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Abstract 

DDT is an organochlorine insecticide that was widely used in fruit orchards in the South 

Okanagan Valley from the late 1940s and in the 1990s, this was documented to have 

caused extensive contamination of American robin (Turdus migratorius) food chains. 

Due to the environmental persistence of DDT and its metabolite, p,p’-DDE, the objective 

of this study was to re-sample previous orchards, as well as several new agricultural 

areas with the prediction that DDT and metabolite concentrations would significantly 

decline twenty-six years after a similar sample collection was conducted in 1993-1995. 

This was done by: 1) collecting soil, earthworms and American robin eggs from orchard 

and non-orchard areas in the South Okanagan Valley, 2) comparing previous and 

current contaminant burdens for DDE, DDT and DDD metabolites, and 3) calculating 

biomagnification factors for earthworms and robins on a lipid normalized basis. All robin 

eggs contained DDE, DDT and DDD, with the highest concentration being p,p’-DDE at 

107 ug/g (wet weight), confirming that contamination is still present at similar and high 

levels relative to the 1990s. DDE and DDT levels in robins were significantly higher than 

Aporrectodea and Lumbricidae earthworms, and earthworm-robin regressions for DDE 

showed a significant positive relationship. Biomagnification factors were generally > 1 

and were higher for DDE than DDT and DDD. Concentrations of p,p’-DDE in American 

robins in this study were comparable to and/or exceeded published levels in other 

migratory birds nesting in fruit orchards, including the eastern bluebird (Sialia sialis), 

where reproductive and immunostimulation effects were observed. The relatively high 

concentrations of DDE in the South Okanagan Valley may pose a health risk to local 

predators and birds of prey, such as Accipiter hawks and falcons, who often feed at 

higher trophic levels where DDE and other contaminants are biomagnified. 

Keywords:  DDT; orchards; American robins; robin eggs; earthworms; 

biomagnification 
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Chapter 1.  
 
Organochlorine (OC) insecticides and 
dichlorodiphenyltrichloroethane (DDT) 

1.1. Introduction 

Insecticides, which may be naturally derived (i.e. oil) or synthetically produced, 

are some of the most toxic chemicals released by humans into the environment 

(Chowanski et al., 2013; Relyea, 2005). Unlike most xenobiotics, insecticides are 

designed to kill, repel, or otherwise harm living organisms, and they are one of the few 

toxic substances that are intentionally applied to the environment, resulting in ubiquitous 

exposure (Cox & Surgan, 2006). By controlling pest outbreaks, insecticides offer several 

important economic and biological advantages, including increased crop yield, reduced 

soil disturbance, and prevention of waterborne and insect diseases (Chagnon et al., 

2014; Evans, 1985). However, insecticides can undergo various long-term changes once 

released into the environment, including biotransformation to metabolites, volatilization 

into the atmosphere, regional transport, wet/dry deposition, runoff, groundwater 

discharge and global distillation (Williamson et al., 2013), thereby increasing their overall 

persistence. The effects of climate change (i.e. temperature increases and extreme 

weather events), are also believed to influence the long-term environmental fate of 

insecticides in various ways, including increased mobilization from reservoirs, increased 

airborne transport via wind and ocean currents, and delayed environmental degradation 

(Wiwanitkit, 2013), consequently impacting the composition and structure of food webs, 

as well as the source, transport, fate and accumulation of insecticides in biotic and 

abiotic samples. Accordingly, monitoring programs conducted in North America have 

found insecticides in one or more samples from almost every stream sampled, with over 

70% of insecticides being detected in aquatic and terrestrial food chains based on 

stream water, ground water, bed-sediment and fish sampling (Gilliom & Hamilton, 2006).  

Organochlorines (OCs) are a diverse class of insecticides that were originally 

developed in the 1930s for industrial and domestic purposes (Blus et al., 2006; Singh, 

2016). The use of OC insecticides quickly surged in the late 1940s and 1950s during 
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The Green Revolution, which saw a drastic increase in population growth (Pingali, 2012) 

and the subsequent production of food grains and other agricultural crops, including rice, 

wheat, and corn (Pimentel et al., 2004). According to the World Health Organization 

(WHO) and the Stockholm Convention on Persistent Organic Pollutants (POPs), the 

most commonly used OC insecticides included the: 1) dichlorodiphenylethanes (DDT, 

dicofol, methoxychlor), 2) chlorinated cyclodienes (aldrin, diedrin, endrin, chlordane, 

endosulfan, heptachlor), and 3) hexachlorocyclohexanes (mirex, lindane, oxaphene). In 

insects, these OC insecticides caused toxicity by either irreversibly binding to voltage-

gated sodium channels (VGSCs), or in the case of the latter two OCs, by inhibiting 

gamma-aminobutyric acid (GABA) chloride-channel complexes, thereby disrupting the 

peripheral nervous system (Davies et al., 2007; Silver et al., 2014). Due to their 

widespread use and nonpoint-source contamination, OC insecticides have also caused 

non-target effects by interfering with the endocrine, immune and reproductive systems in 

vertebrates (Li et al., 2014; Takser et al., 2005; Tiemann, 2008). The intensification of 

agriculture and large-scale use of insecticides over the years has also led to unintended 

ecological impacts, including direct impacts on bird and pollinator populations (Bishop et 

al., 2020; Blacquière et al., 2012; Rundlöf et al., 2015), pest resistance, loss of habitat, 

degraded water quality and contaminated food sources (Dirbaba et al., 2018). In 

addition, many OC insecticides are formulated with various inactive ingredients that can 

increase the oral and dermal absorption of the insecticide(s), thus increasing their 

toxicity to various target and non-target organisms (Venail et al., 2015). As a result of 

their documented broad-spectrum toxicity, the production, use and release of OC 

insecticides is currently banned in many parts of the world, with the exception of DDT, 

which is currently listed in Annex B to the Stockholm Convention with its use restricted 

for the control of vector-borne diseases, such as malaria and leishmaniasis (Sarkar et 

al., 2008). However, DDT is known to persist at high concentrations even in areas of 

past intensive use (Bishop et al., 2000; Brogan et al., 2017; Elliott et al., 1994; Gill et al., 

2003; Harris et al., 2000), thereby increasing the risk of exposure to human and 

ecological receptors. 

DDT is a colorless, tasteless and odorless compound that is synthesized by 

Friedel-Crafts reactions between trichloroacetaldehyde and two chlorobenzene rings, 

with a molecular weight (MW) equal to 354.51 g/mol and a chemical formula of C14H9Cl5 

(Wang et al., 2008). DDT was first synthesized in 1874 by Othmar Zeidler and was later 



3 

developed into a neurotoxic insecticide by Paul Hermann Müller in 1939 in order to 

control mosquitoes and other insects that carry typhus, malaria and dengue virus (Berg 

et al., 2017; Hurlbut et al., 1952; Wang et al., 2008). The use of DDT quickly expanded 

after World War ll and eventually became a common agricultural, and commercial 

insecticide starting in the late 1940s, with approximately 80 million pounds (valued at 

more than $20,000,000) of DDT being shipped abroad annually between 1959 to 1972 in 

North America (Sherman, 1977). To date, more than two billion tons of DDT has been 

used worldwide, with India, China, the Democratic People’s Republic of Korea, and the 

United States being listed as the top exporters of DDT during the 20th century (Berg, 

2009). DDT was manufactured in the United States for Canada up until 1985 and was 

primarily used to control codling moth (Cydia pomonella) infestations in fruit orchards 

(Environment Canada, 1995). Due to its efficacy and low cost of manufacturing, DDT 

was formulated and used in many different ways, including aerial sprays, as well as foliar 

application via powders, granules, and emulsifying concentrates (Berg, 2009). 

Technical-grade DDT (i.e. Gesarol, Sanex, Cezarex, Anofex, Chlorophenothane, 

Dicophane, Ixodex) was composed of different DDT compounds in para, para’ (p,p’-) 

and ortho, para’ (o,p’-) conformation, including o,p’-DDD and p,p’-DDD (1,1-dichloro-2,2-

bis(p-chlorophenyl)ethane), as well as o,p’-DDE and p,p’-DDE (1,1-dichloro-2,2-bis(p-

chlorophenyl)ethylene). However, up to 80% of the DDT formulation consisted of the 

active ingredient p,p’-DDT, with the remainder of the mixture consisting of o,p’-DDT, 

o,p’-DDD, p,p’-DDD, o,p’-DDE, and/or p,p’-DDE isomers depending on the formulation 

(Wong et al., 2015). These DDT-related (DDT-r) compounds are commonly referred to 

as impurities or metabolites of DDT, and while they do not occur naturally, they continue 

to be detected at hazardous levels in air, water, sediment, soil and biota, especially DDE 

due to its long half-life, lipophilicity, and metabolic stability (Berg, 2009; Keller, 2010).   

Like most persistent organic pollutants, DDT is a hydrophobic and lipophilic 

compound, allowing it to easily dissolve in fatty tissue and bind to organic particulates in 

soil and sediment (Environment Canada, 1995). These toxic properties allow DDT to 

build up, or bioaccumulate in organisms and affect higher trophic level species, through 

a process known as biomagnification, where the chemical in an organism exceeds that 

of its diet (Arnot & Gobas, 2006; Elliott et al., 2005; Fremlin et al., 2020; McIntyre & 

Beauchamp, 2007; Muir et al., 1999). The accumulation of DDT in an organism can be 

quantified by different metrics based on the route of exposure. Bioaccumulation factors 
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(BAFs) are measured under field conditions and include the uptake of a chemical from 

all routes, including diet, dermal and respiratory pathways, whereas bioconcentration 

factors (BCFs) include respiratory and dermal pathways only (i.e. no diet), and are 

typically measured under controlled laboratory conditions (Arnot & Gobas, 2006). 

Biomagnification factors (BMFs) can be determined under laboratory and field conditions 

and are calculated as the ratio of a chemical in a predator (expressed in units of mass of 

chemical per kg of the organism) to that of its diet or prey (Arnot & Gobas, 2006). 

Trophic magnification factors (TMFs) represent the average change in contamination 

concentrations per trophic level (using δ15N isotopes) and usually involve multiple 

species and/or exposure pathways (Arnot & Gobas, 2006; Brink et al., 2015). These 

measurements can be expressed on a wet weight basis or dry weight basis, although 

are commonly expressed on a lipid normalized or lipid weight basis in order to allow for 

direct comparisons between different species (Arnot & Gobas, 2006). Diet and 

feeding/habitat range are considered the most important determinants of DDT exposure; 

however, the respiratory pathway can also be an important uptake/eliminate route 

affecting exposure in aquatic and terrestrial organisms (Kelly & Gobas, 2003; Kelly et al., 

2007). As such, bioaccumulation and biomagnification metrics are often compared to 

either an octanol-water partition coefficient (KOW), which partitions xenobiotics between 

an aqueous phase and lipid phase in-vivo, or an octanol-air partition coefficient (KOA), 

which describes the partitioning of a chemical between the atmosphere and different 

environmental organic phases related to soil and sediment particulates (Kelly et al., 

2007). Unlike water-respiring organisms that are capable of gill ventilation, the 

elimination of organic contaminants in terrestrial organisms is thought to be inversely 

related to a chemical’s KOW, with log KOW’s between 2 to 5 and log KOA’s between 6 to 12 

generally resulting in biomagnification (Brink et al., 2015; Kelly et al., 2007). Growth 

dilution is also considered to be an important pseudo-elimination process, which can 

result in the dilution of a chemical’s concentration due to an increase in the volume of 

tissue of an organism (Arnot & Gobas, 2006). The physio-chemical properties of DDT-r 

compounds and bioaccumulation potential, therefore, differs greatly between different 

species and trophic levels, reflecting differences in the pattern(s) of exposure, route(s) of 

uptake, and subsequent elimination of metabolites.  

The environmental impacts of DDT were first brought to the attention of the broad 

public and to politicians in 1962 by Rachel Carson, a marine biologist and long-term 
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environmental activist. Carson is widely credited to citing some of the earliest anecdotal 

research of DDT, along with the reproductive toxicity of DDE metabolites in humans and 

wildlife, including birds, fish, amphibians and mammals (Carson, 1962). The link 

between DDT and egg-shell thinning in raptors was not discovered until after the 

publication of Silent Spring by British Nature Conservancy researcher, D.A. Ratcliffe, 

who conducted field surveys in the 1960s and reported a decrease in egg weight and an 

increased incidence of broken eggs in peregrine falcons (Falco peregrinus), 

sparrowhawks (Accipiter nisus) and golden eagles (Aquila chrysaetos) from different 

regions (Elliott, Bishop & Morrissey, 2011; Ratcliffe, 1967). Shortly thereafter, Hickey & 

Anderson (1968) revealed that eggshell thinning was occurring in several raptorial 

species in the United States, including bald eagles (Haliaeetus leucocephalus) and 

ospreys (Pandion haliaetus) that were feeding on DDT-contaminated prey, which 

weighed significantly in the decision to ban DDT in North America. Due to the 

environmental persistence of DDT, ongoing contamination continues to be observed in 

locally exposed, year-round resident populations of Accipiters in Canada (Elliott & 

Martin, 1994), including the Cooper’s hawk (Accipiter cooperii) and sharp-shinned hawk 

(Accipiter striatus), in large part due to their preference for terrestrial birds and 

patchiness in soil contamination linked to their food chains (Bishop & Brogan, 2013; 

Brogan et al., 2017). Due to their trophic positions and diet preferences, raptors and 

aquatic birds are more vulnerable to the effects of eggshell quality compared to 

gallinaceous birds, gulls and passerines, who are more prone to the acute effects of 

direct ingestion of contaminated prey (Rattner et al., 1984; Walker, 1983). Yet, even 

decades after the ban and usage of DDT, several studies have reported high DDE 

residues in migratory thrushes and their eggs, including the eastern bluebird (Sialia 

sialis) and the American robin (Turdus migratorius) (Barker, 1958; Bishop et al., 2000; 

Dimond et al., 1970; Elliott et al., 1994; Fluetsch & Sparling, 1994; Harris et al., 2000; 

Hellou et al., 2013; Johnson et al., 1976; Smith, 2004; Stringer et al., 1974). 

