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Abstract 

Concentrated resources, or hotspots, can influence movement behaviour of many 

species. I studied the movement ecology of two groups of mountain goats (Oreamnos 

americanus) and their relationship with hotspots in the Canadian Rocky Mountains. First, 

I investigated fidelity to two roadside mineral licks. Movement patterns to mineral licks 

were documented over several temporal scales and I found that mountain goats have 

strong trans-generational, seasonal and daily movements to these mineral licks. Second, 

I investigated movements to foraging, travelling, and bedding areas in summer ranges, 

using hidden Markov models (HMMs) and predicted behavioural states. These 

behavioural states were ground validated and the results showed that HMMs can be 

used as a proxy for habitat hotspots. Understanding how animals adjust their movement 

behaviour to hotspots can provide valuable information for the management of these 

critical habitat features and the wider conservation of mountain goats.  

Keywords: Mountain goats, Oreamnos americanus, habitat hotspot, mineral lick, 

temporal patterns, hidden Markov models, Rocky Mountains 
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Dedication 

 

 

 

 

This thesis is dedicated to the mountains and all the creatures who make a living 

amongst the rock and ice. 

 

“Mountains are the closest our planet reaches towards the heavens. The purest air, the 

purest water, and the purest light on earth are found amidst these uplifted forms. They 

are the source of awesome natural power, shaping winds, weather and the rivers that 

flow across the land. And they are the home of very special living creatures… one large 

animal that belongs almost entirely to the realm of towering rock and unmelting snow. 

Pressing hard against the upper limit of life’s possibilities, it exists higher and steeper 

through the year than any other big beast. It is possibly the best and most complete 

mountaineer that ever existed on any continent: the mountain goat.”  

Douglas H. Chadwick – A beast the color of winter 2002 
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Chapter 1.  
 
General Introduction 

 Habitat hotspots 

Concentrated resources, or hotspots, outside and within an animal’s usual home 

range can influence movement and investigating how animals modify their movement 

patterns to access these natural features can provide insight into animal behaviour 

(Freymann, de Visser, and Olff 2010; Xue et al. 2018; Montalvo et al. 2019). In ecology 

the word hotspot was first used to describe leks, places where males congregate to 

display to prospective mates (Bradbury, Gibson, and Tsai 1986). The term hotspot was 

then popularized by Norman Myers in the late 1980s, by defining a biodiversity hotspot 

as a place where “exceptional concentrations of endemic species that face exceptional 

degrees of threat” (Myers 1990).  

More recently the term hotspot has been used to described key habitat features 

that play an outsized ecological role in determining habitat use and behaviour within an 

individual’s usual home range (Grant and Scholes 2006; Bestley et al. 2010; Lai, Bêty, 

and Berteaux 2015). Hotspot is often used to describe patches in the landscape which 

disproportionately contribute to the support of herbivore populations and function 

differently than surrounding areas (Anderson et al. 2009). For species with large or 

complex ranges within heterogeneous terrestrial landscapes, the hotspot concept has 

been applied to describe animal movements towards key resources, such as watering 

holes (Montalvo et al. 2019), termite mounds (Davies et al. 2014) and grazing lawns 

(Winnie, Cross, and Getz 2008; Yoganand and Owen-Smith 2014). In terrestrial 

landscapes, herbivore species often select places that expose them to lower predation 

risk and provide access to high quality forage (Winnie, Cross, and Getz 2008; Yoganand 

and Owen-Smith 2014; Davies et al. 2014). These locations are frequently assigned as 

different classifications of hotspots within scientific literature such as, nutrient (Grant and 

Scholes 2006), foraging (Arcos et al. 2012), resource (Churski et al. 2017) and habitat 

hotspots (Yoganand and Owen-Smith 2014). My thesis explores resource and habitat 

hotspots and the management implications for both.  
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Mineral licks as resource hotspots 

Resource hotspots are areas where high levels of nutrients important to 

herbivores are present within the soil (Grant and Scholes 2006). Resource types include 

bomas/kraals (Huruba et al. 2018), termite mounds (Freymann, de Visser, and Olff 

2010), sodic patches (Craine et al. 2009), bird guano (Natusch et al. 2017), dung beetle 

middens (Veldhuis et al. 2018), concentrated herbivore dung (Veldhuis et al. 2018) and 

mineral licks (Kroesen, Hik, and Cherry 2020). Resource hotspots, such as mineral licks, 

may be rare within an animal’s home range. North American ungulate species travel 

long distances, often at the risk of increased predation, outside their usual home range 

to visit these sites (Poole and Heard 2003; Ayotte et al. 2006; Slabach et al. 2015).  

All ungulate species deliberately ingest soil from mineral licks to obtain nutrients 

they cannot acquire from regular forage (Slabach et al. 2015; Harris, Rice, and Wells 

2017). For ungulates, mineral licks provide a necessary function that is distinct from 

foraging areas. Mineral licks are concentrated in a patch and are found atop outcrops of 

‘edible’ soils (Panichev et al. 2013). Although mineral lick sites are considered an 

essential part of the landscape used by herbivores, they are rare (Dormaar and Walker 

1996). Mineral licks are preferentially used by herbivores over extended periods of time 

and are characterized by high quality nutrient availability. They are a critical, limited 

resource for ungulates and the nutrients they provide have a large impact on fecundity, 

population dynamics and survival (Ayotte, Parker, and Gillingham 2008; Rice 2010). 

Mineral licks are functionally different from surrounding areas as they are most often 

used by ungulates within ecosystems that have low nutrient availability (Poole, 

Bachmann, and Teske 2010).  

High-value features as habitat hotspots  

Habitat hotspots have high quality habitat disproportionate to the surrounding 

landscape that minimizes energetic costs of foraging, travelling and predation risk 

(Anderson et al. 2010). Areas where animals spend a disproportional amount of time 

could be considered habitat hotspots such as foraging areas, movement corridors and 

bedding sites. The identification of hotspots can provide critical information for wildlife 

managers to identify important areas for species that live in large and complex ranges 

such as mountain goats. By examining the fine temporal time series locations of GPS 
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collared animals, movement patterns of individuals can be inferred to high value habitat. 

Characterising movement patterns can uncover unique movements to places that have 

high value. Furthermore, studying animal movements to hotspots in areas that are large, 

complex, and difficult to access can provide insight to an animal’s behavioural states and 

habitat usage in areas where it is logistically challenging for a researcher to visit (Grant 

and Scholes 2006). Studies encompassing a long time series of movements using 

methods that will not influence animals’ behaviour, are necessary given that animals 

may only move to hotspots under specific conditions, such as time of day or foraging 

distance from safe terrain. 

 Mountain Goats 

Mountain goats are one of the least studied ungulates in North America because 

of their affinity for high elevations and steep terrain (Smith 1988; Festa-Bianchet, and 

Côté 2008). Mountain goats are elusive high alpine ungulates that are sensitive to 

human presence and often flee when humans approach, making them difficult to 

observe (St-Louis et al. 2013; Richard and Côté 2016). Advances in technology have 

made it easier to track mountain goats with GPS collars that provide fine-scale spatial 

and temporal data on their movements that allow us to infer behaviour. 

 

Figure 1.1 The distribution of the Rocky Mountain goat (Oreamnos 
americanus), as indicated in Shackleton, D. M. [Editor] and the 
IUCN/SSC Caprinae Specialist Group. 1997. "Wild Sheep and Goats 
and their Relatives." Status Survey and Action Plan for Caprinae. 
IUCN: Gland, Switzerland and Cambridge, UK. Blue square indicates 
the study area.  
Adapted from Ninjataco (CC-BY SA)  
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Mountain goats are widely distributed throughout the western mountain ranges of 

North America (Figure 1.1). Their populations are considered globally secure, yet they 

are a species of management concern because they have characteristics that make 

them vulnerable to environmental change caused by human activities or natural events 

(Hamel et al. 2006). Conservation managers stress the importance of understanding 

mountain goat behaviour and habitat use (Mountain Goat Management Team 2010) but 

due to the remote and complex environment in which they reside there are few studies 

that focus on their behaviour. Mountain goats live in mountainous terrain within the 

alpine and sub-alpine zone in a wide variety of habitats from cliffsides to open meadows 

to subalpine forests (Lowrey et al. 2017). They are generalist herbivores and are 

considered intermediate browsers that forage on grasses, sedges and forbs (Festa-

Bianchet, and Côté 2008). All ungulates, including mountain goats, are known to visit 

mineral licks to obtain supplemental minerals not found in their regular forage (Hebert 

and Cowan 1971; Ayotte et al. 2006). 

Study area 

This study was conducted in Yoho and Banff National Parks in the Canadian Rocky 

Mountains (Figure 1.1). We examined two groups of mountain goats occurring on either 

side of the Continental Divide. The home ranges of each study group are separated by 

the upper Bow River valley. Both areas contain steep and rugged mountains with high 

summits over 3000 m, and valley bottoms at 1500 m. However, the topographical 

characteristics of the mountains differ across the Continental Divide. In the Sherbrooke 

lake area of the Waputik Range on the west side of the Continental Divide, thicker ice on 

western slopes during previous glacial periods resulted in heavier glaciation, creating 

more moderate summits (Bobrowsky and Rutter 2007; Figure 1.2). In the Slate Range, 

on the east side of the Continental Divide, summits are characteristically “castle-like” 

because the folds of different layers of rock lay flat, creating flat-topped summits with 

plummeting cliffs (Baird 1962). Glaciers and other agents erode horizontal rock layers 

slowly, which explains the steep summits and the broad, shallow U-shaped valleys 

characteristic of the Slate range (Figure 1.2). The Sherbrooke study group on the west 

side of the Continental Divide is situated around Sherbrooke Lake in Yoho National 

Park, but also includes a major valley-bottom transportation corridor for the Trans-

Canada Highway (TCH) and the main Canadian Pacific Railway line. The Slate study 
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group on the east side of the Continental Divide occurs in the Slate Range northeast of 

Lake Louise, and while there are numerous popular hiking trails and a ski resort on the 

periphery of their range these mountain goats are not exposed to vehicle traffic. 

Individuals in both areas typically inhabit elevations between 2440 m and 1940 m. 

  

Figure 1.2  Typical habitat in Sherbrooke (left) and Slate (right) study areas in 
Yoho (British Columbia) and Banff (Alberta) National Parks, Canada. 
The Sherbrooke study area illustrates the moderately sloped ridges 
and the Slate study area shows Mount Redoubt with "castle like" 
appearance typical of the Slate range. 

Mineral licks and mountain goats 

Mineral licks are preferentially used by herbivores over extended periods of time 

and North American ungulate species travel long distances to access these resources 

(Ayotte et al. 2006, Slabach et al. 2015). Mineral licks are highly localized resources that 

generally persist over many years and contribute disproportionately to the overall health 

of herbivores compared with other locations within their home range (Giotto et al. 2015; 

Thaker et al. 2019). The benefits of geophagy are still uncertain, but may include (1) 

detoxification of secondary plant compounds; (2) alleviation of gastrointestinal stress; 

and (3) nutrient supplementation to meet metabolic demands (Jones and Hanson 1985; 

Kreulen 1985; Ayotte et al. 2006; Ayotte, Parker, and Gillingham 2008; Slabach et al. 

2015). Consequently, some groups of mountain goats are attracted to mineral licks.  

Mountain goats are attracted to locations adjacent to the Trans-Canada Highway 

(TCH) in Yoho National Park because of the presence of several mineral licks within 30 

m of the highway (Figure 1.3). The TCH is under review for expansion and the proposed 
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construction comes within a few meters of these mineral licks, or may even entirely 

remove them. It is unclear how important these areas are for mountain goats and how 

long-term effects of soil disruption, associated with the realignment of the highway will 

affect these areas. Information regarding the potential effects of highway construction 

activities is required to determine appropriate mitigation measures and effectiveness of 

monitoring techniques applicable to mountain goats. 

  

Figure 1.3  Trans-Canada Highway mineral lick with two people for scale (left); 
mountain goats, nannie and young consuming soil at night (right). 

 Overview of thesis chapters 

My thesis explores resource and habitat hotspots and how mountain goats move 

to certain habitat features within the landscape. My first data chapter (Chapter 2) 

explores the temporal patterns of movement to a resource hotspot, a mineral lick, over 

decadal, seasonal and daily patterns. My second data chapter (Chapter 3) examines the 

behavioural states of mountain goats within their home range and the habitat hotspots 

they choose. Together these chapters provide insights on the temporal patterns and 

behavioural states of mountain goat movements to hotspots.  

