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Abstract

Motivated by predicting the lifetime of polymer electrolyte membranes (PEMs), we map
the fracture dynamics of a network of ionomer bundles onto a correlated percolation model.
A kinetic Monte Carlo method is employed to study these dynamics. The swelling pressure
upon water uptake causes the breakage events of ionomer bundles, and the strength of the
bundle-to-bundle correlations is characterized by the stress field and the stress redistribution
scheme. Local load sharing (LLS) and equal load sharing (ELS) are the two most frequently
studied stress transfer schemes. We adopt a stress transfer scheme that follows a power-
law-type spatial decay in this thesis as an intermediate scheme between LLS and ELS.
By tuning the magnitude of the stress field and the effective range of stress transfer, two
fracture regimes, i.e., the random breakage (percolation-type) regime and the localization
(correlated crack growth) regime, can be observed. A central property considered in this
thesis is the frequency distribution of percolation thresholds. Based on this distribution, we
introduce an order parameter to assess the crossover between these two fracture regimes.
Moreover, the average percolation threshold is found to exhibit a peculiar variation, which
has not been reported in previous correlated percolation studies.
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iii



Dedication

To my mom

To physics

iv



Acknowledgements

I would like to express my sincere gratitude to my supervisors, Dr. Michael Eikerling and
Dr. Malcolm Kennett, for their patient guidance and support during my PhD study. I feel
blessed to be working with a group of colleagues from Dr. Eikerling’s group and from the
Department of Physics at Simon Fraser University. I would also like to thank my colleagues
Fafu Niu and Nicholas Lee-Hone for fruitful research discussions. I am also very grateful to
Mpumelelo Maste, Justine Munich Michael Desrochers, Narinder Singh Khattra, Qingxin
Zhang and Pingyi Zhang for their invaluable suggestions during thesis writing. I also thank
my dear friends Jun Huang and Lishen Zhang for their support when I was going through a
difficult time. Finally, I acknowledge Simon Fraser University, NSERC and Dr. Kjeang for
financial support.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

Nomenclature xiii

1 Introduction 1
1.1 Statistical Mechanics of Fracture Networks . . . . . . . . . . . . . . . . . . 1
1.2 Fracture formation on Polymer Electrolyte Membranes . . . . . . . . . . . . 2
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background and Literature Reviews 8
2.1 Fracture Disordered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Crack Nucleation and Growth . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Load-transfer Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Weibull and Gumbel Strength Distributions (Power-law and Expo-

nential Decay Rates) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Percolation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Uncorrelated Percolation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Correlated Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Model 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Bundle of Ionomer Fibers . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Bundle Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Computational Approach and Methods 29
4.1 Kinetic Monte Carlo Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Rejection-free Kinetic Monte Carlo . . . . . . . . . . . . . . . . . . . 30
4.1.3 Adopting the Rejection-free MC Method for the PEM Fracture Model 31

4.2 Percolation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Remarks on the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Results: Fracture Regimes and Percolation Behaviour at a Fixed Lattice
Size 39
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Percolation Regimes and Order Parameter . . . . . . . . . . . . . . . . . . . 40

5.2.1 Distribution of Percolation Thresholds for Different Regimes . . . . 40
5.2.2 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Percolation Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.1 Expectation Values of the Two Peaks . . . . . . . . . . . . . . . . . 45
5.3.2 Average Percolation Threshold . . . . . . . . . . . . . . . . . . . . . 46

5.4 Cluster Structure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.1 Dynamics of the Largest Crack . . . . . . . . . . . . . . . . . . . . . 49
5.4.2 Cluster Structures (Static) . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Time-to-Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Results: Finite Size Effects 59
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Transition of Fracture Regimes in the Crossover Region . . . . . . . . . . . 61

6.3.1 Order Parameter ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.2 Largest Crack Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Variation of Percolation Thresholds . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Time-to-Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6 Preliminary Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6.1 Fracture Regimes for Small σ0 or γ . . . . . . . . . . . . . . . . . . . 66

vii



6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusions and Outlook 69
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 72

viii



List of Tables

Table 2.1 Site or bond percolation thresholds for the square lattice (2D), trian-
gular lattice (2D), honeycombic lattice (2D) and simple cubic lattice
(3D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 3.1 Effective coefficients αk/α1 and ηk/η1 for k ≤ 10. . . . . . . . . . . . . 25

Table 5.1 Lifetime for k = 1, 3, 10 at T = 298 and 353K in the range of σ0 = 3 −
30MPa. The two limits for the range of tPEM values given in parentheses
correspond to γ varying from 0 to 100 respectively. . . . . . . . . . . 58

ix



List of Figures

Figure 1.1 Schematic illustration of a PEM fuel cell. . . . . . . . . . . . . . . . 3
Figure 1.2 X-ray computed tomography images of the fatigue propagation track-

ing of an identical area of a Nafion-type membrane plane from be-
ginning of life (BOL) condition to thousands of wet/dry cycles. . . 5

Figure 2.1 Illustrations of (a) nucleation and (b) growth . . . . . . . . . . . . 10
Figure 2.2 Free energy representation of spinodal nucleation. . . . . . . . . . . 10
Figure 2.3 A phase diagram of random breakage (percolation-like) regime to

nucleation (localization) regime . . . . . . . . . . . . . . . . . . . . 14
Figure 2.4 Wrapping probability R as a function of the concentration . . . . . 17
Figure 2.5 Wrapping probability R for finite-sized lattices and infinite-sized lat-

tices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.1 Ionomer fibers with hydrophobic backbone (red) and grafted sidechains
(red) terminated with sulfonic acid head groups (yellow) that disso-
ciate in water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.2 In the model by Ioselevich et al., the fiber-bundle-network for PEM
is constructed of an ordered structured network of cages, made of
cylindrical bundles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.3 Illustrations of the comparison of the two models of bundle of fibers:
(a) FBM and (b) ionomer fibers in a bundle in a PEM . . . . . . . 24

Figure 3.4 An illustration of how the stress of failing bundles is transferred in
the bundle-network . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.1 An illustration of two tree-structures which represents the clusters
A and B and the merging process of the two clusters. . . . . . . . . 33

Figure 4.2 Frequency distributions of pL
c in the uncorrelated case . . . . . . . . 34

Figure 4.3 A flowchart of Monte Carlo simulations of a particular configuration
of L, ηkσ0 and γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.4 An illustration of an L × L square lattice. . . . . . . . . . . . . . . 37

x



Figure 5.1 Normalized frequency distributions and snapshots of percolation thresh-
olds for a square lattice with L = 100, for random breakage regime
and localization regime . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 5.2 Normalized frequency distribution and snapshots of percolation thresh-
olds for the crossover region . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.3 Plots of the order parameter ξ = A2/(A1 + A2 over (a) σ0 and (b) γ 43
Figure 5.4 Phase diagram, illustrated as a color map, in the plane spanned by

γ and ηkσ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 5.5 Normalized frequency distribution of percolation thresholds that ex-

hibits three discernible peaks for the case with γ = 1.2, ηkσ0 = 5.0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.6 Plots of (a) µ1 and (b) µ2 as a function of γ with ηkσ0 as parameter. 47
Figure 5.7 Plots of average percolation thresholds pL

av over (a) γ with ηkσ0 as
parameter, and (b) ησ0 with γ as parameter. . . . . . . . . . . . . . 48

Figure 5.8 Normalized growth of the largest crack size SL/N with the fraction
of failed bonds Nb/N in the lattice. Three regimes are shown: un-
correlated percolation, crossover, and localization . . . . . . . . . . 50

Figure 5.9 Normalized growth of the largest crack size SL/N with the fraction
of failed bonds Nb/N in the lattice for different stresses with γ as
parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.10 Normalized growth of the largest crack size SL/N with the fraction
of failed bonds in the lattice for different γ with ηkσ0 as parameter. 52

Figure 5.11 Cluster structures (a) m0,c, (b) m1,c, (c) Sav,c and (d) SL,c at a
percolation threshold as a function of γ for different stresses . . . . 54

Figure 5.12 Frequency distributions of the time-to-fracture tPEM (normalized to
αk) for systems in the regimes of random breakage, crossover region
and localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.13 Time-to-fracture tPEM (normalized to αk) (a) on a log-scale as a
function of ηkσ0 with γ as parameter and (b) as a function of γ with
ηkσ0 as parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.14 A color map of tPEM in the γ and ηkσ0 plane. . . . . . . . . . . . . 57

Figure 6.1 The minimum values of m0 are shown by triangular dots linked by a
dashed line. The color map represents the phase diagram (Fig. 5.4)
in the plane spanned by γ and ηkσ0 and was generated with the
order parameter ξ. Regimes of random breakage and localization are
separated by a narrow crossover region. The minimum values of m0

clearly fall into the crossover region. Thus, minimum values of m0

can be adopted to separate the two regimes for larger sizes L. . . . 61

xi



Figure 6.2 Phase diagrams in the plane spanned by γ and ηkσ0 for different
sizes L = 100, 250 and 400. . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 6.3 Frequency distributions of the percolation thresholds for the cases of
(a) L = 250, ηkσ0 = 0.51, γ = 5.5 performed by 325 MC runs and
(b) L = 400, ηkσ0 = 0.61, γ = 4 performed by 80 MC runs. . . . . 62

Figure 6.4 ξ obtained with ηkσ0 = 0.41 and ηkσ0 = 0.36 for γ = 100 (LLS) as
a function of sizes L in the crossover region. . . . . . . . . . . . . . 63

Figure 6.5 Largest crack growth SL/N as a function of damage fraction Nb/N

for ηkσ0 = 0.41 and γ = 100 (solid lines) for several sizes L. . . . . 64
Figure 6.6 Plots of the average percolation thresholds pL

av over γ for (a) ηkσ0 =
0.51, (b) ηkσ0 = 1.0 and (c) ηkσ0 = 5.0, and pL

av over ηkσ0 for (d)
γ = 100 for different L. . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 6.7 Time-to-fracture tPEM (normalized to αk) for (b) the uncorrelated
system, (e) the crossover region, and (h) the localization regime as
a function of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 6.8 Largest crack growth SL/N for ηkσ0 = 0.2 and γ = 100 (solid
lines) compared with the growth dynamics of uncorrelated perco-
lation (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



Nomenclature

Parameter/Variable Description Units
kB Boltzmann constant J/K
T temperature K
β 1/(kBT ) 1/J

Ea activation energy J
p concentration -
pc percolation threshold (infinite lattice) -
R wrapping probability -
L linear size of the finite lattice -
N number of edges (finite lattice of L) -
pL

c percolation threshold (finite lattice of L) -
pL

av average percolation threshold (finite lattice of L) -
puncor

c average uncorrelated percolation threshold -
s cluster size -
ns size cluster distribution -
mk kth moment of cluster size distribution -
ξ connectivity length -

α, β, γ, δ, ν percolation scaling critical exponents -
k number of ionomer fibers in a bundle -
ν ionomer fiber activation volume m3

σf ionomer fiber stress Pa
σ bundle stress Pa
σ0 uniform initial stress Pa
λ correlation length (correlated percolation systems) -
ξ order parameter (fracture systems) -
κf ionomer fiber breakage rate 1/s
κb bundle breakage rate 1/s
τ0 ionomer fiber vibration period s
ηk scaling parameter of k size bundle 1/Pa
αk scaling parameter of k size bundle 1/s
rij distance between bundles i and j -
γ effective range of stress transfer parameter -

µ1, µ2 expected values of Gaussian distributions -
n number of Monte Carlo runs -

tPEM time to fracture s

xiii



Chapter 1

Introduction

This thesis presents Monte Carlo simulations of the fracture dynamics in polymer electrolyte
membranes (PEMs). The fracture processes of a network of ionomer bundles is mapped onto
a bond percolation model. The introduction provides the context and motivation of the
fracture dynamics of PEMs from both a theoretical and a practical point of view, together
with an outline of the structure of the thesis.