 The American robin is a common breeding species found throughout North 

America that has adapted well to both natural and anthropogenic habitats (Cannings et 

al., 1987; Vanderhoff et al., 2014). American robins are an omnivorous species and have 

a highly variable diet throughout their annual cycle, shifting from soil invertebrates during 

the breeding season, to fruits and berries in the fall and winter (Sallabanks & James, 

1999; Vanderhoff et al., 2014). Earthworms can form up to 80% of invertebrate biomass 
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in soil and can account for up to 40% of the overall diet of robins (Armitage & Gobas, 

2007). During the spring and summer months, American robins can capture up to 20 

worms per hour (Montgomerie & Weatherhead, 1997) and some have been reported to 

consume 14 feet of earthworms in a day (Sibley, 2020), either for self-feeding or nestling 

provisioning. Earthworm attack rates and foraging times are considered to be higher in 

fruit orchards, agricultural areas and other well-lit areas with saturated soils (Eiserer, 

1980; Vanderhoff et al., 2008). In the Okanagan Valley, American robins readily use 

orchard habitat for nesting and feeding and could uptake significant amounts of DDT-r 

from earthworms, which are known to accumulate high levels of DDT-r from past 

intensive use (Elliott et al., 1994). American robins are also considered resident or non-

migratory and many local populations overwinter in the Okanagan Valley (Campbell et 

al., 1997; Cannings et al., 1987). American robins in the Okanagan are therefore likely to 

accumulate greater concentrations of DDE during the breeding season as a result of 

their extensive orchard use and earthworm diet (Harris et al., 2000). Several soil-

earthworm-robin exposure studies have been conducted; however, a limited number of 

prey samples were analyzed for DDT content (Barker, 1958; Dimond et al., 1970; 

Johnson et al., 1976), thereby lending uncertainty between DDT contamination in 

migrants and residents (Harris et al., 2000). As American robins continue to make 

extensive use of orchard habitat (Elliott et al., 1994; Gill et al., 2003; Harris et al., 2000), 

they provide a useful indication of the ongoing DDT exposure of other resident and 

migratory birds, including raptors (Elliott et al., 2005), who often feed at higher trophic 

levels, thereby increasing their toxicological risk.  

1.2. Research objectives 

The main objective of this study is to determine whether a legacy organochlorine, 

DDT, is persisting and biomagnifying in fruit orchards twenty-six years after a similar 

sample collection was conducted in 1993-1995 in the Okanagan Valley of B.C. This 

study focusses on a terrestrial food chain model that includes soil, earthworms and 

American robin eggs (with a focus on the latter two in this thesis) and uses a refined 

approach by assessing biomagnification factors (BMFs) as fugacity ratios, i.e. 

expressing chemical concentrations on a lipid normalized or lipid weight basis. In 

addition to assessing the current state and extent of DDT contamination in local biota, 

this research will improve our understanding of the underlying processes controlling 
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biomagnification in field studies and will aid in any current weight-of-evidence 

approaches involving terrestrial-based-food-web bioaccumulation models that can be 

used in the regulation of commercial chemicals, cleanup and remediation of 

contaminated sites, exposure assessments of current-use and emerging pesticides, 

ecotoxicological risk assessments and derivation of environmental quality criteria 

(Armitage & Gobas, 2007; Burkhard et al., 2011). 
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Chapter 2.  
 
The continuing persistence and biomagnification of 
DDT metabolites in American robin food chains 

2.1. Introduction 

DDT contamination continues to be an environmental issue globally, due to its 

long-term historical use, persistence in environmental media, ability to bioaccumulate 

and biomagnify through food chains, and toxic and endocrine disrupting effects in 

humans, and wildlife (Alexander & Maroli, 2003; Corsini et al., 2008; Elliott et al., 2018; 

Keifer & Firestone, 2007; Rogan & Chen, 2005; Wolff et al., 2000; Wong et al., 2015; Ye 

et al., 2013). In North America, DDT was a synthetic insecticide used from the late 

1940s to control for various pests in agriculture, forestry and domestic areas 

(Environment Canada, 1995). Due to its broad-spectrum toxicity, the production, use and 

release of DDT for agricultural purposes was banned worldwide in 2004 by the 

Stockholm Convention on Persistent Organic Pollutants, a multilateral treaty aimed at 

protecting human health and the environment (Environment Canada, 1995). Even 

decades after its use, the environmental persistence of DDE metabolites, specifically 

o,p’-DDE and p,p’-DDE, in soil invertebrates and avian wildlife continues to be 

documented (Bishop et al., 2000; Blus et al., 1987; Currier et al., 2020; Elliott et al., 

2009; Elliott, 2005; Elliott et al., 1994; Elliott & Martin, 1994; Fremlin et al., 2020; Gill et 

al., 2003; Harris et al., 2000; Richards et al., 2005; Schmitt et al., 2018). The trophic 

transfer, or biomagnification, of DDE metabolites in terrestrial food chains has been 

historically associated with eggshell quality effects and population declines of several 

raptors and aquatic birds, including peregrine falcons (Falco peregrinus), brown pelicans 

(Pelecanus occidentalis), double-crested cormorants (Phalacrocorax auritus), ospreys 

(Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), American kestrels (Falco 

sparverius), sharp-shinned hawks (Accipiter striatus), black-crowned night herons 

(Nycticorax nycticorax), and white-faced ibis (Plegadis chihi) (DeWeese et al., 1986; 

Elliott et al., 1988; Elliott & Martin, 1994; Elliott & Shutt, 1993; Henny et al., 1985; Henny 

et al., 1983; Lincer, 1975; Wiemeyer et al., 1988; Yates et al., 2010). However, in the 

recent past, there has been a growing body of evidence documenting the persistence of 

DDE metabolites in migratory thrushes, including eastern bluebirds (Sialia sialis) in 
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Southern Ontario (Bishop et al., 2000), as well as American robins (Turdus migratorius) 

nesting in certain localized areas in the Okanagan Valley (Elliott et al.,1994; Gill et al., 

2003; Harris et al., 2000; Iwaniuk et al., 2006; Smith, 2004). 

The Okanagan Valley is located in the south-central interior of British Columbia, 

Canada and is an intensive fruit growing region (past and present) that generates more 

than $118 million in wholesale revenue and approximately $800 million in economic 

activity (BC Fruit Growers’ Association, 2010). The mild and semi-arid climate of the 

Okanagan Valley is thought to be associated with various biogeochemical conditions 

that encourage fruit set, kill overwintering pests and assist in the thinning of fruit, as a 

small percentage of buds typically suffer winter damage (BC Fruit Growers Association, 

2010; Kuo et al., 2012). Commercial fruit orchards account for more than 10,000 

hectares in the Okanagan-Similkameen and represent a significant component of BC’s 

tree fruits, which includes apple, apricot, peach, pear, sweet cherry, and sour cherry 

crops (Kuo et al., 2012). Okanagan fruit orchards were historically treated with large 

amounts of DDT to control for codling moth (Cydia pomonella) infestations in apple and 

pear orchards, and some areas received up to 27 kg DDT/ha/year, which is 

approximately three times more than the recommended application rate in other 

provinces (Elliott et al., 1994; Harris et al., 2000). Codling moth damage occurs when 

larvae burrow inside fruits to feed and when second-generation larvae leave the fruit to 

pupate, which in both cases allows fungi and bacteria to enter the fruit, and cause fruit 

rot damage (BC Fruit Growers’ Association, 2010). Although orchards are among the 

most heavily sprayed agricultural systems, orchards provide understorey vegetation and 

complex structural habitat for a range of wildlife (Garcia et al., 2018). Orchards also 

provide significant migration corridors, such as hedgerows, grasslands, wood pasture, 

ponds and shrubs that can increase habitat connectivity in an otherwise fragmented 

landscape (Garcia et al., 2018), thus driving plant community composition and overall 

biodiversity. As a result, orchards are highly productive areas and are greatly utilized by 

birds for foraging and nesting habitat (Bishop et al., 2000). However, current-use 

pesticides and legacy residues can have significant direct and/or indirect impacts on 

birds, and several studies have documented high residues of DDT-r compounds in 

Okanagan orchards (Elliott et al., 1994; Harris et al., 2000, Iwaniuk et al., 2006; Smith, 

2004), with p,p’-DDE concentrations reaching 302 ug/g (wet weight) in American robins 
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during the 1990s, the highest concentration ever detected in a robin in the region (Gill et 

al., 2003). 

American robins are a common breeding species in the Okanagan and previous 

studies have documented their extensive use of orchard habitat (Cannings et al., 1987; 

Elliott et al., 1994; Gill et al., 2003; Harris et al., 2000). Unlike other long-distance 

migratory species in the Turdidae family that migrate between their breeding areas and 

wintering grounds, American robins are considered short-distance migrants with some 

plasticity in migratory behaviour (Vanderhoff et al., 2020). Migration allows individuals to 

avoid uncertainties with temperatures, food availability and other factors influencing 

migration, such as inter- and intraspecific competition in saturated habitats, as well as 

avoiding predators and disease (Chin & Lentink, 2017; Fudickar et al., 2013; Gilroy et 

al., 2016; Hegemann et al., 2019; Lindenmayer et al., 2018). Migratory behaviour in 

birds may also be related to age or sex, in which for instance, socially dominant males 

force subordinate individuals (i.e. females and juveniles) to leave specific areas due to 

competition for resources (Gow & Wiebe, 2014). However, American robins 

overwintering in the Okanagan could benefit from different food items throughout their 

annual cycle, such as fruits, berries and earthworms, in which the latter are frequently 

contaminated with DDT (Cannings et al., 1987; Harris et al., 2000). Still, other robins 

travel just under a hundred kilometers from their breeding grounds and recent studies 

suggest that more and more populations of American robins are adopting a non-

migratory strategy, possibly due to climate change (Vanderhoff et al., 2020). As a result, 

American robins in the Okanagan could accumulate greater concentrations of DDT-r due 

to their earthworm diet and because of the potential for migrants, and residents to use 

orchard habitat year-round (Campbell et al., 1997; Cannings et al., 1987). 

American robins require extensive amounts of protein, especially when both 

sexes are molting, and when females are producing eggs (Vanderhoff et al., 2020). In 

the Okanagan, American robins frequently nest in orchards and will feed almost 

exclusively on earthworms near their nest sites (Harris et al., 2000; Howell, 1942; 

Sallabanks & James, 1999), which are known to accumulate high levels of DDT-r 

compounds as a result of historical use (Harris et al., 2000), as well as other mixed 

residues containing organochlorine insecticides (Fluetsch & Sparling, 1994). American 

robin eggs therefore provide a direct link of DDT contamination from the soil (Bishop et 

al., 2000) and can be used to represent adult exposure, since maternal concentrations 
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are mobilized and deposited directly into eggs during the breeding season (Elliott et al., 

1994). Several field studies have documented the ongoing persistence of DDT-r 

compounds in soil, earthworms and robins (Barker, 1958; Dimond et al., 1970; Johnson 

et al., 1976; Knupp et al., 1976), with bioaccumulation factors (BAFs) indicating slight 

regional differences of contamination. However, a study published by Harris et al. (2000) 

confirmed that American robins were acquiring DDT-r burdens locally in Okanagan 

orchards, with reported average p,p’-DDE concentrations of 5.2 ug/g, 52 ug/g and 484 

ug/g (dry weight) in soil, earthworm and robin eggs, respectively. Whether or not DDT-r 

compounds are persisting and biomagnifying in orchard food chains remains unclear, 

since many of the early studies had reported a high degree of variability among orchard 

sites, had small sample sizes and/or did not analyze sufficient earthworm communities 

for DDE content. Additionally, there was no significant relationship between DDE 

concentrations in earthworms and robins in the Harris et al. (2000) study, thereby 

lending uncertainty to the link between robin contamination and orchard soils. 

Due to the environmental persistence of DDT and its main metabolite, p,p’-DDE, 

the objective of this study was to re-examine sites sampled in 1993-1995 by Harris et al. 

(2000), as well as several new agricultural areas in the South Okanagan Valley, with the 

prediction that DDT-r concentrations would significantly decline in soil, earthworms and 

American robin eggs. The research questions of this study are: 

1. To determine the extent of DDT-r contamination in soil, earthworms and 

American robins twenty-six years after an intensive sample period for the same 

biota and soil 

2. To determine local DDT-r burdens and assess any biomagnification trends in 

American robins nesting in the Okanagan 

3. To determine the quantitative relationships among DDT-r concentrations in 

different earthworm species and robins 
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2.2. Methods  

2.2.1. Sampling orchards and collection sites  

Sampled orchards were located in the Okanagan River Valley, BC, Canada 

(approximate latitude 50°21’49”N, longitude 119°20’59”W) and were generally within a 

20 km2 radius of Penticton, Naramata and Summerland (Figure 1). Ten orchards were 

sampled, which included standard-size, semi-dwarf and dwarf trees of apple, cherry, and 

pear varieties. Three out of the ten orchards were part of the original Harris et al. (2000) 

study and many of the orchards sampled in previous field studies were no longer 

present, and/or were converted to vineyards. All orchards were confirmed to be intact 

since the 1950s when DDT was actively sprayed, including two apple orchards in 

Summerland, B.C., that were established in the 1920s and were not previously sampled. 

Non-orchard habitats included dry grassland, open pine forest and wetlands of the White 

Lake Grasslands Protected Area and had no known prior usage of DDT in the area.  

2.2.2. Soil sampling 

Three soil samples were collected within each orchard (n = 30) from May 13, 

2019 to June 7, 2019. Soil samples were collected in preferred robin foraging locations 

and were collected at least ten metres from each subsample, with the assumption that 

there could be spatial differences in DDT-r contamination within the orchard (Stringer et 

al., 1974; Stringer et al., 1975). To be consistent with sampling techniques used by 

Harris et al. (2000), soil samples were collected by first digging out a block of soil 

approximately 5-10 cm deep using a trowel and/or bulb planter, which was thoroughly 

cleaned with 70% ethanol in between uses. Each soil sample was directly transferred to 

a separate 250 ml chemically rinsed jar (acetone and hexane), stored immediately on ice 

at the sample site and within 1-2 hours, stored frozen at -20 °C until thawed for chemical 

analysis. Chemical analyses for soil samples could not be completed at this time and will 

not be discussed in this thesis. 

2.2.3. Earthworm sampling 

 Earthworm samples were collected on the same dates, and in close proximity, to 

the soil samples within each orchard. In order to account for any spatial and/or other 
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potential sampling discrepancies, earthworm samples were collected at three locations 

within each orchard that had high robin activity and/or saturated soil (i.e. plant and 

foliage litter). In areas where no foraging was observed, earthworm samples were 

collected in damp/moist areas, which would have represented ideal areas where robins 

could potentially forage. To be consistent with sampling techniques used by Harris et al. 

(2000), the area within a 60 cm2 wooden quadrat at each site was first cleared of 

groundcover with a rake, followed by clipping, and removing grass and weeds, when 

present. Earthworms were collected via a combination of hand sorting and chemical 

expulsion, by first preparing a stock solution of 4 g/L of allyl isothiocyanate (AITC; Fisher 

Scientific, Ottawa, ON, CAN; CAS# 57-06-7), which was diluted with 4 L of isopropanol 

(Fisher Scientific, Ottawa, ON, CAN; CAS# 67-63-0). A final amount of 50 mg/L was 

mixed with 10 L of water and poured over each quadrat with a watering can at each 

sampling site. 

Surfacing earthworms were collected and rinsed in clean water for approximately 

60 seconds to remove any residual AITC solution and other surficial material. 

Earthworms were placed on moist paper towels in sealed aluminum trays for at least 48 

hours to clear their gut contents (i.e. depuration). Individual earthworms were rinsed with 

water and were identified to species, weighed and tallied by site. Earthworms (n = 19; 

437 individuals) were grouped by species from the same orchard and placed into 100 ml 

chemically rinsed jars (acetone and hexane) and refrigerated at -20 °C until thawed for 

subsampling and chemical analysis. In some cases, earthworm species were identified 

as either juveniles or adults. In very few cases where earthworms could not be identified 

to species (i.e. setae and/or pores not visible), earthworms were identified and grouped 

by genus. 

