(3.19)

Similar to Q, our decoder, P , is implemented by a deep ANN with LP hidden layers using

ReLU activations to take the latent vector z learned byQ, as well as the graph representationR(G),

and decode them to generate an approximation of V ∗, denoted by V̂ . To make the generated sample

V̂ (t′), as close as possible to the real future value V ∗(t′) we minimize the following reconstruction

error for P :

ErrP = ||V ∗(t′)− V̂ (t′)||2 (3.20)

Therefore, the total error optimized by the stochastic gradient descent method is E = ErrQ +

ErrP .
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Figure 3.7. Convolutional Graph Auto-encoder.

3.3.6. Estimation of P (V ∗|π)

As shown in Fig. 6(b), during test time,R(G) and z ∼ N(0, I) are fed to the decoder ANN and

the estimation V̂ (t′) is obtained. No encoding is needed; hence, generating estimations V̂ (t′) ≈

V ∗(t′) is dramatically fast. All we need to do to generate a new sample V̂ (t′), is to sample a new

z ∼ N(0, I) and run feed-forward algorithm on the GFENN (to obtain R(G) ) and the decoder

ANN (to obtain the desired result, i.e. V̂ (t′) ). Following this approach, we generate ρ number

of samples V̂ ∼ P (V ∗|π) to estimates P (V ∗|π) using the decoder. As a result, our decoder P

generates the PDF of future GHI mapping N(0, I) to P (V ∗|π).

3.4. Numerical Results

CGAE is compared with recent temporal as well as spatiotemporal benchmarks utilized for

short-term irradiance/PV probabilistic forecasting. The temporal models include Quantile Regres-

sion (QR) [211], Kernel Density Estimation (KDE) [255], Extreme Learning Machines (ELM)

[217], and Probabilistic Persistence (PP) [7], while the spatiotemporal benchmarks include the
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Space-time Copula [209], spatiotemporal QR-Lasso [5], Compressive Spatiotemporal Forecast-

ing [208], and Spatiotemporal Support Vector Regression [132], [11]. The advantages of spa-

tiotemporal feature learning for the underlying problem is shown. Since no generative model was

presented in the literature, the experiments motivate further research on generative modeling for

renewable resources prediction.

3.4.1. Experimental Settings

As explained in Section II, the NSRD dataset is applied to train/test our model. The 1998-2015

data is used to train CGAE while the 2016 data is applied to evaluate the prediction performance. In

this study, CGAE is trained/tested to forecast GHI time series from 30 min (horizon length k = 1 )

up to 6 hours ahead ( k = 12 ). Batch Gradient Descent with learning rate η = 5∗10−4 is employed

to train our CGAE (including GFENN, encoder ANN, and decoder ANN) by minimizing the error

ErrQ + ErrP using batch size k equal to 400. In this study, the number of generated samples is

ρ = 104, and the number of GFENN layers is set to LG = 2 while LP = 4 and LQ = 3. The

feature selection hyperparameter is τ = 0.45.

We employed the Information Theoretical Estimators (ITE) library [203] to compute the mutual

information matrix corresponding to the historical GHI time series in Section II. The ITE is used

as a free and open source toolbox in Matlab 2018. The graph modeling process of Section II is

implemented in Gephi 0.9.2 [15] which is an open-source software for network visualization and

analysis. Moreover, our proposed deep neural network, CGAE, is implemented in Python 3.6 with

Keras 2.2.4 library [38] and GPU-based Tensorflow 1.7.0 [4] backend. The model is implemented

on a computer system with Intel Core-i7 4.1GHz CPU and NVIDIA GeForce GTX 1080-Ti GPU.

Our GPU supports CUDA 9.0 which is a parallel computing platform that helps Tensorflow to

speed up all the computations in Keras.

3.4.2. Performance Comparison (Quantitative Results)

The prediction quantiles of our model are compared with both temporal and spatiotemporal

methodologies in terms of reliability, sharpness and Continuous Ranked Probability Score (CRPS):
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3.4.2.1. Reliability

This criterion shows how closely the prediction probabilities correspond to the observed (real)

frequencies of the GHI data. Here, the bias R1−2α is computed by:

R1−2α =

(
N1−2α

N
− (1− 2α)

)
× 100% (3.21)

where N is the number of test examples, N1−2α is the number of observations covered by the

nominal coverage rate (1 − 2α) × 100%. The closer the nominal coverage of prediction intervals

is to the observed (actual) coverage rate, the higher the reliability is; hence, small R1−2α shows

better accuracy. In fact, R1−2α = 0 corresponds to the perfect (ideal) reliability.

Fig. 3.8 depicts the reliability measurements averaged over all GHI nodes/sites with various

nominal coverage rates ranging from 10% to 90%. As shown in this figure, the spatiotemporal

prediction models including CGAE, ST-Copula, ST-QR-Lasso, CSTF, and ST-SVR, lead to more

reliable probabilistic forecasts compared to the temporal models such as ELM, KDE, QR, and PP.

For instance, the ST-QR-Lasso model which is a spatiotemporal version of QR, leads to an average

deviation of 5.46% while the QR obtains 9.13% deviation compared to the ideal prediction model

with zero deviation. Among the temporal models, PP has the worst reliability which results in the

largest average deviation equal to 10.62%. ELM leads to the highest reliability among temporal

models with 6.71% absolute deviation. This model yields 36.81%, 26.49%, and 22.59% more reli-

able (less deviated) predictions compared to PP, QR, and KDE, respectively. The major reason for

this observation is the better generalization of neural network-based approaches compared to the

traditional statistical approaches. In contrast to other temporal benchmarks, ELM has a large non-

linear parameter space which helps this model to improve generalization and obtain more reliable

outcomes. Our deep learning-based generative model, CGAE, outperforms all temporal bench-

marks, with 86.35%, 84.12%, 83.28%, and 78.40% better reliability compared to PP, QR, KDE,

and ELM. The smaller deviation of CGAE compared to ELM is mainly due to CGAE’s graph-

based spatial feature extraction as well as its larger hypothesis space caused by the higher number

of nonlinear computational layers.
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Figure 3.8. Reliability measurements averaged over all GHI nodes/sites.

Figure 3.9. Average reliability with different look-ahead times.
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Figure 3.10. Sharpness evaluation using normalized PIAW.

Figure 3.11. Entropy diagram of CGAE with various temporal benchmarks for the 6-hr ahead
forecasts.

Figure 3.12. Entropy diagram of CGAE with various spatiotemporal benchmarks for the 6-hr
ahead forecasts.
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Among the spatiotemporal prediction benchmarks, CGAE and ST-SVR have the least deviated

predictions with 1.45% and 4.02% average absolute deviations, respectively. The reliable perfor-

mance of ST-SVR is due to its ability to handle complex high-dimensional feature spaces using

the kernel trick. The smaller deviation of CGAE in comparison with other spatiotemporal bench-

marks shows the effectiveness of our GFENN in providing powerful spatial information from the

underlying solar sites.

Fig. 3.9 shows the average reliability with different look-ahead times for various temporal

and spatiotemporal benchmarks. As shown in this plot, the slope of the deviation curve for all

benchmarks start to increase significantly from the 3.5-hr horizon, while CGAE has a much smaller

slope. As the time horizon expands, the improvement of CGAE becomes more significant. PP has

the worst performance, especially in longer horizons, compared to other methodologies. This

is due to its low generalization capacity resulted from its smoothness assumption of the target

function, which undermines its efficiency in practice. The spatiotemporal approaches have less

than 6.31% deviation for all time horizons while even the most reliable temporal model, ELM,

exceeds this limit for 5.5-hour and 6-hour ahead predictions. CGAE yields 1.10% and 4.49% better

reliability in 3-hr and 6-hr forecasts compared to ELM, respectively. This shows the superiority

of generative modeling over discriminative modeling introduced in previous ANN methods in

the literature. The relatively small deviation of spatiotemporal models is resulted by their good

unbiased prediction, while temporal models are more biased, which degrades their efficiency in

practical applications.

Among the spatiotemporal approaches, the CGAE, CSTF, and ST-SVR have smaller deviation

slope with respect to the time horizon. While ST-QR-Lasso and ST-Copula have a significant

growth in their deviation slope after the 5-hr time horizon, the CGAE, CSTF, and ST-SVR show

a smooth deviation curve with a relatively small gradient. As shown in Fig. 3.9, CGAE shows

more reliable predictions in comparison with all spatiotemporal benchmarks. As the time horizon

expands, the superiority of CGAE becomes more noticeable. For the 6-hr ahead prediction, CGAE

obtains 4.35%, 3.88%, 3.72%, and 3.35% better reliability in terms of the deviation from the ideal

prediction compared to ST-SVR, ST-Copula, ST-QR-Lasso, and CSTF, respectively.
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3.4.2.2. Sharpness:

Sharpness is a complementary metric to the reliability, which evaluates the concentration of the

prediction distribution. The criterion shows how informative a forecast is by narrowing down the

predicted GHI values. Sharpness should be analyzed with respect to reliability, as high sharpness

does not necessarily show better prediction when the model has low reliability (high deviation in

Fig. 3.8 and Fig. 3.9). Sharpness is investigated using two performance metrics:

3.4.3. Prediction Interval Average Width (PIAW)

This metric, PIAWα, evaluates sharpness for the nominal coverage rate (1− 2α)× 100% by:

PIAWα =
1

N

N∑
n=1

|qα(n)− q1−α(n)| (3.22)

where qα(n) and q1−α(n) represent the α and 1− α prediction quantiles for the n -th test sam-

ple. Fig. 3.10 shows the average sharpness of 10%-90% nominal coverage rates normalized by

maximum observed GHI. As shown in this diagram, among temporal models, PP has the sharpest

intervals in all nominal coverage rates; however, as shown by Fig. 3.8 and Fig. 3.9, it has poor

reliability compared to other benchmarks especially when the horizon is expanded. Moreover,

ELM provides overly narrow quantiles leading to higher sharpness compared to CGAE. However,

such high sharpness does not contribute to forecast accuracy/reliability. Large amount of sharp-

ness might work in the case of clear sky when no significant uncertainty is present and GHI is

predictable with high accuracy; however, in other cases (e.g. when GHI is varying during a rainy

day), it would lead to poor performance as the model would neglect the risk of uncertainties in

GHI. CGAE provides medium sharpness which is not too high to lead to erroneously narrow quan-

tiles (as in the case of PP and ELM), and not too low to lose information about future GHI (as in

the case of KDE and QR).