1.1 Statistical Mechanics of Fracture Networks

The fracture mechanics of solids is a long-lived topic that has garnered interest in both
engineering and theoretical physics communities. Historical evidence of this field can be
traced back to the age of Leonardo da Vinci (1452–1519) and Galileo Galilei (1564–1642),
when the rupture and strength of metal wires and beams were systematically studied [1, 2, 3].
A century ago, scientists started to master this field with modern physics concepts and
approaches. In 1920, a milestone was marked by Griffith [4], when he related the surface
energy (per unit area) that must be overcome to the onset of crack propagation. Later,
Weibull [5] formulated the fracture strength of a solid from a statistical point of view.

Since the mid-1980s, fractured media have attracted attention from the statistical physics
community [6, 7, 8, 9]. Mishnaevsky in Ref. [10] proposed that fracture is a random and
complex process, based on experimental observations [11, 12, 13, 14]. Moreover, structural
materials can be treated as a network of interconnected discrete material elements [15, 16].1

These reasons motivated physicists to map the problem of the fracture mechanics of a solid
onto a complex network problem. The random fuse network [6, 19], a model of the electrical
breakage of a circuit network that consists of randomly failing fuses, is a prototypical model
used to study the stochastic fracture dynamics of complex networks.

1Whether a material is treated as continuous or discrete depends on the scale at which the material is
being modeled, viz., at a microscopic level or at a macroscopic level. A material at a microscopic scale,
materials ususally cannot be trated as continuous meia. But on a macroscopic scale, treating materials as
continuous media is acceptable and continuum models have been widely adopted [17, 18].
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Other network models of practically relevant fatigue problems have also been studied,
such as earthquake models [20, 21, 22] and brain neural network models [23, 24]. Fur-
thermore, other complex networks, such as the Internet, social networks, artificial neural
networks, etc. [25], and of course, the spin lattice, the most widely studied model of clas-
sical statistical physics, also reveal similarities with fracture network models, even though
the difference between the fatigue systems and other complex systems is that the fracture
models are mostly characterized by irreversible transformations of the network elements.

In general studies of complex networks, the order-disorder phenomena and phase tran-
sitions are of critical interest to statistical physicists. Moreover, from the perspective of
complexity theory, robustness is also a vital problem that concerns how much disturbance
a system can tolerate before the loss of its required function. Percolation, as a critical phe-
nomenon, is an especially important subject. Percolation occurs when there are sufficient
connections between network elements and a dominant cluster spans the whole network. An
application of this is to predict the spread of infectious diseases [26]. Nowadays, with the
rapid growth of computing power, Monte Carlo methods are widely adopted to simulate
the stochastic processes of networks to explore these interesting phenomena [27].

In the specific context of stochastic fracture networks, the robustness of complex net-
works can be translated to the assessment of what physical quantities can lead the material
to reach catastrophic failure, such as the analysis of the stress strength threshold of the sys-
tem or the prediction of a lifetime. The percolation transition is highly relevant for assessing
whether a catastrophic failure has taken place [20], since the microcracks are randomly gen-
erated over time and grow into a sample-spanning fracture.

Fracture systems also display order-disorder phenomena. The crack events exhibit both
spatial and temporal correlations that are caused by a time-dependent stress field. In a
weakly correlated system, these failure events are nearly completely random and the system
has a high degree of disorder. On the other hand, a strongly correlated system shows more
ordered breakage behaviours in which localized damage occurs at an early stage. This leads
to the follow-up questions: How do we understand the transition or crossover between the
two damage regimes, viz., the random breakage regime and the localization regime? What
physical quantities can characterize this transition?

1.2 Fracture formation on Polymer Electrolyte Membranes

A self-assembled polymer network is a typical complex fracture network. One ubiquitous
example is the scaffold of charged and elastic ionomer bundles that constitute the stable
skeleton of a polymer electrolyte membrane (PEM) network.

A PEM is a vital component in PEM fuel cells (PEMFCs) and is needed in PEMFCs
to transport protons and separate the reactant gases supplied at anode (hydrogen) and
cathode (oxygen) sides. PEMFCs are a promising type of fuel cells and are touted for
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use in automotive and backup power systems [28, 29]. As green energy conversion devices,
PEMFCs could help combat global warming [30].

In PEMFCs, the fuel is hydrogen gas (H2). As illustrated in Fig. 1.1, at the anode,
hydrogen is split into protons (hydrogen ions) and electrons. In a proton-conducting PEM,
the protons permeate through a network of water-filled nanopores of the network, and the
electrons flow through an external circuit. At the cathode, oxygen gas (O2) is delivered
to combine with the protons and the electrons to form water molecules. In this way, the
electric potential difference is maintained between the cathode and the anode, and electric
power is generated. The chemical reaction equations are as follows:

H2 −→ 2H+ + 2e− Anode

2H+ + 1
2

O2 + 2e− −→ H2O Cathode
(1.1)

Figure 1.1: Schematic illustration of a PEM fuel cell. Hydrogen and oxygen gases are sup-
plied from the gas compartments on the anode and cathode sides. Hydronium ions permeate
through the membrane and electrons are conducted through the external circuit.

Membrane failure in PEMFCs occurs when a direct crossover of the reactive gases (hy-
drogen or oxygen) between the cathode and the anode. Micro-cracks initiate and grow over
time [31], caused by chemical or mechanical stressors. Eventually, a sample-spanning frac-
ture develops and reactants permeate through this fracture, resulting in voltage losses and
the degradation of PEMFCs [32, 33, 34, 35]. These issues motivate us to study the fracture
dynamics on PEMs and determine after what time a sample-spanning fracture occurs and
what factors determine its formation.

The most commonly used membrane material is Nafion. In aqueous solution, individual
Nafion ionomer backbone strands in solution assemble into cylindrical bundles. As the length
of a single ionomer strand exceeds the length of a bundle, an effective cross-linked three-
dimensional network of ionomer bundles and nanoporous superstructures is formed [36]. The
water molecules are trapped in the nanopores. The polymer network structure and the water
content in the supercells can be verified by mean-field theory [37, 38, 39, 40, 41, 42] and
molecular dynamics (MD) simulations [40, 43, 44, 45]. Experimentally, X-ray and neutron
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scattering techniques can be used to verify the network morphology [46]. However, even
though the self-organized polymer network has a randomly disordered structure, periodic
lattices are often considered in theoretical models for reasons of simplicity [47].

Micro-fractures on membranes are caused by chemical and mechanical degradation
mechanisms. Chemical degradation has been widely studied [48]. For the mechanical degra-
dation that we study in this work, fractures on bundles are induced by the pressure of the
water phase in the nanopores. Moreover, under typical operating conditions in PEM fuel
cells, PEMs are subject to fluctuations in temperature as well as cyclic relative humidity.
In other words, PEMs undergo the cycles of water sorption and desorption, inducing cyclic
stresses in the membrane [49]. As indicated in Refs. [50, 51, 52], a Nafion membrane in a cell
has a lifetime up to 20 000 hours. To study the lifetime of PEMs experimentally, accelerated
stress testing (AST) is adopted to simulate the PEMs under cyclic stresses in real-world
conditions [53, 54]. The fracture concentration in the membrane can be detected by X-ray
beams [55, 56]. Fig. 1.2 taken from Ref. [57] shows an X-ray computed tomography image
of fracture on a Nafion-type polymer membrane from pristine beginning-of-life (BOL) con-
dition to thousands of wet/dry cycles. As indicated in Ref. [57], micro-cracks start between
2000 and 4000 cycles, but the sample-spanning cracks occur between 4000 and 4500 cycles.

1.3 Challenges

The motivation that drives this work is to develop the ability to make predictions of the
lifetime of polymer electrolyte membranes. In view of this overarching goal, we strive to
understand the fracture mechanics from the general statistical physics aspects and apply it
to the fracture dynamics of PEMs. We map the damage dynamics of PEMs onto a bond
percolation model of fracture. The stochastic fracture process on the network is simulated
by a kinetic Monte Carlo method.

In Ref. [58], stochastic fracture dynamics of completely random behaviour on the bundle
network were studied by Melchy and Eikerling. However, in a real PEM, the bundle breakage
events are correlated both spatially and temporally. In the correlated case of a fracture
dynamics problem, the probability of a bundle failure in a stochastic sequence of breakage
events can be described as a function of the updated stress field after a bundle fails. From
this, we ask, what is the functional form of this stress-dependent bundle failure probability?
More importantly, how does the stress redistribute within the remaining intact parts of the
network after a bundle failure?

In general studies of stochastic fracture models, the stress field redistribution rule is
often treated as a way in which the remaining intact parts of the material receive the
additional stress from the crack tips. The two widely studied stress transfer models are
equal load sharing (ELS) and local load sharing (LLS). ELS assumes a mean-field limit that
every surviving bundle receives the exact same fraction of the load, whereas LLS assumes

4



Figure 1.2: X-ray computed tomography images of the fatigue propagation tracking of an
identical area of a Nafion-type membrane plane from beginning of life (BOL) condition to
thousands of wet/dry cycles. The insets represent the corresponding cross-sectional views
at the indicated membrane locations. Reprinted from International Journal of Hydrogen
Energy, 45, D. Ramani et al., 4D in situ visualization of mechanical degradation evolution
in reinforced fuel cell membranes, 10089 - 10103, Copyright (2020), with permission from
Elsevier.
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that only the nearest neighbours take the load. These two limiting regimes correspond to
an uncorrelated system and a correlated system, respectively. However, the stress transfer
scheme of a real material is most likely to fall in between the two limits. The stress transfer
scheme for a polymer network of the PEM is especially more complicated because the stress
field is caused by the internal swelling pressure [59].