2.2.4. American robin sampling 

Identification of robin nests (n = 10 orchards; n = 2 non-orchard areas) and egg 

collections (n = 22 nests; n = 22 eggs; 1 egg per nest) were conducted in the Okanagan 

Valley (Penticton, Naramata and Summerland) from May 13, 2019 to June 7, 2019. 

American robin nests were located using a systematic row-by-row search in nine 

conventionally managed (pesticide sprayed) orchards and one certified organic (no 

pesticides used for at least 5 years) orchard. In some cases, robin nests were located in 

adjacent buildings or sheds within orchards. Robins at each nest found were observed 
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for approximately 10-15 minutes to ensure they were exclusively feeding in orchard 

habitat. Nest contents were examined with an extending mirror pole and also by climbing 

trees to better inspect nests. All nests were monitored daily and were considered for 

sampling if there were at least 3 eggs within each nest.  

Within each orchard, one robin egg was arbitrarily collected from an active nest 

for up to 3 nests per orchard, and a wooden robin egg was simultaneously placed to 

reduce the risk of nest abandonment (Harris et al., 2000). Nests were subsequently 

monitored for at least one hour to ensure that robins returned to their own nests, and to 

ensure that there were no predators or human disturbances post egg removal. Upon 

collection, robin eggs were refrigerated (4 °C) for up to four weeks. To be consistent with 

sampling techniques used by Harris et al. (2000), robin eggs were first weighed and 

measured with a ruler to determine their length and width. Eggs were lightly scored 

along the circumference with a scalpel that was rinsed with 70% ethanol in between 

uses. Egg contents were stored in chemically rinsed jars (acetone and hexane) and 

frozen at -20 °C until thawed for subsampling and chemical analysis.  

Developmental stages for any visible embryo was noted based on a chicken egg 

reference guide with development time being adjusted. Eggshells were stored at room 

temperature and dried for at least one month before eggshell thickness was measured. 

Handling and collection of American robin eggs was conducted under a Simon Fraser 

University Animal Care permit (1299B-19) following guidelines of the Canadian Council 

on Animal Care and was authorized by Environment and Climate Change Canada under 

a Migratory Birds Convention Act permit (SC-BC-2019-0008). 

2.2.5. Chemical analyses 

Earthworm and robin egg samples were shipped frozen on dry ice to the National 

Wildlife Research Centre (NWRC) in Ottawa, ON and stored in -20 °C upon reception. 

Earthworm and robin egg contents were analyzed as whole homogenates and were cut 

into small pieces using a ball-mill (RetschTM MM400 Mixer Mill, Fisher Scientific). 

Approximately 0.25–3.0 g of sample homogenate was ground with diatomaceous earth 

(J.T. Baker, NJ, U.S.A.), which was then spiked with 25 μL of a standard solution. Lipids 

from American robin and earthworm samples were extracted with a 50:50 

dichloromethane:hexane (DCM:HEX) solvent mixture using an accelerated solvent 
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extraction system (ASE, Dionex ASE 350, CA, USA). DDT-r compounds and other 

chemicals in the extracts were then separated from the remaining lipids and analyzed 

using gel-permeation chromatography (GPC; GX-271 Liquid Handler, Gilson, Inc., WI, 

USA). Any residual lipids were removed with solid phase extraction (SPE). Final 

samples were concentrated to 100 μL using nitrogen evaporation. All samples contained 

400 μL of iso-octane prior to subsequent instrumental analyses. 

DDT-r and other compounds were analysed using an Agilent 7890 gas 

chromatograph (Agilent Technologies, CA, USA) coupled to a single quadruple mass 

analyzer (Agilent 7000 MS) in electron impact ionization (MS-EI) mode. A 15 m DB-5MS 

column (0.25 mm ID, 0.25 μm film thickness; J&W, Agilent Technologies) was used with 

the injector in splitless mode and held at 280 °C. The internal standards for the 

quantification of OCs and PCBs were carbon labelled and were selected to cover the 

range of tri- to octa-PCBs: 13C-PCB28, 13C-PCB52, 13C-PCB118, 13C-PCB153, 13C-

PCB180 and 13C-PCB194. Congeners that co-elute are reported as a sum and are 

listed in the form PCB xx/xx (e.g. PCB 18/17 is the sum of the co-eluting congeners 

PCB-18 and PCB-17). Quantification of PCBs and PBDEs was determined with selected 

ion monitoring (MRM). The internal standards for the quantification of PBDEs were also 

carbon labelled and covered BDE-30, BDE-118, BDE-156, 13C-syn-Dechlorane Plus, 

13C-anti-Dechlorane Plus and 13C-BDE-209. The following analyte pairs coelute: BDE-

15 and -TBECH; BDE-154 and BB-153. These congener pair concentrations are 

reported as a sum, for example; BDE-154/BB-153. 

2.2.6. Stable isotope analyses 

Stable isotopes (δ15N and δ13C) were analyzed at the Jan Veizer Stable Isotope 

Laboratory (formerly G. G. Hatch) at the University of Ottawa (Ottawa, ON, Canada). 

American robin egg contents and whole-body earthworms were stored in -20 °C upon 

reception. Samples were briefly freeze-dried, ground up with a polytron and ball-mill and 

weighed (~1 mg) into 6 mm tin capsules. Samples were combusted at 1800°C in a Vario 

EL Cube elemental analyzer (Elementar, Germany) interfaced to a Delta Advantage 

isotope ratio mass spectrometer (IRMS; Conflo III, Thermo Scientific, Germany).  

The internal standards used for δ13C (in ‰) included: C-51 Nicotiamide (0.07, -

22.95), C-52 mix of ammonium sulphate and sucrose (16.58, -11.94), C-54 caffeine (-



22 

16.6, -34.46), and blind standard C-55 glutamic acid (-3.98, -28.53). These standards 

cover the natural range and the data is reported in Delta notation δ, with units in per mil 

(‰) and are expressed as: 

δX = [(Rsample- Rstandard)]/Rstandard) x 1000 

where δX is 15N or 13C, and R is the ratio of the abundance of the heavy to the light 

isotope. All δ15N is reported as ‰ vs. AIR and normalized to internal standards 

calibrated to International standards IAEA-N1 (+0.4‰), IAEA-N2 (+20.3‰), USGS-40 (-

4.52‰) and USGS-41 (47.57‰). All δ13C is reported as ‰ vs. V-PDB and normalized 

to internal standards calibrated to International standards IAEA-CH-6 (-10.4‰), NBS- 22 

(-29.91‰), USGS-40 (-26.24‰) and USGS-41 (37.76‰).  

2.2.7. Biomagnification factors (BMFs) and lipid-equivalent 
concentrations 

Lipid contents were measured in American robin egg and earthworm samples 

using a gravimetric method. Approximately 1 mL (or 10%) of the extracted sample was 

transferred into a pre-weighed aluminum dish, which was allowed to air dry in a fume 

hood for approximately 30 minutes, and then re-weighed to calculate the lipid content on 

a wet weight basis. 

In order to account for differences in lipid contents between robins and 

earthworms, chemical concentrations in wet weight were expressed in terms of lipid 

equivalent concentrations (Clipid equivalent; ug/g of lipid equivalent) (Arnot & Gobas, 2006). 

Non-lipid organic matter was also incorporated into the lipid normalization to account for 

earthworm samples with low lipid content and high protein content. Therefore, lipid, 

protein, and non-lipid organic carbon content were included in the normalization for all 

samples. Lipid-equivalent concentrations were based on the following equation: 

Clipid equivalent = Cwet / [Lwet + Pwet(0.05) + OCwet(0.1)] 

in which L is the lipid fraction of the sampled tissue (g of lipid/g of wet tissue), P 

is the protein fraction estimated as the product of the percent of nitrogen measured 

during elemental analysis (g of N/g; converted to wet tissue) multiplied by a species-

specific nitrogen:protein conversion factor (g of protein/g of wet tissue) (Janssen et al., 
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2017; Sosulski & Imafidon, 1990) and OC is the fraction of non-lipid organic carbon, 

estimated as the percent of organic carbon measured during elemental analysis (i.e. g of 

C/g; converted to wet tissue) subtracted from the lipid content of the sample. The 

constant 0.05 represents that proteins exhibit 5% of the sorptive capacity of lipids, and 

the constant 0.1 assumes that non-lipid organic carbon behaves similar to carbohydrates 

and exhibits 10% of the sorptive capacity of lipids (Debruyn & Gobas, 2007). 

Biomagnification factors for p,p’-DDE, p,p’-DDT and p,p’-DDD at each site were 

calculated by dividing the average lipid equivalent concentration of each DDT-r 

compound in American robin eggs by the average concentration in all earthworm 

species. BMF values greater than 1 indicate that a chemical is biomagnifying in the food-

web, a BMF of less than 1 indicates trophic dilution and a BMF equal to 1 indicates that 

on average, the chemical is likely not biomagnifying (Arnot & Gobas, 2006; Burkhard et 

al., 2011). 

2.2.8. Quality control and assurance 

In both labs, method procedural blanks were processed with each extraction 

batch to monitor for background interferences and/or contamination. Accuracy and 

precision were evaluated by running an aliquot of a Certified Standard Reference 

Material (SRM; NIST 1947 Lake Michigan Fish Tissue), as well as duplicates of 

randomly selected egg or earthworm samples. For each contaminant, the method 

detection limit (MDL) was defined as the minimum measured concentration of analyte 

producing a peak with a signal to noise ratio (S/N) of 3. The MDLs for p,p’-DDE, p,p’-

DDT, and p,p’-DDD were 0.0008 ug/g, 0.0012 ug/g and 0.0006 ug/g (wet weight), 

respectively. All samples were above the MDL (i.e. not censored). A sample field blank 

was also collected during soil, earthworm and egg sampling to monitor for possible 

contamination from handling. Sample field blank collection consisted of opening an 

empty chemically rinsed jar and closing it upon completion of sorting for each sampling 

activity and region. Chemical concentrations were blank corrected for all earthworm and 

robin samples. 

2.2.9. Statistical analyses 

All statistical analyses were conducted in R (RStudio Inc, version 1.2.5042). A 

mixed effects model was conducted to analyze stable nitrogen (δ15N) and carbon 
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(δ13C) isotopes in American robin and earthworm samples, with species as a covariate 

and site as a random effect. All stable isotope graphs were created in R using the stable 

isotope mixing model (‘simmr’) and ‘ggplot2’ packages. 

Factors related to American robin samples (% lipid, weight, length and 

developmental stage of each egg) and earthworms (density and biomass) were 

checked, and confirmed for normality using the Shapiro-Wilk Normality Test. An AIC 

(Akaike Information Criterion) model selection process was used to distinguish among a 

set of possible models describing the relationship between each DDT-r compound and 

different species. For robin samples, each DDT-r compound (wet weight) was analyzed 

separately as the dependent variable in a mixed effects model, with % lipid, 

developmental stage and the interaction term weight*length as main effects, and site as 

a random effect. To determine whether the presence of different earthworm species 

contributed to varying earthworm DDT-r residues, each DDT-r compound (wet weight) 

was also analyzed separately as the dependent variable in a mixed effects model, with 

earthworm species as a covariate, along with density and biomass as main effects, and 

site as a random effect. A Tukey’s Multiple Comparisons Test was conducted if both 

mixed models identified any significant main effects or an interaction. To account for the 

skewness of DDT-r concentrations, Box–Cox methods were used to select the ideal 

transformation, which was a square-root transformation. 

To be consistent with previous studies, the relationship between DDT-r 

concentrations in American robins and earthworms was also assessed using a simple 

linear regression. The linear regression was based on pooled robin and earthworm DDT-

r data from each orchard, since there were unpaired robin and earthworm samples at 

some sites. Biomagnification factors (BMFs) were compared among different orchards 

using the non-parametric Wilcoxon-Signed Rank Test. The statistical significance of p-

values for all models was assessed at α = 0.05. 

2.3. Results 

2.3.1. Stable isotopes  

Stable nitrogen and carbon isotopes were analysed in 22 American robin eggs 

and 19 earthworm samples (Figure 2). δ15N varied with species group (F3,27 = 74.87, P < 



25 

0.001), with average δ15N values ranging from 8.42 in American robins, to 4.65, 4.91 

and 5.24 in Lumbricus terrestris, Lumbricus rubellus, and Aporrectodea spp., respectively 

(Figure 3). The average δ15N value for all earthworm species was 4.93 (SE 0.39). By 

contrast, δ13C did not vary with species group (F3,28 = 1.41, P > 0.1) and there was 

considerable overlap in the δ13C values in our food chain, with average δ13C values 

ranging from -26.31 in American robin eggs, to -25.95, -26.32 and -26.34 in L. terrestris, 

L. rubellus, and Aporrectodea spp., respectively (Figure 3). The average δ13C value for 

all earthworm species was -26.28 (SE 0.48). 

2.3.2. Concentrations of DDT-r compounds in earthworms 

The species composition of earthworm communities did not differ substantially 

among orchard types. Earthworm communities were dominated by Aporrectodea spp. 

and Lumbricidae spp., which included the common leaf worm, L. rubellus, and the 

nightcrawler, L. terrestris, which has not been sampled in some of the previous 

earthworm-robin studies in the Okanagan. Concentrations of DDT-r in earthworms 

differed substantially among orchards and there was a 123-fold difference in p,p’-DDE, 

with concentrations ranging from 2.72 ug/g to 335 ug/g (lipid equivalent) (Table 1). 

All earthworm samples contained detectable levels of p,p’-DDE, p,p’-DDT and 

p,p’-DDD (Table 1). The mean concentration of p,p’-DDE, p,p’-DDT and p,p’-DDD in all 

earthworms was 1.60 ug/g, 0.299 ug/g and 0.0613 ug/g (wet weight), respectively or 117 

ug/g, 23.1 ug/g and 4.07 ug/g (lipid equivalent), respectively. Earthworms had higher 

concentrations of p,p’-DDE compared to p,p’-DDT and p,p’-DDD, and the highest 

concentration of p,p’-DDE detected was 5.06 ug/g (wet weight) or 335 ug/g (lipid 

equivalent) in a L. terrestris sample collected from an apple orchard that was established 

in the 1950s. 

Based on a multiple comparisons test, concentrations of p,p’-DDE were 

significantly higher in L. terrestris earthworms compared to L. rubellus (P < 0.05). There 

were no significant differences in p,p’-DDE concentrations between Aporrectodea spp., 

L. rubellus (P = 0.912; SE 0.41) or L. terrestris (P = 0.08; SE 0.57) (Figure 3). 

Concentrations of p,p’-DDT were not significantly different between Aporrectodea spp., 

L. rubellus (P = 0.806; SE 0.096), or L. terrestris (P = 0.313; SE 0.131). There were also 

no significant differences in p,p’-DDT concentrations among Lumbricidae earthworms (P
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= 0.177; SE 0.14) (Figure 4). Concentrations of p,p’-DDD were significantly higher in L. 

terrestris earthworms compared to Aporrectodea spp. (P = 0.0269; SE 0.04), but not 

higher than L. rubellus (P = 0.06; SE 0.045). Concentrations of p,p’-DDD were not 

significantly different between Aporrectodea spp. and L. rubellus species (P = 0.933; SE 

0.03) (Figure 5). 

