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PERIODIC STATIONARITY OF A CHAOTIC MOTION IN THE SYSTEM
GOVERNED BY A DUFFING'S EQUATION

Hisanao OGURA*, Yoshisuke UEDA** and Yasuo YOSHIDA*

* Department of Electronics, Kyoto Institute of Technology
Matsugasaki, Kyoto, 606,Japan
** pepartment of Electrical Engineering, Kyoto University
Yoshida, Kyoto, 606,Japan

ABSTRACT

By meéns of a time series analysis develaped hy the authors a
chaotic behavior of a system governed by a Duffing's equation with a
periodic external force is demonstrated to have the properties of a
periodic stationary random process wnose probability distribution is

invariant under p=riodic translations.

It was shown by one of the authors using a digital and analog com-

puters that a system governed by a Duffing's equation with a periodic

. - . . 1-4) °
external force has a chaotic solution in a certain parameter range ),

and that the average component of the chaotic solution is a periodic func-
tion and the chaotic component has a continuous power spectrum. It was
also shown that the attractor as well as the average and the spectrum is
little dependent on the numerical error or the noise in the computer
experi@ent. It is an interesting problem to see if such‘a solution pro-~

cess can be regarded as a sample function of a certain random process. It

1,2)

was conjectured on some ground that the chaotic solution process of

a Duffing's eqdation could be a sample function of a periodic stationary

process (PSP} 5,6)

with the same period with the enternal force. First we
briefly describe the periodic stationary process to define its character-

istics and then will give the method of time series analysis for such a
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process7) in order to apply it to the chaotic solution process.
A random process X(t) is called strictly PSP with period T if its
probability distribution is invariant under the periodic translations
X(t) -+ X(t +nT), n=20, 1, + 2, ... (1

It is called PSP in the wide sense if the mean and the correlation
function

M{t) = {X(£)> , R(t,s) = <LX(£)X(s)> - M(t)M(s) (2)
(< > means the ensemble averag?) is invariant under periodic translations
which means that M(t) is a periodic function and R(t,s) is periodic with

6)

respect to (t + s)/2 with period T. It was shown that a wide-sense

PSP has the spectral representation, which for the purpose of present

time series analysis can be conveniently rewritten in the following form:

©

dz (1) (3)

Y(t) = X(&) - M(t) = [ el'E
Az (X)dz(r')) = z (A - X' - %gp)sp(l)dkdk' (4)
p:-oo
SP(A) = s_p(—k) = S_p()\ - 2wp/T) (5)

where — denotes the complex conjugate. Egq.(3) shows that the frequency
component dZ(A), a random measure, has the nonvanishing covarianée only
when the frequency difference is A -A' = 2mp/T and that sp(x) gives the
{complex) spectral density defined on the p-th diagonal shown in Fig.l
with the origin on the X' axis. The case of a stationary process corres-
ponds to the limit T ~« so that we only have the spectral.éensity with p=0.
Associated with the invariance of the probability measure under the
periodic translations (1), we can define the shift Z -~ vz, o™ = v,

of a random variable generated by X(t) or defined in the same probability

space. We call ergodic the strict PSP X(t) or the shift o if only a

constant is invariant under U": then we have the law of large numbers)
lM:l n
M-+o n=0
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For an ergodic PSP X(t) we have the ergodic theorem for the mean,

lM—l
M(t) = lim—=-] X(t + nT) (7N
M
M»o "n=0
and a set of ergodic theorems for the cross-correlation functions7)
A . ; :
Y (1) = lim & [ v(e)y(e + 1’ TRE FTIT g (8)
p Ao o .

]

T . © .
[+ oy fTRE T D g o M Ts )an
o] (o]

p=20,1,2,°--- (9)
which can be shown by means of (6) with Z replaced by X(t) or by the
integrand of (8). As a matter of fact Yp(r) gives the cross-correlation

function of Y(t)'and Y(t)ez“lpt/T

in the sense of generalized harmonic
analysis and its cross-power spectrum, by (9), agreés with the spectral
density Sp(k) defined by (4). Note that we only have a single ergodic
theorem corresponding to p = 0 in the stationary case. Further it can
be shown that under a fairly general condition we have

Yp(T) 2 0, p # integer (10)
by making the argument similar to Ref.8 (Chap.X, Sec.2 and 6).

For the data of finite length the cross-power spectrum Sp(k) can

be estimated for instance by means of the smoothed periodogram: Putting

A .
YA()\) = —l_: f Y(t)e—l)\t dt , -~ < A < ® {11)
[e)

/2w
we have the cross-periodogram of the data of length A:

a 1z : _ '
Sp(A\) = 3 Y, (Y, (0 - 27p/T) (12)

which can be smoothed by a suitable frequency window W(l),

© A
= - ' At t
gp(x) [ wW(x A )sp( yda (13)

-
When a time series is observed it is important to know if it could
be regarded as a sample function of a stationary process, or a periodic

stationary process or otherwise (nonstationary). A powerful method to
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test this is to make use of the relation (10); that is, yp(r) or Sp(x)
vanishes unless p = integer if X(t) is periodic stationary, vanishes
unless p = 0 if stationary, and otherwise if generally nonstationary.

To see this we can estimate a test function, for instance,
N
o(p) = | ]SP(A)ldK ' -®< p < @ (14)

If o(p) shows a sharp peak only at p = 0 the observed time series can
be considered asistationary, if it has éeaks at p = integer the time
series is stationary; and other:wise it is nonstationary. Although o(p)
may have some background noise because of finite data length, we can check
the periodic stétionarity by means of the relative height of the possible
peaks at p = integer.

We apply the above method to the solution processes of the fhree

kinds of Duffing’'s equations driven by periodic external force:

i) X(£) + kx(t) + x(£)° = B cos t (15)
ii)  X(t) + kx(t) + x(£)° = B, + B cos t (16)
Hi)  X(t) + kX(t) + X(£)> - X(t) = B cos t (17)

where X(t) and %(t) represent tﬁe first and the second derivative with
respect to t, respectively. The chaotic solution process was generated by
. by a digital computer with Runge-Kutta method over the length of M =
2,048 period (T = 2m). The mean function (7) which is to be a periodic

function expressible in the form
M(t) = | C_ e (18)
p:—wp
was calculated approximately as the arithmetic mean over M periods,and
the rapid convergence of the right-hand side of (7) with increasing
number of the sum was checked numerically by computing its variance;

thus verifying experimentally the ergodic theorem for the mean (7).
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For smoothing a rectangular window with the width [A| < 1/64 was
employed. We show here one example for each Duffing's equation i)-iii)
in Figs.2 - 4, respectively. The parameters k, B and B, are specified
in the figurés and corresponding strange attractors for Figs.2 and 3

are to be found in Refs.l - 4; the attractor for Fig.4 is shown in Fig.S5.
The test function in Figs.2-4A shows peaks at p = integer clearly demon-
strating the periodic stationarity. Note that in the cases of i) and i)
the peaks appearing at p = even-integer mean that Y(t) is a wide-sense
PSP with apparent period T/2 ; X(t),however, has period T since M(t)

has the same period as shown by nonvanishing {Cl[2 in Figs.2-4B. The
amplitude of spectral density Sp(k) estimated by the smoothed periodo-
gram is shown in Figs.2-4B,where SO(A) agrees with the ordinary power
spectrum of Y (t) already obtainedl-4). In view of the above time series
analysis we conclude that a chaotic solution process of i)-iii) may be
regarded as a sample function of an ergodic PSP or at least a wide-sense

PSP with the period of external force.
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