Once a suitable stress redistribution scheme is adopted, we can explore the percolation
phenomenon, the lifetime, and the crossover between the two damage regimes, viz., the
random breakage regime, and the localization regime. These are not only of practical in-
terest, but they also provide insights from the perspective of statistical physics. Moreover,
understanding the percolation behaviour in a fracture system is of particular importance.
In Chapter 2, a more detailed review of fracture dynamics as well as percolation theory will
be revisited.

1.4 Dissertation Organization

This thesis is divided into seven chapters, the contents of which are as follows:

Chapter 1: Introduction. This chapter provides context and practical motivation for the
presented research.

Chapter 2: Theoretical Background and Related Studies. This chapter shows theo-
retical background of statistical fracture dynamics and percolation theory. Related studies
or progress will be discussed.

Chapter 3: Model. This chapter presents the framework of the model in this present
work. Fracture processes on PEM networks are mapped to a dynamic percolation model
on a lattice. The correlation of fractures in the breakage sequence is described by both the
breakage rate and the stress redistribution law.

Chapter 4: Computational Approach and Methods. This chapter presents the con-
text of a (rejection-free) kinetic Monte method and an algorithm of the identification of the
onset of percolation, both of which are adopted in the kinetic simulation of the dynamic
fracture process of the membrane polymer network. The detailed simulation procedures are
also presented.

Chapter 5: Results: Fracture Regimes and Percolation Behaviour at a Fixed
Lattice Size. This chapter presents the Monte Carlo results for a lattice of fixed size.
Fracture regimes, viz., the random breakage regime and the localization regime, and the
peculiar percolation behaviours are of particular importance in our present work. Also, a
lifetime analysis of PEMs is presented.
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Chapter 6: Results: Analysis of Finite Size Effects. This chapter extends the results
of Chapter 5 to lattices of varying sizes.

Chapter 7: Conclusions and Outlook. This chapter presents a summary of the findings
in this work, as well as possible extensions for future study.
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Chapter 2

Theoretical Background and
Literature Reviews

A self-assembled polymer network exhibits a complex fracture behaviour. The fracture
events on the network are characterized by randomness and thus can be interpreted from the
perspective of statistical physics. Several physical phenomena emerge during nucleation and
growth of a fracture. Among these, the percolation behaviour is of particular importance
as it is concerned with the growth and merging process of cracks.

In Section 2.1, the concept of the crack nucleation and growth regimes in fracture disor-
dered systems will be reviewed. Spinodal nucleation will be briefly introduced to understand
the nature of the nucleation process in the statistical physics picture. The correlations in
fracture systems are characterized by the redistribution laws of the stress field. To describe
the dynamic process, two widely used rules of breakage rates will be reviewed.

In Section 2.2, I will first present classical uncorrelated percolation theory and then pro-
ceed with the investigation of several prototypical spatially correlated percolation models.

2.1 Fracture Disordered Systems

Fractured phenomena have drawn the attention of statistical physicists for the past 40 years
[6, 7, 8, 9, 15]. The fracture propagation process is characterized by randomness, thus the
system exhibits a certain extent of disorder. Therefore, fracture systems can be interpreted
as disordered media. In a disordered system, the degree of randomness is reduced due to
ordering behaviour that occurs through interactions or correlations. As a result, several
critical phenomena emerge. A typical example of a disordered system is a spin system – one
of the most classical systems in statistical physics. As for disordered systems considered in
fracture mechanics, the Random Fuse Model (RFM) [6, 60, 61, 62] and the Fiber Bundle
Model (FBM) [63] are two prototypical approaches. An RFM represents a network of fuses
with random thresholds of strength subjected to an external current. In an FBM, a collection
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of parallel fibers is clamped into a bundle with the conserved tensile stress applied vertically
to the plane.

The above classical models are associated with microscopic random discrete states, that
can be represented by -1 or 1. One key difference between a fracture system and an Ising
model is that a fracture system starts with a fully intact network, in which all the network
elements take the state of 1 (in the spin analogy), and once it begins to fracture, these
elements normally flip irreversibly to the -1 state. We also address here that our model of
the self-assembled polymer network is effectively modeled within the same framework as an
FBM, whose very spirit is that the stress dissipation is zero. 1

An order parameter can quantify the extent to which a phase is ordered or disordered.
In an RFM or fibrous fracture systems [47, 64], a commonly used order parameter is the
conductivity. In this regard, the system’s global failure is identified when the conductivity
decays to zero. In our case, however, global breakdown is defined when the system is per-
colated by a crack. Later in Chapter 5, a new order parameter based on the distribution of
percolation thresholds in our results will be presented.

2.1.1 Crack Nucleation and Growth

Fracture dynamics proceeds essentially as a crack nucleation and growth process. What
is a nucleation regime? Nucleation commonly exists in nature. One classical example of
nucleation is the initial formation of bubbles in heated water as it evolves into a new stable
phase, viz. the vapour, once the barrier in free energy is overcome. As an analogy, the
"bubble" nucleation and growth can be described as the cluster generation (a) and growth
(b) respectively, as illustrated in Fig. 2.1.

In a thermally activated fracture system under stress, microscopic fractures first nucleate
randomly and later cracks grow along the edges of the initial nuclei in a correlated manner.
Eventually, the damage regime of localization is strong enough to transform the system
to complete failure in short time. From a statistical physics point of view, the nucleation
process involves a shift from a metastable state to a new stable state of global failure [9].
One interpretation of the process can be through spinodal nucleation, following the logics of
Landau-Ginzburg mean-field theory [7, 9, 65]. In this context, a local minimum of the free
energy disappears, at the spinodal point, resulting in the system transitioning to a lower
minimum in the free energy, corresponding to another stable state as illustrated in Fig. 2.2.

To note, the application of spinodal nucleation theory to crack propagation is still con-
troversial. Kun et al. [63], in their numerical work, reported that the spinodal point can

1Admittedly, a polymer network is complex in the sense that a self-assembled network consists of two
parts, namely, the fiber-bundle and the bundle-network. Furthermore, the stress field redistribution caused
by swelling is also intriguing. See more discussions in Chapter 4.
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Figure 2.1: Illustrations of (a) nucleation and (b) growth. A disordered system which shows
a nucleation regime should undergo the stage of random formation of nuclei and the later
stage of correlated "bubble" growth around existing nuclei, while further nuclei continue to
be formed.

Figure 2.2: Free energy representation of spinodal nucleation. In the absence of an external
field, the system has two stable states (left panel). In the presence of a field, one of the two
minima shifts up and this state becomes metastable, inducing nucleation (middle panel).
When reaching the spinodal point, this minimum disappears and the state becomes unstable
(right panel). Reprinted figure with permission from Ref. [66] Copyright (2006) by Taylor
& Francis.
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never be reached until final collapse, but can be approached by increasing the range of
interactions to a limit of global range or a mean-field limit [67, 68]. An avalanche, whose
size distribution of bursts is characterized by a power-law functional form, is believed to be
a precursor to indicate whether a spinodal point is reached [63, 69, 70].

Another question is whether there is a phase transition between two fracture regimes: the
percolation-type (random breakage) regime and the localization (correlated crack growth)
regime. The percolation-type regime corresponds to the limit of infinite disorder [19, 71] as
the material elements break completely at random. The localization regime is an unstable
state decaying rapidly to the final catastrophic failure. It shows a finite (or even infinitesimal)
disorder because the process displays phenomena of correlated localized damage growth.
Theories of Rundle and Klein [7] predicted a first-order phase transition between the two
regimes as their order parameter shows a discontinuity; but Refs. [72, 73] assumed that
it is a second-order phase transition. More strikingly, the theoretical analysis of Ref. [74]
concluded that it is just a crossover between regimes, but not a real transition between two
phases as neither a discontinuity nor a divergence of the derivative of the order parameter
were found.

2.1.2 Load-transfer Laws

As described above, fracture disordered systems under interaction laws of varying range
exhibit distinct physical phenomena. Interactions are represented through load-transfer
mechanisms. In an RFM, the current load is recalculated through Kirchhoff’s equations
after one or a few fuses fail. As for an elastic fracture system, the stochastic sequence of
fracture events is subjected to a stress field, which is reconstructed following each failure
event. We could simplify the stress field redistribution by assuming the load added on other
surviving material elements (fibers in an FBM or bundles in a bundle-network model) are
solely transferred from the failure element. Two extensively studied rules of load sharing
are equal load sharing (ELS) [75, 76, 77], and local load sharing (LLS) [75, 78, 79], corre-
sponding to the two limits of load transfer. In ELS, all intact elements receive exactly the
same load from the breakage of an element. This case corresponds to the mean-field limit
and it can be solved analytically [58, 80, 81]. For LLS, only the nearest neighbours (or next
nearest neighbours) receive the load. In real materials, the stress redistribution should fall
in between the two extremes [82]. Motivated by this, Hidalgo et al. [82] proposed a stress
transfer rule in an FBM which exhibits a power-law-type spatial decay,

σadd ∼ r−γ , (2.1)

where σadd is the load added on a survived element at a distance r from the failed element,
and γ describes the effective range of load transfer. Equation (2.1) gives the limits of the
ELS for γ → 0 and the LLS for γ → ∞.
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2.1.3 Weibull and Gumbel Strength Distributions (Power-law and Expo-
nential Decay Rates)

The fracture process can be described as a sequence of stochastic bundle breakage events.
There are two different models that treat the fracture process in different perspectives: the
static model and the probabilistic model [83]. In our present work, we adopt the probabilistic
way to model the fracture dynamics process.

In a static model, the elements only fail when the load borne by them exceeds their
strength thresholds. Once these thresholds are randomly assigned to each material element,
the elements will fail in a deterministic order [82] according to certain cumulative distri-
bution of failure strengths. The two commonly used strength distributions are the Weibull
distribution,

PW(σ) = 1 − e(−σ/σ0)ρ

, (2.2)

where ρ is the Weibull index, which characterizes the degree of disorder in the system; and
the Gumbel distribution (double exponential distribution),

PG(σ) = e−e−β(aσ−Ea)
, (2.3)

where β = 1/(kBT ) with Boltzmann constant kB, Ea is the activation energy, a is a positive
coefficient .