Chapter 2 examines the temporal patterns of a group of mountain goats that 

consistently travel outside of their normal home range to mineral licks with fidelity. A key 

objective of Chapter 2 is to provide scientific baselines of age classes, frequency and 

duration of time spent at mineral licks. Little is known about what elements attract 

mountain goats to roadside mineral licks and what elements within the soil they are 

consuming. I describe the historical use of this roadside mineral lick using 

dendrochronology techniques. I use fine spatial and temporal data from GPS-collared 
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mountain goats and trail cameras to examine mountain goat movements to mineral licks 

over the seasonal and daily scales. This chapter contributes understanding of how and 

why animals, particularly ungulates, visit mineral licks and provides science-based 

advice on the management actions to conserve mineral licks that mountain goats utilize.  

Chapter 3 assesses hourly locations of 20 GPS-collared mountain goats to 

predict underlying behavioural states using a hidden Markov model (HMM) as a proxy to 

predict habitat hotspots. Given the complexities of mountain goat habitat, I applied 

HMMs to predict common ungulate behavioural states such as foraging, travelling, 

bedding, and possible mineral lick excursions to locate habitat hotspots. The objective of 

Chapter 3 is to identify key habitat hotspots for mountain goats and movement corridors 

used to reach them. I use environmental co-variates to see if behaviour changes over 

time of day and distance to escape terrain.  

I conclude with a brief chapter (Chapter 4) reviewing my key findings, resource 

management implications and future directions of this research. Overall, I identify the 

need to reduce the attractive chemical components of the road abrasives used along the 

highway, and that could ultimately reduce vehicle collisions with mountain goats. This 

thesis provides baseline data for habitat management in areas where anthropogenic 

disturbances exist and are increasing. It is critical to assess all high value habitat for 

mountain goats. Research often focuses on areas where mountain goats spend most of 

their time like foraging and bedding areas. Yet, I found places where mountain goats 

spend proportionally less time like mineral licks and movement corridors have high-value 

and should be considered when managing mountain goat populations.  
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Chapter 2.  
 
Patterns of decadal, seasonal and daily visitation to 
mineral licks a critical resource hotspot for mountain 
goats (Oreamnos americanus) in the Rocky 
Mountains 
A version of this chapter was published in Wildlife Biology under a CC-BY license as: Kroesen, L. 
K., Hik, D. S. and Cherry, S. G., 2020. Patterns of decadal, seasonal and daily visitation to 
mineral licks a critical resource hotspot for mountain goats (Oreamnos americanus) in the Rocky 
Mountains. Wildlife Biology 2020(4). https://doi.org/10.2981/wlb.00736 

 Abstract 

Concentrated resources, or hotspots, within an individual’s usual home range 

may be strong determinates of movement behaviour. We evaluated the patterns of 

mineral lick use by a population of mountain goats (Oreamnos americanus) displaying 

high site fidelity at two mineral licks along the Trans-Canada Highway in the Rocky 

Mountains, British Columbia, Canada. Access to these mineral licks was characterized 

by deliberate and repetitive movements into marginal habitat. We describe the patterns 

of mineral lick use over decadal, seasonal and daily periods by using 

dendrochronological analysis of trampling scars along mountain goat trails, movements 

determined from GPS collar locations, and camera traps placed along trails and at 

mineral licks, respectively. Our findings suggest that mountain goats have strong trans-

generational behavioural traditions and that they predictably access mineral licks using 

the same trails, seasons, and daily patterns. Differences in the patterns of mineral lick 

visitation between males and females may be related to reproductive and nutritional 

status, while their nocturnal use appears to be a response to disturbance at the mineral 

licks. Understanding how animals adjust their behaviour in response to highly localized 

resource hotspots outside their usual home range can provide valuable information for 

the management of these critical habitat features and the wider conservation of 

mountain goat populations. 

Keywords  

Mineral lick, hotspot, temporal patterns, sex-specific patterns, mountain goats, 

Oreamnos americanus 
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  Introduction 

Resources are not equally distributed across landscapes and constraints on 

access to specialized and limiting resources may determine movement patterns for 

many species (Myers 1990; Reid 1998). Concentrated resources, or hotspots, are key 

habitat features that play an outsized ecological role in determining habitat use and 

behaviour within an individual’s usual home range (Scoones 1995; Reid 1998; Hunter 

2017). These resource hotspots are uncommon habitat features that disproportionately 

provide essential nutrient resources. Resource hotspots are often described as 

concentrated patches that are preferentially used by wildlife over extended periods of 

time, and characterized by high resource availability such that they differ functionally 

from surrounding areas (Anderson et al. 2010; Muvengwi, Mbiba, and Nyenda 2013; 

Stokes et al. 2015; Urmy and Warren 2018). For species with large or complex ranges 

within heterogeneous terrestrial landscapes, the hotspot concept has been applied to 

describe animal movements towards key resources, such as watering holes, termite 

mounds and grazing lawns (Winnie, Cross, and Getz 2008; Yoganand and Owen-Smith 

2014; Davies et al. 2016; Montalvo et al. 2019). Some hotspots are fixed in space but 

only accessible or necessary at certain times of the year, and may disproportionately 

influence an animal’s behaviour (Davies et al. 2016; Montalvo et al. 2019).  

Mineral licks are highly localized resources that generally persist over many 

years and contribute to the overall health of herbivores compared with other locations 

within an animal’s normal home range (Kreulen 1985; Matsubayashi et al. 2007; Blake et 

al. 2010; Panichev et al. 2013; Panichev et al. 2016; Hunter 2017). Geophagia, the 

intentional consumption of soil, is a behaviour that is frequently observed in many 

animals within tropical and temperate regions, including bats, parrots, primates, and 

ungulates (Ayotte, Parker, and Gillingham 2008; Krishnamani and Mahaney 2000; 

Ghanem et al. 2013; Lee et al. 2014). Animals often travel long distances outside their 

usual habitat to visit specific mineral licks (Rice 2010; Link et al. 2011). The benefits of 

geophagy are still uncertain, but may include (1) detoxification of secondary plant 

compounds; (2) alleviation of gastrointestinal stress; and (3) nutrient supplementation to 

meet metabolic demands (Jones and Hanson 1985; Kreulen 1985; Ayotte et al. 2006; 

Ayotte, Parker, and Gillingham 2008; Slabach et al. 2015).  
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Mineral licks are used by all North American ungulates and geophagy is 

observed most often for herbivores within ecosystems that have low nutrient availability 

(Atwood and Weeks 2002; Jones and Hanson 1985). Three types of mineral licks exist: 

rockface licks are solid rock that animals directly lick, wet licks are associated with 

mineral rich mud or ground water and dry licks contain dry mineral soil exposed by 

erosion (Dormaar and Walker 1996; Ayotte et al. 2006). Studies have documented 

different species of ungulates visiting the different types of mineral licks. For example, 

moose (Alces alces) and elk (Cervus elaphus) prefer wet licks and Stone’s sheep (Ovis 

dalli stonei) and mountain goats (Oreamnos americanus) target dry licks (Ayotte et al. 

2006).  

Mountain goats live in steep mountainous environments, where essential 

resources are seasonally and spatially heterogeneous, and they have been observed to 

make deliberate and long-distance movements to access certain dry mineral licks (Rice 

2008). Mountain goats travel to specific mineral licks, visiting in large groups over certain 

times of the snow-free season (Hebert and Cowan 1971). Researchers have 

documented mountain goat movements to mineral licks describing the seasonality 

(Poole, Bachmann, and Teske 2010), spatial fidelity (Jokinen et al. 2014), licking 

intensity (Ayotte, Parker, and Gillingham 2008) and trade-offs between distance travelled 

and length of stay at the mineral lick (Rice 2010). These studies and many others have 

documented mineral lick utilization by mountain goats and have recorded variations of 

timing, duration and frequency of visits (Hebert and Cowan 1971; Jones and Hanson 

1985; Poole and Heard 2003). The importance of mineral licks for mountain goats is 

often recognized, yet, there are fewer empirical studies focused on how these features 

may disproportionately influence animal behaviour over different time scales.  

Our research objectives are to characterize the soils consumed by mountain 

goats, create an assessment of long term philopatry to these licks and define 

frequencies of male and female visits over a decadal, seasonal and daily time periods. 

Mountain goats are exposed to significant risks when using these sites, indicative of the 

importance of these mineral resources. We predict that the soils consumed at the 

mineral licks will be high in minerals mountain goats have been shown to seek at other 

mineral lick study areas such as sodium (Na), calcium (Ca), phosphorus (P) and 

magnesium (Mg) (Kreulen 1985; Ayotte et al. 2006; Ayotte, Parker, and Gillingham 

2008; Slabach et al. 2015).  
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Our study population of mountain goats accesses mineral licks adjacent to an 

area of high anthropogenic disturbance, the Trans-Canada Highway (TCH), 

experiencing potential for vehicle collisions, high traffic volumes and predation. It is 

currently unknown if these mineral licks are human-caused or existed prior to highway 

construction in the 1950’s. Anecdotal accounts report that these mineral licks have been 

used over decades, but this long-term philopatry of mineral lick use outside of mountain 

goat alpine habitat is poorly documented. We determined if mountain goat use of these 

mineral licks was established before or after highway construction and predicted that 

mountain goats have taken advantage of exposed soil on highway cut banks created 

during highway construction to access mineral licks, and that they are also attracted to 

the soils within the highway ditches that contain gravel and sand abrasives and de-icing 

road salt.  

We hypothesize that male and female mountain goats will arrive during different 

times of the season and have different durations and frequencies of visits. Males will be 

driven by the need to alleviate gastro-intestinal distress caused by the switch of winter to 

spring forage; however, female visitation to mineral licks may be hindered in early spring 

by the demands associated with parturition (Kreulen 1985; Dormaar and Walker 1996; 

Ayotte et al. 2006). We predict that females will have larger group sizes and more 

diverse group compositions when visiting the mineral licks.  

Advances in technology have made it easier to document detailed behavioural 

strategies of individual mountain goats and how they travel from their usual high alpine 

habitat to low elevation mineral licks. Mountain goat vehicle collisions often occur at 

roadside mineral licks and identifying the elements that attract mountain goats to these 

areas will help identify solutions to preventing further mortalities. Consequently, 

determining the seasonality, timing, duration and group composition of mountain goat 

visits can assist in management of human disturbances in the areas. Finally, 

understanding how animals adjust their behaviour in response to scarce but constant 

resource hotspots outside their usual home range will provide relevant information for 

conservation and management of these highly localized but essential habitat features. 
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 Methods  

Study Area 

We conducted our study in Yoho National Park in the Rocky Mountains, British 

Columbia, Canada (Figure 2.1a; 116° 21' 56.84" W, 51° 27' 3.95" N) during 2017 - 2019. 

Yoho National Park is bisected by transportation corridors, including the Trans-Canada 

Highway (TCH) and Canadian Pacific Railway (CPR) lines running through a narrow 

valley surrounded by ranges with high summits over 3000 m. The TCH was constructed 

between the years 1950 and 1958. During spring and summer, mountain goats 

periodically leave their usual high elevation habitat to visit two mineral licks located along 

the TCH (~1550 m). They travel from sparsely vegetated talus fields and alpine 

meadows, down through mixed forest cover of lodgepole pine (Pinus contorta), 

Engelmann spruce (Picea engelmannii) and Douglas-fir (Pseudotsuga menziesii) to 

access valley bottom mineral licks. Approximately 100 mountain goats inhabit the 

mountain complex adjacent to the licks and typically use habitat in elevations between 

2440 m and 1940 m (Parks Canada, unpublished data; Figure 2.1a). Two narrow, 

distinct, and well-travelled mountain goat trails, both approximately 1500 m in length and 

700 m in elevation difference, connect their high alpine habitats with their respective 

lower elevation mineral licks. These trails extend into the alpine to a larger network of 

mountain goat trails connecting main foraging and bedding areas up to 10 km away.  