Generally speaking, the spatio-temproal models obtain moderate sharpness values that are nei-

ther as high as KDE nor as low as PP. Among this category of models, ST-Copula is an exception

which provides prediction intervals even sharper than the PP. The sharpness metric shows that ST-
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Copula is likely to provide biased predictions that are over-confident. In practice, such confidence

can lead to poor performance since the reliability of ST-Copula is lower than the other spatiotem-

poral benchmarks. As shown by Fig. 9, the ST-QR-Lasso, CSTF, and ST-SVR provide similar

sharpness for 60% and 70% nominal coverage rates; however, for other coverage values, the pre-

diction intervals of ST-QR-Lasso, CSTF, and ST-SVR become too sharp while CGAE maintains

its moderate sharpness.

3.4.4. PDF Entropy

The sharpness of a forecast can be estimated using the entropy of the prediction PDF. Sharper

forecasts lead to smaller PDF entropies. Fig. 3.11 (a) shows the histogram of the entropies of all

temporal benchmarks for the 6-hr ahead prediction task. As shown in this plot, the majority of

forecasting PDFs for PP and ELM correspond to low values. The mean entropy of PP and ELM

are 2.77 and 3.69, respectively. The low entropy of PP is due to the consecutive clear days in the

testing set where the variance of the prediction PDF is small. Such small entropies/variances result

in overconfident predictions caused by the lack of knowledge about future GHI uncertainties. The

overly narrow prediction quantiles in ELM lead to low PDF entropies which degrade accuracy

since the uncertainties in the future GHI are disregarded by predictions less reliable than CGAE

(see Fig. 3.8 and Fig. 3.9). CGAE has moderate sharpness and medium entropy values with mean

5.15. KDE has high entropies with mean 6.77 and a small variance of 0.22 that result in high

uncertainty boundaries for the future GHI and less informative forecasts compared to CGAE and

ELM. In contrast to ELM and KDE, our CGAE model has entropies that are not too low (as in the

case of ELM) to disregard GHI uncertainties and not too high (as in the case of KDE) to provide

under-confident predictions.

Fig. 3.12 depicts the histogram of the entropies of all temporal benchmarks for the 6-hr ahead

prediction task. As shown in this diagram, ST-Capula obtains relatively small entropy which is

reflected by the over-confidence and large bias in the prediction PDFs of this model. On the

other hand, the CSTF leads to under-confident results with high entropies. The mean entropy of

CSTF is 7.26 which is 19.01%, 23.83%, and 29.06% higher than the ST-SVR, ST-QR-Lasso, and
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CGAE, respectively. This is mainly due to having high variance (high uncertainty) in consecutive

sunny days when predicting by CSTF. Such variance is degraded by ST-SVR, ST-QR-Lasso, and

CGAE as these models provide a better bias (larger bias) when they encounter multiple consecutive

sunny days in the test set. The moderate entropy obtained by CGAE shows that this model is not

too biased (as in the case of ST-Copula) to neglect GHI uncertainties in the dataset, and not too

uncertain (as in the case of CSTF) to provide uninformative predictions with high unreliability.

Figure 3.13. CRPS results of 30-min up to 6-hr ahead predictions.

3.4.4.1. Continuous Ranked Probability Score

CPRS is a metric evaluating the entire prediction distribution reflecting the deviations between

the CDF of the predicted and observed data. One can view CRPS as a metric combining reliability

and sharpness to provide a comprehensive performance evaluation. CRPS is computed by:

CRPS(F, v) =

∫ ∞
−∞

(F (x)− U(x− v))2dx

s.t. U(x) =


1 x ≥ 0

0 x < 0

(3.23)
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with the prediction CDF F and the Heaviside function U . The average CRPS of all benchmarks

for 30-min up to 6-hr ahead GHI forecast is depicted in Fig. 3.13. The smaller CRPS a model ob-

tains, the better the accuracy it provides. As shown in this plot, the ANN-based methodologies,

ELM and CAGE, outperform the temporal methods PP, QR, and KDE. ELM achieves 1.24% and

1.38% better CRPS on average over all time horizons compared to KDE and QR, respectively.

KDE has slightly better performance in comparison with QR for 30-min up to 2.5-hr ahead pre-

dictions. The better accuracy of KDE becomes more noticeable in the horizon range of 3 hr up to

4.5 hr. Similar superiority is reflected by the better reliability curve of KDE compared to QR in

Fig. 3.9. Among all temporal benchmarks, PP has the worst performance. This model has 1.77%

and 1.49% more CRPS on average for 6-hr prediction, compared to KDE and QR, respectively. As

the forecast horizon length grows, the CRPS of PP increases by larger amounts compared to other

benchmarks. This is due to low generalization capability and erroneously high sharpness (low en-

tropy as shown in Fig. 3.11) which results in unreliable predictions, especially when the weather

condition changes from sunny to cloudy since this approach suffers from the naı̈ve smoothness

assumption. As depicted in Fig. 3.13, CGAE shows better performance in comparison with all

temporal models because of its high reliability (shown by Fig. 3.8 and Fig. 3.9) and appropri-

ate sharpness (i.e., moderate PIAW and entropy in Fig. 3.10, Fig. 3.11 and Fig. 3.12). CGAE

outperforms ELM by 2.98% CRPS for hourly prediction, which is increased significantly for time

horizons of length more than 3 hours and reaches the 4.90% CRPS improvement for 6-hr ahead

predictions.

The spatiotemporal models generally have smaller CRPS due to modeling the spatial behavior

of GHI observations as well as the temporal characteristics. For instance, the ST-Copula leads

to 1.29% CRPS improvement compared to ELM for hourly predictions. Moreover, the ST-QR-

Lasso model obtains 3.29% better average CRPS over all time horizons compared to its temporal

version i.e. QR. While CSTF and ST-SVR obtain close CRPS curves especially for time horizons

longer than 4 hours, the ST-QR-Lasso significantly dominates with lower CRPS values. The better

performance of ST-QR-Lasso is mainly due to directly handling the high dimensionality and over-

fitting issues that characterize the use of large amounts of data. In fact, the Lasso technique is very
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Figure 3.14. Observed GHI data from June 25th to July 2nd.

Figure 3.15. Estimated solar irradiance on June 27th

Figure 3.16. Estimated solar irradiance on June 28th
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Figure 3.17. Estimated solar irradiance on June 29th

Figure 3.18. Estimated solar irradiance on July 2nd

Figure 3.19. Histogram of predicted GHI for July 2nd 12:30 PM
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useful to reduce the likelihood of overfitting for most practical applications where a large number

of observations are available. CGAE obtains 2.53% better CRPS in comparison with the ST-QR-

Lasso. Although both models use L1-regularization techniques to avoid overfitting, the CGAE

model obtains better accuracy due to providing a very large hypothesis space which leads to better

generalization capacity.

3.4.5. Qualitative Results

The probabilistic prediction of CGAE is investigated to show the capability of our model under

different weather conditions. Fig. 3.14 shows the GHI values of eight days, from June 25th to July

2nd in 2016, for a site near the Michigan Lake. As shown in this plot, the selected days contain

various weather conditions including sunny, partly cloudy, and overcast, in a short period of time.

June 25th and 26th are both sunny with high GHI, while the subsequent day, June 27th, is mostly

cloudy with many variations. The next day, June 28th is sunny with high GHI while June 29th is

overcast with very small irradiance. June 30th and July 1st are sunny, and the last day, July 2nd is a

combination of partly cloudy and sunny. This test case evaluates the performance of CGAE when

the weather changes dramatically from one day to the other, and within each day. As shown in Fig.

3.15-3.18, the prediction intervals of CGAE with 50% and 90% confidence rates follow the actual

GHI values with high accuracy resulting in good reliability. In Fig. 3.15, as the weather changes

from sunny to partly cloudy around 9:00, the confidence boundaries expand showing the increase

in the prediction uncertainty. In Fig. 3.16, June 28th has a very smooth GHI curve measured on

a clear sunny day, hence, the model’s uncertainty is very small. In Fig. 3.17-3.18 the weather has

significant changes during overcast in June 29th and partly cloudy and sunny conditions in July

2nd. As seen in these two figures, although the uncertainty is increased in such conditions, the

model still follows the observed GHI with high reliability. On July 2nd, at 12:30, the GHI jumps

drastically from 12% of maximum GHI, GHIMAX, to 86%. Fig. 3.19 shows the histogram of the

predicted GHI for this observation. As shown in this figure, CGAE could capture this jump more

reliably having heavier probability density around 85%-90% GHIMAX. However, ELM and KDE

assign a high probability to smaller values as these models are more affected by previous small
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measurements. Moreover, KDE does not provide enough sharpness for this example, hence, its

prediction cannot be informative. Having much higher generalization capability and being able to

leverage spatiotemporal information from GHI observations, our CGAE can capture uncertainties

in the solar data with higher accuracy and appropriate sharpness.