On the other hand, in the probabilistic model, the fracture process can be interpreted as
a Markov chain [83]. In a Markov chain model, the occurrence of the next random fracture
state is dependent on its current state, which includes the present network of remaining
intact elements, the current load field and the ongoing failing element. If only one failure
event of a certain material element occurs at a time, its probability is proportional to its
decay rate subject to the load σ on it,

p{failure at x | current network structure, load field, ongoing failing element} ∝ κ(σ(x)).
(2.4)

Now it comes to the question of an appropriate form of the failure rate κ(σ(x)) as a function
of the load. Two functional forms are widely employed: the power-law breakdown rule,

κp(σ) ∝
(

σ

σ0

)ρ

, (2.5)

with the positive constant σ0; and the exponential breakdown rule 2,

κe(σ) ∝ eβ(aσ−Ea). (2.6)

2Equation (2.6) assumes n = 1 in κe(σ) = eησn

which is supported by a number of experiments; whereas
in some studies n is assigned the value of 2 [8].
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The two breakdown rules above, Eqs. (2.5) and (2.6), are related to the Weibull dis-
tribution (Eq. (2.2)) and the Gumbel distribution (Eq. (2.3)), respectively. The relations
between strength distributions P (t; σ(t)) and the corresponding decay rate κ[σ(τ)] can be
established as follows [80, 84] 3,

P (t; σ(t)) = 1 − exp
{

−
∫ t

0
κ[σ(τ)]dτ

}
. (2.7)

Both, the power-law and the exponential forms of decay, have been adopted in the
past to describe the molecular breakage events of fibers [86]. For a fiber, which undergoes
a thermally activated process, clearly the exponential form of the rate better describes
the statistical breakdown behaviour since it contains the Boltzmann factor. On the other
hand, the power-law form of decay, which has been widely adopted in the fracture studies
[19, 82, 87], is credited for its consistency with a well-known empirical distribution – the
Weibull distribution. The Weibull distribution has traditionally been used to fit experimen-
tal strength data on elastic fibers, but theoretical and numerical studies suggested that a
Gumbel distribution overall better fits the numerical data [88, 89], at least for some regions
in parameter space [90, 91]. Experimental results as claimed in Ref. [92] showed the Gumbel
distribution is a better description of the nature of fiber strength.

Nevertheless, the power-law form can still locally approximate the exponential case
[86, 93]. Also, the power-law breakdown rule has a simple size scaling form whereas the
exponential-law breakdown rule is unlikely to have such a form. [86]. A scaling theory
which describes a transition between fracture regimes proposed by Shekhawat et al.[19] is
based on the assumption of the Weibull distribution (Fig. 2.3). In our study, we employ the
exponential breakdown rule for the material elements (bundles) in the disordered network
to observe whether a qualitatively different fracture behaviour can be observed.

Another remark relates to the difference between static and probabilistic methods of
failure process simulations. In the static approach, a material element only fails when the
load exceeds its strength threshold. For a specific initial load, all the elements of the sys-
tem may eventually completely break down, or reach an equilibrium when the remaining
elements can survive with the loads below their strength thresholds [82]. The probabilistic
method on the other hand relies on the decay rates of elements that describe the finite fail-
ure probabilities of these elements for a given time period. Thus all elements will finally fail
given long enough time. In our present work, the fracture process is modeled by the proba-
bilistic method and is simulated by a kinetic Monte Carlo method that will be introduced
and further discussed in Chapter 4.

3It can be derived from −dn = n(τ)κ[σ(τ)]dt + o(dτ), where n represents the surviving elements. The
accumulative failure distribution P (t) is equated with 1 − n(t)/N , where N is the total number of elements
[85, 80].
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Figure 2.3: A phase diagram of random breakage (percolation-like) regime to nucleation
(localization) regime for a random fuse network. The phase transition was studied based on
a scaling theory and an assumption of the Weibull strength distribution. Reprinted figure
with permission from Ref. [19] Copyright (2013) by the American Physical Society.

2.2 Percolation Theory

Percolation theory has been applied in many disordered systems to study the connectedness
of clusters for practical purposes. Applications vary from forest fire models [94, 95, 96],
earthquake predictions [21, 22], epidemic spreading analysis [26], and liquid penetration
analysis for porous media [22]. In statistical physics, percolation phenomena have also been
shown to relate to the critical behaviours in Ising models [97, 98]. Fracture dynamics are
undoubtedly relevant to percolation studies, as during the fracture process, the randomly
generated cracks merge over time and eventually develop a sample-spanning fracture.

This section starts with a simple introduction to uncorrelated percolation theory. In
real systems, however, the random variables are interacting or correlated in the dynamic
process. Correlated percolation, as a more practical case, will be discussed in Section 2.2.2.

2.2.1 Uncorrelated Percolation

Uncorrelated percolation is a classical, simplified version of the percolation model, which
disregards interactions between the elements in a disordered network. Stauffer [99] has
explained the basic spirit of uncorrelated percolation theory: sites (site percolation) or bonds
(bond percolation) on a lattice are randomly and independently occupied with probability
p (or empty with probability 1 − p). Groups of sites/bonds are occupied and connected
through bonds/sites4, forming clusters. Upon reaching a critical probability pc from below,

4In principle, a bond percolation problem can be transformed into a site percolation problem through
bond-to-site transformation [100]. For example, the square lattice bond percolation problem can be treated
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a cluster forms that spans the lattice, leading to a macroscopic critical phenomenon, i.e.,
percolation. For infinite lattices, when increasing p to pc, the probability of forming at least
one percolating cluster changes abruptly from 0 to 1 as depicted in Fig. 2.4 (a). The critical
value pc is known as the percolation threshold.

Exact analytical solutions for pc have been found for several lattices: the site percolation
threshold for the triangular lattice and bond percolation threshold for the square lattice,
triangular lattice and honeycombic lattice [94, 101]. The reader can refer to Table 2.1 for site
or bond percolation thresholds for selected two-dimensional or three-dimensional lattices.

Table 2.1: Site or bond percolation thresholds for the square lattice (2D), triangular lattice
(2D), honeycombic lattice (2D) and simple cubic lattice (3D).

Lattice pc, site pc, bond
square lattice 0.593 [102, 103, 104]† 0.5 ∗

triangular lattice 0.5 ∗ 2 sin(π/18) ∗

honeycomb 0.697 [105, 106] † 1-2 sin(π/18) ∗

simple cubic 0.312 [107, 108] † 0.248 [109, 110] †

∗ analytical result
† numerical result

Several critical phenomena occur in the vicinity of the percolation threshold for the
cluster structures of the lattice, similar to the Ising model at the critical temperature. Some
of the cluster structures can be analyzed by the kth moment of the distribution ns of cluster
size s,

mk =
∑

s

skns. (2.8)

Stauffer has explained the critical phenomena of the cluster structures by showing the
scaling relations in Ref.[94]. Those are:

m0, the total number of clusters,

M0(p) ∝ |p − pc|2−α , (2.9)

m1, the total number of occupied sites,

m1(p) ∝ (p − pc)β , (2.10)

m2, the mean cluster size,
m2(p) ∝ |p − pc|−γ , (2.11)

as a self-matching site percolation problem. To avoid being overly verbose, I will use the language of site
percolation to explain the concept of percolation theory in this section.
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ξ, the connectivity length,
ξ(p) ∝ |p − pc|−ν , (2.12)

and, ∑
s

s · nse−hs ∝ h1/δ, (2.13)

where h is real number.
Any two of the five critical exponents α, β, γ, δ, ν in scaling equations are related to each

other in d dimension lattices via the three scaling laws

2 − α = γ + 2β = βδ + β = dν, (2.14)

Thus, once two of them are determined analytically or numerically, the other three can be
obtained. For most two-dimensional lattices5, including square, triangular and honeycomb
lattices, the scaling exponents have been exactly solved with α = −2/3, β = 5/36, γ =
43/18, δ = 91/5 and ν = 4/3 [99]. Three-dimensional lattices, such as a cubic lattice, have
α = −0.6, β = 0.4, γ = 1.8, δ = 5.3 and ν = 0.9, which were determined numerically [99].

To note, the connectivity length ξ represents the average radius of a typical percolation
cluster. As it characterizes the correlation between occupied sites, some studies used to refer
to it as the correlation length. To differentiate it with the correlated length in correlation
functions defined in the correlated percolation models introduced in Section 2.2.2, we will
continue referring to ξ as the connectivity length.

Kinetic Percolation

Classically, the uncorrelated percolation is as defined above, in which p is the occupation
probability of every site in the lattice and we can call this "ordinary" version of percolation
model as the static percolation model. However, the kinetic version of the percolation model
[114, 115] is more applicable for describing dynamic processes. Sites are added one by one
randomly in the kinetic percolation model, in which pc is defined as the critical concentra-
tion, i.e., the proportion of the occupied sites, which must be filled to create a percolating
cluster. Numerical simulations show the values of pc defined in the two respective models are
statistically equivalent 6. In this thesis, we adopt the kinetic percolation model to describe

5A Cayley tree has α = −1, β = 1, γ = 1, δ = 2 and ν = 0.5 [111, 112, 113].

6Numerical simulations approaching the infinite size limit so far support such an equivalence, but a strict
mathematical proof of the equivalence of the two definitions of pc could not be found. Even though the
concentration can in theory take values less or more than the occupation probability p in the static model,
the main factor that affects the percolation behaviour is still the permutation of the spatial structure of the
occupied sites at the same concentration. Moreover, as the lattice size approaches the limit of infinity, the
concentration matches the probability p of the lattice.
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the fracture process and the percolation threshold pc is defined as the concentration in the
dynamic process.

Finite-sized Lattices

Now we wonder what is the wrapping probability R, i.e., the probability of forming a
percolating cluster, as a function of the concentration p in finite-sized lattices. Unlike infinite
lattices (Fig. 2.4 (a)), Fig. 2.4 (b) shows a continuous transition of R from 0 for p = 0 to 1
for p = 1. One can imagine the following rare cases: for low p close to 0, there is a chance of
generating a percolating cluster of a single row (or similar phenomena); and for p close to
1, the sites are occupied almost everywhere but they might still not be connected together
to become a percolating cluster. However, as the size of lattices grows, the chance of the
above rare cases becomes vanishingly small, and eventually when reaching an infinite size
limit, R transforms to a step function as shown in Fig. 2.4 (a).

(a) (b)

Figure 2.4: Wrapping probability R as a function of the concentration (or occupation prob-
ability) p. (a) For an infinite lattice, R exhibits a step-like change from 0 to 1 at the
percolation threshold pc. (b) For finite lattices, R changes continuously. While L increases
(blue, orange, green, red and purple), the transition region of R becomes steeper in the
vicinity of pc.

In a kinetic percolation model, the percolation threshold pL
c for a finite lattice of linear

size L, can be defined as the concentration p at which a percolating cluster first appears
[99, 116, 117]. In a probability distribution of pL

c , the probability that pL
c takes a value at p

is proportional to dR
dp . Fig. 20 in page 76 of Stauffer’s book (1985) [99] (Fig. 2.5) discusses

the relation between the wrapping probability R and the probability distribution of pL
c .