Characteristics of Mineral Licks 

Two mineral lick sites, Ogden (West) and Bosworth (East), are located adjacent 

to the TCH, along an eroded soil bank created during highway construction and are 

situated less than 10 m from the roadside at their closest points (Figure 2.1b). These are 

dry mineral licks which are remnants of alluvial deposits and usually occur from the 

deposition of elements that concentrated above impermeable soil layers and then 

became exposed by erosion (Panichev et al. 2016). The mineral licks are separated by 

3.5 km, accessed from different mountain ridges and located over 1 km away from the 

nearest suitable escape terrain (slopes of > 40 degrees; DeVoe et al. 2015). At each 

mineral lick mountain goats have excavated soil under large-diameter trees (Figure 

2.1c), primarily Douglas-fir, very similar to typical mineral licks in the Rocky and Purcell 

Mountains (Poole, Bachmann, and Teske 2010). Mountain goats have been observed 
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consuming soil both underneath the tree caverns (Figure 2.1d) and along highway 

ditches in-between the TCH and the mineral licks. The highway ditches contain gravel 

and sand abrasives remaining from the winter snow removal and ice control. It is 

unknown what ratio of soils mountain goats consume from the mineral licks compared to 

the highway ditch soils. Soils, tree roots and camera trap sampling were conducted at 

the Ogden mineral lick (hereafter referred to as the primary site). 

 

Figure 2.1 (a) Map of the Sherbrooke mountain goat range in Yoho National 
Park, British Columbia. The core area includes Sherbrooke Lake in 
the valley bottom and two mineral lick sites (red triangles) along the 
Trans-Canada Highway (yellow line). The blue points are individual 
mountain goat GPS collar observations (5 male, 4 female) from June 
and July 2018; (b) a roadside mineral lick with two people for scale; 
(c) a mineral lick with excavated soil under trees located < 10 m from 
roadside; (d) nannie and young consuming soil at night. 
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We collected soil samples (~ 350 g) around the primary mineral lick site from four 

different areas: (i) highway ditches, (ii) mineral licks excavated under tree roots, (iii) 

treeline, and (iv) within the forest. Mountain goats were observed consuming soil at both 

the highway ditches and mineral licks and were not observed to consume soils along the 

tree line and forest where soil is not exposed. We randomly collected 6 soil samples 

from each location. Mineral lick soil was collected where evidence of mountain goat 

digging, and consumption were obvious. Highway ditch samples were collected at the 

surface of the soil in areas where mountain goats were observed consuming soil. The 

treeline and forest soil pits were dug at the depth of 1.2 m to simulate the depth of 

mineral lick caverns. Samples were collected from the ‘B’ layer of soil with low organic 

matter and finer grained soils. The treeline sites were excavated and sampled from 

under the base of Douglas-fir trees, as all the observed mineral lick caverns were 

located under trees. 

Soil samples were sent to A&L Laboratories, London, Ontario for analysis of pH; 

carbonate equivalent; cation exchange capacity (CEC); available macro-elements (Ca, 

Mg, Na, K, S, P) and trace elements (Fe, Mn, Zn, Cu). All soil samples were analyzed 

using the Mehlich III procedure (Sen Tran and Simard 1993). A subset of mineral lick, 

highway ditches and forest samples were also tested for selenium and sand, silt and 

clay ratios. 

We used principal component analysis (PCA) to summarize and visualize the 

differences between the highway ditches, mineral lick, treeline and forest. A one-way 

nested analysis of variance (ANOVA) was used to test for significant differences in 

concentrations of macro and trace elements, pH and CEC between the highway ditches, 

mineral lick, treeline and forest. The Tukey’s test was used for post hoc comparisons 

(Sokal and Rohlf 2012). All analyses were performed in R 1.1.563 (R Core Team, 2019). 

Long-term evidence for use of mineral licks 

Dendrochronological techniques were used to detect evidence of trampling scars 

on tree roots to determine the age of the mountain goat trails (Speer 2012). These 

techniques have been used in other studies to re-construct abundance patterns of 

barren-ground caribou (Rangifer tarandus groenlandicus) herds in the sub-Arctic 

(Morneau and Payette 1998; 2000; Zalatan, Gunn, and Henry 2006). Trail cameras 
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record mountain goats primarily using these trails but other sharp hoofed ungulates such 

as mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) 

have been recorded using these trails to a lesser extent. We collected 44 live roots 

(diameter: mean 3.0 cm, range 1.0 – 6.0 cm) that displayed visible signs of trampling 

scars that were greater than 1 cm in diameter along two distinct mountain goat trails 

leading from the alpine to the primary mineral lick (Figure 2.2). The trails were distinct 

and narrow, varying from 0.5 m to 1.5 m wide. Trees with large-exposed roots crossing 

the trails included lodgepole pine, Engelmann spruce, and Douglas-fir. We collected 

samples from < 25-degree terrain and within thickly covered forests to avoid the 

possibility of mechanical damage caused by avalanches. Trampling damage occurs over 

the snow-free period (May – October) to the upper sections of exposed roots along well-

travelled trails. Trampling scars were characterized by damage to the xylem as an 

elongated or oval scar with neat margins (Morneau and Payette 1998; 2000). We pooled 

ages into 5-year classes, which accounted for the possibility of missing annual growth 

rings.  

 

Figure 2.2 Photographs of (a) a trampled root along a mountain goat trail and 
(b) a cross-section of a root with trampling damange to the exposed 
xylem. We determined the age of the scar by counting from the 
damage (1) to the edge of the cambium (2). 

We cut the roots into cross-sections where the oldest damage was present. We 

identified the scars based on the exposed damage of the xylem and resin accumulation 

on the damaged part of the root. We finely sanded the cross-sections to enhance the 
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visual separation of annual growth rings. We determined the age of the scarring by 

counting the rings between the scar and the cambium to determine minimum age and 

determined the age of the roots by counting from the pith to the edge of the cambium. 

Counting annual growth rings may produce errors due to absent or false rings, so we 

calculated only a minimum age and assumed the age classes of ± 5 years (Speer 2012).  

Seasonal Use of Mineral Licks 

Ten adult mountain goats, five male and five females, were captured and fitted 

with Vectronic Vertex Lite 3-D Iridium global positioning system (GPS) collars (Vectronic 

Aerospace GmbH, Berlin, Germany). One male and one female were captured and 

chemically immobilized in modified Clover traps near the primary low elevation mineral 

lick in July – August 2017 using the methods of Cadsand et al. (2010). The rest of the 

collared mountain goats were physically immobilized via standard helicopter net-gun 

techniques in October 2017 (Barrett, Nolan, and Roy 1982). Helicopter captures 

occurred in high elevation habitat on the mountains immediately above the mineral licks. 

All captures followed the Canadian Council of Animal Care guidelines for the safe 

handling of wildlife (Parks Canada Agency Animal Care Task Force # 30681, Research 

Permit #30681 and #YNP-2019-32338, and Simon Fraser Animal Care Committee #: 

1302B-19). During the two-year analysis period from 1 November 2017 – 1 November 

2019 the collars on two males stopped functioning and three female mortalities occurred: 

two from apparent grizzly bear predation and one following a vehicle collision. 

Consequently, our analysis of 2018 data were based on four female and five male 

mountain goats, and for 2019 we used the remaining three female and three male 

collared mountain goats. On 31 July 2019 one female mountain goat was hit by a 

vehicle, leaving three male and two female collars for the last three months of the study.  

Each GPS collar was programmed to upload hourly spatial fixes for fine spatial (± 

10 m) locations. Data were cleaned by filtering any non-3D validated GPS points and 

removing impossible speeds travelled between successive points (speed >10 km h-1). 

We used a 750 m buffer around the mineral lick site including the trails to delineate 

which GPS collar locations represented a mineral lick visit using ArcGIS 10.6 (ESRI, 

Redlands, California, USA). We used both Ogden and Bosworth mineral lick sites to 

determine the frequency, duration and timing of mineral lick visits (Appendix A, Figure 

A1). The duration of mineral lick visits was calculated by the number of consecutive 
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hourly fixes within the 750 m buffer. If only one fix occurred it was counted as 1 hour, so 

an error of ±1 h is possible for duration of time spent travelling to the mineral lick. We 

used a single sample t-test to determine if male and female visits to mineral licks differed 

significantly in their frequency or duration of visits to mineral licks. 

Daily Use of Mineral Licks 

Eight remote camera traps were deployed along two primary mountain goat trails 

to capture mountain goat groups moving downslope to visit the mineral lick. We used 

motion-trigger cameras (Hf2x Hyperfire 2 Covert Ir, Reconyx Inc., Holmen, Wisconsin) 

set approximately 1.2 m off the ground on the trunks of trees with the cameras tilted 

upslope and directed towards the trails. We chose areas where the trails were in an 

open location, with little understory and where the trail was not braided. These trails run 

from the top of a ridgeline to the valley (from elevations of 2205 – 1550 m) over a 

distance of 1.2 km. These trails lead to the TCH mineral licks and highway ditches.  

Remote camera traps operated continuously between 14 May and 13 August 

2019. Cameras were programmed to capture images during a 24 h period. Two out of 

eight camera traps were chosen to calculate daily mountain goat visitation. Both were on 

two main trails leading to the same mineral lick, and on average, had the highest number 

of mountain goats recorded each week. Each camera was equipped with infrared motion 

sensors and was set up to take 5 “RapidFire” images when triggered and would continue 

taking pictures until no motion or heat was detected. We counted and classified all 

animals that triggered the cameras and recorded total numbers of animals in distinct 

groups within the last photo frame triggered. A distinct group were those that were 

separated by more than two minutes.  

All images were classified using Timelapse (Version 2.2.2.9). We counted only 

mountain goats moving toward mineral licks. All mountain goats moving away from 

mineral licks were removed to avoid double counting. Mountain goats were classified by 

sex and age by using three criteria: observation of genitals, urination posture, and horn 

morphology. Only adults > 2 years were classified as male or female because the sex of 

kids and yearlings cannot be easily identified using visual clues in the field (Smith 1988). 

Kids (0 - 12 months) and yearlings (12 - 24 months) were identified by comparing 

relative body size and horn length. To analyze the diel activity patterns, we divided a 24 
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h period into hour-long segments, and each independent record was classified within 

those intervals. These methods minimized potential observer bias as data were collected 

remotely and analyzed using a priori criteria to classify individuals. The datasets 

generated and/or analyzed during the current study are available at Data Dryad Digital 

Repository: https://doi.org/10.5061/dryad.44j0zpcb4. 

 Results 

Soil Characteristics 

The PCA of element concentrations showed an overall association between the 

mineral lick, treeline and forest areas, but were different from the highway samples 

(Figure 2.3). The first four principal components explained 90% of the variance using the 

Kaiser criterion with eigenvalues > 1. 

 

Figure 2.3  Principal Component Analysis of macro and trace elements in soil 
samples from the forest, highway ditches, mineral lick and treeline 
sites in Yoho National Park. 

The mineral lick and highway samples had significantly higher concentrations of 

Na than the forest and treeline samples (Figure 2.4). The mineral lick was significantly 

higher in Mg compared with highway, treeline and forest soil samples but was not 

significantly different in any other concentrations of macro or trace elements. Highway 

soils had significantly higher values for Ca, P and Zn but were lower for Mg. Other 

https://doi.org/10.5061/dryad.44j0zpcb4
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elements known to be important to mountain goats at mineral licks, including Ca, P, Zn 

and Cu (Jones and Hanson 1985; Kreulen 1985; Ayotte et al. 2006) were relatively 

similar between the mineral lick, forest and treeline (Appendix A, Figure A2). There was 

no difference in the concentration of the elements K, S, Mn and Fe at the four sample 

areas. There were no detectible levels of selenium in any of the soil samples tested.  

 

Figure 2.4  Concentrations (mean +/- SE) of macro elements (ppm) of soil 
samples collected from the forest, highway ditches, mineral lick and 
treeline. Significant differences (* p <  0.05) between sites were 
tested using a one-way ANOVA. 

Long-term evidence for the use of mineral licks 

The 44 roots collected were aged from 15 years to 105 years, with the dating of 

trampling scars ranging from < 5 to 65-70 years ago (Figure 2.5). The oldest recorded 

scar was dated from the early 1950’s with the highest frequency of scars observed 

between 2010 and 2018. 



20 

 

Figure 2.5 Age of trampling scars on conifer roots (grey bars) pooled into 5-
year classes and cumulative number of roots included in the sample 
for each year class (blue line). Roots were collected along trails 
leading to mineral licks frequently used by mountain 

Seasonal Use of Mineral Licks 

The phenology of seasonal visits to the mineral licks was consistent over both 

years with the majority of mountain goats accessing mineral licks between May and the 

end of July (Figure 2.6a). All GPS collared mountain goats visited a mineral lick, either 

Ogden or Bosworth, at least once per year during the two years they were tracked. 