There was a limited effect of earthworm biomass on DDT-r concentrations; 

biomass had no significant effect for either p,p’-DDE (F1,5 = 3.58, P > 0.1) or p,p’-DDT 

(F1,7 = 1.13, P > 0.1) concentrations; however did have a significant effect on p,p’-DDD 

(F1,5 = 10.4; P < 0.05) concentrations. There was a significant effect of earthworm 

density on p,p’-DDE (F1,5 = 6.82, P < 0.05) and p,p’-DDD (F1,5 = 8.21, P < 0.05) 

concentrations, but not for p,p’-DDT (F1,6 = 3.79, P < 0.1) concentrations. The ratios of 

DDE to DDT in earthworms ranged from 2.84 to 16.0 in orchard areas and there was no 

significant main effect of earthworm species on the ratios (F2,5 = 0.467, ns). 

2.3.3. Concentrations of DDT-r compounds in American robins  

All 22 robin eggs contained detectable levels of p,p’-DDE, p,p’-DDT, and p,p’-

DDD (Table 2). The mean concentrations of p,p’-DDE, p,p’-DDT and p,p’-DDD in robin 

eggs collected from orchards was 36.6 ug/g, 1.14 ug/g, and 0.156 ug/g, respectively 

(wet weight) or 632 ug/g, 19.8 ug/g and 2.74 ug/g (lipid equivalent), respectively. The 

mean concentrations of p,p’-DDE, p,p’-DDT and p,p’-DDD at reference sites was 0.495 

ug/g, 0.0257 ug/g and 0.00160 ug/g (wet weight), respectively or 7.62 ug/g, 0.395 ug/g 

and 0.0246 ug/g (lipid equivalent), respectively. The lowest p,p’-DDE concentration 

detected was 3.28 ug/g wet weight (56.7 ug/g lipid equivalent) and the maximum 

concentration was 107 ug/g wet weight (1890 ug/g lipid equivalent), both detected at 

different apple orchards in the Summerland area. Concentrations of p,p’-DDE in robin 

eggs from orchards were consistently higher than p,p’-DDT and p,p’-DDD metabolites. 

The average weight and length of robin eggs collected from orchards was 6.44 g 

and 2.74 cm (respectively), and 7.15 g and 2.85 cm in non-orchard areas (respectively). 

The % lipid of egg samples had no significant effect for p,p’-DDE (F1,8 = 0.15, P > 0.1) or 

p,p’-DDD (F1,3 = 0.0005, P > 0.1) concentrations, however did have a significant effect 

for p,p’-DDT (F1,9 = 16606, P < 0.05) concentrations. There was no significant effect of 

the weight*length interaction for p,p’-DDE (F1,8 = 2.26, P > 0.1) or p,p’-DDD (F1,2 = 2.72, 
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P > 0.1), although there was a significant effect for p,p’-DDT (F1,9 = 4690, P < 0.05) 

concentrations. The ratio of DDE to DDT was significantly higher in the eggs of orchard-

nesting versus non-orchard nesting robins (F24,7 = 4948, P < 0.001), with ratios ranging 

from 18 to 624 in orchards and 12 to 21 in non-orchard areas. There was considerable 

variation in the ages reported for each egg and developmental stages generally 

included; no visible development (i.e. yolk and albumen), eyes evident, distinct head 

region, limb buds developing, feather follicles, toenail development and an enlarged 

embryo. 

2.3.4. Biomagnification factors (BMFs) for earthworms and American 
robins 

Based on a mixed effects model that included American robin and earthworm 

species as covariates for each DDT-r compound (lipid-equivalent), there was a 

significant effect of species on p,p’-DDE (F3,29 = 15, P < 0.001) concentrations (Figure 4), 

but not for p,p’-DDD (F3,30 = 2.30, P < 0.1) (Figure 5) or p,p’-DDT (F3,30 = 0.605; P > 0.1) 

(Figure 6). Concentrations of p,p’-DDE were significantly higher in American robins 

compared to Aporrectodea spp. (P < 0.001), L. rubellus (P < 0.001) and L. terrestris (P < 

0.001) species (Figure 4). Earthworm-robin regressions for p,p’-DDE showed a 

significant positive relationship (F1,8 = 11.62, P = 0.0092, R2 = 0.60) (Figure 7); however 

these results were based on pooled data and a small sample size, thus minimizing 

statistical power. 

The mean BMF for p,p’-DDE across all orchards was 6.53 (SE 2.12), with values 

ranging from 0.77 to 24.32 (Table 3). The mean BMF for p,p’-DDT was 1.12 (SE 0.326), 

with values ranging from 0.16 to 2.98 and the mean BMF for p,p’-DDD was 0.65 (SE 

0.148), with values ranging from 0.18 to 1.33. BMF values for p,p’-DDD were the lowest 

out of all the metabolites and were greater than 1 in only three out of the ten orchards, 

whereas BMFs for p,p’-DDT were greater than 1 in four out of the ten orchards. By 

contrast, the BMFs for p,p’-DDE were greater than 1 in nine out of the ten orchards. A 

Wilcoxon Signed-Ranks Test indicated that BMFs for p,p’-DDE were significantly 

different among orchards (V = 53, P = 0.0059), but not for p,p’-DDD (V = 9, P = 0.064) or 

p,p’-DDT (V = 26, P = 0.92).  
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2.3.5. Other halogenated contaminant concentrations  

Several other legacy pollutants were detected in American robin eggs at low 

levels, including polybrominated diphenyl ethers (PBDEs; flame retardants) and 

polychlorinated biphenyls (PCBs; Table 4). ΣBDE consisted of 15 congeners, including 

15, 17, 28, 48, 49, 66, 85, 99, 100, 138, 153, 154/153, 183, 190, and 209. Out of all the 

flame retardants, BDE-99, and BDE-100 were detected in 100% of robin eggs, with 

BDE-99 having the highest value of 17.4 ng/g (wet weight). ΣPCB consisted of 35 

congeners, with most samples containing PCB-138, 153 and 187. Out of all PCBs, 

congener PCB-138 was detected in 100% of robin egg samples, which averaged 0.0020 

ug/g (wet weight). Egg and earthworm homogenates were also analyzed for other legacy 

organochlorines, including chlorobenzenes (ΣCBz = 1,2,4,5-tetrachlorobenzene, 1,2,3,4-

tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene), 

hexachlorocyclohexanes (ΣHCH = α-, β- and γ- hexachlorocyclohexane), chlordane-

related compounds (ΣCHLOR = oxychlordane, trans-chlordane, cis-chlordane, trans-

nonachlor, cis-nonachlor and heptachlor epoxide), octachlorostyrene (OCS), mirex 

(ΣMirex = photomirex and mirex), and dieldrin. Out of all these OCs, concentrations for 

hexachlorobenzene, dieldrin, oxychlordane and trans-nonachlor were the highest in 

robin eggs, although none of the compounds exceeded 0.05 ug/g (wet weight).  

2.4. Discussion 

2.4.1. American robins as a bioindicator species & sampling eggs 

American robins have many characteristics that make them an ideal sentinel 

species for monitoring DDT-r contamination. Unlike other migratory species with unique 

foraging behaviors and/or regional distributions, American robins are a common 

overwintering species with a fairly localized distribution in the Okanagan Valley, and 

readily nest within orchards (Campbell et al., 1997; Cannings et al., 1987), making them 

suitable for assessing DDT exposure at fine geographic scales. During the breeding 

season, American robins forage near their nest sites and feed almost exclusively on soil 

earthworms (Johnson et al., 1976; Sallabanks & James, 1999; Sibley, 2020; 

Wheelwright et al., 1986), which are known to accumulate high levels of DDT-r 

compounds (Elliott et al., 1994; Gill et al., 2003; Harris et al., 2000), thereby providing a 

direct link of contamination from the soil (Bishop et al., 2000). The food chain for 
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American robins and other passerines is also relatively short and less complicated than 

other species (Elliott, Bishop & Morrissey, 2011), which further facilitates the linear 

transfer of DDT (and other POPs) up the food chain (Fremlin et al., 2020), making them 

suitable indicator species for risk assessment purposes and other local contaminant 

monitoring programs. 

Eggs were chosen to represent the maternal transfer of DDT and have been 

previously used to represent population-level exposure in birds (Bargar et al., 2001; 

Bishop et al., 1995; Bishop et al., 2000; Drouillard & Norstrom, 2001; Eens et al., 2013; 

Elliott et al., 1994; Gill et al., 2003; Harris et al., 2000; Van den Steen et al., 2009; 

Verreault et al., 2006). Due to their lipophilicity, American robin eggs are expected to 

reflect DDT-r contamination more accurately and precisely than other pesticides with 

different modes of action (Borges et al., 2013), and can therefore be directly compared 

to DDT toxicity guidelines, including impaired reproduction. Robin eggs can also be used 

to assess any potential contamination trends from the local area, since female robins will 

acquire body burdens locally during the breeding season, prior to and during egg laying 

(Elliott et al., 1994). In addition to being easily homogenized, robin eggs tend to 

accumulate greater concentrations of DDT-r than other sampling matrices, such as 

whole body tissue and/or feathers, that either have low lipid content, a low degree of 

hydrophobic partitioning, degrade easily, are too invasive to collect, and/or are simply 

not representative of bioaccumulation (Jaspers et al., 2019). American robin eggs are 

also easy to identify in the field and the removal of a single egg from a clutch is expected 

to have little population impact (Furness, 1993) as American robins lay 3-4 eggs per 

clutch on average, and can have up to 3 broods per breeding season (Cannings et al., 

1987), further facilitating a large sample size in a wild species. Previous research has 

shown that monitoring robin nests and handling eggs does not interfere with overall nest 

success (Furness, 1993; Ortega et al., 1997). 

Egg laying order effects and intra-clutch variation have been reported for some 

birds, which might have implications for the interpretation of contaminant data 

(Ackerman et al., 2016; Van den Steen et al., 2009). For example, Braune et al. (2018) 

reported that p,p’-DDE concentrations were 41% higher in replacement eggs compared 

with first-laid eggs in wild populations of the thick-billed murre (Uria lomvia), a species 

often used in Canadian Arctic contaminant monitoring programs. Other examples of 

intra-clutch variation in DDT contamination have been reported in the common tern 
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(Sterna hirundo), great crested grebe (Podiceps cristatus), glaucous gull (Larus 

hyperboreus) and herring gull (Larus argentatus; Nisbet, 1982; Lukowski, 1978; Mineau, 

1982), possibly due to their high trophic level positions and lipid-rich diets (Van den 

Steen et al., 2009). Similarly, Morrissey et al. (2010) investigated egg contaminant 

loading in European dippers (Cinclus cinclus) and American dippers (Cinclus 

mexicanus) and reported that female dippers increased their foraging rate as breeding 

approached by shifting their diets to higher trophic level organisms, including fish, 

plecopterans, and coleopterans. Morrissey et al. (2010) also reported higher levels of 

DDT-r, as well as other organochlorines, in these dipper eggs and argued that the 

availability of prey and type of diet shift (i.e. towards lipid rich prey or higher trophic 

levels) could be influencing contaminant exposure in piscivorous birds. 

Studies investigating DDT residues in passerine birds, including European 

starlings (Sturnus vulgaris), prothonotary warblers (Protonotaria citrea) and tree 

swallows (Tachycineta bicolor), generally found that eggs within a clutch tend to have 

similar DDT-r concentrations, and that a single egg can be used to statistically represent 

the entire clutch (Eens et al., 2013; Reynolds et al., 2004; Verreault et al., 2006). These 

findings are in agreement with other field studies investigating DDT-r levels in migratory 

birds, including the black-crowned night heron (Custer et al., 1998), double-crested 

cormorant (Custer et al., 1997), British peregrine (Newton et al., 2008), white-tailed sea 

eagle (Helander et al., 1982) and brown pelican (Blus, 2011), in which DDT-r 

concentrations were not significantly different within clutches. Yet, a study conducted on 

a small songbird, the blue tit (Cyanistes caeruleus), showed that females experienced up 

to a 45% decrease in p,p’-DDE levels in relation to the laying order of eggs, although in 

closing, variation in contamination was reported to be higher among clutches, rather 

than within clutches (Van den Steen et al., 2009). Blue tits are known for having a highly 

variable clutch size and females can lay anywhere up to sixteen eggs in a single clutch 

(Van den Steen et al., 2009). Eggs collected from blue tits and potentially other 

passerines could also have differences in contamination sources (i.e. urban and/or rural 

areas), thus influencing the contamination profile between first-laid eggs and after clutch 

completion (Van den Steen et al., 2010). This contrasts with a study by Eng et al. (2012), 

who conducted a 21-day dosing study of a polybrominated diphenyl ether (PBDE) 

congener, BDE-99, on adult zebra finches (Taeniopygia guttata) and reported a 

significant decrease in maternal plasma contaminant concentrations at the first egg laid, 
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the third egg laid and at clutch completion, with no significant differences in maternal 

yolk precursor (i.e. very-low-density lipoprotein; VLDL) levels with egg BDE-99. Eng et 

al. (2012) argued that maternal and egg contaminant levels could be highly variable 

depending on egg or follicle size in some birds. Although this study did not investigate 

maternal plasma levels or intra-clutch variation, egg size and percent lipid in robin egg 

samples had no significant effect on p,p’-DDE or p,p’-DDD concentrations.   

The maternal transfer and deposition of DDT into passerine eggs is thought to be 

influenced by various physio-chemical and biological processes (Bargar et al., 2001; 

Drouillard & Norstrom, 2001). Due to their hydrophobic nature, DDT-r compounds can 

freely diffuse across biological membranes, such as the oocyte plasma membrane, and 

therefore be mobilized and deposited along with yolk proteins directly into eggs (Eng et 

al., 2012). However, this assumption relies on the fugacity principle, which describes the 

tendency of a chemical to move from one compartment to another based on a diffusion 

gradient (Gobas et al., 2015; Gobas et al., 1993). In other words, the fugacity principle 

assumes a constant overall flux or equilibrium state where egg:maternal contaminant 

concentrations would be equal to 1, which has not always been the case in some 

passerines (Eng et al., 2012). On the other hand, the deposition of DDT-r compounds 

into robin eggs could also be an active process, in which DDT-r compounds could bind 

to other hydrophobic/lipophilic molecules and egg yolk proteins synthesized in the liver, 

such as vitellogenin, and then be actively transported into the yolk via receptor-mediated 

endocytosis (Eng et al., 2012; b). The extent of DDT contamination between eggs is also 

thought to be related to clutch size and egg laying period (Drouillard & Norstrom, 2001; 

Eng et al., 2012). For instance, Bourgault et al. (2007) reported a significant decline in 

yolk lipid content and fatty acids throughout the laying sequence of different populations 

of blue tits and argued that some birds could invest in different quantities of nutrients, 

and lipids into the egg relative to their body weight, thereby affecting the overall 

contamination profile between different individuals. In precocial birds, eggs laid earlier 

can be larger and have proportionally more water or yolk lipids, and therefore higher 

DDT-r concentrations (Ackerman et al., 2016). In other species that lay fewer broods 

and larger eggs, maternal body burdens could also increase due to fewer opportunities 

to excrete contaminants, particularly those with long-half lives, such as DDT (Bargar et 

al., 2009). This is particularly true for pelagic seabirds, such as terns and gulls, which lay 

fewer, but relatively larger eggs compared to robins, accounting for up to 16% of their 
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total maternal body weight (Lemmetyinen et al., 1982). By comparison, the weight of 

robin eggs in the present study averaged approximately 6.44 g, which accounts for a 

little more than 8% of a robin’s body weight. The weight of robin eggs in this study did 

not drastically vary among individuals and did not have a significant effect on DDT-r 

concentrations in eggs.  