Accordingly, the average percolation threshold can be defined via

pL
av =

∫
pL

c

(dR

dp

)
dpL

c . (2.15)
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For some lattices, for example a cubic lattice, the site or bond percolation threshold
cannot be solved analytically; pc can be obtained, however, numerically and by fitting the
simulation data to the finite-size scaling equation [99, 117] 7,

pL
av − pc ∼ L−1/ν . (2.16)

For an uncorrelated percolation model, the probability distribution of pL
c follows a

Gaussian-like behaviour. Furthermore, the width of the distribution decreases with increas-
ing L, approaching a δ-function-like distribution when L → ∞. In contrast, for the fracture-
type correlated percolation system considered in this work, the distribution of percolation
thresholds exhibits unusual behaviours at the onset of the localized damage regime, which
will be shown in Chapter 5.

Figure 2.5: Wrapping probability R (solid lines) for finite-sized lattices and infinite-sized
lattices. The dashed line represents dR/dp, proportional to the probability that at concen-
tration p a percolating cluster appears for the first time. When L → ∞, dR/dp approaches
the Dirac δ function. Reproduced (qualitatively) according to Fig. 20, page 76 in the book
of Stauffer (1985) [99].

2.2.2 Correlated Percolation

An uncorrelated percolation model is over-simplified for real systems in which the random
variables are interacting and correlated. Fracture systems clearly fall into the category of
correlated percolation problems.

Here we introduce a prototypical long-range correlated percolation model, which has
been extensively studied for theoretical purposes [118, 119, 120, 121]. In this model, u(r)

7Likewise, other physical observables like the wrapping probability R, the connectedness length ξ and
average size S also exhibit finite-size scaling properties. Please refer to Refs. [99, 117]
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represents a site that has one of the binary states of (-1, 1), corresponding to the empty
or occupied states. The correlation functions ⟨u(r)u(r + R)⟩ are defined to follow spatial
decays which can take power-law, exponential, or Gaussian forms, with a correlation length
λ :

⟨u(r)u(r + R)⟩ ∼ |R|−λ , (2.17)

⟨u(r)u(r + R)⟩ ∼ e−|R|/λ , (2.18)

⟨u(r)u(r + R)⟩ ∼ e−|R|2/λ 2
. (2.19)

The process behind this model is modelled with a Markov chain Monte Carlo (MCMC)
model [117]. Given a copy of a statistical ensemble, for example one with a particular MC
configuration of the correlation length λ and an occupation probability p, the simulation
starts with an initialization of a random occupation of a spatial lattice. Next, a new spatial
lattice structure will be calculated according to the transition probability matrix or the
Fourier transform and this procedure is repeated until the system reaches equilibrium, at
which point one can observe whether the lattice is percolated for the given copy. Once this
is process is done for many MC realizations, we can obtain a wrapping probability R, in
terms of parameters of λ and p. 8

A general intuitive expectation is that the percolation threshold decreases with stronger
correlation [91] as the connectedness is stronger between clusters. Such a phenomenon was
first reported in an early model of a continuum correlated percolation system [125]. For
long-range discrete models, a similar conclusion was also reached in Refs. [123, 126], but
this can be limited to the observations of a small range of correlation lengths. Later, Harter
in his work [117] showed that the percolation thresholds reduce but will increase again for
sufficient correlation length.

To note, the prototypical correlated percolation model introduced in this section is of the
most standard form, and is usually studied for theoretical interest. However, for solving some
more particular problems, different correlated percolation models are specifically considered,
such as the directed percolation model for the flow penetration in a porous medium [98]
and bootstrap percolation for the neuronal activity [127]. For the correlated percolation
model of the "fracture-type", one typical characteristic is that all material elements start
with an intact (micro-)state of 1, and once the elements fail, they flip to 0 irreversibly.
As a comparison, the random state of u(r) in the "standard" correlated percolation model
can flip back at each step in the Markov process. Furthermore, the correlation function in
the "standard" correlated percolation model is clearly defined as in Eq. (2.17) to (2.19),

8For detailed simulation procedures, please refer to Ref. [122] and Refs. [123, 124].
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etc. However, in a fracture-type percolation system, the correlation is characterized by the
stress field redistribution, but a correlation function cannot be formulated so far. Moreover,
correlation between the fracture events appears to grow over time. The reader will see an
unusual percolation variation in the results in Chapters 5 and 6 that can be compared to
the percolation behaviours observed in Refs. [91, 117, 123, 125, 126]. However, it is unknown
whether the different percolation behaviour is caused by intrinsic differences between the
standard correlated percolation models and the fracture-type correlated percolation model
considered in this work.
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Chapter 3

Model

This chapter discusses the framework of the model studied in this thesis. The fracture
problem of a self-assembled polymer electrolyte membrane (PEM) can be broken down
into two parts: the decay rate or lifetime for a bundle of ionomer fibers and the stress
field redistribution law for the bundle-network model. Once the above two essentials are
obtained, we can numerically simulate the dynamics of failure events in the network as a
Markov process using Monte Carlo methods (this will be further introduced in Chapter 4).

3.1 Overview

Compared to the simple prototype fiber bundle models (FBMs) (see Section 2.1), the frac-
ture problem of a PEM is more convoluted owing to the complex polymer network structure
and the internal stress field that is caused by the swelling pressure upon water uptake. In-
dividual ionomer backbone strands in solution assemble into cylindrical bundles, as seen
in calculations based on mean-field theory [37, 38, 39, 40, 41, 42] and molecular dynamics
(MD) simulations [40, 43, 44]. The length of a single ionomer strand exceeds the length
of a bundle, giving rise to effective cross-linking of ionomer bundles, that results in the
formation of a mechanically stable network [36]. The above description is illustrated in the
first two subfigures (from the left) on the upper rail in Fig. 3.1. The network is randomly
self-organized subject to water uptake; the structure thus exhibits a certain degree of disor-
der, but the symmetry in some local areas of the network has been observed [128]. The local
symmetry can be extended to "global symmetry" for theoretical interest [47, 129]. Motivated
by this, Ioselevich et al. proposed a model of the three-dimensional (3D) crystalline lattice
of "cages", made of cylindrical bundles (see Fig. 3.2). Water molecules are trapped inside
the cages of cylinders [130, 131]. Thus Ioselevich et al. treated the water clusters as spheri-
cal droplets in their models [47, 132]. The stress field of the lattice, which triggers bundle
breakage events, is created as a result of the swelling pressure corresponding to equilibrium
water sorption. Furthermore, the stress field is reconstructed due to breakage of bundles
in the cages, thus the initially assumed-to-be uniform stress field evolves to become more
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Figure 3.1: Ionomer fibers with hydrophobic backbone (red) and grafted sidechains (red)
terminated with sulfonic acid head groups (yellow) that dissociate in water. The upper
rail illustrates self-aggregation into bundles of size k (number of fibres in the bundle) and
cross-linking into a network. In the swollen membrane state, bundles experience an internal
swelling stress that triggers random breakage events. The lower rail illustrates how fracture
formation in the bundle network is mapped onto a dynamic bond percolation problem.

and more nonuniform over time. This makes the probability of bundle breakages in the
failure sequence unequal and effectively creates a correlation or dependence between the
breakage events of the neighbours and other surviving bundles. Fracture formation in the
bundle-network model is the consequence of individual bundle breakage events that occur
randomly in space and time. Over time, clusters of broken bundles, representing microscopic
cracks, grow and increase in density. At a certain time, a percolating cluster of broken bun-
dles will emerge, corresponding to a fracture that spans through the membrane. Hence,
the bundle-network model can be mapped to a bond percolation, where the occupied bond
represents a bundle failure as shown in Fig. 3.1. A previous percolation model of PEM was
studied by Melchy and Eikerling [58], in which the bundle breakage events were simplified
as being independent, thereby representing the limit of uncorrelated percolation. The PEM
lifetimes were given as a function of the percolation threshold. This model is relevant in
a regime where there is low water uptake by the PEM and thus weak swelling stress ex-
erted on pore walls and bundles. However, bundle breakage events could also happen in
a highly correlated manner, which is expected in the strong stress regime encountered at
large swelling. In this regard, the PEM lifetimes predicted in Ref. [58] were overestimates.
In our present work, we attempt to extend the model in Ref. [58] to a correlated case. We
consider the bond percolation model in which the correlations exist in the dynamic breakage
processes and the correlations between the breakage events are caused by the stress field
redistribution. Effectively, the redistribution of the stress field is treated as the load transfer
from the failing bundle to other intact bundles in the network.

The stable bundle size, given by the number k of strands in a bundle [133, 36], re-
sults from competing effects of backbone hydrophobicity and electrostatic repulsion due to
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Figure 3.2: In the model by Ioselevich et al., the fiber-bundle-network for PEM is constructed
of an ordered structured network of cages, made of cylindrical bundles. The water clusters
are treated as spherical droplets inside the cages, creating pressure on the bundles that form
the cages. As the stress on bundles is generated internally by water uptake and swelling,
it will usually not be conserved within the network over time. Reprinted with permission
from Ref. [47] Copyright (2004) American Chemical Society.

charged ionic end groups at grafted ionomer side chains, favouring dispersion of ionomer
chains in solution. In the model in Ref. [58], a bundle is assumed to be failed once all of
the ionomer fibers fail. The swelling pressure is applied to the wall of a cylindrical bundle
in PEM (Fig. 3.3 (b)). The scalar quantity of the swelling stress tensor on the bundle can
be computed from the Cauchy stress tensor and this scalar value of stress is the so-called
von Mises stress [134, 135]. As the swelling stress on bundles evolves, the stress load as
the scalar value of stress, on the backbone ionomer fibers within a bundle is unlikely to
be conserved over time. This is unlike the conserved external stress applied vertically to
the ends of fibers in the prototypical FBM (Fig. 3.3 (a)) 1. Likewise, the stress load is not
conserved over bundles in the bundle-network of the PEM (as described in the caption of
Fig. 3.2).