3.4.6. Running Time Analysis

As mentioned in Section IV-A, our proposed model, CGAE, is trained offline using the batch

gradient descent method. In the batch gradient descent with batch size k, the gradients of the error

function with respect to k training samples are aggregated in each batch at each training iteration;

therefore, increasing the batch size k would lead to an increase in the training speed. Fig. 3.20

depicts the effect of batch size on the training time of CGAE for the prediction tasks with different

time horizons. As shown in this figure, the running time decreases with the increase of batch size.

For instance, in the 1-hr ahead prediction task, k = 50 leads to a training time equal to 21.39 min,

while using k = 400 takes 19.90 min.

Fig. 3.20 also shows the effect of the forecast horizon in the training time of the proposed

model. As shown in this figure, for a fixed k, the training time increases as the time horizon is

extended. For instance, when k = 200 CGAE takes 20.33 min to train its parameters for the 1-hr

ahead prediction task, while the training time increases to 25.32 min for 6-hr ahead forecasts.

As discussed in Section III-D, CGAE uses a simple feed-forward approach during the testing

time; therefore, our model leads to fast predictions. The average testing time of CGAE for all

forecast time horizons is less than 0.35 sec; hence, the proposed approach can be effectively used

for all real-world applications.

3.5. Conclusions

A novel deep generative model, Convolutional Graph Auto-encoder, is presented for a new prob-

lem, nodal distribution learning in graphs. The model captures deep convolutional features from an

arbitrary graph-structured data, to learn the corresponding probability densities of nodes. Here, the

problem of spatiotemporal solar irradiance forecasting is presented as a graph distribution learn-
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Figure 3.20. Running time of the CGAE using various batch size values.

ing problem where each node of the graph represents a solar irradiance measurement site, while

each edge represents the distance between the sites. Using graph spectral convolutions, the spatial

features of the solar data are extracted, that are further used by an encoding and decoding ANN

to capture the distribution of future solar irradiance. Our deep learning model is used to provide

probabilistic forecasts for the National Solar Radiation Database. Simulation results show better

reliability, sharpness and Continuous Ranked Probability Score compared to recent baselines in

the literature.
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Chapter 4

Spatiotemporal Behind-the-Meter Load and PV Power Prediction via Deep Graph Dictionary

Learning

In recent years, with the rapid growth of rooftop photovoltaic (PV) generation in distribution

networks, power system operators call for accurate predictions of Behind-the-Meter (BTM) load

and PV generation. However, the existing prediction methodologies are incapable of quantifying

such BTM measurements as the smart meters can merely measure the net load time series. Mo-

tivated by this challenge, this chapter presents the spatiotemporal BTM load and PV Prediction

(ST-BTMLPVP) problem. The objective is to disaggregate the historical net loads of neighboring

residential units into their BTM load and PV generation, and predict the future values of these

unobservable time series. To solve ST-BTMLPVP, we model the units as a spatiotemporal graph

(ST-Graph) where the nodes represent the net load measurements of units and edges reflect the

mutual correlation between the units. A ST-Graph autoencoder (STGAE) is devised to capture the

spatiotemporal manifold of the ST-Graph, and a novel spatiotemporal graph dictionary learning

(STGDL) optimization is proposed to utilize the latent features of the STGAE to find the most sig-

nificant spatiotemporal features of the net load. STGDL utilizes the captured features to estimate

the historical BTM load and PV measurements, which are further used by a deep recurrent structure

to predict the future values of BTM load and PV generation at each unit. Numerical experiments

on a real-world load and PV dataset show the state-of-the-art performance of the proposed model

both for the BTM disaggregation and prediction tasks.

4.1. Introduction

The rapid increase in the penetration of renewable energy resources installed close to the cus-

tomers affects the realized load profile by the distribution network operators. Quantifying the

realized load plays a crucial role in determining the network operation strategies and allocating
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the generation capacities to serve the electricity demand [213]. Among other renewable generation

technologies, photovoltaic (PV) solar generation is the prominent generation resource that could be

installed behind the customers’ meter [187]- [29]. Rooftop solar panels reduce the energy costs by

decreasing the peak demand as well as the overall energy consumption, and improves the resilience

of energy supply in extreme weather conditions.

The variability and uncertainty in Behind-the-Meter (BTM) PV generation impose several chal-

lenges for the operation of the distribution network including the violations of voltage limits, fluc-

tuation in the voltage profile, reverse power flow, and the malfunction of protection devices in

distribution networks. Forecasting the BTM residential load profile with PV generation is crucial

to determine the operation decisions and handle the large variations in load and solar PV gener-

ation resources. Furthermore, incorporating demand response practices in distribution networks

requires an accurate understanding of the BTM load profile.

Earlier research on electricity demand prediction addressed the prediction of residential net

load (i.e., summation of BTM load and PV generation) in distribution networks using statistical

models. In this categorty, the linear and nonparameteric regression is used in [120,201] and [185].

This approach has a small computational burden due to its linear formulation; however, it is not

able to accurately model the high variations in net load time series. In [158], an autoregressive

integrated moving average (ARIMA) model is proposed and optimized by a particle swarm opti-

mization algorithm to obtain the optimal parameters for residential load prediction in distribution

networks. Furthermore, the authors of [93] incorporate hybrid optimization into the support vec-

tor regression (SVR) to improve the accuracy of SVR in short-term residential net load prediction.

Also, the authors of [156] proposed a novel strategy for automatic time series lag selection based on

SVRs, and applied their model for short-term predictions of electricity demand in residential units.

Gaussian Process Regression (GPR) [164] is another major class of methods for load forecasting

where a nonparametric Bayesian model computes the probability distribution of load magnitude

over all admissible functions that fit the load data. The study in [139] presents an enhanced ver-

sion of GPR that makes use of a hybrid structure with multiple Gaussian Processes to improve

the prediction accuracy of classic GPR. In this class of models, the research in [190] presents a
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probabilistic GPR algorithm with high reliability and sharpness for short-term residential load pre-

dictions. Also, the authors of [233] presented an integrated GPR that computes the joint probability

of load magnitude for multiple customers to address the load uncertainties caused by distributed

energy resources.

In recent years, the developments in artificial neural networks (ANNs) introduced novel ANN-

based load prediction approaches capable of modeling highly varying load time series and captur-

ing the uncertainties in load datasets. In this domain, the authors of [136] presented a combination

of wavelet decomposition and second-order gray ANNs to extract the nonlinear features of residen-

tial load measurements for short-term predictions. Also, a feedforward neural network is designed

in [178] to decompose the electricity demand of residential units into active and reactive loads, and

forecast their future values in a real-time fashion. In this group of models, an improved wavelet

ANN is proposed by [182] to decompose residential demand into its most significant components.

These components are further used by an extreme learning machine to predict the future load val-

ues.

Recent data-driven load prediction methodologies employ deep ANNs, which is a cutting-edge

family of ANNs that can train a large number of computational layers [85]. These models have high

generalization capability resulted from their large parameter space; thus, they can effectively model

large and frequent changes in load measurements. In this class of methods, the long short-term

memory (LSTM) network [98, 124, 125] is widely used as a deep recurrent model that can learn

complex temporal patterns from load datasets. In this line of research, gated recurrent units (GRUs)

[206, 245] are utilized as smaller versions of the LSTM network with less number of parameters

which would lead to better generalization capability and smaller probability of overfitting when

the number of training samples are limited.

The prediction of BTM load while considering BTM rooftop PV generation is a crucial task for

utilities to ensure a reliable and secure power system operation; However, since the smart meters

can merely measure the net load, determining the BTM load profile of the customer as well as the

BTM PV generation is challenging. Although recent net load prediction models [139, 164, 190,

233] provide accurate estimations for the future net load, they are unable to give a meaningful
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approximation of the BTM load and PV generation as they lack decomposition procedures. In

recent years, energy disaggregation algorithms employ decomposition techniques such as sparse

coding [171], dictionary learning (DL) [118], and hidden Markov modeling [55] to decompose

the net load of residential buildings into the load of appliances; however, the disaggregation and

prediction of BTM load and BTM PV generation is not addressed since these methodologies cannot

handle the highly nonlinear variations in PV generation measurements and provide a mapping

between the decomposed load signals and the future BTM load and PV generation.

4.1.1. chapter Contributions

This chapter presents and solves the Behind-the-Meter Load and PV Prediction (BTMLPVP)

problem as a new problem in the area of power systems. The problem is to disaggregate the

historical net load signal of a residential unit into its historical BTM load and BTM PV generation

values, and forecast the future BTM load and PV generation based on these estimations.

New studies have discovered a crucial correlation between the amount of load at a target res-

idential unit and the load of its surrounding houses [68]. In addition to load, the amount of PV

generation of a target house is shown to be highly correlated to the houses in its vicinity as the

solar radiation and cloud cover measurements have similar values in close regions inside the spa-

tial domain [129, 149]. In order to utilize these correlations to improve the BTMLPVP accuracy,

we extend the BTMLPVP problem to the spatiotemporal BTMLPVP (ST-BTMLPVP) where the

problem is solved for multiple neighboring residential units.