In most passerines, the ovary will release a mature ovum (i.e. yolk) at different 

daily intervals until a complete clutch of eggs is laid (Perrins, 2008). In the case of 

American robins, females will lay on average a new egg each day and must therefore 

invest in enough dietary resources (i.e. income breeder) for the production of eggs 

during the short egg-laying period (Houston et al., 2008; Morrissey et al., 2010). Subtle 

differences in DDT-r levels within American robin clutches (and other passerines) might 

therefore be a function of the heterogeneity of contaminant distribution on the sites 

where eggs were collected, in which foraging locations and/or food items consumed 

could have varied among individuals (Reynolds et al., 2004). Conversely, similar DDT-r 

levels within American robin clutches might be related to individual females foraging in 

areas containing similar concentrations of DDT (Reynolds et al., 2004), which could 

potentially result in a constant mobilization and deposition of maternal lipids, and their 

associated DDT residues into eggs (Braune et al., 2018; Van den Steen et al., 2009; 

Verreault et al., 2006), thereby resulting in similar levels within each clutch. Furthermore, 

many robins will rear a second brood after the first have fledged and depending on local 

conditions, sometimes even a third brood within the same nesting area (Sibley, 2020), 

which could result in varying degrees of within- and intra-clutch variability of contaminant 

concentrations (Reynolds et al., 2004). In any case, American robin eggs are likely 

suitable sampling matrices for DDT-r contamination, as these will represent a broader 

spectrum of the breeding population, which is particularly the case for the large number 

of overwintering and breeding American robins in the Okanagan (Cannings et al., 1987). 

2.4.2. DDT-r contamination in earthworms 

Concentrations of DDT-r compounds in earthworms differed substantially among 

orchards and there was a 123-fold increase in p,p’-DDE, with values ranging from 2.72 

to 335 ug/g (lipid equivalent). Compared to previous field studies in the Okanagan, there 

was considerable variation in the species composition, as well as in the density and 

biomass of earthworm samples, which might be due to differences in sampling 
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techniques. For instance, Harris et al. (2000) used a modified formalin extraction method 

(50 ml of 37% formaldehyde in water) to retrieve earthworms from Okanagan orchards, 

while the present study used a 4 g/L stock solution of allyl isothiocyanate (AITC) mixed 

with isopropanol and water. AITC is a natural breakdown product of glucosinolates found 

in Cruciferae flowering plants and is considered to be a safer and eco-friendly alternative 

to formalin and other chemical extractants, such as potassium permanganate, which do 

not recover all earthworm species equally and can have non-target effects on soil 

microorganisms, plants, and wildlife (Čoja et al., 2008; Eichinger et al., 2007). AITC is 

also more effective in sampling epigeic (litter dwellers), endogeic (top soil), as well as 

anecic and other large classes of earthworms that can escape to deeper layers, 

compared to hand digging alone (Zaborksi et al., 2002), which generally only retrieves 

epigeic and endogeic worms, thereby potentially resulting in under-estimates of the large 

anecic earthworms (Pelosi et al., 2008). Total biomass and density of earthworms has 

also been shown to increase with increasing AITC concentration (Zaborksi et al., 2002), 

which might explain why there was a limited effect of biomass and density on p,p’-DDE, 

and p,p’-DDD concentrations in this study. Nonetheless, AITC has been successfully 

used to sample earthworms foraged by local American robins (Fremlin et al., 2000) and 

is considered to be a safer and economical sampling method, since it is low cost, and 

biodegrades easily (Pelosi et al., 2009). 

The foraging behaviour of American robins is strongly correlated with the 

presence of non-native earthworms (Cameron & Bayne, 2012) and robins often rely on 

various sensory cues to locate different worms (Vanderhoff et al., 2020). A common 

earthworm foraged by robins during the breeding season is L. terrestris, an anecic 

earthworm that feeds on surface residues and forms permanent burrows in the soil 

(Pitkänen & Nuutinen, 1997). Due to its unique feeding and burrowing behaviour, L. 

terrestris earthworms are capable of translocating up to 60% of pesticide residues into 

the soil matrix (Farenhorst et al., 2000). Burrow linings created by L. terrestris also 

contain a greater percentage of organic carbon, nutrients and heavy metals compared to 

the surrounding soil matrix (Tomlin et al., 1992), which increases soil fertility and could 

then influence the long-term persistence of DDT-r compounds in soil. Gaw et al. (2012) 

conducted a 28-day bioassay using large classes of earthworms and found a significant 

positive relationship between heavy metal concentrations in soil (As, Cd, Cu and Pb) 

and earthworm tissue concentrations for p,p’-DDE, and p,p’-DDT in New Zealand 
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orchards, and argued that aged orchard soils could increase the bioavailability of DDT 

metabolites to certain earthworms. Edwards & Jeffs (1974) exposed L. terrestris 

earthworms in soil to 1 ug/g of DDT and showed that after six months, nearly all the DDT 

residues in L. terrestris tissues were converted to p,p’-DDE, with a significant portion 

having been mixed in the upper 15 cm of soil. Similarly, Bailey et al. (1974) collected 

earthworms in a British apple orchard during the 1970s when DDT was still used and 

found that although p,p’-DDT, and p,p’-DDE levels were high in soil, levels of p,p’-DDE 

were 3-5 fold greater in earthworms. Earthworms exposed to DDT-r under laboratory 

conditions are also capable of converting p,p’-DDT residues into p,p’-DDD and p,p’-DDE 

(Beyer & Gish, 1980), although at much lower levels, which in addition to a long latency 

period of DDT use, might explain why p,p’-DDD levels were so low in this study. The 

data from the present study also revealed that DDE and DDE residues were significantly 

higher in L. terrestris compared to small endogeic earthworms, such as L. rubellus, 

which generally feed on or beneath the surface and occupy only the first 10-15 cm of soil 

layer (Miglani & Bisht, 2019). However, other field studies conducted in orchards have 

found no significant differences in DDT-r among earthworm species (Harris et al., 2000; 

Thompson, 1973) and there is speculation that all earthworms, regardless of species or 

age, could be feeding on DDT-r residues near surface soils (Beyer & Gish, 1980; 

Stringer et al., 1974). Depending on local conditions, American robins could be foraging 

on a combination of small and/or large earthworms, thus influencing their overall 

exposure to DDT. 

The extent of DDT-r contamination in earthworms is influenced by various land 

management practices and biochemical factors (Bahar, 2015). Harris et al. (2000) 

reported that earthworm DDE values increased with increasing soil organic matter in 

Okanagan orchards, but not in Ontario orchards and argued that low moisture levels in 

the B.C interior during the winter months could inhibit the abiotic breakdown of DDT 

residues, thereby increasing the uptake of DDT-r in earthworms. The Okanagan Valley 

is a semi-arid region and historical records show that very little precipitation occurred 

between 1941-1990 when DDT was actively used (Harris et al., 2000; Kuo et al., 2012). 

Temperature regimes in recent years could have also influenced the density and 

biomass of earthworms sampled. For example, Harris et al. (2000) sampled for 

earthworms in the Okanagan Valley between 1993 and 1995, with mean temperatures 

ranging from 10.6°C to 23.2°C between May and June (Environment Canada, 2020). 
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Meanwhile, mean temperatures in the Okanagan in 2019 (present study) ranged from 

6°C to 30.5°C during the same time period (Environment Canada, 2020), which could 

have increased earthworm burrowing activity, and therefore greater individuals sampled 

in the present study (Perreault & Whalen, 2006). Burrow length and burrow depth 

generally increase with increasing temperature, and burrows may act as preferential flow 

pathways for DDT-r compounds and other organic substrates (Bernard et al., 2011). 

Earthworm burrows can also increase soil porosity, allowing more air and water to 

infiltrate and percolate through the soil, providing more of an aerobic environment for the 

photochemical degradation and/or dehydrochlorination of DDT to DDE (Edwards et al., 

1993; Shuster et al., 2004). In addition, different earthworm species could indirectly 

stimulate the biotic transformation of DDT in the drilosphere (i.e. portion of the soil that 

consists of earthworm mucus secretions, burrowing holes and castings) by increasing 

the pH of acidic soils, increasing organic carbon content and increasing moisture levels 

(Tomlin et al., 1992; Xu et al., 2020). Okanagan orchards are typically associated with 

acidic pH’s (Harris et al., 2000) and increases in pH via earthworm activity could 

promote the abiotic hydrolysis of DDT to DDE (Nash et al., 1977). These findings are 

further corroborated by laboratory-based studies which show that soil modification via 

earthworms strongly promotes the growth of several micro-organisms, including, Gram-

positive and Gram-negative bacteria, which can aid in the overall degradation of DDT 

(Xu et al., 2020). Earthworms are therefore capable of transforming DDT-r through 

various abiotic and biotic pathways, thereby influencing the amount of DDT-r in the soil 

and the amount acquired by robins, and other wildlife. 

Concentrations of DDT-r in earthworms in this study were generally lower than 

previous field studies. In Maryland orchards where DDT was still used, earthworms 

contained 2.66 ug/g DDE, 6.28 ug/g DDT and 3.57 ug/g DDD (dry weight) (Gish, 1970). 

Interestingly, Kuhr et al. (1974) collected earthworms in New York apple orchards after 

twelve years of DDT use and found that some species contained lethal concentrations of 

106 ug/g DDT, suggesting that earthworms could have more DDT residues than those 

during the DDT era. In Okanagan orchards where DDT applications were discontinued 

for approximately twenty years, earthworms contained 43.5 ug/g of p,p’-DDE, 17.2 ug/g 

of p,p’-DDT and 2.2 ug/g of p,p’-DDD (dry weight) (Harris et al., 2000). Earthworms in 

these Okanagan orchards also had a low average DDE:DDT ratio of 2.56, whereas 

ratios in this study ranged from 2.87 to 16.7, confirming that DDT degradation in 
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earthworms progressed further in the Okanagan. Hoy (1955) observed earthworm 

mortality at 15 ug DDT/g soil, however, did not report any differences in the density or 

biomass of earthworms between treated and non-treated plots. Similarly, Thompson 

(1970) recorded an initial drop in earthworm abundance of approximately 33-36% in 

laboratory DDT-treated plots, although asserted that mortality rates in the wild could be 

far less due to earthworm avoidance and other environmental factors influencing 

earthworm activity, such as soil moisture, temperature, and nutrient availability. The 

exposure levels of DDT in earthworms in the wild may also be too small to cause any 

acute toxicity (WHO, 1989) and earthworms have been shown to develop physiological, 

biochemical, and behavioural resistance to DDT-r compounds (Tomlin et al., 1992). 

Therefore, it seems highly unlikely that earthworm communities in Okanagan orchards 

are still being affected by DDT residues, but rather are serving as a significant exposure 

source to American robins and other wildlife that feed on them. 

2.4.3. DDT-r contamination in American robins & other birds 

In this study, DDT-r compounds were detected in 100% of robin eggs and were 

generally lower compared to other robin studies conducted in the Okanagan. For 

example, concentrations of p,p’-DDE in robin eggs in this study were in the range of 

3.28-107 ug/g (wet weight) in orchards and 0.141-0.848 ug/g (wet weight) in non-orchard 

areas. Mean concentrations of p,p’-DDE, p,p’-DDT and p,p’-DDD in robin eggs in this 

study were 36.6 ug/g, 1.14 ug/g, and 0.156 ug/g (wet weight), respectively, which was 

considerably lower than the concentrations by Harris et al. (2000), who reported a mean 

average of 85.1 ug/g of p,p’-DDE, 13 ug/g of p,p’-DDT and 1.1 ug/g of p,p’-DDD (wet 

weight) in robin eggs collected between 1993-1995 in the same region. Additionally, 

robin eggs collected from orchards in the Okanagan between 1997-1998 averaged 64 

ug/g DDE (Gill et al., 2003), 51.7 ug/g DDE (Smith, 2004) and 55.7 ug/g DDE (Iwaniuk et 

al., 2006), indicating that while contamination is still common in the Okanagan, DDT-r 

concentrations in orchard nesting robins have decreased over the years (Figure 8). 

Elliott et al. (1994) collected bird eggs from various areas in the Okanagan Valley 

from 1990-1991 and found that DDE concentrations were the highest in American 

robins, ranging from 68 to 103 ug/g (wet weight) in orchards and 1.53 ug/g (wet weight) 

in non-orchard areas based on pooled samples. Comparatively, mean concentrations of 

DDE in these robin eggs were 18 to 3,500 times greater than eggs of neotropical migrant 
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species nesting in the same orchards, including the tree swallow (T. bicolor), barn 

swallow (Hirundo rustica) and house wren (Troglodytes aedon). Mean concentrations of 

DDE were also 100 times higher in robins compared to other non-migratory year-round 

residents nesting in Okanagan orchards, including the California quail (Callipepla 

californica; species mean 1.19 ug/g wet weight) and the predatory black-billed magpie 

(Pica pica; species mean 11 ug/g wet weight), which indicated that robins and other 

Okanagan birds were acquiring DDT burdens locally, and not on their wintering grounds 

(Elliott et al., 1994). Quail are primarily granivorous and magpies are highly 

opportunistic, often feeding on a wide range of invertebrates, seeds and carrion, which 

might explain why DDT-r levels were so low in these species compared to robins (Elliott 

et al., 1994). Reinforcing this finding, Enderson et al. (1982) found that mean DDE 

residues ranged from 0.14-5.8 ug/g in granivore, omnivore and insectivore prey species 

in the diet of peregrine falcons (F. peregrinus), further acknowledging that the lower 

trophic position of granivores limits their DDT biomagnification potential (Elliott et al., 

1994). In further comparisons, the levels of DDT in American robins in this study were 

higher compared to other parts of North America. For instance, the mean concentration 

of p,p’-DDE in robin eggs in this study was 36 ug/g (wet weight), whereas mean DDE 

levels were 11.1 ug/g in robin eggs from orchards in Washington State, and 17.3-25.7 

ug/g in robin eggs from various orchards in southwestern Ontario (Blus et al., 1987; 

Harris et al., 2000; Hebert et al., 1994). Concentrations of DDE in robin eggs in this 

study were also higher than red-winged blackbird (Agelaius phoeniceus) and tree 

swallow (T. bicolor) eggs collected from wetland sites in Ontario from 1990-1991, which 

contained up to 3.1 and 4.4 ug/g DDE, respectively (Bishop et al., 1995). These findings, 

along with the present study, indicate that DDT-r burdens continue to be higher in 

American robins and other ground-foraging birds in the Okanagan that thrive on an 

omnivorous diet.   