Regardless, for simplicity, based on an assumption of equal load sharing over backbone
fibers and of no load dissipation within a bundle, the lifetime of a bundle was deduced in
Ref. [58]. The rate of thermally activated breakage of a single ionomer fibre is given by [13]

κf(σf) = τ−1
0 exp (−β (Ea − νσf)) , (3.1)

1In FBM, as the conserved external load is applied to the ends of fibers in the same direction, clearly the
value of the von Mises stress of a fiber is exactly equal to the external stress load on that fiber. Of course, the
total amount of the von Mises stress is equal to the external stress! But for fibers in the PEM, the swelling
stress is applied to the wall of the bundle. In the bundle of PEM, the Cauchy stress tensor on each fiber
is caused by equilibrium of forces between other fibers. The calculation of the Cauchy stress is much more
complicated and the von Mises stress, as a scalar quantity, is calculated from this. Therefore, the sum of the
von Mises stress loads of each fiber cannot be assumed as equal to the initial value of the total amount of
the von Mises stresses. Similarly, for bundles in the PEM network, the stress load cannot be simply assumed
to be conserved.
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Figure 3.3: Illustrations of the comparison of the two models of bundle of fibers: (a) The
classical fiber bundle model (FBM). The external stress is simply applied vertically at both
ends of parallel fibers, the load is conserved over time. (b) A bundle of aggregated rod-
like k ionomer fibers in an electrolyte: the bundle in the core with radius rB, surrounded
by a concentric electrolyte shell with radius rC that contains dissociated protons bundles.
Swelling pressure applies to the wall of the bundle, hence the scalar stress (load) field of
the fibers inside the bundle during the fracture process is more complicated. (a) Reprinted
figure with permission from Ref. [75] Copyright (1997) by the American Physical Society.
(b) Reprinted figure with permission from Ref. [133] Copyright (2014) by the American
Physical Society.

where τ0 is the period of an atomic bond vibration; β = 1/(kBT ), with Boltzmann constant
kB; Ea the activation energy of fiber breaking; ν the activation volume of an ionomer fiber
and σf the stress on a single fiber. The breakage rate of a bundle was deduced as

κb(σf) = τ−1
0 exp(−βEa)

 k∑
j=1

exp
(

−kβνσf
j

)
j

−1

. (3.2)

3.2 Model

3.2.1 Bundle of Ionomer Fibers

Equation (3.1) adopted the exponential form as the decay rate to describe the thermally-
dynamic failure process of a fiber. In the present work, we adopt this exponential breakage
law for an entire bundle, resulting in

κb(σ) ∝ exp (ησ) , (3.3)

where σ is the stress on the bundle.
For theoretical purposes, we employ the exponential form for the breakage rate of a

bundle in the bundle-network to explore the fracture propagation process, as distinct from
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Table 3.1: Effective coefficients αk/α1 and ηk/η1 for k ≤ 10.

k 2 3 4 5 6 10

ηk/η1 0.50 0.33 0.25 0.20 0.17 0.11
αk/α1 1 1 0.99 0.97 0.94 0.77

the power-law form of decay. There are detailed discussions in Section 2.1.3 to compare the
decay rate of the power-law form (corresponding to the Weibull strength distribution) and
of the exponential form (corresponding to the Gumbel strength distirbution) for a material
element in a fracture network. Substantial studies of fracture systems are based on the
assumption of a power-law decay rate or the Weibull strength distribution of a material
element to study the disordered regimes [82, 87, 124, 136, 137]. At the end of the present
chapter, a comment in regards to the framework of the model will be presented.

We adopt the simplified exponential form Eq. 3.3 to describe the lifetime of a bundle.
But for practical purposes, to get a qualitative understanding of the relation between the
network lifetime and the bundle of size k, we hereby associate Eq. (3.3) to Eq. (3.2) in Ref.
[58]. Fitting Eq. 3.3 to Eq. (3.2), Eq. (3.3) changes to

κb(σ) = αk exp (ηkσ) , (3.4)

with σ = kσf . This form of the breakage rate is exactly equal to Eq. (3.2) for k = 1, where
α1 = τ−1

0 exp(−βEa) and η1 = βν. For 1 < k ≤ 10, Eq. (3.4) approximates Eq. (3.2) with
effective coefficients that are listed in Table 3.1. The k values considered in Table 3.1 span
the typical range encountered in Nafion-type PEMs [133, 58, 138]. For k ≫ 1, Eq. (3.4)
fails to reproduce Eq. 3.2 in the tail region of large σ. Coefficients in Eq. (3.4) have been
optimized to reproduce Eq. (3.2) most closely in the range of ηkσ from 0 to 30 2.

3.2.2 Bundle Network Model

Once the breakage rate of a bundle of size k is adopted, we can proceed to investigate
the stochastic fracture failure process in the bundle-network. As illustrated in Fig. 3.1, we
use an ordered lattice-like structure, to replace the randomly self-organized network. The
results of Ref. [58] were obtained on a three-dimensional cubic model. In the present work,
in order to keep computational costs reasonable, we have considered a bundle network with
a two-dimensional square lattice structure, as we were primarily interested in obtaining a
qualitative understanding of the impact of correlation effects on fracture formation in this

2The upper limit of the evaluated range of ηkσ is approximately determined by the highest stress on a
single bundle when 50% bundles have failed for the system of ησ0 = 0.46 and γ = 100.
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bundle network. The regular lattice of bundles is prepared in an initial state, in which all
bundles have equal k and thus equal mechanical strength. Moreover, a uniform initial stress
field σ0 is assumed, meaning that each bundle in the pristine lattice is intact and under
identical stress.

Now it comes to the question of the stress field redistribution regime. Upon breakage
of a bundle, the load that it carried prior to breaking will be redistributed to surviving
bundles in the network. As discussed previously in Section 3.1, bundles in the membrane
that are subject to a swelling pressure take complicated stress loads. For simplicity, we will
assume that the total stress in the network is conserved at each breakage event. As reviewed
in Section 2.1.2, the power-law-type stress redistribution rule (Eq. (2.1)), introduced by
Hidalgo et al. [82], was originally used to apply to an FBM. That can be regarded as an
intermediate stress transfer rule between equal load sharing (ELS) and local load sharing
(LLS). We now adopt it in the present work for the bundle-network model. To express it
more explicitly, the stress transfer function is,

F (rij , γ) = r−γ
ij

∑
j∈I

r−γ
ij

−1

, (3.5)

where rij is the distance between the midpoints3 of the failed bundle i and an intact bundle
j in the lattice (see Fig. 3.4), γ is a correlation exponent related to the load distribution
range, and I denotes the set of intact bundles. If only one bundle breakage event takes place
at a time, the amount of load received by a surviving bundle j after time step τ , is,

σj(t + τ) = σj(t + τ − 1) + σi(t + τ − 1)F (rij , γ), (3.6)

As remarked in Section 2.1.2., the limit γ → ∞ corresponds to the case when the load
of the failed bundle is transferred to nearest neighbours, referred to as the LLS scheme.
This regime is attained to very good approximation when γ > 10 4. The opposite limit,
γ → 0, corresponds to the ELS, wherein all intact bundles receive exactly the same fraction
of the load released by the breakage of a bundle. The ELS scheme or the limit σ0 → 0,
represents the case of the uncorrelated percolation. In the work of 2015 [58], the lifetime is
overestimated due to the neglect of the load redistribution in that approach, as accounted
for in the second term on the right-hand side of Eq. (3.6).

3The LLS or the localization regime is sensitive to the way it defines the distance between bonds in the
lattice.

4For γ > 10, nearest neighbours share 96.8% of the load released by a broken bundle. In our study, the
highest γ is set to be 100, for which 99.99997 % are shared among nearest neighbours.
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Figure 3.4: An illustration of how the stress of failing bundles is transferred in the bundle-
network. When a bundle i fails, the entire stress load is transferred to other intact bundles.
The fraction of the stress load bundle j receives is evaluated by the distance rij between
the midpoints of the bundles and Eq. (3.5).

3.2.3 Remarks

It is important to note that the basic model variant considered in this present work assumes
that the total stress is conserved. This assumption is usually valid for materials under
controlled external load. However, in the case of a PEM explored here, stress on bundles is
generated internally by water uptake and swelling, and it will usually not be conserved. In
future studies using this model, a stress dissipation rule should be introduced to account
for the change in total load during crack growth.

Therefore, the current model of the PEM in this work is within the same framework
as the FBM due to its stress load conservation 5. The physical phenomena revealed by the
numerical results shown in Chapters 5 and 6 can be compared to the conclusions from other
FBM fracture models [19, 82, 87].

In the past, substantial theoretical or numerical studies were based on the assumption of
the power-law breakdown rule (or the Weibull strength distribution) [82, 87, 124, 136, 137].
As reviewed in Section 2.1.3, the exponential breakdown rule (based on the Gumbel strength
distribution) better describes the natural failure processes of the fibrous systems or even of
some random fuse networks (RFMs). Regardless, to the best of our knowledge, due to high

5Unlike an FBM with the fibers as the basic material elements, the basic elements in a this bundle-network
of PEMs are bundles. But they have the same spirit, as the bond percolation problem in bundle-network of
PEM can be transformed into a site percolation problem.
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computational costs, few numerical works based on the exponential breakdown rule have
been conducted. Our present model of the PEM as a deviation form of FBM can thus be
compared with other FBMs based on the Weibull strength distribution. One difference to
be noted is that the strength of correlations depends on both parameters γ and σ0 (initial
stress). In studies by Hidalgo et al. in Ref. [82], and by Shekhawat et al. in Ref. [124],
breakages in the network were assumed to follow a power-law breakdown rule or a Weibull
strength distribution, in which the failure processes or fracture regimes are independent of
the uniformly distributed initial stress. 6

6In our case, as the breakage rate of bundles follows an exponential law, the probability of a bundle
failure at each kinetic MC step is proportional to its rate. In the power-law case, the ratio of breakage
possibilities between a bundle with nσ0 and another bundle with σ0 does not change, i.e., d

dσ0
nσ0ρ

σ0ρ = 0. In
our case, bundles with larger stress are more strongly correlated in systems with larger initial stress, and
thus d

dσ0
exp(nηkσ0)
exp(ηkσ0) > 0 for n > 1. Please refer to Chapter 4 for the simulated algorithms of the fracture

process to achieve a deeper understanding.
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Chapter 4

Computational Approach and
Methods

The highly simplified bundle model of polymer electrolyte membranes (PEMs), discussed
in Chapter 3, considers the fracture process of a PEM as a sequence of bundle failure events
on a random network. In principle, this sequence is a Markov chain and it can be simulated
using a well-established kinetic Monte Carlo (kMC) method [139, 140, 141, 142]. During
the kMC simulation process, the onset of percolation needs to be determined so that the
percolation thresholds pL

c and the lifetime tPEM can be obtained. This can be realized by
employing an efficient tree-based algorithm.

Section 4.1 reviews the theoretical basis of the rejection-free kMC methods. Thereafter,
this algorithm will be adapted to our PEM model.

Section 4.2 introduces a tree-based algorithm proposed by Newman et al. [102, 102] as
an efficient way of keeping track of the formation and growth of clusters of broken bonds
on the lattice of bundles.

Section 4.3 presents the detailed simulation procedure of the dynamic fracture process
of PEMs that employs the kMC method as well as the percolation detection algorithm.

In Section 4.4, a comment on the limitations of this employed algorithm is detailed.

4.1 Kinetic Monte Carlo Algorithms

4.1.1 Markov Chain Monte Carlo

Monte Carlo (MC) methods are a broad class of computational algorithms that rely on the
process of random sampling to carry out the repeated (computational) experiments/simu-
lations to obtain numerical results. MC methods have been widely adopted to solve mathe-
matical and physical problems. A simple example is the estimation of the number π, i.e., the
ratio of the circumference to the diameter of a circle, by generating enough (uniformly dis-
tributed) random points within a square which itself is enclosed with a circle and counting
the number of points inside this embedded circle relative to the total number of points. In
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the process of MC simulations, random sampling requires a reliable way of generating a ran-
dom number using a computer. This can be realized by a pseudorandom number generator
[143].