Males arrived at the mineral lick first starting in May, one month earlier than the females 

in mid-June. Both males and females overlapped for the months of June and July and 

females continued to visit the mineral licks in August (Appendix A, Figure A3). No GPS 

collared mountain goats visited the mineral lick between December and mid-March.  

Females generally spent more time at mineral lick sites than males (t = -3.49, df 

= 110.55, p-value < .001). During each visit to the mineral lick, females spent 7.3 h 

(range = 2.0 – 18.0, no outliers) and males spent 5.3 h (range = 1.0 – 9.0, one outlier of 

88 h; Figure 2.6b). The observed frequency and duration of visitation for each sex was 

consistent between years. Males visited more frequently than females (11.3 ±0.97 SE vs 

7.4 ±0.48 SE: t = -3.13, df = 9.96, p-value < 0.01; Figure 2.6c). However, there was 

some variation, with a single female visiting a mineral lick 17 times in 2018 but only 6 

times during 2019.  
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Figure 2.6 (a) Time spent by GPS collared mountain goats at mineral licks 
adjacent to the Trans-Canada Highway during May to August 2018 (5 
male, 4 female). Top right inset shows mineral lick use during the 
entire year (2018). (b) The duration and (c) number of female and 
male mountain goat visits for 2018 and 2019 (combined), with the 
lower and upper box boundary of 25th and 75th percentiles 
respectively and the line inside the box median, lower and upper 
error lines 10th and 90th percentiles respectively. Dots indicate the 
(b) duration of a single visit and (c) the number of visits per year 
from individual GPS collared mountain goats. There was one outlier, 
a male, who visited for 88 hours (not shown).  

Daily Use of Mineral Licks  

Camera traps detected 501 independent instances of mountain goats travelling 

along trails to the TCH mineral licks, including 147 males, 193 females, 85 kids and 55 

yearlings (Appendix A, Figure A3). We were unable to classify the age and sex of 21 

mountain goats. The group size and composition and the seasonal timing of males and 

females was similar to the pattern observed with the individual GPS collar locations. The 

first date a male triggered a camera trap was 19 May; the first visit of a female was 14 
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June; and the first visit of a female with a kid was 17 June. In only 24 instances out of 

394 (6%), males travelled in groups with females. Female-only groups were larger 

(mean size = 4.0, SE +/- 0.68, range = 1 - 16) compared with male groups (mean size = 

1.5, SE = ± 0.28, range = 1 - 9). The largest group was a mixed group of 24 individuals, 

including all ages and sexes, on 8 August. Visits to the mineral lick generally occurred 

between 22:00 and 04:00 (Figure 2.7). Other animal species were recorded travelling 

along the trails at various times throughout the summer including four grizzly bears 

(Ursus arctos), four black bears (Ursus americanus), one coyote (Canis latrans), 44 

mule deer, three white-tail deer, 56 rabbits (Lepus spp.), three porcupines (Erethizon 

dorsatum), and seven humans (Homo sapiens).  

 

Figure 2.7  Time of day that mountain goat groups triggered camera traps as 
they moved down the trails to mineral licks along the TCH during 
summer 2019. 

 Discussion 

Our findings provide a detailed description of the deliberate and regular 

behaviour of seasonal visits to a resource hotspot and suggest that this behaviour has 

persisted over long periods. We found the soils consumed at the mineral lick and 

highway ditches were high in elements mountain goats are suspected to search for 

(Kreulen 1985; Ayotte et al. 2006; Slabach et al. 2015). We showed that mountain goats 

display extreme site fidelity over many decades to this mineral lick with root trampling 

scars providing supporting evidence of the long-term use of trails leading towards 
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mineral licks along the TCH over the past 65 years. The evidence suggests that 

mountain goats did not visit the primary mineral lick before the TCH was built. Mountain 

goats visited mineral licks frequently over the snow-free period, with males starting 

during snow melt in May, followed by females with newborn kids in mid-June. Mountain 

goats have developed strong behavioural traditions visiting this mineral lick over many 

decades, and within a season males and females have different seasonal patterns of 

visitation while travelling in distinct group sizes. The unique nocturnal pattern may be 

caused by proximate anthropogenic factors such as highway disturbance. The temporal 

patterns of mineral lick use by male and female mountain goats and the behavioural 

adaptions they display highlight the importance of these mineral licks for this population. 

Soil Characteristics 

We found high elemental concentrations of Na and Mg at the mineral lick and Na, 

Ca, P, Zn and Cu in the highway ditches along the TCH, common elements mountain 

goats are known to seek out (White 1983; Poole, Bachmann, and Teske 2010; Slabach 

et al. 2015). The requirements for these minerals may prompt mountain goats to visit 

mineral licks and the roadside ditches in the spring. Sub-alpine spring forage is 

commonly Na deficient and high in K (Hebert and Cowan 1971; Kreulen 1985; Atwood 

and Weeks 2002; Ayotte et al. 2006). Na and Mg are thought to offset increased K which 

is found in high elevation spring forage, and can interfere with the absorption and 

retention of other elements (Hebert and Cowan 1971; Kreulen 1985; Atwood and Weeks 

2002; Ayotte et al. 2006). The spring timing of the mineral lick visits coincides with 

increased requirements for Ca and P during late pregnancy and lactation and female 

mountain goats may seek out high levels of Ca and P that are found within the highway 

ditches (Dormaar and Walker 1996; Ayotte et al. 2006). The gravel and sand abrasives 

remaining in the roadside ditches from the winter snow removal and ice control can best 

explain the extreme differences in mineral content among the highway ditch, mineral lick, 

treeline and forest soils (Figure 2.3). Consequently, highway ditches may be a major 

attractant to this roadside area for lactating females. Interestingly, the mineral lick, 

treeline and forest were similar in composition, except for the differences in Na and Mg 

(Figure 2.4).  

The primary mineral lick in our study is most likely caused by a combination of 

factors including easy access and proximity to mountain goat habitat, as well as 
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presence of the eroded cut banks adjacent to the highway maintenance ditches that 

concentrate abrasives. Consequently, mountain goats target the eroded banks of the 

TCH because of easily accessed soils. Trees concentrate fine-textured soils and 

minerals under their roots, which can explain the behaviour of excavating under trees as 

documented by other research studies in the Kootenay and Rocky Mountain regions 

(Hebert and Cowan 1971; Poole, Bachmann, and Teske 2010).  

Long-term evidence of the use of mineral licks 

We found no trampling scars that predate the construction and completion of the 

TCH. We suspect mountain goats started using this mineral lick after the TCH 

completion in 1958 given the soil sample and dendrochronology evidence. Trampling 

scars on the exposed roots of trees across mountain goat trails showed evidence of 

long-term use leading to mineral licks for over 65 years. This is consistent with other 

observations of extended mineral lick use in the Rocky Mountains by National Park 

wardens and from reports of mountain goat highway mortalities in the area dating back 

to 1975. Yoho National Park was surveyed for mineral licks in 1949, prior to the 

construction of the TCH, and there was no mention of this specific mineral lick being 

used by mountain goats (McTaggart Cowan and Brink 1949). Mineral lick use is 

determined by the geographical and physical features of the area (Panichev et al. 2016) 

and either this population of mountain goats had an alternative mineral source or did not 

have access to mineral resources at the primary mineral lick until after the TCH was 

constructed.  

The long-term use of the primary mineral lick by mountain goats is supported by 

root scar evidence. We observed that females with young routinely visit the mineral licks 

every spring facilitating inter-generational learning such that this behaviour is passed 

from females to their offspring. In other species, foraging site locations are learned from 

their parents such as young black bear cubs that learn to forage in specific locations and 

target specific foods (Mazur and Seher 2008). 

Natural root mortality may bias our counts and could limit our detection of past 

mountain goat use along the trails or decrease the detectability of trampling scars. The 

use of trampling scars to reconstruct mountain goat use over time is based on scar 

production and scar loss. Scar production occurs with damage to the xylem by 
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mechanical damage and scar loss will occur with a death and decay of a tree-root. While 

the chance of detecting older scars was reduced because we collected fewer old roots, 

our results show trampling scars only appeared in the 1950s and increased over time.  

Seasonal use of mineral licks 

GPS collared mountain goats accessed mineral licks during the first days of the 

snow-free season, with most visits in May, June and July, followed by less frequent 

individual visits between early August and December (Figure 2.6a). No visits occurred 

between the months of December and March, most likely because access to the mineral 

lick required moving through deep snow in the forest. These patterns are also consistent 

with previous studies within the Rocky Mountain region (Hebert and Cowan 1971; Singer 

1978; Ayotte, Parker, and Gillingham 2008; Poole, Bachmann, and Teske 2010; Jokinen 

et al. 2014). 

GPS collared mountain goats made frequent trips over the spring and summer 

seasons and the high frequency of short-term visits can best be explained by their 

proximity to the mineral licks. We found mountain goats travelled a maximum of 10 km 

and visited the mineral licks repeatedly over the season while other studies have found if 

a mountain goat’s range was far from a mineral lick then the visits were less frequent but 

for a longer duration (Rice 2010). Short (< 1 day) and frequent trips may be evidence of 

a trade-off between the benefits of nutritional value of the mineral lick and the increased 

exposure to predation risk (Kreulen 1985; Rice 2010). Our findings suggest that 

mountain goats in our study area visit for shorter trips possibly to limit the exposure to 

predators as time spent away from escape terrain while still accessing minerals. 

Mountain goats are most often reported within 500 m of escape terrain (DeVoe et al. 

2015) while the mineral lick is over 1 km away from cliffs. Indeed, two GPS collared 

mountain goats were killed due to predation near the mineral lick, and similarly, Poole et 

al. (2010) suspected two predation mortalities at mineral lick sites. Balancing resource 

access and safety have been reported for numerous other species including bison 

(Bison bison), elk and pygmy rabbits (Brachylagus idahoensis) (Hebblewhite and Merrill 

2009; Fortin and Fortin 2009; Camp et al. 2017).  

Males arrived earlier in the spring, spent less time at mineral licks than females 

and visited more frequently (Figure 2.6b, c). The later timing of female visits may 
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coincide with the lambing period and the ability of newborn kids to travel longer 

distances (Hebert and Cowan 1971). Females travelled to mineral licks in larger groups 

than males. Mountain goats are highly gregarious and like many ungulates they are 

sexually segregated during the summer (Festa-Bianchet, and Côté 2008). Female 

groups consist of kids and yearlings, so the group size was expected to be bigger. Male 

groups were much smaller consisting of one to three individuals. Males, unhindered by 

parturition and shepherding newborn kids down steep trails, can visit earlier, more 

frequently and spend less time at the mineral licks. Males visit earlier due to the 

abrupted switch from a low quality winter diet to a lush spring forage and with higher 

mobility than females they can access elements that ease the indigestion that comes 

from the diet switch earlier than females (Kreulen 1985). The higher frequency of male 

visits could be explained by the difference in either nutrient demands or their willingness 

to accept greater risk (Festa-Bianchet and Côté 2008). Male mountain goats may accept 

a higher risk of predation because their large body size makes them less vulnerable and 

they do not have to account for the predation risk of juveniles (Conradt 1998; Ruckstuhl 

and Neuhaus 2002).  

Daily use of mineral licks 

We found that this population of mountain goats tended to visit at the same times 

over a 24-hour period, displayed a nocturnal pattern to access mineral licks and spent 

the duration of the night at these sites (Figure 2.7). There was little activity between the 

daylight hours of 05:00 and 21:00. This pattern was the same for both sexes, GPS 

collared individuals and camera trap group visits. In the alpine, away from human 

disturbance, this population of mountain goats follows a crepuscular pattern, forging 

during the daylight hours, travelling during the crepuscular periods and bedding at night 

and in the afternoon (See Chapter 3). Similarly, mountain goats in Glacier National Park 

(USA) that visit highway licks have a nocturnal pattern, while another study population 

with no highway disturbance followed a crepuscular pattern (Pedevillano and Wright 

1987; Singer 1978). In contrast, the Caw Ridge (Alberta) mountain goat population, with 

no highway disturbance, has activity levels that peak in the early morning, midday and 

late afternoon while decreasing during late morning and evening (Romeo and Lovari 

1996). The recursion of movements within the same 24-hour periodicity is a widespread 

phenomenon among large herbivores and large scale studies suggest that increased 
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familiarity with the area increases effectiveness of acquiring resources (Wolf et al. 2009). 