Harris et al. (2000) pooled their DDT-r concentrations in earthworms and robin 

eggs from Okanagan orchards and calculated an average BMF of 41.52 for p,p’-DDE, 

and 60.05 for p,p’-DDT. These authors also reported an average BMF of 15.10 for p,p’-

DDE and 6.42 for p,p’-DDT in earthworms, and robin eggs collected from Simcoe 

orchards in Ontario (Harris et al., 2000), which was higher than the BMFs reported in this 

study, which averaged 6.53 for p,p’-DDE, 1.12 for p,p’-DDT, and 0.65 for p,p’-DDD. The 

BMFs in this study were refined by incorporating lipid-normalized concentrations of DDT-
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r in earthworms and robins, which provides a better estimate of biomagnification in food 

webs, since differences in lipid content are accounted for (Hebert et al., 1994). The 

earthworm-robin regressions for p,p’-DDE in this study also showed a significant positive 

relationship compared to the regressions conducted by Harris et al. (2000), which might 

have been related to an increased sampling effort and/or high variability among species. 

The square-root transformation of the linear regression in this study also suggests that 

the relationship between DDE in earthworms and robins may not be linear. This means 

that robins at the most contaminated sites may be feeding not only on earthworms (or 

other prey) in those contaminated areas, but also in areas with lower DDT 

concentrations, thus leading to an overestimate of the concentration of DDE at the most 

contaminated area. Furthermore, there were several instances of trophic dilution, or 

biodilution, at some orchards (BMF < 1), which could have meant that robins were 

foraging in either non-orchard habitat, foraging in areas with little or no DDT-r 

contamination, or foraging on other insects or prey with low DDT levels (Harris et al., 

2000). Stomach sample records show that some American robins consumed soil 

invertebrates from over 100 different families (Wheelwright, 1986), including Lepidoptera 

(moths and butterflies), Carabidae (ground beetles) and Curculionidae (weevils) 

(Wheelwright, 1986; Wilson, 1949). Therefore, although earthworms are a common food 

item for robins during the breeding season, individuals could be foraging on different 

food items within orchard and/or non-orchard areas, thereby influencing their overall 

DDT exposure.  

The highest earthworm-robin BMF and p,p’-DDE concentration in this study was 

24.32 and 107 ug/g (wet weight), respectively, and there are several possible 

explanations for why DDE residues could be high in some robins. Field studies have 

shown that approximately 90% of DDT residues in orchards are found in the top 10 cm 

of soil, with maximum levels centered around tree trunks compared to the surrounding 

herbage (Cooke & Stringer, 1982; Stringer et al., 1974). Female robins will often seek 

out calcium- and protein-rich food sources for egg formation, and so a key pathway for 

DDT exposure to robins could be the consumption of earthworms that accumulated 

higher DDT-r levels through feeding on leaf fall near orchard trees (Baker & Skerrett, 

1958). Inter-individual variation in egg concentrations of DDT could also be related to 

age (Eng et al., 2014). For instance, maternal body burdens could be higher in females 

who are laying their first clutch in which there might not have been enough time for DDT-
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r metabolites to reach a pharmacokinetic equilibrium (Arnot & Gobas, 2006; Elliott et al., 

1996). In other words, female robins laying their first clutch could have had fewer 

opportunities to eliminate (i.e. metabolize and excrete) their body burdens, thus 

increasing the amount of DDT-r deposited into their eggs (Gobas et al., 1993). However, 

older and experienced females could also have higher maternal body burdens, 

especially those who have had more time to feed and acquire DDT-r from their diet, 

consequently resulting in more DDT-r being deposited into their eggs (Bargar et al., 

2001; Knupp et al., 1976). Dimond et al. (1970) collected adult robins and earthworms 

from Maine forests that were sprayed with DDT for spruce budworm, and reported 

significant differences between age classes, with adult robins containing 2.6 more DDT 

residues than some of the younger robins. Harris et al. (2000) also reported higher p,p’-

DDE, p,p’-DDT and p,p’-DDD levels in female robins (mean 26 ug/g wet weight) 

compared to younger robins (mean 9.92 ug/g wet weight) collected from Ontario 

orchards. These findings are further supported by various thermodynamic studies which 

show that the fugacity (i.e. escape of a chemical from one compartment to another) of 

DDT increases as more food is digested and absorbed by an animal’s gastrointestinal 

tract, causing the non-metabolizable chemical(s) to dissociate from lipid and become 

more bioavailable in the body, thus resulting in bioaccumulation (Gobas et al., 1993a; 

Gobas et al., 1993b).  

American robins are considered a short-distance migratory bird and high 

concentrations of DDT-r in individuals could be related to migratory status. American 

robins that were contaminated at their wintering grounds between 1966-1973 lost nearly 

90% of their DDT body burdens when females nested in uncontaminated forests, which 

was evidenced by the reduced DDT-r loads in eggs, nestlings and fledglings compared 

to reference sites (Knupp et al., 1976; Mahoney, 1975). Södergren & Ulfstrand (1972) 

simulated the stress encountered in long migratory flights by subjecting caged robins to 

a period of starvation following an administration of 10.5 ug of p,p’-DDT via diet for 

fifteen days and found that p,p’-DDT and p,p’-DDE concentrations (wet weight) were 

significantly higher in the brain, and in the breast muscles compared to reference birds. 

Other experiments have found that American robins can lose a significant amount of 

mass (more than 3.0 g) even during short flights, with more than 70% of their energy 

being derived from fat (Gerson & Guglielmo, 2013). Wind tunnel experiments conducted 

on a long-distance migratory Swainson’s thrush, a closely related species to American 
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robins, have also shown that individuals flying long hours (up to 12 h) under humid 

conditions (i.e. high evaporative water loss; HEWL) catabolize a greater amount of fat 

and protein, which is thought to augment endogenous water production, and maintain 

water balance during flight (Groom et al., 2019). Although water and energy 

expenditures in birds is influenced by various environmental conditions and/or 

physiological traits (Fudickar et al., 2013; Guglielmo, 2002; McFarlan et al., 2009), 

migrating robins could have fewer fat reserves, which could result in a higher maternal 

body burden, and subsequently a higher amount of DDT-r excreted into eggs. Large die-

offs of American robins were reported during the 1950s when DDT was used to control 

Dutch elm disease and males appeared to be more susceptible to DDT poisoning, which 

according to some, was attributed to the seasonal loss of fat reserves (Beaver, 1980; 

Hunt, 1969). Elliott et al. (1996) reported a significant negative relationship between 

DDE levels and the numeric scoring of body condition of bald eagles (H. leucocephalus) 

and argued that migration and starvation could cause DDT-r to move out of fat storage 

and into systemic circulation, thereby resulting in a higher DDE body burden. Comparing 

plasma contaminant levels in actively migrating and non-migrating robins would be an 

interesting follow-up study. 

The migratory status of American robins could be influenced by various factors, 

such as the seasonal availability of different food items, thus influencing overwintering 

numbers from year to year (Vanderhoff et al., 2020). Western populations of American 

robins (Turdus migratorius caurinus and Turdus migratorius propinquus) could winter in 

parts of Washington, Oregon and California, and some argue that the acquisition of 

DDT-r in those areas would be negligible compared to the tissue concentrations 

detected in the Okanagan Valley (Blus et al., 1987; Harris et al., 2000). According to a 

local banding station in the Okanagan, there have been several incidences of AMRO 

(American robin) recaptures in the past twenty years of standardized fall migration 

monitoring, as well as an increase in the number of robin flocks seen during the fall, with 

an average count of 428 robins per season (M. Bieber, personal communication). 

Recent analyses from the U.S Geological Survey Bird Banding Laboratory also indicate 

that American robins are travelling less than 100 km from their breeding grounds, with 

more and more robins adopting a non-migratory strategy, possibly due to climate change 

(Vanderhoff et al., 2020). The expansion of fruit orchards and other agricultural areas in 

the Okanagan, coupled with the cultivation of exotic fruit trees and spread of invasive 
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plants near orchards and valley bottoms, could also provide robins with winter resources 

much farther north, thereby potentially increasing their residency behavior (Harris et al., 

2000; Sibley, 2020; Vanderhoff et al., 2020). American robins with different migration 

frequencies, distances and directions could therefore have varying degrees of DDT 

exposure and overall body burdens. 

American robins nesting in Okanagan orchards may experience growth, 

developmental and neurobehavioral effects due to persistent p,p’-DDE residues. Ten-

day old robin nestlings that were collected from Okanagan orchards in 1997 that were 

not exposed to any current-use pesticides had significantly shorter middle toes and 

shorter tarsi, compared to nestlings collected from reference sites at 2, 5 and 9 months 

of age (Smith, 2004). Similarly, Iwaniuk et al. (2006) investigated whether in-ovo 

exposure of DDT in American robins led to changes in the sizes of different brain regions 

by collecting eighteen robin nestlings from various Okanagan orchards in July 1997. 

Iwaniuk’s paper powerfully demonstrated that when robins were exposed to increased 

p,p’-DDE levels (up to 160 ug/g wet weight), individuals had significantly smaller brains, 

smaller forebrains, as well as reductions of the nucleus robustus arcopallialis (RA) and 

nucleus intercollicularis (ICo), which are part of the song system. The most notable 

reductions in brain size were in male robins, who experienced a 15% reduction in brain 

volume and a 13% reduction in relative forebrain size, concomitant with neuron 

reductions in the ICo. Iwaniuk et al. (2006) also reported that DDT concentrations were 

significantly higher in males than females, suggesting that male robins may be more 

sensitive to DDT toxicity due to hormone sensitivity and/or due to the maternal transfer 

of DDT-r in eggs, thereby decreasing the females body burden. Stress and direct 

neurotoxicity were also acknowledged as possible factors affecting brain changes in 

robins, and certain DDT metabolites could display various androgenic, anti-androgenic, 

estrogenic and anti-estrogenic properties in-vitro (Iwaniuk et al., 2006). The DDT 

metabolite, p,p’-DDE, is thought to act as an androgen receptor antagonist by preventing 

androgens (i.e. testosterone and dihydrotestosterone) from binding to its receptor, which 

could result in smaller brains, and song nuclei (Smith, 2004). DDE metabolites could 

also disrupt Ca2+ uptake in cholinergic neurons and reduce the expression of brain-

derived neurotrophic factor (BDNF) found throughout the songbird brain, thereby 

disrupting signal transduction, and brain development in juvenile robins (Iwaniuk et al., 

2006).  
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Smith (2004) collected 10-day old robin nestlings from various Okanagan 

orchards and reference sites and found significantly higher heterophil to lymphocyte 

ratios compared to reference birds. However, glucocorticoid levels play an important role 

in reducing inflammatory responses and are known to fluctuate in birds at different times 

of the day, as well as during different seasons, which could influence H:L ratios (Crisp et 

al., 1998; Gross & Siegel, 1983; Jong et al., 2002; Smith, 2004; Smits & Williams, 1999). 

Additionally, differences in heterophil and lymphocyte levels could have been attributed 

to either bacteria and/or virus infections (Siegel, 1980), respectively, which coincidentally 

were observed in both orchard-nesting and reference robins in the study conducted by 

Smith (2004). This contrasts with a study by Bishop et al. (1998), who collected tree 

swallow (T. bicolor) eggs from apple orchards in Southern Ontario from 1994-1995 and 

reported a mean p,p’-DDE value of 12.05 ug/g (wet weight) among sprayed orchards 

and 1.06 ug/g (wet weight) among non-sprayed sites. According to Bishop et al. (1998), 

tree swallow nestlings in sprayed orchards had a significant adaptive immune response 

compared to nestlings from non-sprayed areas, which was evidenced by the increase in 

B- and T-lymphocytes that was correlated with increased DDE exposure. Although a 

small number of these nestlings had parasites, Bishop et al. (1998) argued that body 

mass did not vary in nestlings among sites and concluded that such infestations likely 

had a minimal impact on the overall health of nestlings. A follow up study by Mayne et al. 

(2005) demonstrated that tree swallow nestlings had significantly higher plasma 

thyroxine (T4) concentrations and hypertrophic thyroids with collapsed follicles, 

compared to reference chicks. Tree swallow and eastern bluebird nestlings collected 

from similar orchards that were co-exposed to p,p’-DDE and other current-use pesticides 

had significantly higher levels of adrenocorticotropic hormone (ACTH), and qualitative 

histopathological evaluations revealed that these chicks had greater thymic lymphocyte 

densities and B-cell hyperplasia of the spleen compared to reference chicks (Mayne et 

al., 2004), suggesting that nestlings in contaminated orchards may have a slightly active 

and/or more compromised immune systems. These findings are consistent with results 

obtained in a laboratory study in which zebra finches (T. guttata) that were co-exposed 

to p,p’-DDE and azinphos-methyl (OP pesticide) exhibited immunostimulation (Gill et al., 

2005).  

Smaller migratory thrushes may be more sensitive to the effects of persistent 

p,p’-DDE residues in orchards. For example, eastern bluebird nestlings from apple 
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orchards in Southern Ontario had high levels of p,p’-DDE (up to 95.4 ug/g, wet weight) 

and had lower corticosterone levels, which might have been attributed to the 

steroidogenic inhibition or an upregulation of the mixed-function oxidase (MFO) system, 

thereby increasing the metabolic clearance rate of corticosterone via cytochrome-P450 

enzymes (Mayne et al., 2004). Corticosterone facilitates fat deposition in birds and 

therefore low blood corticosterone levels could compromise fledging and postnatal 

dispersal (Duffy & Belthoff, 1997; Mayne et al., 2004). These findings are of particular 

interest since the p,p’-DDE levels in these bluebirds were comparable to the 

concentrations in robin eggs from this study. American robins and bluebirds are both 

ground foragers in the thrush family (Turdidae) and are known to frequent orchards 

throughout the breeding season (Vanderhoff et al., 2020). These birds could therefore 

accumulate greater concentrations of DDE residues from the soil (Bishop et al., 2000), 

which may have important consequences for energy mobilization, growth, development, 

reproduction, digestion and adult survival (Bishop et al., 1998; Bishop et al., 2000; 

Mayne et al., 2004). 