In statistical physics, a dynamic process of a system can be described by a sequence of
random states. If the probability of the next state is only dependent on its current state,
regardless of its history, this process is a Markovian process [144, 145]. Accordingly, you will
see in Section 4.1.3 the fracture dynamic process in our present model of PEM network is
a Markov chain.

For a Markov process, the time evolution of a system can be depicted by an ensemble
of all the possible sequences or trajectories of the states. This ensemble is described by a
Markovian master equation,

∂

∂t
ρv(t) =

∑
u

(wvuρu(t) − wuvρv(t)) , (4.1)

where ρv(t) is the probability for the system to be in state v at time t, and wvu is the
transition rate for the system to change from state u to state v.

We attempt to solve or calculate the master equation. However it is unlikely to acquire
the complete probability transition matrix w for the entire ensemble [142]. Therefore, we
carry out MC methods to simulate one possible trajectory at a time. With infinite random
samples, every possible trajectory should be generated (with the correct distribution).

Under the current state of the system, there are a number of candidate states that can
be transited to. For a "standard" rejection Monte Carlo algorithm, whether the transition
to this selected candidate state should be "accepted" or "rejected" follows a certain prob-
ability 1. The Metropolis-Hastings algorithm [146, 147] is a rejection MC method that is
widely adopted to simulate the Ising model or a static percolation model (see Section 2.2.2).
Apparently, it is less efficient due to the repeated rejections of the occurrence of transitions
before a real transition to one of the candidate states takes place.

4.1.2 Rejection-free Kinetic Monte Carlo

In the case of the rejection-free Monte Carlo method, it is more efficient as there must be
the occurrence of one state transition (or one event in the language of statistics) at any
given time step τ 2. Thus, the probability that state v is selected to transit from the current

1For a system or a microscopic material element that has multiple states, one of the states must first be
randomly selected and then whether this state can be transited to follow a certain probability, whereas for
binary states, it is just repeated rejection or acceptance of the other state (e.g., a spin in an Ising model).

2A real dynamic system should follow a continuous time scales, whereas the kinetic MC method is a
discrete-time Markov chain. A reader can refer to Ref. [148] for a discussion of whether the kinetic rejection
or rejection-free MC methods accurately describe the physical time scales.
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state u is,
pv = wvu∑

m wmu
. (4.2)

Based on Eq. (4.2), we replace pu with a random number ρ(1), that is selected from a
uniform distribution [0,1) by a random number generator. Then state v is selected if the
following conditions are met,

v−1∑
m=1

pm ⩽ ρ(1) <
v∑

m=1
pm, v > 1,

0 ⩽ ρ(1) < p1, v = 1,

(4.3)

During the selection process, the (efficient) recursive binary search algorithm [149] should
be adopted.

The time interval τ in the kinetic rejection-free MC can be calculated by following
the Poisson distribution, Pne = (λ∆t)ne

ne! e−λ∆t, where λ =
∑

m wmu and ne represents the
number of (transition) events that occur during the time duration ∆t. ne equates to 0, as no
transition events should happen during the waiting time τ . The Poisson distribution then
becomes

P0(∆t = τ) = e−λτ . (4.4)

We replace P0 with ρ(2), another random number sampled from a uniform distribution
[0, 1). We get

τ = −
ln

(
ρ(2)

)
λ

, (4.5)

which can describe the possible waiting time τ before the next transition event.
In a kinetic rejection-free MC simulation, a complete MC realization or run, i.e, a copy

in the statistical ensemble of a configuration, involves repeated MC steps of Eqs. (4.3) and
(4.5) until a whole process is terminated 3. A specific MC run of a configuration reflects
one of the possible trajectories of states or a copy of the statistical ensemble. To approach
an ensemble of all trajectories of a real physical system, we need to have sufficient MC
sampling size, i.e., conduct many independent MC runs.

4.1.3 Adopting the Rejection-free MC Method for the PEM Fracture
Model

In our present model as presented in Chapter 3, the failure process of a PEM can be
described as a sequence of bundle failure events. During the fracture propagation, the stress
field redistributes over time. In this regard, we can express a state S (at a specific time) of the

3A termination of a MC simulation is determined by the thresholds required for the problem at hand.
For example, a MC run in our simulation can be assumed to be terminated when the percolation threshold
is reached or when all bundles fail.
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system as a configuration that includes the present network structure s = (s1, .., si, ..., sN )
where si = −1 or 1 (1 represents being intact), the updated stress field σ and the ongoing
failing bundle index fb, viz, S(s, σ, fi). The present state u is,

u = S(s = s(m), σ = σ(p), fb = i). (4.6)

The next candidate state v is,

v = S(s = s(n), σ = σ(q), fb = j). (4.7)

where s(n) = s(m) − (0, ..., si = 1, .., 0) and σ(q) = σ(p) + σadd which follows the rule of
stress transfer from the ongoing failing bundle as depicted in Eq. (3.5) and Eq. (3.6).

According to the above expressions, we can see the probability of the next failure event
of any surviving bundle solely depends on its current state. In other words, the dynamic
process is Markovian. We thus apply the above Rejection-free MC method to this Markov
process. The transition rate wvu from the present state u to the candidate state v equates
to the breakage rate κj of the candidate bundle j, thus Eq. (4.2) changes to

pv = pj = κ(σj)∑
k∈I κ(σk)

, (4.8)

where I denotes the set of intact bundles, σj represents the accumulated load on bundle j

(or the jth component of σ(p)) and the decay rate κ(σ) has an exponential form as described
in Eq. (3.4).

Likewise, Eq. (4.5) changes to

τ = −
ln

(
ρ(2)

)
∑

k∈I κ(σk)
. (4.9)

4.2 Percolation Algorithm

As described in Chapter 3, we map the fracture dynamics on the bundle-network of a PEM
to a kinetic bond percolation model. This dynamic process can be simulated by a kinetic
rejection-free MC method as described in Section 4.1.3. In an MC run, a bond on the
lattice (which represents a bundle failure) appears one by one and connect together to form
clusters, until one of the clusters percolate opposite boundaries of the lattice in any of the
principal directions. Thus, we intend to adopt an algorithm to identify the clusters and
observe the onset of percolation.

The conventional algorithms are less efficient due to the repeated cluster relabelling
process of every bond (or site) belonging to the sub-cluster(s) when the merging of clusters
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happens. In this regard, a depth-first or breadth-first search should be adopted [150] to
trace back or scan the bonds belonging to the subclusters at each MC step.

Newman et al. in Refs. [102, 151] proposed an efficient tree-based algorithm for the
purpose of determining the percolating cluster(s) (in the kinetic percolation model 4). The
main idea is to construct a tree structure to represent all bonds in the same cluster. In
a "tree", a "pointer" is used to direct a "child" bond to its "parent" bond, and finally the
successive pointers can lead to the "grand-parent" or the (only) root of the tree. As illustrated
in Fig. 4.1, bond A1 at first as an isolated bond is a cluster itself, so it points to itself. Later
A2 connects to it so that the pointer of A2 directs towards A1; A3 as a new bond connects
to A2 so that sequentially leads to A1 as the root of the cluster A. Likewise, going through
the similar process, B1 becomes the root of cluster B. Now consider that a new bond C1 is
added and connects both the cluster A and the cluster B. C1 first connects to the adjacent
bond B2, so it directly points to the root B1; then as it also connects a (larger) cluster
A though A3 which directs toward A1, so B1 as the root of sub-cluster B just updates its
pointer to A1 instead of pointing to itself. In this way, the other bonds in sub-cluster B do
not require being relabeled, as all their pointers will finally lead to A1 as the root of the
new merging cluster. Finally, to detect whether a percolating cluster occurs at each MC
step, we just have to check whether the occupied bonds on opposite boundary of the lattice
share the same root.

Figure 4.1: An illustration of two tree-structures which represents the clusters A and B
and the merging process of the two clusters. The bonds A1 and B1 are the roots of the
(sub-)clusters A and B respectively and the arrows represent pointers. Bond C1 connects
both the sub-clusters A and B, and by adding an updated pointer from the root B1 of the
cluster B to the other root A1, it completes the merging of the sub-tree (of B) into the
bigger tree (of A).

4This algorithm can also apply to the "standard" static percolation as described in Section 2.2.1. Once
the entire lattice structure is generated by the occupation probability p, a convenient random order of the
"fake" kinetic occupation of the sites or bonds can be created accordingly.
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4.3 Algorithm

By combining the kMC method (Section 4.1.3) and the percolation detection algorithm
(Section 4.2), we can simulate the dynamic fracture process of our present model. The
whole program is written in Python. Regarding to the matrix (or array) construction and
calculation, the library NumPy is adopted to operate efficient array calculations. In this
work, we construct finite L × L square lattices (L = 50 − 400). The number of bonds in the
lattice is N = 2L2 − 2L. In the program, we perform n MC runs (or realizations) for each
configuration of L, ηkσ0 (uniform initial stress), and γ (which defines the effective range of
interaction in Eq. (3.5)). Each MC realization describe a possible dynamic directory in the
statistical ensemble.

The percolation thresholds pL
c obtained for these n runs (or realizations) exhibit a fre-

quency distribution. Fig. 4.2 shows examples of the frequency distributions of pL
c for L = 50

and 250 respectively in the uncorrelated percolation systems. For a finite lattice size, the
width of this distribution is finite. In the limit of an infinite lattice size, a δ-function-like dis-
tribution is approached. From this frequency distribution, an expectation value of the perco-
lation threshold can be determined. In most cases of lattices with L = 100, n = 5000−10000
runs were performed, whereas for L > 150, we only performed 50-200 runs in most of cases
(n ≥ 2000 runs only for a few cases). We employ the ranges of ηkσ0 = 0 −3 and γ = 0 −100
to scan the dynamic range from weakly correlated random breakage to highly locally cor-
related crack growth.

a) b)
s s

Figure 4.2: Frequency distributions of pL
c in the uncorrelated case (ηkσ0 = 0.45 and γ = 0),

fitted with Gaussian functions (a) for L = 50 with the mean σs = 0.493, the standard
derivation σs = 0.018 and n = 5000; and (b) for L = 250, σs = 0.497, σs = 0.006 and
n = 25000.
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A flowchart of this algorithm process is shown in Fig. 4.3.

Figure 4.3: A flowchart of Monte Carlo simulations of a particular configuration of L, ηkσ0

and γ. For each configuration, a distribution of pL
c is acquired by performing n MC runs.

For a single MC run, many MC iterations are repeated until a termination point is reached.
A termination point is reached when a percolating cluster appears at first time or when all
bundles fail, which is determined by the thresholds required for the problem at hand by a
user.
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The more detailed algorithm process is presented as follows:

Processes

(1) Initialization:

(a) Square lattice initialization:

(i) Define L. Construct an N -element 1D-array (vector) where the ith element
represents the bond i in the L × L square lattice (see Fig. 4.4.