Humans have a strong effect on the daily patterns of wildlife, which has led to increased 

nocturnality in numerous mammals (Gaynor et al. 2018). Traffic volume on the TCH is 

greatest during the day (Parks Canada, unpublished data) and mountain goats may 

have adapted their behaviour to visit road-side mineral licks during periods of lowest 

traffic. Mountain goats have been recorded to react negatively to human disturbance 

from hikers, all-terrain vehicles and helicopters (Côté et al. 2013; St‐Louis et al. 2013; 

Richard and Côté 2016). Avoidance of high traffic volume may be an important factor 

influencing the visitation of mineral lick areas along busy transportation corridors. We 

suspect that these specific movements are probably related to the tendency to return to 

familiar areas at familiar times with reduced traffic volume. 

Hotspots as a critical landscape feature determining movement 
behaviour 

Our study provides long-term insights spanning many decades combined with 

high-resolution contemporary data to analyze how behavioural strategies evolved in 

animals to access resource hotspots outside of their usual home range. We attempted to 

assess the trade-offs between geophagy and human disturbance, predation risk 

exposure, and parturition for mountain goats accessing these mineral lick sites. 

Environmental factors such as the phenology of spring green up and predator activity 

may influence the frequency and duration of mineral lick visits for both male and female 

mountain goats. The strategic nocturnal visits of this population of mountain goats may 

be an adaption to high traffic volumes along the TCH. Mountain goats have likely 

adapted to significant risks by using different behavioural strategies to access mineral 

licks that are then passed between generations. 

Our finding that mountain goats alter their behaviour to visit a site that is most 

likely human caused has implications for management. This information can help find 

ways to reduce the attractive chemical components of the road abrasives used along the 

highway and could ultimately reduce vehicle collisions with mountain goats. Road 

construction that results in newly exposed soils and cut banks may result in increased 

mountain goat presence, particularly in areas mountain goats are already known to 

frequent. In these situations, highway exclusion fencing may prevent mountain goats 

from being killed in collisions with vehicles. However, simultaneous creation of similar 



28 

mineral rich features using a combination of terrain alterations (e.g. cut banks and 

depressions) and mineral rich soil in alternative locations would ensure long-term 

mineral requirements are fulfilled. Quantifying and monitoring the seasonality, timing, 

duration and group composition of mountain goat visits to human-influenced resource 

hotspots can assist in measuring the success of managing these areas  

Resource hotspots have outsized ecological functions, and investigating the 

temporal patterns of how animals modify their behaviour to access these critical 

resources can provide insight to the behavioural rhythms associated with accessing 

scarce resources (Freymann, de Visser, and Olff 2010; Xue et al. 2018; Montalvo et al. 

2019). Mineral licks are preferentially used by herbivores over extended periods of time 

and North American ungulate species travel long distances, often with increased 

predation risk outside of their usual home range to visit these sites (Ayotte et al. 2006; 

Slabach et al. 2015). Dependencies on scarce resource hotspots can introduce patterns 

in movement strategies and high site fidelity to dependable resources (Giotto et al. 2015; 

Thaker et al. 2019). Within the broader context of behavioural ecology our study 

demonstrates the larger implications of geophagy on mountain goat movement, 

energetics, predation risk exposure, and seasonal habitat use. Finally, understanding 

how animals adjust their behaviour in response to scarce but constant resource hotspots 

outside their usual home range may also provide relevant conservation and 

management opportunities. Mineral licks may be overlooked when accounting for wildlife 

conservation, and our findings provide a detailed example that can inform and assess 

other hotspots used by mountain ungulates.  
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Chapter 3.  
 
Behavioural states of mountain goats (Oreamnos 
americanus) as a proxy for habitat hotspots using 
hidden Markov models 

 Abstract 

Understanding where, why, and how individual animals move is a fundamental 

biological question, but directly observing an animal’s behaviour and the habitat they 

utilize is logistically challenging. Mountain goats (Oreamnos americanus) are elusive 

high alpine ungulates that live in steep and mountainous environments where it is 

difficult to directly observe and record behaviour. Hidden Markov models (HMMs) are 

emerging as a useful method for predicting the behaviour of animals over space and 

time. We used HMMs to identify hidden behavioural states and predict habitat hotspots 

of mountain goats. We evaluated how these inferred states can serve as a proxy to 

identify habitat hotspots. We explored associated environmental covariates, time of day 

and distance from escape terrain, to explain these behaviours. We visited field sites that 

were selected by mapping fast to slow movements of mountain goats to look for physical 

evidence of several behaviours, including foraging, travelling, and bedding. We found 

mountain goats are most likely to forage during daylight hours away from escape terrain, 

travel within and away from escape terrain during the crepuscular periods and bed 

nearest to escape terrain in the night-time and afternoon. The inferred behavioural states 

were validated against the field sites and in 64% of the cases the model predicted the 

habitat characteristics recorded in the field. Our method is best at “uncovering” foraging 

areas, then bedding sites and lastly travel. Our results illustrate that HMMs have the 

power to predict the relationship between behavioural states and habitat hotspots and 

this approach may assist wildlife managers in assessing why goats use certain hotspots 

and how they travel between them.  

 Introduction 

Understanding where, why, and how individual animals move is a fundamental 

biological question (Nathan et al. 2008; Dingle 2014), but directly observing animal 
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behaviour and the habitat they utilize is logistically challenging (Cagnacci et al. 2010). 

Advances in technology using global positioning systems (GPS) have provided improved 

spatial and temporal resolution for determining animal behaviour and habitat use without 

the confounding effects of disturbance from the researcher. These indirect observations 

from GPS collars can be used to gain insights on animal behaviour and habitat, 

particularly in home ranges that are often inaccessible (Seidel et al. 2018). Animal 

behaviour has been inferred by characterizing patterns of time series movement from 

GPS collars using measures such as step length (distance from last point), or tortuosity 

(turning angle from last point) (Morales et al. 2004; Owen-Smith, Fryxell, and Merrill 

2010).  

Common techniques for assessing animal habitat use within their home range 

such as Resource Selection Functions (RSFs) or Step Selection Functions (SSFs) do 

not consider an individual’s behavioural state at each step (Seidel et al. 2018). RSFs 

calculate the habitat “used” versus “available” using a logistic regression framework 

(Boyce et al. 2002), while SSFs use a time-series of “available” points using a set of 

randomly drawn steps from each time series of points as a whole (Thurfjell, Ciuti, and 

Boyce 2014). RSFs and SSFs use recorded locations to examine habitat in broader 

terms (Hebblewhite and Merrill 2008) but other studies have emphasized the importance 

of considering the behavioural context in which animal movements occur (Beyer et al. 

2010; Wilson, Gilbert-Norton, and Gese 2012).  

More recently, state-space models, such as hidden Markov models (HMMs), 

have been used to identify different modes of animal movement and behavioural state 

switching (Zucchini, MacDonald, and Langrock 2016). In the past decade published 

studies using HMMs have successfully predicted the movement patterns of California 

brown pelicans (Pelecanus occidentalis californicus; Dean et al. 2012), the diving 

behaviour of Blainville’s beaked whale (Mesoplodon densirostris; Langrock et al 2014) 

and the winter movements of swift foxes (Vulpes velox; Butler et al. 2019), among many 

other applications (Mor, Garhwal, and Kumar 2020; McClintock et al. 2020). HMMs allow 

researchers to examine animal behaviour within the framework of a time series of 

discrete observations of movements. Animal movement is a natural framework for 

HMMs because it contains a time series of discrete finite observations from GPS 

locations using step length and tortuosity to infer the hidden behavioural states of 

animals (Michelot, Langrock, and Patterson 2016; Zucchini, MacDonald, and Langrock 
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2016). HMMs assume a time series and a finite number of GPS tracking locations 

(observed states) that are produced by the underlying sequence of unobserved “hidden” 

behaviour that depends on the state of the proceeding step (Patterson et al. 2008). At 

each time step a discrete observation in the form of a location point is available to 

interpolate the hidden behaviours. Broadly, HMMs predict the future behavioural state of 

an animal given its current state, an assumption known as the Markov process 

(Patterson et al. 2008). In each timestep the behavioural state can switch to a new 

behaviour or stay the same.  

HMMs have been used to study elusive animals that are difficult to observe, 

including black bears (Ursus americanus; Karelus et al. 2019), elephants (Loxodonta 

Africana; Vogel et al. 2020) and caribou (Rangifer tarandus; Franke et al. 2004). 

Nevertheless, few studies have confirmed predicted behavioural states through on-the-

ground observation of habitat at GPS locations, with the exception of carnivore hunting 

and caching behaviour in wolves (Canis lupus; Franke et al. 2006), lions (Panthera leo; 

Goodall et al. 2019) and snow leopards (Panthera pardus saxicolor; Farhadinia et al. 

2020).  

Mountain goats are elusive high alpine ungulates that live in steep and 

mountainous environments where it is difficult to directly observe and record behaviour. 

Conservation managers stress the importance of understanding mountain goat 

behaviour and habitat use (Mountain Goat Management Team 2010) but due to the 

remote and complex environment they reside there are few studies that focus on their 

behaviour. Mountain goats are sensitive to human presence and often flee the area 

when humans approach making them difficult to observe (St‐Louis et al. 2013; Richard 

and Côté 2016) but advances in technology have made it easier to track mountain goats 

with GPS collars. Given the complexities of mountain goat habitat, we chose to apply 

HMMs to predict common ungulate behavioural states such as, foraging, travelling, 

bedding and mineral lick excursions. We predicted that different patterns of step lengths 

and turning angles would allow us to uncover different behavioural states.  

Mountain goat research often focuses on winter habitat (Poole, Stuart-Smith, and 

Teske 2009; Richard, Wilmshurst, and Côté 2014), summer habitat (DeVoe et al. 2015; 

Sarmento, Biel, and Berger 2019) or both (Rice 2008; White et al. 2011; Lowrey et al. 

2017), but less is known about the spring season when large phenological changes 
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happen quickly in high-elevation mountain environments. In the spring, receding snow 

increases forage availably from low quality winter browse to fresh spring forage (Ayotte 

et al. 2006), mountain goats increase their localized winter movements to wider ranging 

ones (Rice 2008; Lowrey et al. 2017), parturition occurs (Festa-Bianchet, and Côté 

2008), and visits to known mineral licks peak (Kroesen, Hik, and Cherry 2020). During 

the spring and early summer, it is unknown how mountain goats utilize certain types of 

habitat during different times of the day and away from escape terrain. 

Our research objectives were to predict mountain goat hidden behavioural states, 

identify if behaviours change over time of day or distance to escape terrain and evaluate 

if states can serve as a proxy for habitat hotspots using field classification. First, we 

hypothesized that fast to slow mountain goat movements during June and July may be 

indicative of high alpine mineral licks and other habitat hotspots such as high-quality 

foraging areas, the end of movement corridors or bedding areas. Second, we used 

HMMs to identify the hidden behavioural states of a mountain goat. Given that ungulates 

often have more than two states (Schmidt et al. 2016) we predict that we will find three 

or more behavioural states based on step lengths and turning angles. We then 

investigated the relationships between predicted behavioural states and time of day and 

distance from escape terrain and determined if these associations differed between two 

study groups separated by the Continental Divide. Many terrestrial ungulates have been 

shown to have diurnal patterns (Ager et al. 2003) and escape terrain has been shown as 

a primary factor in habitat choice for mountain ungulates (DeVoe et al. 2015). Lastly, we 

used habitat characteristics collected during field site visits to test if the predicted 

behavioural states could serve as a proxy for different types of habitat hotspots. Our 

HMM framework provides an opportunity to uncover how elusive mountain herbivores 

utilize habitat hotspots in different behavioural states, and consider wider applications for 

the management of mountain goat populations (Fraser et al. 2018).  

 Methods 

Study area 

Our study was conducted in Yoho and Banff National Parks in the Canadian 

Rocky Mountains (Figure 3.1). We studied two groups of mountain goats occurring on 

either side of the Continental Divide, between Alberta and British Columbia. The home 
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ranges of each study group are separated by 15 km and the upper Bow River valley. 

Both areas contain steep and rugged mountains with high summits over 3000 m, and 

valley bottoms at 1500 m. However, the physio-geographic characteristics of the 

mountains differ across the Continental Divide. In the Slate Range, on the east side of 

the Continental Divide, summits are characteristically “castle like” because the folds of 

the geomorphic rock lay flat creating flat topped summits with plummeting cliffs (Baird 

1962). Glaciers and other agents erode horizontal rock layers slowly, which explains the 

steep summits and the broad shallow U-shaped valleys characteristic of the Slate range. 