The effects of DDT on the survival and reproductive success in American robins 

has been studied under a range of field and laboratory conditions. Johnson et al. (1976) 

surveyed several fruit orchards during a period of DDT use from 1966-1968 and 

revealed that robins nesting in these orchards had a smaller clutch size and a smaller 

proportion of hatched chicks that fledged. Unfortunately, Johnson et al. (1976) claimed 

that many robins were predated by house wrens (T. aedon), blue jays (Cyanocitta 

cristata) and common grackles (Quiscalus quiscula), and therefore accurate 

comparisons of reproductive success between orchard and non-orchard nests was not 

possible. Johnson et al. (1976) also observed robins foraging outside their respective 

orchards, and many individuals were reportedly foraging in woodlots and adjacent lands 

where DDT concentrations were below the detection limit (Johnson et al., 1976), thus 

lending uncertainty between robin and earthworm contamination. Song thrushes (Turdus 

philomelos) found dead in a British apple orchard between 1971-1972 contained 19.6-

84.1 ug/g of DDE in eggs and had mean DDE residues of 81 ug/g in breast muscle and 

191.9 ug/g in liver, all of which were significantly higher compared to birds at control 

sites (Bailey et al., 1974). Common blackbirds (Turdus merula) that were also found 

dead in the same apple orchard exhibited more variation in DDT-r, with DDE levels 

ranging from 13.2-72.1 ug/g in eggs, 128.2 ug/g in breast muscle and 180.4 ug/g in liver 
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(Bailey et al., 1974). Stickel et al. (1984) investigated lethal p,p’-DDE residues in 

common grackles (Q. quiscula), red-winged blackbirds (A. phoeniceus), brown-headed 

cowbirds (Molothrus ater) and European starlings (S. vulgaris), and found that in birds 

that died, p,p’-DDE concentrations ranged from 305-694 ug/g (wet weight), which were 

well below the levels detected in this study. Fluetsch & Sparling (1993) demonstrated 

that American robins nesting in conventional orchards with extensive pesticide use from 

1990-1991 had significantly reduced hatching success and lower daily survival rates in 

certain years compared to organic orchards. Bishop et al. (2000) also reported a 

significant increase in the occurrence of unhatched eggs in eastern bluebirds that had 

high p,p’-DDE concentrations in their eggs. These concentrations were comparable to 

those in robin eggs from this study, suggesting that DDE residues may affect egg 

survival in migratory thrushes nesting in orchards. 

Although American robins continue to be exposed to high levels of p,p’-DDE and 

other OCs, reproductive success does not appear to be adversely affected as previously 

hypothesized. Elliott et al. (1994) surveyed American robins nesting in various 

conventional orchards in the 1990s and found no significant differences in the clutch 

size, nest success, hatching success or fledging success compared to robins at a non-

orchard site. In a follow-up study by Gill et al. (2003), orchard-nesting robins (n = 186 

nests) had consistently higher reproductive success via an increased clutch size and 

brood size, compared to robins nesting in non-orchard areas. Robin eggs collected from 

these orchards also contained up to 302 ug/g p,p’-DDE (wet weight), which was the 

highest value ever reported in a robin in the Okanagan and coincidentally, a value that 

was thought to be associated with mortality (Wurster et al., 1965). These studies 

suggest that robin populations in the Okanagan may have evolved some kind of 

tolerance to DDT as a result of long-term use. American robins could benefit by nesting 

in Okanagan orchards, which might provide inconspicuous nesting sites, better foraging 

opportunities, and lower predation risk compared to other areas (Gill et al., 2003). Elliott 

et al. (1994) ultimately questioned whether high DDE residues in Okanagan robins could 

pose a risk to local predators and birds of prey, such as Accipiter hawks and falcons, 

including peregrine falcons (F. peregrinus) and American kestrels (F. sparverius), who 

have been shown to experience eggshell thinning from p,p’-DDE concentrations as little 

as 3 ug/g and 2 ug/g, respectively (DeWeese et al., 1986; Lincer, 1975).  
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2.4.4. Stable isotopes, diet and trophic position 

The use of carbon, nitrogen and other stable isotopes in the field of 

environmental toxicology has grown in recent years and has been widely used to 

characterize diet, and trophic position in birds (Currier et al., 2020; Elliott & Elliott, 2016; 

Elliott, 2005; Gagnon & Hobson, 2009; Hwang et al., 2007; Therrien et al., 2011; Brink et 

al., 2015; Williams et al., 2007). Nitrogen isotope ratios (15N/14N) generally increase by 2 

to 3‰ per trophic level, with larger animals having higher 15N ratios due to the 

preferential excretion of lighter amine groups (Elliott et al., 2008; Kelly, 2000). Stable 

isotopes of carbon during photosynthesis causes C4 (higher δ13C values) and C3 (lower 

δ13C values) plants to have distinct carbon-isotope (13C/12C) signatures, thereby 

potentially reflecting habitat use and feeding ecology within individuals (Morrissey et al., 

2010; Williams et al., 2008). δ15N and δ13C stable isotopes also provide more accurate 

and long-term estimates of diet assimilation in birds than traditional methods, such as 

foraging observations or stomach/fecal analyses, which can result in identification biases 

(i.e. fragments of tissue or disintegration of soft-bodied organisms), and only provides a 

snapshot of an organisms diet prior to sampling or collection (Kelly, 2000; Brink et al., 

2015). δ13C stable isotopes have also been useful in assessing chemical exposure in 

aquatic ecosystems, since different zones (i.e. benthic, littoral and limnetic) could have 

different patterns of stratification and/or mixing events influencing bioavailability (Elliott et 

al., 2008). In toxicology, one of the most important applications of nitrogen stable 

isotopes is its ability to infer biomagnification potential. Field studies investigating food 

chain exposure and biomagnification of organic contaminants in migratory birds have 

shown that concentrations of DDT (and other POPs) generally increase with lipid content 

and trophic position, resulting in increased food web δ15N values (Currier et al., 2020; 

Fremlin et al., 2020; Huertas et al., 2016; Elliott, Bishop & Morrissey, 2011; Elliott et al., 

2009; Elliott, 2005; Mora, 2008; Yordy et al., 2013).  

Gagnon & Hobson (2009) detected seasonal shifts in blood and claw δ15N 

values in American robins, northern orioles (Icterus galbula), gray catbirds (Dumetella 

carolinensis), least flycatchers (Empidonax minimus) and warbling vireos (Vireo gilvus), 

and argued that many omnivorous birds incorporate food items low in δ15N during 

autumn migration and higher δ15N food items during the breeding season. In fact, 

American robins had the highest blood and claw δ15N levels out of all insectivorous and 

omnivorous species sampled in boreal and parkland regions in eastern Canada (Gagnon 
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& Hobson, 2009), suggesting that robins are at greater risk of accumulating DDT 

residues due to their diet and ground foraging behavior. This contrasts with another 

study by Fremlin et al. (2020), who reported an average δ15N value of 5.30 in American 

robin eggs collected from several urban areas in B.C during the spring season. This 

δ15N value was considerably lower compared to our study (8.42), which could have 

implied that robins were feeding on lower trophic level organisms or fruits (Currier et al., 

2020; Wheelwright, 1986) than robins in the Okanagan, or feeding in habitats with 

anthropogenic food items, which tend to be depleted in δ15N (Caron-Beaudoin et al., 

2013). For example, Currier et al. (2020) observed lower δ15N signatures in European 

starlings (S. vulgaris) foraging near an urban landfill compared to non-urban starlings 

and suggested that urban starlings could be consuming meat refuse from anthropogenic 

sources. However, other environmental factors, such as climate, topography and soil 

characteristics could be influencing food web δ15N values at different landscapes or 

continental scales (Gagnon & Hobson, 2009; Wan et al., 2001; Wilson et al., 2002). The 

intensive use of fertilizer and other agrochemicals in orchards may have contributed to 

higher δ15N values in cultivated soils through ammonification (Elliott et al., 1996; Szeto 

& Price, 1991; Amundson et al., 2003), resulting in higher δ15N values in earthworms 

and American robin eggs in this study. Regardless, the δ15N and δ15C analyses in this 

study confirm that Aporrectodea and Lumbricidae earthworms formed the base of our 

food chain, and that these earthworms were a significant source of exposure of DDT-r to 

American robins during the breeding season. 

2.4.5. DDT-r contamination in Okanagan orchards  

The Okanagan Valley in B.C is an intensive fruit growing region known for its 

large-scale use of DDT and the high levels detected in earthworms, and American robin 

eggs in the present study confirm the ongoing persistence of DDT. Blus et al. (1987) 

speculated four hypotheses for the persistence of DDT-r compounds in migratory birds, 

including: 1) The acquisition of DDT-r compounds in overwintering areas where DDT 

and other OCs are used, 2) The acquisition of DDT-r burdens in local areas from illegal 

use, 3) The acquisition of DDT-r burdens in local areas as a result of high application 

rate and long-term environmental persistence, and 4) The acquisition of DDT-r burdens 

from structurally similar compounds, including meta-, ortho-, and para-para DDT 

isomers. For instance, Kelthane (or Dicofol) is a structurally similar compound to DDT 
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and prior to being phased out in Canada in 1999, was a common acaricide used to 

control mites and other insects (Elliott et al., 1994). However, its persistence in 

Okanagan orchards is unlikely based on local pesticide surveys (Elliott et al., 1994), it’s 

lack of bioaccumulation (i.e. log kow 4.3) and small application rate of 4.4 kg/ha/year 

(British Columbia Ministry of Agriculture and Fisheries 1990). DDE is also not a major 

metabolite of Dicofol in birds or in the environment (Hebert et al., 1994). The illegal use 

of DDT in certain areas is also highly unlikely given that DDT use in Canadian orchards 

was already decreasing significantly without regulation by 1965, largely owing to insect 

resistance (Harris & Sans, 1971). In any case, all pesticides containing DDT were 

discontinued in Canada by 1985, after which any use was prohibited at the federal level 

under the Pest Control Products Act (Environment Canada, 1995). The high DDE:DDT 

ratios reported in the present study, along with those from other migratory birds (Elliott et 

al., 1994) also suggests that DDE, the main metabolite and breakdown product of DDT, 

is persisting at a higher rate compared to freshly sprayed DDT, thereby disproving the 

hypothesis of illegal DDT use. Furthermore, concentrations of DDT in air samples 

collected in 2001 at 40 stations across North America showed that p,p’-DDT levels were 

an order of magnitude higher in Mexico compared to Canada (Shen et al., 2005), 

possibly due to the low volatility of DDT (i.e. Henry’s Law constant; 8.32 x 10-6 atm 

m3/mol) and therefore low long-range transport potential. However, p,p’-DDE is 

considered to be more volatile (Mora et al., 2016) and DDE residues could still pose a 

risk to robins, as well as other birds using orchard habitat in the Okanagan, such as the 

European starling (S. vulgaris), townsend’s solitaire (Myadestes townsendi), bullock’s 

oriole (Icterus bullockii), yellow-rumped warbler (Setophaga coronata), gray catbird (D. 

carolinensis), black-headed grosbeak (Pheucticus melanocephalus) and chipping 

sparrow (Spizella passerina) (R. Kesic, personal communication). The high levels of 

DDT-r in Okanagan orchards may also pose a risk to aerial insectivores, including bats 

(Buchweitz et al., 2018), and many of the bat species in the South Okanagan are 

currently listed as endangered or threatened (Okanagan Similkameen Conservation 

Alliance, 2020). 

Okanagan orchards are expected to retain DDT-r compounds in soil than other 

agricultural areas for several reasons. The lack of winter moisture and dry/humid 

summers in the Okanagan could result in higher levels of organic matter content, 

promoting the adsorption of DDT-r compounds to soil particulates and therefore affecting 
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the bioavailability of DDT-r in soil and earthworms (Szeto & Price, 1991). Certain land 

management practices, such as a lack of tillage or reduced soil disturbance, could have 

also resulted in more grass cover preventing UV degradation, as well as less 

volatilization of DDT from soils, thereby allowing DDE metabolites to persist in the soil 

(Bailey et al., 1974). The number of degree days when the temperature moves below 

0°C in a year in the Okanagan is also reported to be lower than other regions in Canada, 

which could have resulted in a shorter winter senescence period (Harris et al., 2000), 

consequently affecting the amount of DDT-r that earthworms took up annually. In 

addition, the use of heavy metals in fruit orchards prior to DDT, such as synthetic lead 

arsenates (PbHAsO4) and copper (i.e. via fungicides), is thought to inhibit the 

degradation of DDT to DDE via changes in soil microbial activity (Elfving et al., 1994; 

Giller et al., 1998). For instance, Gaw et al. (2003) collected samples from various New 

Zealand orchards and found that high DDE content was significantly correlated with high 

concentrations of copper (234-490 ug/g) and lead (23-126 ug/g) in soils. The presence 

of heavy metals in soil could alter microbial community structure by either decreasing 

microbial biomass via alternate substrate utilization, decreasing microbial respiration rate 

(qCO2), and/or decreasing microbial diversity and species richness via competitive 

exclusion (Giller et al., 1998), consequently affecting DDT-r degradation pathways (Giller 

et al., 1998). There is currently a study underway to examine heavy metal levels in soil, 

worms and robins from the same orchards as sampled in the present work. 

Above all, DDT application rates appear to be the most important factor 

influencing DDT-r contamination in Okanagan orchards. During the 1990s, the BC 

Ministry of Agriculture and Food (1969) was recommending that up to 7 kg of active 

ingredient DDT/ha be applied up to four times per year, and based on available spray 

information, would have meant that up to 27 kg of DDT/ha/year could have been 

sprayed on different crops throughout the growing season (Harris et al., 2000). Different 

areas within the Okanagan could have also received different application rates of DDT. 

For example, soft fruits, such as cherries, apricots and peaches are usually planted in 

the South Okanagan Valley, whereas apples and pears tend to be planted in and around 

the Penticton and Naramata regions (Kuo et al., 2012). On the other hand, the Ontario 

Department of Agriculture (1968) recommended that up to 3.4 kg/g of active 

ingredient/ha be applied two to three times per year, which would have meant that up to 

10 kg of DDT/ha/year could have been sprayed in Ontario orchards during the same 
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time period. These differences in spray concentrations and frequencies, combined with 

different pest outbreaks in orchards throughout the year, meant that Okanagan growers 

could have potentially applied almost three times as more DDT in some years, 

compared to Ontario growers (Harris et al., 2000). These findings are further 

corroborated by temporal and latitudinal analyses which show that DDE concentrations 

in the upper mid-latitudes, particularly in the Pacific Northwest, remain higher than other 

North American regions (Mora et al., 2016; Pozo et al., 2009; Shen et al., 2005). 

2.4.6. Other halogenated chemicals 

Although chlorinated legacy POPs continue to persist in the environment, local 

food chains are frequently being contaminated with emergent legacy pollutants that were 

only recently phased out, including polychlorinated biphenyls (PCBs) and 

polybrominated diphenyl ethers (PBDEs) (Elliott et al., 2005). PCBs, and their 

subsequent PBDE replacements, were used in the 1960s in a variety of commercial and 

household products, including electrical equipment, construction materials, coatings, 

textiles and furniture padding (Grimm et al., 2015). Due to their toxic properties, 

environmental persistence and long-range transport potential, these chemicals were 

globally restricted and banned in the 2000s by the Stockholm Convention on Persistent 

Organic Pollutants. Environmental exposure to PCBs and PBDEs has been linked to 

various adverse effects in marine mammals, including whales and sharks, as well as 

non-cetacean species, such as seals, otters and minks (Jepson et al., 2016). PCBs and 

PBDEs are also known to bioaccumulate and biomagnify in avian tissue, particularly in 

urban raptors (Currier et al., 2020; Elliott et al., 2005; Fremlin et al., 2020), with long-

term exposure resulting in reduced hatching and fledging success, delayed clutch 

initiation, reduced incubation and eggshell thinning (Elliott et al., 2005). 