We cast the spatiotemporal BTMLPVP to a novel deep spatiotemporal graph dictionary learn-

ing (DeepSTGDL) problem, where the net load time series at each residential unit is considered as

a node of a spatiotemporal graph (ST-graph) while the edges reflect the correlations between the

net load measurements at the corresponding nodes. A new spatiotemporal graph autoencoder (ST-

GAE) is developed to observe the ST-graph and reconstruct its nodes and edges, hence, learning

the nonlinear spatiotemporal manifold of the net load data. Using ST-GAE, a novel optimization is

proposed for DeepSTGDL that extracts the most significant spatiotemporal net load patterns from

the ST-graph, and applies those patterns to disaggregate the net load time series into the historical
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BTM load and PV for each node. The presented optimization forecasts the future values of BTM

load and PV using the estimated historical BTM values in a deep recurrent fashion. The major

contributions of our work are:

1) The spatiotemporal BTMLPVP problem is defined and solved for the first time in the area of

power systems. The solution to this problem is very crucial for electricity utilities as it provides

an estimation for future BTM load and PV values which are not observable by utilities. Spa-

tiotemporal BTMLPVP is the first load disaggregation problem that takes into account the spatial

relationships between net load measurements.

2) A novel spatiotemporal graph autoencoder is designed to extract deep spatial and temporal

features from net load datasets. This deep learning model can be utilized to extract powerful spa-

tiotemporal features for a large variety of spatiotemporal applications in power systems including

wind and solar energy prediction.

3) The presented DeepSTGDL algorithm is the first dictionary learning algorithm that extracts a

dictionary of patterns from a spatiotemporal dataset. While the most recent studies in energy dis-

aggregation [61,76,118] and signal decomposition [174,228,256] merely compute a dictionary of

temporal patterns from the net load, we study spatiotemporal dictionary learning for the first time

in the domain of machine learning.

This chapter is organized as the following: Section 4.2 defines the new BTMLPVP problem and

its spatiotemporal extension. Section 4.3 presents our DeepSTGDL model that employs a novel

optimization to solve the spatiotemporal BTMLPVP problem. In Section 4.4, the deep learning

implementation of DeepSTGDL using ST-GAE is explained. Moreover, Section 4.4.3 shows the

formulations to optimize the presented deep learning model. Section 4.6 shows the numerical

results on a real-world dataset. Finally, the conclusions of this research are discussed in Section

4.7.

4.2. Problem Formulation

In this section, first, the Behind The Meter Load and PV Prediction (BTMLPVP) is introduced

as a novel problem in the area of power systems. Then, the problem is further expanded to a new
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spatiotemporal graph learning problem that we seek to solve in this study.

4.2.1. BTMLPVP Problem

Let us assume n residential units (houses) V = {vi}ni=1 in a wide area. For each unit vi that

consumesLit kW of electricity at time t and generates PV i
t kW of solar enegry at that time instance,

the net load NLit = Lit−PV i
t is measured by a smart meter. At each time instance t′ the electricity

supplier is able to observe NLit′; however, the BTM measurements including the BTM load Lit′

and BTM PV generation PV i
t′ are not accessible. Hence, the prediction of future BTM load values

Lit′+k (0 ≤ k) as well as future BTM PV generation PV i
t′+k (0 ≤ k) is a challenging problem.

To predict Lit′+k at time t′, one needs to first give an approximation of m + 1 historical loads

hL,it′ =
〈
Lit′−m, ..., L

i
t′−1, L

i
t′

〉
and learn a nonlinear mapping (prediction function) gL(hL,it′ ) =

Lit′+k.

Similarly, to estimate the future PV generation PV i
t′+k at time t′, we need to first estimate m + 1

historical PV generation values hPV ,it′ =
〈
PV i

t′−m, ..., PV
i
t′−1, PV

i
t′

〉
, and learn a nonlinear map-

ping gPV (hPV,it′ ) = PV i
t′+k. Therefore, we define the BTMLPVP problem as two major objectives:

4.2.1.1. Net load Disaggregation

For each unit i at time instance t′, the measured historical net load

hNL,it′ =
〈
NLit′−m, ..., NL

i
t′−1, NL

i
t′

〉
should be disaggregated into its two components, that is,

the BTM load hL,it′ and BTM PV generation hPV ,it′ .

4.2.1.2. Load and PV Prediction

For each unit i at time instance t′, when the historical measurements hL,it′ and hPV ,it′ are esti-

mated, one can learn the two nonlinear functions gL(.) and gPV (.) to compute the future BTM

energy consumption Lit′+k and PV generation PV i
t′+k for any forecast horizon 0 ≤ k.

Since the results of the net load disaggregation stage (i.e., hL,it′ and hPV ,it′ for all units 1 ≤ i ≤ n)

are directly used by the prediction stage, we seek to solve both problems simulteneously, hence,

avoiding suboptimal local estimations. In other words, we use the information obtained from
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the net load disaggregation stage to tune the prediction functions gL(.) and gPV (.). Also, we let

the information obtained from learning these functions to improve the net load disaggregation

accuracy.

4.2.2. Spatiotemporal BTMLPVP

We cast the BTMLPVP problem to a novel graph learning problem to simultaneously solve the

net load disaggregation as well as load and PV prediction problems in a spatiotemporal manner.

The idea is to model the n residential units at each time

instance t = t′ as a weighted undirected ST-graph Gt′ defined by a tensor of m + 1 graphs written

as Gt′ =
〈
Gt′−m, ..., Gt′−1, Gt′

〉
. Each undirected graph Gt =

〈
V,Et, Ft

〉
(1 ≤ t ≤ t′) represents

a snapshot of all units at time t. Gt has three elements: V = {vi}ni=1 is the set of n nodes where

vi represents the i-th residential unit; Et = {ei,jt }i,j=1,2,...,n is the set of edges corresponding to Gt

where each ei,jt shows the edge weight between vi and vj at time t. The edge weight ei,jt reflects

the correlation between the net load measurements hNL,it and hNL,jt by:

ei,jt =


0 if MI t(i, j) < τ

e−Euct(i,j) if MI t(i, j) ≥ τ

(4.1)

where MIt(i, j) is the mutual information between hNL,it and hNL,jt while Euct(i, j) is the Eu-

clidean distance between the two time series. As computed in (4.1), ei,jt is a function of the dis-

tance between the historical measurements when the MI is larger than a threashold τ , and zero

otherwise. Note that, we do not use load or PV power measurements to compute the correla-

tions between the units as these BTM measurements are not observed by the electricity provider.

Ft =
〈
F 1
t , F

2
t , ..., F

n
t

〉
is the tensor of features (measurements) at all nodes (units) where each

F i
t = NLit is the measured net load of vi at time t.

Similar to section II-A, here, the spatiotemporal BTMLPVP problem is to estimate the histor-

ical hL,it′ and hPV,it′ for all nodes vi ∈ V by observing the ST-graph Gt′ . Also, computing these

historical BTM measurements, we seek to predict the future BTM load Lit′+k and BTM PV power
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PV i
t′+k (0 ≤ k).

4.3. Deep Spatiotemporal Graph Dictionary Learning for ST-BTMLPVP

To solve the ST-BTMLPVP problem presented in Section II-B, one needs to encode the highly

nonlinear spatiotemporal patterns of the input data Gt′ (i.e., F i
t for all 1 ≤ i ≤ n and t′ −m ≤ t ≤

t′). Also, we need to compute nonlinear mappings that transform these patterns into an estimation

for hL,it′ and hPV,it′ , as well as Lit′+k and PV i
t′+k (0 ≤ k).

To address this problem, first, we propose a classic dictionary learning solution. Then, the

drawbacks of classic DL are analyzed, which motivate us to propose our DeepSTGDL model as a

novel solution to ST-BTMLPVP.

Figure 4.1. Classic DL and Deep Spatiotemporal Graph Dictionary Learning for ST-graph
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4.3.1. Classic DL: Motivations and Drawbacks

As shown in Section II-A, at each time instance t′, each node vi (i = 1, 2, ..., n) in the ST-

graph Gt′ contains a (m + 1)-dimensional net load measurement vector F i = hNL,it′ . To capture

and encode the spatiotemporal net load patterns of Gt′ , one can compute a dictionary of K atoms

(patterns) D =< d1, d2, ..., dK >∈ R(m+1)×K using:

F i ' F̂ i = D ai =
K∑
k=1

dka
i
k (4.2)

where ai ∈ RK is a sparse coefficient vector that determines the contribution of each pattern dk in

the construction of feature vector F̂ i ' F i for the i-th node. ai can be viewed as a K-dimensional

overcomplete sparse code that can efficinetly represent F i. Therefore, to solve the ST-BTMLPVP,

we define the nonlinear function gL(ai) to estimate hL,it′ , and gPV (ai) to estimate hPV ,it′ . Moreover,

two nonlinear functions fL(gL(ai)) and fPV (gPV (ai)) are defined to predict PV i
t′+k and Lit′+k for

any 0 < k, respectively.

To compute the optimal dictionary D∗ as well as optimal coefficient vectors ai,∗ for all i =

1, 2, ..., n, one can solve the optimization:

D∗, {ai,∗}ni=1 = argmin
D,ai

1

n

n∑
i=1

(
||F i −D ai||22+λ||ai||1

)
s.t. ||dk||22 ≤ 1 ∀ 1 ≤ k ≤ K

(4.3)

where the first term of the summation is computing the dictionary encoding error while the second

term adds a regularization loss with coefficient 0 < λ to ensure the sparsity of the computed code

ai,∗ for all nodes i. The condition ||dk||22≤ 1 restricts the magnitude of the dictionary atoms to

avoid naive solutions with arbitrarily small ai.

