

Ryoto University nesearch information nepository	
Title	On the Structure of the Set of Gibbs States for the 2-dimensional Ising Ferromagnet (Random Systems and Dynamical Systems)
Author(s)	HIGUCHI, YASUNARI
Citation	数理解析研究所講究録 (1981), 439: 28-29
Issue Date	1981-10
URL	http://hdl.handle.net/2433/102801
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On the Structure of the Set of Gibbs States for the 2-dimensional Ising Ferromagnet

Yasunari Higuchi

Let \mathbb{Z}^2 be a square lattice, At each point $x \in \mathbb{Z}^2$, we put + or - spin. $\Omega \equiv \{\pm 1, -1\}^{\mathbb{Z}^2}$ is the set of all possible spin configurations on \mathbb{Z}^2 . For each finite $V \subset \mathbb{Z}^2$ and $w \in \Omega$, the interaction energy in V is given by

$$E_{V}^{w}(\sigma) = -\sum_{\langle x,y\rangle \subset V} \sigma(x)\sigma(y) - \sum_{\langle x,y\rangle} \sigma(x)w(y), \quad \forall \sigma \in \{+1,-1\}^{V}$$

where \sum denotes the summation over all nearest neighbour $\langle x,y \rangle \in V$ pairs in V. ∂V denotes the boundary of V, and w is called the boundary condition.

For any $\beta > 0$, a Gibbs state (for the parameter β) of this system is a probability measure satisfying for every finite V, $\sigma \in \{+1, -1\}^V$

$$\mu(\sigma|F_{V_C})(w) = Z(w)^{-1} \exp[-\beta E_V^w(\sigma)] = P_V^w(\sigma)$$

where F_{Vc} is the σ -algebra generated by $\{w(x), x \in V^c\}$, and $\mu(\cdot|F_{Vc})(w)$ is the conditional probability of μ on V given the outside configuration w. Z(w) is the normalization.

Let $\mathscr{C}_{j}(\beta)$ be the set of all Gibbs states for the parameter $\beta>0$. Then the following fact is known.

- (a) $\mathcal{C}_{j}(\beta)$ is convex compact
- (b) There is $\beta c > 0$ such that $\#\mathcal{G}(\beta) = 1 \qquad \beta \leq \beta c \quad \text{and} \quad \#\mathcal{G}(\beta) > 1 \quad \beta > \beta c$
- (c) for $\beta > \beta c$, there are two distinct extremal points $\mu +$ and $\mu -$ such that

$$\mu+=\lim_{\substack{V\uparrow Z\\V}}P_V^+,\qquad \mu-=\lim_{\substack{V\uparrow Z\\V}}P_V^-$$
 where $P_V^\pm(\sigma)$ corresponds to the boundary condition $w\pm$;

 $w\pm(x) = \pm 1$ for all $x \in \mathbb{Z}^2$

The problem we asked "Are there any other extremal points for (β), β > βc ?" This was paused about 10 years ago by Gallavotti and Dobrushin, and was open till last year.

Theorem (Aizenman, Higuchi)

for any $\beta > \beta c$, we have

$$\mathcal{G}(\mu) = \{\lambda \mu + + (1-\lambda)\mu - ; \lambda \in [0, 1]\}$$

Remark: In the 3-dimensional case, the above theorem doesn't hold. Dobrushin has shown an example for sufficiently large $\beta > 0$, which cannot be a convex combination of $\mu +$ and $\mu -$.

References.

- [1] Aizenman, M; Translation invariance and instability of phase coexistence in the two dimensional Ising system. Comm. Math. Phys. 73, 83-94 (1980).
- [2] Higuchi, Y.; On the absence of non-translationally invariant Gibbs states for the two-dimensional Ising model.

 Proc. Conf. on Random Fields, Esztergom. (to appear from North Holland).