Within the Sherbrooke study area in the Waputik Range, on the west side of the 

Continental Divide, valleys are noticeably V-shaped due to the steep streams containing 

fast moving water with erosive power. This, combined with the thicker ice on the western 

slopes during previous glacial periods resulted in heavier glaciation creating more 

moderate summits (Bobrowsky and Rutter 2007). The Sherbrooke study group on the 

west side of the Continental Divide is situated around Sherbrooke Lake in Yoho National 

Park, but also includes a major valley-bottom transportation corridor for the Trans-

Canada Highway (TCH) and the main Canadian Pacific Railway line. The Slate study 

group on the east side of the Continental Divide occurs in the Slate Range north-east of 

Lake Louise in Banff National Park, and while there are numerous popular hiking trails, 

and a ski resort on the periphery of their range, these mountain goats are not exposed to 

vehicle traffic. Individuals in both study groups typically inhabit elevations between 2440 

m and 1940 m.  

Mountain goats live in the alpine and sub-alpine in a wide variety of mountainous 

habitats from cliffsides, to open meadows to subalpine forests (Lowrey et al. 2017). 

Mountain goats are often found near or on steep slopes or cliff bands called “escape 

terrain” to evade most mammalian predators that would be unable to access these 

slopes (Poole and Heard 2003; DeVoe et al. 2015). Mountain goats are generalist 

herbivores and considered intermediate browsers and generally forage on grasses and 

forbs (Festa-Bianchet, and Côté 2008). Alpine vegetation contains low sodium and high 

potassium content, and mountain goats often travel long distances outside their normal 

alpine habitat to visit mineral licks to obtain supplemental minerals (Hebert and Cowan 

1971; Ayotte et al. 2006; Kroesen, Hik, and Cherry 2020). 



34 

 

Figure 3.1  Map of the Sherbrooke (blue, n = 9 individuals) and Slate (pink, n = 
10 individuals) mountain goat ranges based on nearly 35,000 GPS 
collar locations between 1 June and 15 July 2018 in Yoho (British 
Columbia) and Banff (Alberta) National Parks, Canada. The red star 
is the village of Lake Louise and the yellow line depicts the Trans-
Canada Highway running east to south and the Icefields Parkway 
branching off to the north. The Continental Divide runs from North to 
South, and effectively separates the Sherbrooke and Slate goats 
from each other. 

GPS Collars 

Twenty mountain goats were collared, ten in both the Sherbrooke (5M, 5F) and 

Slate (6M, 4F) ranges and fitted with Vectronic Vertex Lite 3-D Iridium global positioning 

system collars (Vectronic Aerospace GmbH, Berlin, Germany) (Parks Canada Agency 

Animal Care Task Force # 30681, Research Permit #30681 and #YNP-2019-32338, and 

Simon Fraser Animal Care Committee #: 1302B-19). We captured 18 adult mountain 

goats by helicopter net-gun in October 2017. One male and one female were captured 

and chemically immobilized in modified clover traps as described in Cadsand et al. 

(2010) in the Sherbrooke study area during July and August 2017.  

Each GPS collar was programmed to record a location (+/- 0.01 km) every hour. 

Data was cleaned by removing any non-3D validated GPS points and movements 
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greater than 10 km/hour between successive fixes. All data was examined to identify 

movements or locations associated with impossible distances or across impassible 

terrain. We focused on the spring season from June 1st to July 15th because at this time 

of year mountain goats display increased movement to ecologically relevant hotspots 

such as mineral licks, which are often areas of management interest (Poole and Heard 

2003; Kroesen, Hik, and Cherry 2020).  

During the two-year analysis period the Sherbrooke study area had two male 

defective GPS collars and three female mortalities occurred, two from apparent grizzly 

bear predation and one wildlife-vehicle collision. The Sherbrooke 2018 season analysis 

was based on four female and five male mountain goats, and the 2019 season used the 

remaining three female and three male collared mountain goats. In the Slate range all 

GPS collared mountain goats survived for the 2018 season. In 2019, one female and 

two male collars ceased transmitting.  

Analysis 

HMMs assume data is regularly sampled over time and measurement error is 

negligible (Patterson et al. 2009). We used the R package MomentuHMM (McClintock 

and Michelot 2018) to predict missing locations using an average movement rate 

between irregularly spaced observations. The interpolated points were processed using 

the crawlWrap function that fits a continuous time correlated random walk model 

(Johnson et al. 2008) and predicts the temporally-regular locations using the crawlWrap 

package in R (McClintock and Michelot 2018). The interpolated points filled in the 

missing data and allowed us to assume temporally regular dataset of hour-hour fixes per 

individual. We calculated the step-lengths and turning angles for each step between two 

consecutive locations.  

Hidden Markov Model Analysis 

HMMs are state-space models designed using a two Markov processes with 

hidden and observed states (Zucchini, MacDonald, and Langrock 2016). HMMs are 

comprised of two probabilistic processes: the unobserved Markov chain which is the 

“hidden” state of the animal and the observed locations collected from GPS collars. The 

R package “momentuHMM” (McClintock and Michelot 2018) was used for fitting the 
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HMM to the movement tracks. The initial parameters inputted were chosen values based 

on biological and literature reviews common for ungulates. The initial values for each 

behavioural state were the mean around the gamma (step length) and von Mises 

(turning angle) distributions for which all the observed behaviours were categorized. We 

modeled the step lengths which were positive and continuous, with gamma distributions, 

and the turning angles, circular-values, with von Mises distributions (Langrock et al. 

2012; Zucchini, MacDonald, and Langrock 2016). Common behavioural states of large 

ungulates we included were resting, foraging and travelling (Owen-Smith 2002). We did 

not assume that an animal will remain in a single state for one hour, however, the 

dominant behaviour will be predicted by the model. For example, in foraging areas 

ungulate species tend to move slowly, turn frequently and take shorter steps and while 

traveling they move directly with long steps, and at rest they take no steps (Patterson et 

al. 2008).  

We assigned behavioural states, characterized by different distributions of step 

lengths and turning angles. We chose these initial parameters based on the accuracy of 

the GPS collars (+/- 10 m), step length and turning angle histograms and based on prior 

biological movements on other foraging ungulates such as elk (Cervus canadensis; 

Michelot et al. 2016), African buffalo (Syncerus caffer; Hooten et al. 2019), caribou 

(Rangifer tarandus; Franke et al. 2004), suggesting the step lengths and turning angles 

for these animals are biologically interpretable. We chose initial parameters of moderate 

step lengths (10 m - 100 m) and moderate turning angles (𝜋/2) for foraging, large steps 

(> 500 m) and large turning angles (𝜋) for travelling, and shortest steps (< 10 m) and 

moderate turning angles (𝜋/2) for bedding. The models fitted used a fixed distribution for 

turning angles and step lengths, have a fixed set of transition probabilities and do not 

vary with environmental co-variates. We explored an in-between state, foraging*bedding, 

where a mountain goat would be moving slowly or intermittently rest in-between foraging 

bouts, by imputing short step lengths (10 m – 50 m) and small turning angles (𝜋/4). We 

tested these initial parameters by imputing extreme parameters and did not change the 

confidence intervals (Table 3.1).  

We compared three candidate HMMs, 2-state (foraging and travelling), 3-state 

(foraging, travelling and bedding) and 4-state (foraging, travelling, bedding and 

foraging*bedding) and with Akaike information criteria (AIC). Based on the AIC we chose 

to run the 3-state model for analysis. We used the Viterbi algorithm (Viterbi 1967) to 
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globally decode the most likely sequence of the probability of observing the behavioural 

state under the fitted model and assigned a state to each observed step (Langrock et al. 

2012). We checked the pseudo residuals for goodness-of-fit. The pseudo-residuals 

should follow a normal distribution if the fitted model is estimating the density of step 

lengths and turning angles (Patterson et al. 2009; Zucchini, MacDonald, and Langrock 

2016). We combined the hidden behavioural state classifications to the corresponding 

GPS locations. We used the moveHMM (Michelot, Langrock, and Patterson 2016) and 

momentuHMM packages (McClintock and Michelot 2018) for the program R (R Core 

Team 2017) to perform all HMM analysis.  

We established how behavioural states changed over time of day and distance 

from escape terrain. Daylight hours were defined as 5:00 to 22:00 and nocturnal times 

were defined from 22:30 – 5:00, during our study period the sunset time and sunrise 

times only changed by 15 minutes. Distance from escape terrain was defined as a 

specific threshold of slopes greater than 40 degrees (DeVoe et al. 2015). Distance from 

escape terrain, steep and rugged terrain in which mountain goats use to escape and 

avoid predators, has been associated as an important covariate in mountain goat habitat 

(Poole and Heard 2003; DeVoe et al. 2015). We calculated distance from escape terrain 

using a 30 m digital elevation model for the study area which was calculated by 

comparing the height of a cell to the height surrounding cells using QGIS (version 

3.12.3). Output values ranging from 1 – 90 degrees indicating the slope steepness. We 

used the threshold of 40 degrees to define escape terrain. We then calculated the 

Euclidian distance of each GPS fix from the escape terrain.  

Field Site Selection and Validation 

We selected and visited field sites prior to our HMM analysis. Our field site 

selection was based on the distance between hourly GPS collar locations. Distances 

between locations were calculated from UTM coordinates using the package “amt” in R 

version 1.1.563 (R Core Team, 2019). We prioritized sites where mountain goats 

changed their behaviour from fast (> 1km/hour) to slow (< 0.1 km/hour) movements. We 

considered movement between hourly locations > 1 km to be travelling behaviour. 

Distances between hourly locations < 0.01 km and equal to zero were considered 

stopped. A mountain goat moving <0.01 km/ hour could be stationary and thus bedded 



38 

because the error of the GPS track is up to < 0.01 km. Movements between fast and 

slow (i.e., 0.01 km/hour – 1 km/hour) were considered foraging.  

We walked to the defined sites guided with handheld GPS (+/- 10 m). We did not 

visit any sites that were considered over class 3 terrain (Rose 2013), which may involve 

the use of hands to climb over or around large rocks, and steep slopes. If possible, we 

initially examined sites from lower elevations or with Google Earth (version 7.3.3.7699) 

and did not visit the site if it appeared dangerous to approach or exposed to hazards. 

At all sites, we conducted pellet and herbivory surveys as evidence of mountain 

goat presence and foraging intensity, respectively. Both pellet and herbivory surveys 

were 10 min in duration and were initiated at the center of the site and then moved in 

concentric circles outward, if possible. If the site was very steep, we started above the 

center point and zig-zagged downslope. The herbivory and pellet surveys were 

conducted at the same time using teams of two observers, and each team member was 

assigned the same survey (herbivory, pellet) for consistency. The pellet surveys counted 

distinct pellet piles and were used as a general measure for absence (0), low (≤ 5) or 

high (> 6) usage in the area. An individual pellet was counted as one pile when only one 

pellet was found in the area. The herbivory surveys counted clumps of sedges, grasses 

or forbs bitten horizontally and the number of each that we observed. We defined 

herbivory classes as, (1) no evidence (2) trace (one or two plants grazed), (3) moderate 

(¼ or less plants grazed) or (4) high (more than ¼ plants grazed). We recorded any 

signs of other large ungulates or small mammal dwellings near the area, to account for 

other signs of herbivory. We counted herbivory based on the characteristics of large 

pieces of plants missing, not irregular nibbling typical of small mammals or invertebrates. 

We recorded only one instance where we observed another ungulate, bighorn sheep 

(Ovis canadensis), grazing in a valley below the elevation where mountain goats are 

normally found.  

We recorded and classified physical evidence of common ungulate behaviours 

as of foraging, travelling, bedding, or mineral lick use (Figure 3.2). Foraging states were 

classified based on evidence of herbivory, forage availability and observations of 

mountain goat grazing. Travelling states were classified with either evidence of well-

worn linear paths or lack of mountain goat signs (i.e. low pellet count, no foraging, no 

bedding evidence), as a mountain goat was assumed to have moved quickly through the 
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area. Bedding states were classified with evidence of bedding which included ovals dug 

into the ground or compressed vegetation and high pellet counts. We searched for 

mineral licks within a 100m2 area by looking for digging, teeth marks or excavations 

under tree roots (Poole, Bachmann, and Teske 2010).  