Fig. 4.1(a) shows the encoding results of the i-th and j-th node of Gt′ using the classic DL in

(4.3). Three atoms {d̃k}3
k=1 are learned to estimate F̂ i ' F i and three atoms {d̃k}6

k=4 are captured

to obtain F̂ j ' F j . As shown in this figure, the resulting estimations of classic DL (i.e., F̂ i and

F̂ j) cannot accurately approximate their true values F i and F j due to two reasons:
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4.3.1.1. Linearity assumption of D

The space S of {F i}i=1,2,...,n is highly nonlinear while the dictionary formulations in (4.2) and

(4.3) are linear. Therefore, D and ai are incapable of modeling the nonlinear net load data in

ST-graph Gt′ . In this study, we overcome this issue by devising a novel nonlinear spatiotemporal

dictionary learning model for ST-BTMLPVP.

4.3.1.2. Naive correlation structure

The DL model presented in (4.2) and (4.3) ignores the correlations between Gt′’s nodes encoded

in the edge weights {Et}t
′

t=t′−m. In this study, we seek to define a novel model that considers these

correlations to improve the accuracy of ST-BTMLPVP.

4.3.2. DeepSTGDL Model: Objectives

To address the drawbacks of classic DL, we present DeepSTGDL as a novel graph pattern

recognition model for the ST-BTMLPVP problem. Fig. 4.1(b) shows the overall structure of

the proposed model. The idea is to learn a dictionary D of net load patterns in Gt′ in the latent

space of a spatiotemporal graph autoencoder. To solve the ST-BTMLPVP, our model has four

objectives:

4.3.2.1. Deep Spatiotemporal Graph Feature Learning

To capture the spatiotemporal patterns of net load measurements in Gt′ , we define a new ST-

GAE that observes Gt′ and reconstructs it, hence, capturing meaningful patterns from the net load

data stored in Gt′ . Learning a deep encoding function fenc(Gt) = Zt ∈ Rn×dh , the ST-GAE repre-

sents Gt′ =
〈
Gt′−m, ..., Gt′−1, Gt′

〉
by a sequence of latent matrices Φ =

〈
Zt′−m, ..., Zt′−1, Zt′

〉
.

Each i-th row of Zt denoted by Zi
t ∈ Rdh is the extracted spatiotemporal feature corresponding

to the i-th node of the t-th snapshot Gt. At each time t ∈ [t′ − m, t′], an edge decoder fe(Zt)

observes the latent code Zt = fenc(Gt) and computes an adjacency estimation Êt ≈ Et while a

deep node decoder fn(Zt) estimates Gt’s node feature matrix F̂t ≈ Ft. This encoding-decoding

architecture helps the ST-GAE to learn highly nonlinear spatiotemporal latent features Φ of Gt′ that
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are powerful enough to reconstruct Gt′ .

4.3.2.2. Spatiotemporal Dictionary Learning

We compute Z = 1
m+1

∑t′

t=t′−m Zt as an average of latent matrices Zt over the entire historical

time window t ∈ [t′ − m, t′]. Each i-th row Zi ∈ dh is an encoded feature corresponding to

the i-th node vi. For all Zi (1 ≤ i ≤ n), a dictionary D = [d1, d2, ..., dK ] ∈ Rdh×K with a

sparse coefficient vector ai ∈ RK is computed to capture the significant spatiotemporal patterns

of the data F i (1 ≤ i ≤ n) stored in Gt′ . Similar to (4.2), here, the i-th node is encoded by

Ẑi = D ai ≈ Zi. Fig. 4.1(a) depicts the dictionary atoms {dk}3
k=1 and {dk}6

k=4 used to compute

Ẑi ≈ Zi and Ẑj ≈ Zj , respectively. As shown in this figure, the dictionary estimations Ẑi and

Ẑj are closer to their target values Zi and Zj compared to the classic DL since D is computed

in a linear transformed space T using a deep learning transformation fenc, rather than the original

nonlinear ambient space S of the raw data F i (1 ≤ i ≤ n).

4.3.2.3. Net Load Disaggregation

As shown by (4.2), each ai is a compressed overcomplete sparse code to represent a node

vi. Hence, the two functions gL(F i, ai) = ĥL,it′ and gPV (F i, ai) = ĥPV ,it′ are learned to compute

estimations of the historical BTM load and PV measurements, ĥL,it′ ≈ hL,it′ and ĥPV ,it′ ≈ hPV ,it′ , for

all valid i, respectively.

4.3.2.4. Load and PV Prediction

Two nonlinear recursive functions fL(ĥL,it′ ) and fPV (ĥPV ,it′ ) are respectively defined to predict

Lit′+k and PV i
t′+k for all valid i and forecast horizon 0 < k.
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4.3.3. DeepSTGDL Model: Optimization

To simultaneously fulfill the four DeepSTGDL objectives presented in Section III-B, we pro-

pose a novel optimization:

min
D,A,fenc,fe,fn,
gL,gPV ,fL,fPV

J =

Jdic + λeJe + λnJn + λLJL + λPV JPV

+ λpredL JpredL + λpredPV J
pred
PV



=

 1

n

n∑
i=1

(
|| 1

m+ 1

t′∑
t=t′−m

f ienc(Gt)︸ ︷︷ ︸
Zit

−D ai||22+λ||ai||11
)

+ λe ·
1

m+ 1

t′∑
t=t′−m

||Et − fe(Zt)||2F

+ λn ·
1

m+ 1

t′∑
t=t′−m

||Ft − fn(Zt)||2F

+ λL ·
1

n

n∑
i=1

||gL(F i, ai)− hL,it′ ||
2
2

+ λPV ·
1

n

n∑
i=1

||gPV (F i, ai)− hPV ,it′ ||
2
2

+ λpredL · 1

n

n∑
i=1

||fL(ĥL,it′ )− Lit′+k||22

+ λpredPV ·
1

n

n∑
i=1

||fPV (ĥPV ,it′ )− PV i
t′+k||22


s.t. ||dk||22≤ 1 ∀ 1 ≤ k ≤ K

(4.4)

where A = [a1, a2, ..., an] ∈ RK×n is the matrix of sparse coefficient vectors. J is the total

error function that we seek to minimize by training several deep nonlinear functions including the

encoder fenc, edge decoder fe, node decoder fn, historical load approximator gL, historical PV

approximator gPV , future load approximator fL, and future PV approximator fPV .
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The first error metric Jdic is the ST-graph dictionary learning error that computes the L2-norm

distance ||.||2 between each vi’s encoded latent feature Zi and the dictionary learning approxima-

tion Ẑi = D ai for node vi. Jdic is minimized to decrease the distance between each Zi and its

DL approximation Ẑi. Note that, similar to the classic DL in (4.3), the L1-norm ||.||1 of each ai is

calculated to avoid trivial solutions with arbitrarily small dictionary atoms. Minimization of Jdic

not only leads to the optimization of D and A but also finds the optimal encoder fenc.

Je is the edge decoding error term that computes the squared Frobenius norm ||.||2F of the

distance between the estimated adjacency matrix Êt = fe(Zt) and the actual adjacency Et at

time t. Jn is the node decoder error defined as the average distance between the feature vector

Ft at time t and its estimated value F̂t = fn(Zt). JL is the historical load disaggregation error

that computes the distance between the estimated historical load gL(F i, ai) and the actual load

history hL,it′ . Similarly, JPV computes the PV disaggregation error. The load prediction error

function JpredL computes the squared L2-norm of the distance between the estimated future load

L̂it+k = fL(ĥL,it′ ) and the actual value Lit′+k while the PV prediction error JPV computes the error

of the PV prediction PV i
t′+k averaged over all nodes vi (1 ≤ i ≤ n).

4.4. DeepSTGDL: Deep Learning Implementation

To optimization (4.4), one needs to define the functions fenc, fe, fn, gL, gPV , fL, fPV and train

them (optimize their parameters) using the total error J . In this section, we present a novel ST-

GAE that implements fenc, fe, as well as fn. Also, we present the neural network architectures of

the disaggregation functions gL and gPV as well as the prediction functions fL and fPV .

4.4.1. Spatio-Temporal Graph Autoencoder (fenc, fe, and fn)

As shown in Fig. 4.2, the proposed ST-GAE is an encoding-decoding neural architecture that

represents each Gt (t′ − m ≤ t ≤ t′) by Zt using a novel Spatio-Temporal Long Short Term

Memory (ST-LSTM) that can simulteneously capture the spatial and temporal patterns of Gt. The

resulting patterns are further decoded by fn and fe to reconstruct Gt, hence, learning powerful Zt

that is able to compute the original data Gt. In the next sections, we use Zt to estimate the desired
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variables hL,it′ , hPV ,it′ , Lit′+k, and PV i
t′+k.