The sum of all PCBs in robin eggs in this study averaged 0.0044 ug/g (wet 

weight), which was much lower than the sum of PCBs in robin eggs collected from the 

1990s at similar sites (Harris et al., 2000). Concentrations of 2,2’,4,4’,5-

Pentabromodiphenyl ether (BDE-99) were noticeably higher in robin eggs in this study 

and averaged 5.22 ug/g (wet weight). European starlings (S. vulgaris) orally exposed to 

BDE-99 showed no significant changes to the volumes of different brain regions part of 

the song-control system, including the HVC and RA (Eng et al., 2014). However, zebra 

finch (T. guttata) nestlings that were orally exposed to BDE-99 concentrations of up to 
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50.7 ng/g body weight had significantly smaller HVC volumes and females appeared to 

be more sensitive (Eng et al., 2012a), suggesting that exposure to BDE-99 in some 

passerines might be sex-specific. Similar studies have also shown that early exposure to 

BDE-99 can decrease the motivation of zebra finch males to mate, particularly in high 

dose groups, which arguably could be caused by a reduction in sex steroid hormones 

(Eng et al., 2012b). In field studies, European starlings (S. vulgaris) breeding near urban 

landfills have been shown to have higher BDE-99 levels in their eggs, as well as other 

PBDE congeners, as evidenced by the high biota-soil accumulation factors (BSAFs) and 

biomagnification factors (BMFs) calculated from foraged food items, compared to 

reference birds. Exposure to BDE-99 and other PBDEs might therefore pose a 

toxicological risk to robins and other passerines foraging near landfills, waste disposal 

sites, and/or other urbanized areas. 

2.4.7. Conclusion 

DDT is a legacy organochlorine that has been used since the late 1940s, causing 

extensive contamination of fruit orchards in the Pacific Northwest, as well as high 

concentrations of the main metabolite, p,p’-DDE, in soil invertebrates and birds. The 

primary objective of this study was to determine whether DDT-r compounds are 

persisting in fruit orchards after historical agricultural use. This was done by: 1) collecting 

soil, earthworms and American robin eggs from various orchards and reference sites in 

the Okanagan Valley, 2) comparing previous and current contaminant DDT burdens in 

orchard-nesting robins, and 3) analyzing earthworm-robin biomagnification factors 

(BMFs) for different DDT-r compounds. Overall, 100% of robin eggs contained 

detectable levels of p,p’-DDE, p,p’-DDT, and p,p’-DDD, and the highest concentration of 

p,p’-DDE was 107 ug/g (wet weight), confirming that DDT contamination is still present 

at similar and high levels as in the 1990s. Concentrations of p,p’-DDE and p,p’-DDT 

were significantly higher in American robins compared to Aporrectodea and Lumbricidae 

earthworms and earthworm-robin regressions for p,p’-DDE showed a significant positive 

relationship, suggesting that robins were acquiring DDT burdens locally during the 

breeding season. BMFs calculated for robins and earthworms were generally > 1 and 

were significantly higher for p,p’-DDE, confirming the ongoing persistence, and trophic 

magnification of DDT compounds in American robin fruit orchard food chains. 
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The relatively high concentrations of DDT-r in American robins in this study 

indicate that the source of contamination is still local and likely the result of past 

application rates and slow degradation rates determined by soil, and earthworm activity 

in orchards. The use of synthetic lead arsenates (PbHAsO4) in Okanagan orchards prior 

to DDT may be inhibiting the microbial degradation of certain DDT metabolites. Further 

studies are planned to look at the relationship between lead arsenates and DDT-r 

compounds in soil, earthworms and robin eggs in Okanagan orchards. Despite the high 

DDT-r concentrations detected in this study, the reproductive success of American 

robins does not appear to be affected, as concentrations in this study were considerably 

lower than those reported in the 1990s and in other studies where DDT levels had no 

significant effect on robin nest productivity. However, American robins exposed to 

environmental levels of p,p’-DDE in-ovo and during early post-hatching development in 

Okanagan orchards could have smaller brain regions, as well as reductions in song 

nuclei, which could potentially disrupt normal sexual behaviour. Concentrations of DDT-r 

in American robins and other ground-foraging birds in Okanagan orchards could pose a 

health risk to local predators and birds of prey, such as Accipiter hawks and falcons, who 

generally feed at higher trophic levels and are known to be more sensitive to eggshell 

quality effects, and population declines from DDT exposure. 
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2.5. Tables 

Table 1. DDT-r concentrations (ug/g wet weight) in earthworm species collected from orchards in the Okanagan Valley 

Speciesa Location nb Totalc Biomassd % Moisture % Lipid p,p’-DDE p,p’-DDD p,p’-DDT DDE:DDT 
Lumbricus terrestris Orchard 1 3 4 25.43 90.4 0.59 0.0251 0.001 0.0074 3.39 
Lumbricus rubellus Orchard 1 3 28 18.74 86.3 1.19 0.23 0.0057 0.0809 2.84 
Lumbricus rubellus Orchard 2 3 60 38.79 84.9 0.77 2.53 0.0712 0.638 3.97 
Aporrectodea spp. Orchard 2 3 4 10.58 86.3 0.26 0.711 0.02 0.231 3.08 
Lumbricus rubellus Orchard 3 3 73 56.17 86.2 1.12 1.79 0.0624 0.502 3.57 
Aporrectodea spp. Orchard 3 3 13 9.16 86.5 0.59 1.82 0.0628 0.509 3.58 
Lumbricus rubellus Orchard 4 3 8 6.14 85.1 0.39 0.967 0.0103 0.0603 16 
Lumbricus rubellus Orchard 5 3 25 17.82 76.3 0.00e 1.54 0.0247 0.364 4.23 
Aporrectodea spp. Orchard 5 3 15 5.32 81.8 0.79 1.66 0.0247 0.347 4.78 

Lumbricus terrestris Orchard 6 3 6 19.79 86.0 0.32 0.885 0.0215 0.222 3.99 
Lumbricus rubellus Orchard 6 3 47 30.37 86.6 0.94 0.566 0.0236 0.0894 6.33 
Lumbricus terrestris Orchard 7 3 6 25.9 86.0 1.11 5.06 0.325 0.444 11.4 
Lumbricus terrestris Orchard 8 3 9 50.05 87.0 1.38 1.63 0.0545 0.153 10.7 
Lumbricus rubellus Orchard 8 3 41 22.37 80.7 1.64 2.41 0.239 0.144 16.7 
Lumbricus terrestris Orchard 9 3 14 33.8 94.7 1.23 1.52 0.0508 0.283 5.37 
Lumbricus rubellus Orchard 9 3 40 18.94 85.1 1.42 1.11 0.0283 0.233 4.76 
Lumbricus terrestris Orchard 10 3 3 11.17 91.9 1.22 2.08 0.0593 0.496 4.19 
Lumbricus rubellus Orchard 10 3 18 9.61 85.4 1.56 1.75 0.035 0.405 4.32 
Aporrectodea spp. Orchard 10 3 23 7.97 84.7 1.32 2.18 0.0462 0.486 4.49 

Species average   23 22.01 85.89 0.939 1.603 0.0614 0.2997 6.19 
a All earthworm samples include adults and juveniles   
b n = number of sites sampled within each orchard 
c Total count is defined as the total number of individual earthworms collected within a 60 cm2 quadrat across all sites 
d Biomass is the total weight of earthworm species collected from all sites within an orchard and is measured in grams 
e % lipid could not be calculated for this sample due to an unexpected lab issue 
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Table 2. DDT-r concentrations (ug/g wet weight) in American robin eggs 
collected from orchard and reference sites in the Okanagan Valley 

Location % Moisture % Lipid p,p’-DDE p,p’-DDT p,p’-DDD DDE:DDT 
Orchard 1 80.60 5.50 12.80 0.0205 0.0025 624.4 
Orchard 1 80.20 6.02 14.0 0.0404 0.0043 346.5 
Orchard 2 82.40 5.18 26.50 1.05 0.11 25.2 
Orchard 2 83.60 4.17 70.0 2.06 0.31 34 
Orchard 2 82.50 4.52 32.30 1.14 0.18 28.3 
Orchard 3 82.60 5.80 36.90 1.77 0.21 20.8 
Orchard 4 81.80 5.84 27.70 1.24 0.09 22.3 
Orchard 5 82.90 5.58 11.20 0.29 0.03 38.5 
Orchard 5 83.80 5.31 14.30 0.54 0.04 26.7 
Orchard 6 82.40 4.91 3.28 0.18 0.02 17.8 
Orchard 7 82.30 4.76 107.0 2.03 0.46 52.7 
Orchard 7 81.60 5.54 39.0 1.45 0.16 26.9 
Orchard 7 83.70 4.29 35.2 1.30 0.24 27.1 
Orchard 8 83.20 4.35 39.2 1.30 0.09 30.2 
Orchard 8 83.90 3.55 22.7 0.83 0.14 27.4 
Orchard 8 83.0 4.74 42.6 1.10 0.20 38.7 
Orchard 9 81.90 5.63 40.8 1.52 0.18 26.8 
Orchard 10 83.30 5.86 79.3 1.94 0.20 40.9 
Orchard 10 84.60 5.04 50.5 1.97 0.33 25.6 
Orchard 10 84.0 5.06 26.0 1.08 0.11 24.1 
Orchard AVG 82.72 5.08 36.56 1.14 0.155 75.24 

Ref 1 82.40 5.65 0.848 0.0397 0.0026 21.4 
Ref 2 82.70 5.95 0.141 0.0117 0.0006 12.1 

Ref AVG 82.55 5.80 0.495 0.0257 0.0016 16.75 
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Table 3. Biomagnification factors (BMFs) from earthworms to  
American robins in Okanagan orchard food chainsa 

Location p,p’-DDE p,p’-DDT p,p’-DDD 
Orchard 1 24.32 0.16 0.22 
Orchard 2 5.78 0.68 0.95 
Orchard 3 4.04 0.69 0.67 
Orchard 4 4.15 2.98 1.23 
Orchard 5 1.13 0.16 0.18 
Orchard 6 0.77 0.19 0.18 
Orchard 7 3.17 0.95 0.24 
Orchard 8 6.80 2.82 0.41 
Orchard 9 7.62 1.46 1.12 

Orchard 10 7.47 1.05 1.33 
Averageb 6.53 ± 2.12 1.12 ± 0.33 0.65 ± 0.15 

a BMFs were calculated using organic carbon-lipid normalized concentrations (ug/g OC-lipid equiv) 
based on pooled earthworm and robin DDT-r data from each orchard; BMFs > 1 are in bold  
b Average BMF across all sites; expressed as mean ± standard error 
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Table 4. Presence of other organochlorines (OCs), polychlorinated biphenyls 
(PCBs) and polybrominated diphenyl ethers (PBDEs) in robin eggs 
collected from Okanagan orchards, 2019. Values represent means ± 
standard error (ug/g wet weight). % = % of robin eggs with 
detectable levels based on the MDL reported for each compound. 

Compound Concentration % 
Hexachlorobenzene 0.000626  52 
Heptachlor Epoxide 0.000365 22 

Oxychlordane 0.001091  52 
cis-Nonachlor 0.0004  26 

trans-Nonachlor 0.00341  61 
Dieldrin 0.0115  78 

Sum PCBsa 0.0045 42 
BDE-47 3.41 ± 0.53 96 
BDE-49 0.0244  17 
BDE-85 0.0546  22 
BDE-99 5.22 ± 1.0 100 
BDE-100 2.25 ± 0.47 100 
BDE-138 0.0237  9 
BDE-153 0.979 ± 0.24 96 

BDE-154/153 0.4312 ± 0.09 91 
BDE-183 0.690 ± 0.61 22 

a Sum of 35 congeners (17/18, 28/31, 33, 44, 49, 52, 70, 74, 87, 96, 99, 101, 105, 110, 118, 128, 138, 149, 151, 153, 
156, 158, 170, 171, 177, 180, 183, 187, 194, 195, 199, 205, 206, 208, 209). 



56 

2.6. Figures 

 
Figure 1. Location of fruit orchards sampled in the Okanagan Valley, British 

Columbia. 
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Figure 2. Geometric spread of stable δ15N and δ13C isotope signatures of 

American robin eggs, and earthworm samples collected from 
Okanagan fruit orchards.  
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Figure 3.  Mean stable δ15N and δ13C isotope signatures of American robin 

eggs, and different earthworm species collected from Okanagan 
fruit orchards. Error bars represent ± 95% confidence limits.  
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Figure 4.  Concentrations of p,p’-DDE (ug/g organic carbon-lipid equivalent) in 

American robin eggs and earthworms. Concentrations of p,p’-DDE 
are square-root transformed. Lower whisker tips represent the 
minimum concentration and the higher whisker tips represents the 
maximum concentration. Black horizontal lines represent the 
median. Clear diamonds represent the mean. Black circles represent 
outliers. Letters above plots denote significance in concentrations 
across species. 

 

 

 

 

a 

b 
b 

b 



60 

 
Figure 5. Concentrations of p,p’-DDT (ug/g organic carbon-lipid equivalent) in 

American robin eggs and earthworms. Concentrations of p,p’-DDT 
are square-root transformed. Lower whisker tips represent the 
minimum concentration and the higher whisker tips represents the 
maximum concentration. Black horizontal lines represent the 
median. Clear diamonds represent the mean. Black circles represent 
outliers. 
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Figure 6.  Concentrations of p,p’-DDD (ug/g organic carbon-lipid equivalent) in 

American robin eggs and earthworms. Concentrations of p,p’-DDD 
are square-root transformed. Lower whisker tips represent the 
minimum concentration and the higher whisker tips represents the 
maximum concentration. Black horizontal lines represent the 
median. Clear diamonds represent the mean. Black circles represent 
outliers. 
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Figure 7. Linear regression between p,p’-DDE concentrations (wet weight) in 

American robin eggs and earthworms with proportional relationship 
(blue line). Concentrations for earthworms are square-root 
transformed. Grey bands represent the ± 95% confidence intervals. 
Data points represent pooled robin and earthworm data from each 
orchard (DDErobin = (29.05 x DDEearthworm) - 3.25; F1,8 = 11.62; 
P = 0.0092; R2 = 0.60). 
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Figure 8.  Time series plot showing DDT-r concentrations (ug/g wet weight) 

from 1990 to 2019 (present study) in American robin eggs from 
Okanagan fruit orchards. Data points represent mean 
concentrations in eggs reported by Elliott et al. (1994), Gill et al. 
(2003), Harris et al. (2000), Iwaniuk et al. (2006) and Smith (2004). 
Error bars represent ± 95% confidence limits. 
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