When evidence of more than one behaviour was observed in the field, we used 

hierarchical rules to classify each field site. If signs of bedding were present, we 

considered this a bedding site even if there were also some signs of foraging. A foraging 

site was an area with moderate to high herbivory and contained no bedding areas. A 

travelling site was considered when there was a game trail or trace signs of foraging and 

no bedding signs as a mountain goat was assumed to have quickly moved through the 

area. There were no signs of mineral licks located during site visits and therefore no 

need to consider them within this hierarchical analytical approach.  

 

Moderate to high herbivory 
Mountain goats grazing 

Trails, no bedding signs or 
trace herbivory 

Bedding signs &  
pellet piles 

Digging or excavations under 
tree roots 

Figure 3.2 Photographs of typical evidence used to classify ground validation 
locations classified as (a) foraging, (b) travel, (c) bedding and (d) 
mineral lick. 

To summarize, we validated the model using the field-site visits and thus 

determined the probability of the hidden states being correctly identified with HMMs. We 

compared the predicted behavioural state vs. “observed” habitat classification using 

QGIS. We mapped the predicted and the observed states of the animal to determine if 

these states aligned. These field observations were compared with the model of 

predicted hidden behavioural states.  
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 Results 

We used 16,122 and 18,604 GPS locations for Sherbrooke and Slate groups, 

respectively. The mean number of locations collected for each individual mountain goat 

in Sherbrooke was 1075 (2018) and 1074 (2019), and in Slate was 1064 (2018) and 

1066 (2019). We removed and then interpolated < 0.1% (109 and 283 Sherbrooke and 

Slate Range, respectively) errant GPS points during the cleaning process.  

HMM Analysis 

We found the most support for the three-state model based on AIC and fit of the 

pseudo-residuals, termed each hidden state as foraging, travelling and resting 

movement states. The candidate models suggest that mountain goats have three 

behavioural states, described by the fitted distribution curves and state allocation (Figure 

3.3). The first behaviour was consistent with local movement we termed foraging, 

characterized by moderate step lengths and large turning angles. The second behaviour 

was consistent with long distance travelling. The movements were faster than the mean 

speed of a mountain goat and the tortuosity was low, implying they were following a 

direct path and not returning to the same spot. The third behaviour was consistent with 

convoluted, tortuous, and short tracks of stationary or bedding, as GPS tracks. A visual 

example of each behavioural state, step characteristics, mean step lengths and turning 

angles are indicated in Table 3.1.  



41 

 

Figure 3.3 Histograms of observed step lengths (left) and turning angles (right) 
for the Sherbrooke (upper) and Slate (lower) mountain goats. The 
coloured lines are the estimated densities in each state, foraging 
(orange), travelling (blue) and bedding (green), and the dotted black 
line is their sum. 
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Table 3.1 Classification criteria for each behavioural state, foraging, travelling 
and bedding. Typical step characteristics are listed, along with 
estimates and 95% confidence intervals for movement parameters 
determined by the 3-state models. The step lengths are modeled 
with a gamma distribution, and the turning angles with a von Mises 
distribution, based on 1-h location movements for the Sherbrooke 
and Slate collared mountain goats. 

State Foraging Travelling Bedding 

 
State Diagram 

  
 

Step Characteristics moderate steps 
moderate turning angles 

large steps 
large turning angles  

small steps 
moderate turning angles  

    
Step mean (km)   0.11 (0.10, 0.13)  0.49 (0.43, 0.56) 0.03 (0.02, 0.03) 
Angle mean (radians) 2.93 (0.72, 4.57) 0.06 (-0.73, 0.14) 2.87 (2.61, 3.12) 

 

When using the Viterbi algorithm to identify the most likely state of each location 

under the three-state model, the highest number of locations were identified as foraging 

(58% Sherbrooke, 51% Slate), then bedding (23% Sherbrooke, 29% Slate), and lastly 

travelling (19% Sherbrooke, 20% Slate). Maps of individual mountain goats’ tracks 

classified by the HMM (Figure 3.4) reveal the spatial distribution and sequential patterns 

of activity and the transitions between each state. The transition probability matrix 

provides the probabilities of transitioning from one state to another (Appendix B, Table 

B1). When in a foraging state, the highest probability is to remain in a foraging state, with 

an equal probability of shifting from foraging to resting and travelling in Sherbrooke and 

a higher probability from shifting to foraging to bedding in the Slate Range. From the 

travelling state, the most likely transition is to remain in the same state. Once in a 

bedding state, the highest probability is to remain in a bedding state with a smaller 

probability of transitioning to a foraging state. This suggests that the observed 

behavioural state tends to persist for longer than one period of observation, for all three 

states. Mountain goats are more likely to enter the travelling state from the foraging state 

than after a bedding state. On spatial scales, the foraging state occurs in large clusters, 

the travelling state is associated with dispersed points, and the bedding state is 

characteristically a tight cluster of points (Appendix B, Figure B1). 
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Figure 3.4 Location of behavioural states, foraging (orange), travelling (blue) 
and bedding (green), for two representative individual mountain 
goats in the Sherbrooke (left) and Slate (right) range for the period 
15-29 June  2018, based on hidden Markov model probabilities. 
Similar patterns were observed for all individuals included in the 
study.  

Environmental Covariates 

There were clear differences to how the behavioural states related to diurnal 

patterns and distance from escape terrain (Figure 3.5). Time of day had a strong effect 

for both study groups on the state probabilities. Foraging was most likely to occur during 

the daylight hours, travelling in the crepuscular periods, and bedding during the night 

and during the mid-afternoon. The Sherbrooke and Slate groups responded similarly, 

with foraging being the most likely to occur away from escape terrain and bedding to 

occur closer to within escape terrain. The Sherbrooke group was likely to travel away 

from escape terrain, while the Slate group travel occurred closer to escape terrain.  
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Figure 3.5 Stationary state probabilities for the Sherbrooke (left) and Slate 
(right) mountain goats as functions of two covariates: time of day 
(upper; a,b) and distance from escape terrain in meters (lower; c.d). 
The coloured lines represent each state, foraging (orange), travelling 
(blue) and bedding (green). The vertical lines provide pointwise 95% 
confidence intervals. 

Field site selection and validation 

We selected a total of 230 (92 Sherbrooke and 171 in Slate range) points to 

ground validate. We visited 92 sites which included 41 sites in Sherbrooke and 51 sites 

in the Slate Range. Out of 92 field sites investigated we found evidence of the hidden 

behaviour within the habitat in 59 sites (64%). Overall, we ground validated foraging 

74% (20/27), bedding 63% (31/49) and travelling 50% (8/16) states. The behavioural 

state predictions from the HMMs for Sherbrooke and Slate Range were validated correct 

60% and 66% respectively. In the Sherbrooke study area, we validated foraging 100% 

(11/11) and travelling 50% (8/16) followed by the bedding 42% (6/14) states. In the Slate 

range we validated bedding 71% (25/35) then foraging 56% (9/16). We could not 

validate any travelling states in the Slate Range as all sites were over class 3 terrain. All 
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three behavioural states were found to some degree at 22 sites, with 44 sites having 

evidence of two states and 26 sites having evidence of only one state.  

 Discussion 

We applied a hidden Markov state-space model to classify mountain goat 

behaviours as a proxy for habitat hotspots based on fine GPS-collar location data in two 

separate mountain goat groups over two years. Contrary to our expectations we did not 

find any high alpine mineral licks. However, in the field we were successful in recording 

evidence of many foraging areas, heavily used movement corridors and bedding sites. 

Using GPS collar locations, we used HMMs to predict three behavioural states in both 

the Sherbrooke and Slate ranges and interpreted the behaviours as foraging, travelling, 

and bedding. We were able to validate these behaviours using our field habitat 

classifications, using hierarchical rules, 64% of the time. Time of day influences the 

probability of detecting specific behavioural states, where foraging activity occurs in the 

daylight hours, travel in the crepuscular periods and bed at night and afternoon. 

Mountain goats in the Sherbrooke study area forage and travel away from escape terrain 

while the Slate range mountain goats only forage away from escape terrain.  

We calculated the probability of state persistence and state switching and found 

that behaviour occurs in bouts. Transitions between each state were unlikely, especially 

if a mountain goat was bedding. This pattern is likely because we measured behavioural 

states in hourly intervals and goats appear to spend consecutive hours in one state. 

When transitions between states do occur, a bedding mountain goat would be more 

likely shift to forage before travelling. A foraging mountain goat was more likely to shift to 

bedding than to travelling. Both foraging and bedding reflects the places where mountain 

goats spend most of their time as these behaviours involve short step-lengths in the 

same location for long periods. Foraging and bedding locations would be considered a 

habitat hotspot, characterized by high resource availability, by wildlife and conservation 

managers because of the time spent accessing necessary resources for survival 

(Anderson et al. 2010).  

The travelling state is the widest ranging and least concentrated state, and 

HMMs may be useful in helping conservation managers detect important movement 

corridors with no foraging or bedding habitat. Movement corridors may be missed in 
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other types of habitat use analyses such as RSFs or SSFs because how much time and 

space an animal takes up within the landscape defines their habitat utilization. Yet 

features that mountain goats move quickly through, such as movement corridors, may 

be just as critical for their survival (Hebert and Cowan 1971). Abrahams et al. (2016) 

employed a SSF with different sampling frequencies, depending on the movement 

patterns of GPS collared African wild dogs (Lycaon pictus), including foraging, resting 

and commuting, and demonstrated that the response of selecting roads varied 

significantly depending on the behavioural state in which roads were encountered. If an 

African wild dog was commuting, they were more likely to use a road than if they were 

foraging or resting. These findings indicate that including behavioural information into an 

animal movement study is critical for understanding how wildlife respond to certain 

features within the landscape (Abrahms et al. 2016). Additionally, mountain goats travel 

quickly through these areas during crepuscular periods, which reduces the likelihood of 

them being detected in these habitats during aerial surveys (Gonzalez-Voyer, Festa-

Bianchet, and Smith 2001; Rice, Jenkins, and Chang 2009) or through opportunistic 

observations. It is ecologically relevant to define areas animals use frequently, yet, move 

quickly through and may not have traditional habitat features that can be defined through 

remote sensing including vegetation classification or slope angle (DeVoe et al. 2015; 

Lowrey et al. 2017).  

Mountain goats in both the Sherbrooke and Slate study areas exhibited similar 

patterns over the time of day. Similar to previous studies mountain goats forage more 

during the daylight hours, travel during the crepuscular periods and sleep in the night 

and afternoon (Romeo and Lovari 1996). We observed that mountain goats in both study 

groups were in the foraging state during daylight hours. Travelling occurred during the 

crepuscular periods which is presumed to maximize thermoregulation and minimize 

predation in other ungulates, including white-tailed deer (Singer 1978; Pedevillano and 

Wright 1987; Ager et al. 2003; Webb et al. 2010). Bedding occurs during the darkest 

hours of the night and in the mid-afternoon when the daytime heat would be the hottest 

and mountain goats cease travelling and foraging to avoid heat-stress (White et al. 2011; 

Sarmento, Biel, and Berger 2019). 

We found evidence that mountain goat behavioural states are strongly linked to 

distance from escape terrain. Similar to other studies we observed that mountain goats 

are most likely to be in the foraging state when they are the farthest from escape terrain 
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and bed in areas nearest to escape terrain (Poole and Heard 2003; DeVoe et al. 2015). 

The Sherbrooke group tended to travel away from escape terrain, while the Slate group 

stayed nearest to escape terrain. The physio-geological characteristics of the two 

mountain ranges could account for these differences. The Sherbrooke and Slate 

mountain ranges have different geology (Bobrowsky and Rutter 2007), with the 

Sherbrooke study area surrounded by mostly moderately sloped terrain containing large 

ridges in which the goat trails circumnavigate terrain along moderately sloped ridges. In 

contrast, the Slate mountain range is characterized by large summits and steep cliffs 

where mountain goats travel close to ledges. 

Our HMM predicted behavioural states as a proxy of mountain goat habitat 

hotspots correctly 64% of the time for the Sherbrooke and the Slate ranges combined. 