4.4.1.1. Graph Encoder fenc

As explained in section III-B and shown in Fig. 4.2, at each time t′ − m ≤ t ≤ t′, fenc(Gt)

observes the snapshot Gt and generates Zt. Let us assume we are at time t. To extract the spatial

features of snapshot Gt, the graph feature matrix F̃t = F T
t ∈ Rn×1 is filtered by a non-parametric

kernel K(θ) with filtering parameters θ ∈ Rn in the Fourier domain using:

Ot = K(θ) ~G F̃t = K(θ)UΛUTFt = UK(Λ)UTFt (4.5)

where θ is the n-dimensional vector of Fourier coefficients and U ∈ Rn×n is the eigenvector

matrix of Gt’s normalized graph Laplacian L = In − D−
1
2EtD

− 1
2 = UΛUT ∈ Rn×n. In is

the n-dimensional Identity matrix, Λ ∈ Rn×n is the diagonal matrix of L’s eigenvalues, while

D ∈ Rn×n is Gt’s degree matrix defined by D(i, i) =
∑

j e
i,j
t with D(i, j) = 0 for all i 6= j. One

can compute the graph Fourier transformation of F̃t by UT F̃t. As shown in (4.5), one can represent

the filter K(θ) as a function of the eigenvalues of L; therefore, the filter is rewritten as K(Λ). The

matrix multiplication of (4.5) takes O(n2) time complexity and the eigendecomposition of L leads

to O(n3) time complexity; hence, to avoid computational burden for large n, we estimate K(Λ)

using the Chebyshev Polynomials Pj(x):

K(Λ) ≈
J∑
j=0

ωjPj(
2

λmax
Λ− In) (4.6)

where λmax is the largest eigenvalue of the Laplacian L while ω ∈ RJ is the vector of Chebyshev

coefficients and Pj is the j-th Chebyshev polynomial defined by:

Pj+1 = 2xPj(x)− Pj−1(x) (j > 1)

P0(x) = 1, P1(x) = x
(4.7)
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Having (4.6), the convolution Ot in (4.5) can be computed using the scaled Laplacian matrix ζt for

each Gt:

Ot = K(θ) ~G F̃t ≈
J∑
j=0

ωjPj(ζt)F̃t

ζt =
2

λmax
L− In

(4.8)

Note that (4.8) is a J-ordered polynomial with Chebyshev terms Pj (1 ≤ j ≤ J); hence, one

can view (4.8) as a J-localized formulation. In other words, at each time t, to extract the spatial

features of vi (i.e. F i
t ), the filtering operation ~G observes the data F j

t at all nodes vj that are J

nodes away from vi according to the adjacency matrix Et.

Figure 4.2. Structure of the Proposed Spatiotemporal Graph Autoencoder

Our graph encoder fenc is a novel Spatio-Temporal Long Short-term Memory Network (ST-

LSTM) that incorporates the convolution filter ~G of (4.8) with LSTM to simulteneously capture

the spatial as well temporal featurs ofGt. At each iteration t ∈ [t′−m, t′], the ST-LSTM observes a

snapshotGt =< V,Et, Ft > and computes the latent spatio-temporal feature matrix Zt = fenc(Gt)

104



using:

xt = F̃t

it = σ(xtWxi +
J∑
j=0

ωi,zj Pj(ζt−1)Zt−1 + bi)

ft = σ(xtWxf +
J∑
j=0

ωf,zj Pj(ζt−1)Zt−1 + bf )

c̄t = tanh(xtWxc +
J∑
j=0

ωc,zj Pj(ζt−1)Zt−1 + bc)

ct = ft �
( J∑
j=0

ωcjPj(ζt−1)ct−1

)
+ it � c̄t

ot = σ(xtWxo +
J∑
j=0

ωo,zj Pj(ζt−1)Zt−1 + bo)

Zt = ot � tanh(ct)

(4.9)

where σ(.) and tanh(.) are the sigmoid and tangent hyperbolic functions, respectively. At each

iteration t, the ST-LSTM observes input xt = F̃t and computes the input gate signal it ∈ Rn×dh

using a sigmoid with weight Wxi ∈ Rdh , convolution coefficients ωi,z1≤j≤J ∈ R, and bias bi ∈

Rn×dh . Also, the forget gate ft is computed as a sigmoid with weight Wxf ∈ Rdh , convolution

coefficients ωf,z1≤j≤J ∈ R, and bias bf ∈ Rn×dh . While the input gate it decides the amount of

information to store in the ST-LSTM’s temporal memory ct ∈ Rn×dh at time t, the forget gate ft

represents the information ct can forget. ωc1≤j≤J ∈ R are the convolution filtering parameters of

the memory unit. ST-LSTM’s memory is updated by the update matrix c̄t ∈ Rn×dh with weight

Wxc ∈ dh, filtering coefficients ωc,z1≤j≤J ∈ R, and bias bc. The output ot ∈ Rn×dh is computed as

a sigmoidal function with output weight Wxo ∈ Rdh , filtering coefficients ωo,z1≤j≤J , and bias bo. At

each iteration t, the temporal feature matrix Zt ∈ Rn×dh is computed as a function of ST-LSTM’s

temporal output ot and the memory ct.
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4.4.1.2. Edge Decoder fe

The edge decoder Êt = fe(Zt) estimates the weight at each edge ei,jt (1 ≤ i, j ≤ n). Thus, Êt

is probabilistically defined by:

P (Êt) =
n∏
i=1

n∏
j=1

P (Êi,j
t |Zi

t , Z
j
t )

P (Êi,j
t = 1|Zi

t , Z
j
t ) = σ(Zi

t ∗ Z
j
t

T
)

(4.10)

where Êi,j
t is the element at i-th row and j-th column of Êt.

4.4.1.3. Node Decoder fn

The node decoder F̂t = fn(Zt) is modeled by a deep Rectified Linear Unit (ReLU) neural

network with N activation layers. The neural network observes each row Zi
t (1 ≤ i ≤ n) as its

input, and estimates the corresponding node feature F i
t . Thus, for each row Zi

t (1 ≤ i ≤ n) ∈ Rdh ,

the input layer is defined as O0 = Zi
t while Each layer 1 ≤ l ≤ N is defined by:

Ol = ReLU(W l ∗Ol−1 + bl) (4.11)

where ReLU is the Rectified Linear Unit function while W l and bl are the weight and bias of the

l-th layer. The output layer ON = F̂ i
t is an estimation of the true F i

t ; hence, fn computes F̂t ≈ Ft

in n steps. At each step i, the input O0 = Zi
t ∈ Rdh is fed to the neural network and ON = F̂ i

t ∈ R

is computed as the output.

4.4.2. Disaggregation Functions gL and gPV

Both gL(F i, ai) and gPV (F i, ai) are implemented as deep ReLU neural networks with NL and

NPV number of activation layers with similar formulation in (4.11). The input layer of gL(F i, ai)

is defined by O0 =< F i, ai >∈ Rm+K with output ONL = ĥL,it′ ∈ Rm. Similarly, the input of

gPV (F i, ai) is O0 =< F i, ai >∈ Rm+K and the output vector is defined as ONPV = ĥPV ,it′ ∈ Rm.
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4.4.3. Prediction Functions fL and fPV

Both load prediction fL and PV prediction fPV functions can be implemented by any recurrent

neural network. Here, to provide high generalization while avoiding the overfitting problem, we

implement fL by a Gated Recurrent Unit (GRU) with input ĥPV ,it′ and output L̂it′+k ≈ Lit′+k.

Similarly, fPV is implemented by a GRU with input ĥPV ,it′ and output P̂ V
i

t′+k ≈ PV i
t′+k.

4.5. DeepSTGDL: Optimization Algorithm

This section provides an optimization algorithm to solve the DeepSTGDL optimization pro-

posed in (4.4) using functions implemented in Section IV. Algorithm 1 trains D, A, as well as all

parameters of fenc , fe, fn, gL, gPV , fL and fPV to obtain the optimal objective J in (4.4). The

three major steps of this algorithm are mathematically defined in this section.

Algorithm 1: DeepSTGDL Optimization

Input: Spatio-Temporal Graph Gt′ , Historical load measurement {hL,it′ }ni=1, Historical PV
measurement hPV ,it′

n
i=1, future load {Lit′+k}ni=1, and future PV power {PV i

t′+k}ni=1

while While D and A not converged do

1) Deep Learning: Update functions fenc , fe, fn, gL, gPV , fL and fPV Using GD in
(4.12) and (4.13).

2) Dictionary Learning: Find the optimal dictionary D∗ using (4.19).

3) Sparse Coefficient Matrix Learning: Find the optimal sparse coefficient matrix A∗

using (4.22).
end

4.5.1. Deep Learning Optimization

In this step, having a fixed D and A, the ST-GAE functions fenc, fe, and fn are simultaneously

trained with the disaggregation neural networks (i.e., gL and gPV ) in addition to the prediction

GRUs (i.e., fL and fPV ). As all functions are implemented by deep neural networks in Section

IV, one can efficiently employ the gradient descent method to train their parameters. For instance,

to update Wxo in (4.9) at each time instance t, the gradient of objective J w.r.t this parameter is
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computed as:

∂J

∂Wxo

=
∂J

∂Zt
× ∂Zt
∂ot
× ∂ot
∂Wxo

=
2

n

n∑
i=1

(|| 1

m+ 1

Zi
t −D ai||2) · (tanh(cit)) · (oit(1− oit)) · xit


(4.12)

where oit and xit are the i-th row of xt and ot respectively. The GD updates Wxo by:

W new
xo � W old

xo − η
∂J

∂Wxo

(4.13)

where η ∈ [0, 1] is GD’s learning rate. All deep neural network parameters are updated using GD

with formulations similar to 4.12 and 4.13.

4.5.2. Dictionary Optimization (Learning D)

To update D, the functions fenc , fe, fn, gL, gPV , fL and fPV as well as the sparse matrix A are

fixed, The optimizaiton (4.4) is rewritten as a least squares problem with quadratic constraints:

min
D

J̃ = Jdic =
1

n

n∑
i=1

(
|| 1

m+ 1

t′∑
t=t′−m

f ienc(Gt)−D ai||22

=
1

n

n∑
i=1

(
||Zi −D ai||22 s.t. ||dk||22≤ 1 ∀ 1 ≤ k ≤ K

(4.14)

To efficiently solve (4.14), we apply the Lagrange multipliers. Let us define the Lagrangian as:

(D,µ) =
1

n

n∑
i=1

||Zi −Dai||22+
K∑
k=1

µk(||dk||22 − 1) (4.15)

108



where {µk ≥ 0}Kk=1 are nonnegative Lagrangian multipliers. To find the analytic solution of D, we

solve ∂L(D,µ)
∂D

= 0; hence, the optimal dictionary D∗ is computed by:

D = ZAT (AAT + Ψ)−1

Z = [f 1
enc(Gt), f

2
enc(Gt), ..., f

n
enc(Gt)]

= [Z1, Z2, ..., Zn] ∈ Rdh×n

Ψ = n diag(µ) ∈ RK×K

(4.16)

Thus, one can write the Lagrangain dual function as:

Ldual(µ) = min
D
L(D,µ)

=
1

n

n∑
i=1

||f ienc(Gt)−ZAT (AAT + Ψ)−1ai||22

+
K∑
k=1

µk(||ZAT (AAT + Ψ)−1uk||22−1)

(4.17)

where uk ∈ RK is the k-th unit vector. To solve (4.17), we maximize the Lagrangaian dualLdual(µ)

w.r.t the variables {µk}Kk=1 using GD similar to the update rule in (4.13). The gradient of Ldual(µ)

w.r.t any µk (1 ≤ k ≤ K) is computed by:

∂Ldual(µ)

∂µk
= ||ZAT (AAT + Ψ)−1uk||22−1 (4.18)

Computing the optimal Lagrangian multipliers µ∗ =< µ∗1, µ
∗
2, ..., µ

∗
k, ..., µ

∗
K >, we calculate the

optimal dictionary D∗ by:

D∗ = ZAT (AAT (AAT + Ψ∗)−1

Ψ∗ = n diag(µ∗) ∈ RK×K
(4.19)
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4.5.3. Sparse Matrix Optimization (Learning A)

To obtain the optimal sparse matrix A∗ for a fixed D, fenc , fe, fn, gL, gPV , fL and fPV , we

rewrite the optimization (4.4) as:

ai,∗ =ai
¯̄J =

1

n

n∑
i=1

(
|| 1

m+ 1

t′∑
t=t′−m

f ienc(Gt)−D ai||22

+ λ||ai||
)

=ai
1

n

n∑
i=1

(
||Zi −D ai||22

A∗ = [a1,∗, a2,∗, ..., an,∗]

(4.20)

To solve this l1-regularized problem for each ai, the derivative of ¯̄J is computed by the epsilon-l1

norm technique:
∂ ¯̄J

∂ai
= −2DT (f ienc(Gt)−D ai) + λ Ω ai

Ωi,i =
K∑
j=1

((ai(j))2 + ε)−
1
2 with ε � 0

(4.21)

where Ω ∈ RK×K is a diagonal matrix with diagonal elements Ωi,i (i = 1, 2, ..., K). The optimal

ai,∗ (i = 1, 2, ..., n) is computed by:

∂ ¯̄J

∂ai
= 0⇒ ai,∗ =

DTD +
λ

2
Ω

−1

DTfenc(Gt)
i (4.22)

4.6. Numerical Experiments

4.6.1. Dataset

The Pecan Street dataset [2] provided by the Dataport database contains 15-min behind-the-

meter load and PV generation measurements of n = 100 homes in Texas in 2017 and 2018. 80%

of the 2017 data are used to train the model while the rest is considered as the validation data and

the 2018 data is used for testing.
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4.6.2. Performance Metrics

4.6.2.1. Load and PV disaggregation metrics

For each home 1 ≤ i ≤ 100, at each time t = t′, the DeepSTGDL model estimates the

historical load hL,it′ by ĥL,it′ and the historical PV power hPV,it′ by ĥPV,it′ . To show the performance

of the proposed model, we compute the Root mean square (RMSE), Mean Absolute Error (MAE),

as well as the Mean Absolute Percentage Error (MAPE) of ĥL,it′ by:

RMSE =

√√√√ 1

n

n∑
i=1

(
1

m+ 1
||hL,it′ − ĥ

L,i
t′ ||22)

MAE =
1

n

n∑
i=1

1

m+ 1
||hL,it′ − ĥ

L,i
t′ ||1

MAPE =

100

n

n∑
i=1

1

m+ 1
||h

L,i
t′ − ĥ

L,i
t′

hL,it′
||1

%

(4.23)

The RMSE, MAE, and MAPE of ĥPV,it′ is computed using similar formulations.

4.6.2.2. Load and PV prediction metrics

For each home i, at each time t = t′, DeepSGDL estimates the future load Lit′+k by L̂it′+k and

the future PV power PV i
t′+k by P̂ V

i

t′+k. We compute the RMSE, MAE, as well as MAPE of these

estimations w.r.t their true values using the same formulation in (4.23).

4.6.3. Experimental Settings

The model is implemented on a computer system with NVIDIA GTX 1080 Ti graphics card

and Intel Core i7-7700K Quad-Core 4.2 GHz processor. The method is designed using Python 3

with Keras package using Tensorflow 1.13.1 backened, CUDA 10.0, and cuDNN 7.3 libraries.
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Figure 4.3. Average validation MAPE(%) for hourly load and PV prediction

4.6.4. Validation Resutls

To find the optimal values of hyperparameters, the model is evaluated on different configura-

tions of the temporal window length m ∈ [10, 40], number of dictionary atoms K ∈ [30, 150], la-

tent feature dimension dh ∈ [10, 60], error regularization coefficients λ, λe, λn, λL, λPV , λ
pred
L , λpredPV ∈

[0.1, 0.9], node decoder depth N ∈ [2, 6], load disaggregation depth NL ∈ [2, 6], and PV disag-

gregation depth NPV ∈ [2, 6]. The configuration with the least validation MAPE computed in

(4.23) is considered as the optimal settings. As shown in Fig. 4.3, the configuration with m = 25,

K = 80, and dh = 20 leads to the least MAPE for hourly predictions (i.e., k = 4). Larger param-

eters lead to the overfitting problem while smaller values decrease the generalization capacity of

the model, hence increasing the validation error. Furthermore, the optimal configuration is shown

to haveN = 4,NL = 3, andNPV = 4. Larger number of layers would damage the generalization

accuracy while lower numbers lead to poor computational capability for the estimation of load and

PV features. The optimal regularization coefficients are λ = 0.40, λe = 0.25, λn = 0.25, λL =

0.30, λPV = 0.35, λpredL = 0.30 and λpredPV = 0.40.
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4.6.5. Test Results

4.6.5.1. Net Load Disaggregation Results

We compare DeepSTGDL with recent signal disaggregation benchmarks including the Sea-

sonal Trend with Loess (STL) [229], K-Singular Value Decomposition (K-SVD) [155], Powerlet-

based Energy Disaggregation (PED) [61], Nonlinear Dictionary Learning (NDL) [82], as well as

the Temporal Dictionary Learning (TDL) [118]. Also, we consider the Classic Dictionary Learning

(CDL) presented in Section III-A as a baseline to show the advantages of the presented approach

in the disaggregation of net load. Table I contains the RMSE, MAE, as well as MAPE resutls of

load and PV disaggregation for all disaggregation benchmarks. As shown in this table, the dic-

tionary learning approachs such as CDL, PED, NDL, TDL, and STGDL provide lower error rates

compared to the STL and K-SVD due to capturing more complex sparse patterns from the input

net load data. While CDL and PED seek to find linear dictionaries in the original space of the

net load, NDL captures dictionary atoms in the latent space of an autoencoder, hence leading to a

better disaggregation accuracy. NDL provides 8.33% and 12.93% better MAPE compared to CDL

for load and PV disaggregation tasks, repsectively. Moreover, it leads to 4.88% less MAPE for

load disaggregation and 10.45% less PV disaggregation MAPE compared to the PED. The TDL

applies a deep recurrent autoencoder instead of the classic feed-forward autoencoding approach

in NDL, hence outperforming NDL by 1.34% MAPE in load estimation and 0.99% MAPE in PV

power estimations.

As shown in Table I, our proposed STGDL method obtains the best load and PV disaggregation

accuracy compared to all benchmarks. STGDL shows 19.37% better MAPE in load estimation, and

17.38% better MAPE in PV power calculations. The superiority of the proposed method compared

to recent dictionary learning and signal decomposition approaches is due to understanding the

spatial correlations of load and PV data measured in multiple locations while learning a highly

nonlinear set of temporal net load patterns using a deep recurrent formulation. Fig. 4.4 depicts the

net load disaggregation results of STGDL for house 6248 from March 31st to April 2nd, 2018. As

shown in this figure, the proposed model can accurately estimate the historical load and PV energy.
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The maximum error for load estimation is 0.6423 kW and the maximum PV estimation error is

0.5030 kW .

Table 4.1. Net Load disaggregation Error Metrics

Disaggregation Errors

Methods
Load PV Power

RMSE MAE MAPE RMSE MAE MAPE
STL 0.5209 0.4187 12.2989 0.3797 0.2618 9.1076

K-SVD 0.4523 0.3508 10.0795 0.3218 0.2391 7.0904

CDL 0.3934 0.3310 9.0309 0.3076 0.2369 7.0673

PED 0.3156 0.2769 8.7032 0.2510 0.1838 6.8712

NDL 0.2393 0.2084 8.2786 0.1850 0.1369 6.1533

TDL 0.2184 0.1712 8.1677 0.1652 0.1323 6.0924

STGDL 0.1352 0.0828 6.5853 0.0971 0.06321 5.0336

4.6.5.2. Load and PV Prediction Results

To assess the prediciton performance of STGDL, we compare the load and PV prediction re-

sults with state-of-the-art prediction benchmarks such as the Convolutional Graph Autoencoder

(CGAE) [112], Deep Residual Network (DRN) [33], Long Short-Term Memory Netowrk [98],

Gated Recurrent Unit [232], and Support Vector Regression (SVR) [241].