Our method is best at “uncovering” foraging areas, then areas where goats bed, and 

lastly where they travel. Many field locations that we ground validated had evidence of 

high use, with bedding and foraging evidence as well as many trails leading to and from 

these areas. Interestingly, during our navigation to these field sites there was often no 

evidence of mountain goats along our chosen routes until we were near the sites. This 

suggests that a collared goat’s behaviour of moving “fast” to “slow” indicates a habitat 

hotspot for many mountain goats in the study population. Initially our study was designed 

to find alpine mineral licks, but we found no evidence of states that defined travel to 

mineral licks. Alpine mineral licks are difficult to locate and may not be as abundant as 

low elevation mineral licks, especially in the Rocky Mountains (Jokinen et al. 2014). We 

may not have found alpine mineral licks in either range because there were none 

available, or they were infrequently visited by GPS collared mountain goats.  

Unexpectedly, we discovered many mountain goat trails during our fieldwork. 

The trails were clearly used as heavily trafficked movement corridors with many 

mountain goat tracks and pellet piles within areas with very little forage. Given this 

observation, the HMM appear to perform well at predicting movement corridors in the 

Sherbrooke study area. In contrast, the Slate range was too steep to validate any of the 

suspected travelling sites. Future work with drones may be useful to validate these 

potential travel sites that were not accessible by foot. Anecdotally, bedding sites often 

occurred near foraging sites, but in a more clustered manner, often with a wide view of 

the area on or near escape terrain.  
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Our state classification should only be considered as a proxy for the underlying 

‘true’ animal behaviour. As we limited our classification to the three most common states 

for mountain goats, we may have missed other less common states, such as kidding, or 

evasion from predators, and this may partially explain our validation success. Other 

studies that “uncovered” the hidden behavioural states of African lions found 75% 

behaviours correct (Goodall et al. 2019), detected 86% wolf kill sites correctly (Franke et 

al. 2006) and found snow leopard prey caches 41% of the time (Farhadinia et al. 2020). 

Similarly, there were many sites that had evidence of all three behavioural states, and 

we chose to adopt a conservative approach with hierarchical rules to validate only one of 

the behavioural states present at the field sites. For example, we were interested in 

separating bedding sites, including those where foraging also occurred, from areas 

where only foraging occurred. Animal movement is usually driven by short term goals 

and internal states such as reproduction, maintenance, feeding, survival and escaping 

predators (Holyoak et al. 2008), and our study used individual GPS collars to draw broad 

conclusions about behavioural habitat selection of the population. Sex or age specific 

individual variation of the GPS collared mountain goats should be considered in future 

studies. 

Our detectability may have been driven by fieldwork accessibility and our a priori 

design. Our field site selection was also biased towards foraging and bedding sites. 

First, we targeted places where mountain goats moved fast to slow, deliberately biasing 

towards sites away from trails because a mountain goat would move quickly on a trail 

and then slow down once it arrived at a foraging or bedding site. Second, mountain 

goats may forage on small grasses and sedges that were more available during the 

month prior to our field visits. In some cases, the foraging evidence on southerly aspects 

was limited or plants had already gone to seed in late August. Third, our study assumed 

that GPS collared mountain goats are independent of each other, and yet we know they 

are highly gregarious (Festa-Bianchet, and Côté 2008). Lastly, in the Slate Range we 

found more bedding sites than any other sites and it is possible travelling was mis-

classified here as mountain goats may travel slower in complex terrain. As noted above, 

we were unable to validate these sites, especially travelling and bedding sites because 

they were located on very steep terrain.  

We used HMMs to uncover different habitat is used by mountain goats in 

different ways depending on their behavioural state. We visited areas where mountain 



49 

goats switched their behavioural state between moving fast to slow and almost all these 

areas had evidence of mountain goat foraging, travelling and bedding sites. Overall, we 

provide new insights into the behavioural states of mountain goats and how they move 

throughout the landscape during different times of the day and distance from escape 

terrain. We detected travelling areas even when the terrain is inaccessible. Our findings 

also provide insights into how different groups of mountain goats use their terrain 

differently but exhibit similar behavioural states over the time of day.  

The lack of basic data for elusive animals, including habitat use, distributions or 

behaviour can be obstacles in management, planning and establishing conservation 

priorities (Parsons 2016). Our research can help inform conservation priorities and 

management decisions to determine foraging, bedding and travel areas without 

extensive travel into the field, which is often rugged, complex and dangerous to access 

(Fraser et al. 2018). Our data suggests that hidden Markov models can detect high use 

habitat areas and movement corridors that connect them. Behavioural state predictions 

can guide resource managers in identifying not only key foraging habitat and important 

bedding sites but also possible movement corridors. Remote data collection and 

modelling behaviour can uncover habitat hotspots and detect features that may be 

overlooked by habitat managers because animals may travel quickly through the area. 

Our results have the potential for wider application, including predicting habitat hotspots 

for elusive ungulates and herbivores that have large, cryptic and difficult to access home 

ranges. 
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Chapter 4.  
 
General Discussion 

 Overview 

I examined how resource hotspots can influence the movement behaviour of 

mountain goats over large and small temporal and spatial scales. I investigated the 

movement ecology of two groups of mountain goats and their relationship with two 

different kinds of hotspots in the Canadian Rocky Mountains. In Chapter 2, I investigated 

mountain goat movements to mineral licks, a concentrated resource hotspot, over 

different time periods from decadal to seasonal to diurnal. In Chapter 3, I examined 

behavioural states as a proxy for mountain goat habitat hotspots, specifically foraging, 

travelling and bedding areas. By examining movements over a variety of temporal and 

spatial scales we can gain a better understanding of how mountain goats access 

resources and habitat hotspots in complex terrestrial landscapes.  

The temporal patterns of mountain goat movements to resource hotspots 

uncovered deliberate and regular seasonal visits to mineral licks and suggest this 

behaviour has persisted over decades (Chapter 2). Root trampling scars provide 

evidence of site fidelity with long-term use of trails leading towards mineral licks. 

Mountain goats visited mineral licks frequently over the snow-free period, with males 

beginning to visit during snow melt in May, followed by females with newborn kids in 

mid-June. Mountain goats have developed strong behavioural traditions visiting this 

mineral lick over many decades, and within a season males and females have different 

seasonal patterns of visitation while travelling in distinct group sizes. The temporal 

patterns of mineral lick use by male and female mountain goats and the behavioural 

adaptions they display highlight the importance of these mineral licks for this population. 

HMMs were used to infer behavioural states as a proxy for habitat hotspots such 

as foraging, travelling and bedding based on high resolution GPS-collar location data in 

two separate mountain goat groups over two years (Chapter 3). I examined how 

behavioural states change in relation to two environmental co-variates, time of day and 

distance to escape terrain. We found foraging occurs in the daylight hours, travel in the 

crepuscular periods and bed at night and afternoon. Interestingly, it seems topography 
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affects behaviour. For example, mountain goats in the Sherbrooke study area forage 

and travel away from escape terrain while the Slate range mountain goats forage away 

from escape terrain but will travel through escape terrain. I ground-validated physical 

evidence of behavioural states and recorded evidence of high-quality foraging areas, 

heavily used movement corridors and bedding sites. I was able to ground validate these 

using hierarchical rules and found foraging and bedding locations were found in clusters 

and travelling was the least dense state. Importantly, HMMs can detect movement 

corridors and may help land managers identify important areas where mountain goats 

spend less time but are important to habitat connectivity.  

 Management Implications 

In this thesis I provide new baseline data for management planning within and 

outside a mountain goat population’s normal home range. Mineral licks are important to 

mountain goats and understanding the use of these sites is necessary to create 

guidelines for mountain goat conservation plans. Analysis of soils uncovered high levels 

of salts along the roadside, likely stemming from chemical components in road abrasives 

used along the highway. I recommend reducing the use of these chemicals in highway 

maintenance to reduce attracting mountain goats onto the road and ultimately reducing 

vehicle collisions. I found other trace elements that are important for mountain goat 

fecundity at these mineral lick sites and if this area is impacted by highway construction 

access to these minerals may be limited. Soils at the mineral lick and forest were similar 

in composition according to our PCA analysis. If highway construction limits access to 

the mineral licks a possible solution would be to expose forest soils further upslope away 

from the highway, reducing vehicle collision exposure and creating access to mineral 

soils. Understanding the timing and intensity of mineral lick use over different time 

periods provides a baseline into how anthropogenic disturbances may influence critical 

resource access over time and will help target peak times when mountain goats will be 

most at risk to disturbance. As more data is gathered on the phenomenon of mineral lick 

utilization, we will be better able to expand our understanding of when and why mountain 

goats use mineral licks. Characterizing the differences between male and female 

mountain goat use of mineral licks can help wildlife conservation managers reduce the 

impact of stressors such as disturbances during the peak visiting times, which may be 

particularly important for lactating females. 
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My research can inform conservation priorities and management decisions by 

identifying foraging, bedding and travel areas without extensive travel into mountain goat 

habitat, which is often rugged, complex and dangerous to access. Understanding how 

mountain goats use the landscape can help land managers identify habitat conservation 

priorities. Information about seasonal range use can guide resource managers in 

identifying not only key foraging habitat and important bedding sites but also movement 

corridors that connect these sites. Remote data collection and modelling behaviour can 

uncover habitat hotspots and detect features that may be overlooked by habitat 

managers because animals do not spend large amounts of time there. Identifying 

movement corridors that mountain goats travel quickly through is important to maintain 

connectivity between habitat patches. My research indicates mountain passes, ridges 

and stopovers should be considered in land use planning. These results have the 

potential for wider applications, such as predicting habitat hotspots for elusive animals 

that have large, cryptic and difficult to access home ranges. 

 Future Directions 

I examined the temporal and spatial scales of mountain goats accessing 

resource and habitat hotspots within and outside their normal home range. The results of 

this study provide detailed insights on an elusive alpine ungulate. The lack of basic data 

for elusive animals, including habitat use, distributions or behaviour can be obstacles in 

management, planning and establishing conservation priorities (Parsons 2016). The 

detailed temporal data I provided concerning mineral lick use along the TCH highlights a 

clear resource hotspot and I recommend continued monitoring at this mineral lick site. I 

recommend limiting disturbances such as highway construction in times of high use 

especially during times when females and kids are at the mineral lick. I also recommend 

that researchers adopt an HMM approach over different seasons to predict areas such 

as kidding sites and important wintering habitats. In addition, my results may provide a 

foundation for incorporating varying spatial scales, which could be used to infer 

continental scale behavioural patterns of mountain goats within different ranges.  

Mountain goats are the least studied ungulate in North America, primarily 

because they live year-round in inhospitable and inaccessible mountain habitats. While 

they are not listed as a species at risk in Canada, mountain goats are sentinels of the 

effects of the climate change and are easily disturbed by human presence (Mountain 
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Goat Management Team 2010). My thesis provides detailed information about mountain 

goat behavioural states in protected areas, where they do not experience hunting 

pressures or anthropogenic disturbances such as heli-skiing, forestry, mining, or 

development. We can use this data to inform how mountain goats alter their movement 

patterns in response to environmental and anthropogenic changes.  
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Appendix A.  
 
Supplemental Figures for Chapter 2 

 

Figure A1 Individual use of mineral licks in 2018 by GPS collared mountain 
goats between May and August. Triangles are males, circles are 
females, each symbol is one hour of time spent at a mineral lick. 
Each colour represents a different individual (CollarID). 
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Figure A2  Concentrations (mean +/- SE) of trace elements (ppm) of soil 
samples collected from the forest, highway, mineral lick and tree 
line. Significant differences (* p < 0.05) between sites were tested 
using a one-way ANOVA.  

 

Figure A3  Daily group size and composition of mountain goats visiting mineral 
licks in summer 2019. Each stacked bar represents the total number 
of goats observed in camera traps on each day. Group sizes of each 
sex and age class are shown for each day 
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Appendix B.  
 
Supplemental Table for Chapter 3 

Table B1 State transition probability matrix for three behavioural states in the 
Sherbrook (upper) and Slate (lower) study groups. Given that a 
particular state is at time t, the matrix displays probabilities of 
switching to a different state or remaining in the same state  
at time t + 1. 

Sh  State at time t + 1 

   
  S

ta
te

 a
t t

im
e 

t 

 forage travel bed 

forage  0.736    0.121     0.143 

travel 0.212    0.639     0.149 

bed 0.347    0.070     0.583 

 

Sl  State at time t + 1 

  S
ta

te
 a

t t
im

e 
t 

 forage travel bed 

forage 0.762    0.061    0.177 
 

travel 
 

0.132    0.767      0.101 

bed 
 

0.307    0.070      0.623 

 