Table II compares the RMSE, MAE, and MAPE results of STGDL with all benchmarks for 1-

hr ahead load and PV prediction. As shown in this table, GRU leads to a better accuracy compared

to the SVR due to taking into account the temporal structures of the load and PV data. Compared

to GRU, the LSTM has 3.43% and 9.49% better MAPE for load and PV predictions, respectively.

The better accuracy is due to the larger parameter space of LSTM which leads to higher general-

ization capacity compared to the GRU. As shown in Table II, the DRN shows a better performance

compared to the LSTM with 3.96% and 4.36% less MAPE for load and PV signals, respectively.

The CGAE contains a convolutional graph autoencoder that captures powerful spatiotemporal fea-

tures from the load and PV measurements. In this study, CGAE outperforms DRN by 4.23% in

load MAPE and 11.13% in PV MAPE due to its larger generalization capacity as well as better
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understanding of spatial relationships between the residential units. The proposed STGDL model

outperforms all benchmarks with a significant 12.23% load prediction MAPE improvement and

18.75% PV prediction MAPE improvement over the state-of-the-art CGAE model. Fig. 4.5 shows

the 1-hr ahead prediction results of the proposed method for house 6248 from June 10th to 12th,

2018. As shown in this plot, STGDL can effectively follow the actual patterns of future load and

PV data with 1.6445 kW and 0.5763 kW maximum error for load and PV energy, respectively.

Fig. 4.6 shows the changes in load and PV prediction MAPE with respect to the changes in

the horizon length. As shown in this diagram, the MAPE is generally increased for all bench-

marks with the increase of horizon length. As the load and PV MAPEs of CGAE are respectively

increased by 7.16% and 4.42% from 1-hr to 24-hr horizons, we observe a slight increase rate of

2.91% for load and 2.50% for PV predictions corresponding to the STGDL model. While SVR,

GRU, LSTM, DRN, and CGAE show a large rate of MAPE increase after 6-hr load and 2-hr

PV predictions, the proposed STGDL model shows a small increase rate which reflects the high

accuracy and robustness of the model.

Table 4.2. Hourly Load and PV Prediction Error Metrics

Prediction Errors

Methods
Load PV Power

RMSE MAE MAPE RMSE MAE MAPE
SVR 0.5306 0.4722 11.0297 0.5106 0.3977 9.2851

GRU 0.4296 0.4310 10.2763 0.4476 0.3498 8.8203

LSTM 0.3872 0.3901 9.9240 0.3721 0.3105 8.2406

DRN 0.3508 0.3749 9.5311 0.3208 0.2519 7.8810

CGAE 0.2891 0.2914 9.1283 0.2614 0.1739 7.0042

STGDL 0.1908 0.1348 8.0120 0.1471 0.0925 5.6912

4.7. Conclusions

This chapter presents a novel spatiotemporal Behind-the-Meter Load and PV prediction prob-

lem that aims to predict the BTM load and PV generation of neighboring residential units. The
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Figure 4.4. Net load disaggregation results of STGDL for house 6248 from March 31st to April
2nd, 2018.

problem is cast to a novel spatiotemporal graph dictionary learning problem where the units are

modeled as a spatiotemporal graph. Each node represents the net load time series at each unit

and the edges show the correlation between the corresponding units. A new spatiotemporal graph

autoencoder model is designed to compute the spatiotemporal manifold of the net load measure-

menst, and capture highly nonlinear features of the net load data. Moreover, a novel optimization

is proposed to utilize the latent features of the autoencoder to learn a deep nonlinear dictionary of

patterns from the net load data. The dictionary atoms are used to disaggregate the net load at each

unit into the corresponding BTM load and PV time series. The estimated BTM values are mapped

to the future values of BTM load and PV generations using a deep recurrent neural network. The

proposed method is trained and evaluated on the Pecan Street dataset, as a real-world publically

available load and PV dataset. Numerical results show the merit of the presented model compared

to the state-of-the-art temporal and spatiotemporal models both in terms of disaggregation of the

net load as well as prediction of future BTM load and PV.
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Figure 4.5. Hourly prediction results of the proposed method for house 6248 from June 10th to
12th, 2018.

Figure 4.6. Prediction MAPE of the benchmarks for various time horizons

117



Chapter 5

Conclusions

In recent years, with the rapid growth in size and complexity of energy datasets, machine learning

algorithms have gained increasing attention to recognize meaningful patterns and structures in the

data. Data-driven algorithms provide accurate solutions to a large variety of classification, detec-

tion, prediction, and modeling problems in energy systems. In this domain, we introduce advanced

deep learning frameworks as cutting-edge pattern recognition models for the prediction, modeling,

and synthesis of power system measurements in real-world energy networks. Our research includes

a novel graph convolutional network (GCN) for the spatiotemporal prediction of wind energy time

series in large-scale wind sites. The wind sites are modeled as nodes of an undirected weighted

graph where each edge reflects the correlation between the wind measurements at the correspond-

ing sites. Interval neurons derived from the Rough set theory are incorporated into our graph

convolution layers to address the uncertainties of wind time series while learning spatiotemporal

wind patterns in a sparse GCN. In this category of studies, we developed an interval probability dis-

tribution learning (IPDL) model that incorporates the Rough set theory into restricted Boltzmann

machines (RBMs) to capture the probabilistic patterns of wind data in an unsupervised fashion.

Our IPDLs are stacked to create a novel deep belief network (DBN) that captures unsupervised in-

terval knowledge from the wind data, hence, handling the uncertainties of the wind measurements.

The computed deep probabilistic features are utilized by a Fuzzy Type II system to predict the

day ahead wind energy of the wind sites in Colorado, United States. Our numerical comparisons

show significant prediction accuracy improvement compared to very recent DBN and autoencod-

ing approaches due to better generalization and robustness to measurement noise. We extended

our energy prediction research to devise the convolutional graph autoencoder (CGAE), which is a

deep generative framework to predict the solar irradiance in a large set of neighboring photovoltaic

(PV) energy sites near Chicago, United States. CGAE is a new class of conditional variational

autoencoders that consists of a GCN as an encoder to capture the spatiotemporal features of PV

118



measurements at the solar sites as well as a rectified linear unit (ReLU) neural network as a de-

coder to map the latent spatiotemporal features computed by the encoder to the future values of

PV energy. Data-driven time-varying load modeling using system-wide measurements is another

major domain of our deep learning studies. We proposed a multimodal long short-term memory

network (LSTM) that simultaneously extracts highly nonlinear temporal features from the load and

voltage/power measurements of various buses in a power system. The computed patterns are uti-

lized in a high-dimensional regression formulation to compute the parameters of several dynamic

loads corresponding to the induction motors in a large-scale smart grid. Also, we present a deep

generative version of this work, where we define a new conditional variational autoencoder with

an encoding LSTM to capture the temporal load patterns, and a decoding ReLU neural network to

decode LSTM’s hidden features and estimate the load parameters in a probabilistic fashion. Our

numerical results in terms of both deterministic and probabilistic error metrics show significantly

better load identification performance compared to recent machine learning studies including ex-

treme learning machines and gated recurrent units (GRUs). Another area of our research is the

deep temporal dictionary learning (DTDL) for signal decomposition. In this domain, we devise

a novel deep learning-based sparse coding optimization for energy disaggregation, i.e., decom-

position of energy consumption signals of a residential customer into the appliances used. The

idea is to learn a deep nonlinear dictionary of signature patterns corresponding to different ap-

pliances inside the latent space of an LSTM autoencoder. The autoencoder reconstructs the total

consumption signal of the home, hence, capturing powerful time-dependent features of the ob-

served energy. Our sparse optimization simultaneously learns a dictionary of signature patterns

that can discriminate between different devices/appliances while finding the optimal parameters

of LSTM to increase the discrimination accuracy. In this domain, we also presented a new deep

learning-based optimization to decompose the observed net load signal of a set of homes into their

unobserved behind-the-meter load and PV generation measurements. The problem is defined as a

novel spatiotemporal dynamic graph dictionary learning problem, where a deep dictionary is cap-

tured for the spatiotemporal patterns of the graph corresponding to different houses in a wide area.

Our optimization disaggregates the net load at each home into the load and PV generation inside
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the latent space of a new spatiotemporal graph autoencoder (ST-GAE). Our latest deep learning

work is the deep graph probability density learning for power grid synthesis. Actual power net-

work datasets are generally confidential; however, researchers need realistic datasets to improve

power grid reliability and security. Therefore, in this study, we present a novel deep generative

model to learn the joint probability density function (PDF) of nodes/edges of a power network.

Each node represents a bus with power demand/supply data and each bus represents a line between

the corresponding buses as well as its physical characteristics. The graph is encoded by a GRU that

learns the sequence of observed nodes/edges in the network. The captured features are further used

by ReLU neural networks to model the PDF of buses and lines. Sampling from the captured PDF,

one can generate a large variety of realistic power grids that imitate the original power network.
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[189] SEVEROĞLU, N., AND SALOR, Ö. Harmonic analysis in power systems using
convolutional neural networks. In 2018 26th Signal Processing and Communications
Applications Conference (SIU) (2018), IEEE, pp. 1–4. 3, 9, 16

[190] SHEPERO, M., VAN DER MEER, D., MUNKHAMMAR, J., AND WIDÉN, J. Residential
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