(ii) Construct an N × 6 2D-array (matrix) of the nearest neighbours (or the ad-
jacent bonds) 5 of any bond i in the square lattice.

(iii) Construct an N × N 2D-array of the distances rij between any two bonds i

and j in the lattice.

(b) Define ηkσ0. Construct an N -element 1D-array of the stress field σi.

(c) Define γ. Calculate an N × N 2D-array of Fij which describes the fraction of stress
transferred from bond i to bond j, according to rij and Eq. (3.5).

(2) Performing n MC runs:

Repeatedly perform the following processes for n MC runs (times):

(a) Reset to the initial state of the lattice as described in (1) Initialization.

(b) Repeat the following procedure for each subsequent MC step until an MC run is
complete 6 :

(i) Calculate a N -element 1D-array of failure rates of bundles, where i-th element
represents the failure rate κi of bond i and it can be calculated according to
σi and following Eq. (3.4).

(ii) Calculate the time interval τ according to Eq. 4.5 and update the present time
t to t + τ .

(iii) Select a bond to occupy 7, i.e, a bundle failure event, according to κi. And
the selection process follows Eq. (4.8) and Eq. (4.3).

(iv) Construct or update clusters of open bonds by Newman’s tree-based algorithm
[102, 151] as described in Section 4.2.

5Adjacent bonds of bond i means the bonds (or edges) that are connected or shared with bond i by the
same site (or vertex). So in a square lattice, each bond has 6 adjacent bonds. In the vicinity of the finite-sized
lattice boundaries though, the number of adjacent bonds of a bond can be less than 6.

6In this model, the PEM is assumed to reach a global failure when a percolation threshold is reached.
However, for the purpose of studying the fracture regime after the onset of percolation, the simulation
continues until all bundles fail completely. In this way, the growth dynamics of the largest crack can be
analyzed in Chapter 5. See Fig. 5.9 , Fig. 5.10 and Fig. 6.5.

7On the other hand, open bonds represent intact bundles.
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(v) Transfer the stress load from failing bundle i to any surviving bundle j, ac-
cording to Fij/

∑
k∈I Fij and update the new stress field σi.

(vi) Check whether the onset of percolation appears through Newman’s algorithm.
If yes, record the percolation threshold pL

c and the lifetime tTEM for this copy
of the statistical ensemble. 8

Figure 4.4: An illustration of an L×L square lattice. The coordinates of a cell are represented
as (x, y), and the indices of two bonds in a cell (x, y) are 2yL + 2x and 2yL + 2x + 1,
respectively. The distance between two bonds can be calculated accordingly. If a bond is
outside of the boundaries of the lattice, its index is set as "NA". The total number of bonds
is N = 2L2 − 2L.

4.4 Remarks on the Algorithm

We here remark on a questionable aspect of this algorithm, that is related to the form of
decay rate of κ(σ) considered in this model. κ(σ) is assumed as a classical and continuous
form as described in Eq. 3.4 (or Eq. 3.2).

In the limit of small stress, as defined in Ea in Eq. 3.1, a thermally activated process
involves an activation energy, so the energy barrier must be overcome to cause a bundle
failure. The algorithm contradicts the logic above, as we get a failure probability pj > 0 at

8We could also store the information of cluster sizes for cluster size studies.
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each MC step with any finite σ borne by a bundle. Moreover, all bundles in the network
will eventually fail over time in this regard, whereas in an algorithm of the static type (as
reviewed in Section 2.1.3), below a critical stress load σc, the system will finally reach a
stable state with remaining bundles remain intact [82].

In the limit of large stress, the fracture dynamics behaviour exhibited by the model can
be nonphysical as well. With the assumption of stress conservation, the breakage process
will accelerate even for the uncorrelated percolation regime. We can consider an extreme
case that all stress loads accumulate on the last single bundle for a lattice of L = 100 for an
initial load ηkσ0 = 0.5, the breakage time τ in Eq. (4.5) can reach to unphysical timescale
of 10−105 ! (Planck time is 5 × 10−44.) Despite this, the breakage probability of each bundle
at each MC step is still assumed to follow Eq. (4.8) in this algorithm 9.

The above questions are being raised is because they are relevant to whether the fracture
dynamic behaviour being simulated (for example, the order of bundle breakages) is physical
at the lower and the higher limits of the stress load.

9The storage of the high rate of large load, exceeds the storage of Float64 of NumPy array. When the
load ηkσ0of any bundle exceeds the value of 4 × 102, I assign the interval before the next MC step τ = 0.
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Chapter 5

Results: Fracture Regimes and
Percolation Behaviour at a Fixed
Lattice Size

5.1 Overview

has discussed a crossover between two limiting fracture regimes. In a fracture regime of
infinite disorder, the bundles break completely at random [71] in the bundle-network, and
this random breakage regime is usually referred to as the percolation-type regime. Another
fracture regime shows more ordered breakage behaviours: with strong spatial correlation
between breakage events, micro-cracks form alongside only one or a few crack tips or nuclei.

The correlations between breakage events are caused by the redistribution of the stress
field over time, which results in a non-uniform stress field. We employ a power-law rule
(r−γ) for the stress transfer from the failing bundle to intact bundles to describe the field
reconstruction after each failure event. In this stress transfer law, γ presents the effective
range of stress transfer and it allows tuning between two limiting schemes of load sharing:
the local load sharing scheme (LLS) for γ → ∞ and the equal load sharing scheme (ELS)
for γ → 0 (or the global load sharing scheme (GLS) at low γ). ELS corresponds to a mean-
field approximation (which Landau theory is based on) and LLS only considers the local
interactions. With an assumption of exponential breakage rates of the bundles, the uniform
initial stress field σ0 is another quantity that characterizes the correlation strength between
breakage events. Thereby, we wish to relate γ and σ0 to the two fracture regimes.

The probability distribution1 of the percolation thresholds pL
av for uncorrelated percola-

tion of finite lattices is Gaussian-like as reviewed in Section 2.2. The fracture regimes affect
the geometric structure of the intact bundle-network over time. We ask two questions: (1)
Do the distributions of percolation thresholds still resemble single-peaked Gaussian? (2)

1or frequency distribution for numerical calculations
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Does the strength of correlation always reduce the (overall) percolation threshold, as it is
intuitively believed that correlation strength increases the connectedness of clusters?

This chapter presents a complete analysis of the impacts of σ0 (normalized to ηk) and γ

at a fixed lattice size L = 100. For each combination of values of σ0 and γ, we have performed
thousands of Monte Carlo (MC) realizations. Most of the results presented in the current
chapter have been published in Ref. [152]. One should note that the global breakdown of
PEMs in this model is defined as the point at which the system is percolated, since this
is when the reactive air may permeate into the sample-spanning crack. All the physical
quantities (except for the largest crack growth dynamics) are observed at a percolation
threshold. The structure of the results in this chapter is presented as follows.

Section 5.2 contains the most important findings of this work. We investigate the
crossover between two fracture regimes, viz., the random breakage (percolation-type) regime
and the correlated crack growth (localization) regime. The frequency distributions of per-
colation thresholds are shown for these two regimes and their crossover. We then introduce
a new order parameter based on the distribution of percolation thresholds. This order pa-
rameter is employed to assess the degree of disorder (or the degree of correlation) and to
separate the two regimes as a relation of σ0 and γ.

Section 5.3 presents the variations of the percolation thresholds, that include the mean
values µ1, µ2 of the two Gaussians fitted on the distribution and the average percolation
threshold pL

av.
Section 5.4 analyzes the growth of the largest crack evolving from the initial intact lattice

to the complete breakdown of all bundles 2 on the lattice. The static cluster structures at
a percolation threshold, including the moments of the cluster size distribution, are also
analyzed.

In Section 5.5, we present the lifetime of PEMs as a practically important outcome.
In Chapter 6, an analysis of varying lattice sizes will be presented generalizing the above

analysis at a fixed lattice size to varying sizes to assess to what extent the above observations
are simply size effects.

5.2 Percolation Regimes and Order Parameter

5.2.1 Distribution of Percolation Thresholds for Different Regimes

As reviewed in Section 5.1, the system approaches the limit of uncorrelated percolation,
when σ0 → 0 or γ → 0. At this limit, the distribution of percolation thresholds pL

c resembles
a Gaussian. At high σ0 and γ, the system reaches the limit of strong (local) correlation –

2Even though in this model the system failure of the PEM network is assumed to be reached at the onset
of percolation, we continue the simulations of the bundles breakage events after this critical point. In this
way, we can analyze a complete crack growth process from the beginning to the end.

40



a fracture regime that exhibits localized damage. Now it comes to the question of the
distribution of pL

c when the system sits between the limits of the two fracture regimes.
For parameter values appropriate to the weak correlation regime (ηkσ0 = 0.20, γ = 100,

and n = 5650) as illustrated in the damage snapshot of Fig. 5.1 (b), the percolation thresh-
olds show a frequency distribution that exhibits a single peak and resembles a Gaussian
distribution (Fig. 5.1 (a)). We verified in further simulations that the width of the distri-
bution decreases with increasing L, approaching a δ function-like distribution in the limit
of L → ∞, as expected (see Fig. 4.2).

A strongly correlated system, as realized for high σ0 or high γ exhibits correlated crack
growth behaviour at early stage (Fig. 5.1 (d)). The frequency distribution of pL

c for this
case is illustrated in Fig. 5.1 (c), obtained with ηkσ0 = 2.0, γ = 100, and n = 6430. The
distribution exhibits a Gaussian-like shape as well, but with larger width.

Interestingly, we can identify an intermediate or crossover regime, in which the frequency
distribution of percolation thresholds exhibits two peaks, as depicted in Fig. 5.2 (a) for the
case ηkσ0 = 0.46, γ = 10, and n = 5000.

c)

a) b)

d)

Figure 5.1: Normalized frequency distributions of percolation thresholds for a square lattice
with L = 100, for (a) random breakage regime (ηkσ0 = 0.20, γ = 100 and n = 5650, single
Gaussian), (c) localization regime (ηkσ0 = 2.0, γ = 100 and n = 6340, single Gaussian).
The plots in (b) and (d) show snapshots of lattice configurations corresponding to (a) and
(c). Orange curves represent the Gaussian functions fitted to these distributions.
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In this case, both damage regimes, namely random breakage (left peak) and localization
(right peak), occurring at different MC copies. The dominant mechanism of cluster growth
for a specific MC realization depends on whether a correlated crack growth is triggered at
a time point prior to reaching the percolation threshold by uncorrelated cluster growth.
In Fig. 5.2 (b), (i) and (ii) show snapshots of two different MC realizations of the system,
which correspond to random breakage regime and localization regime respectively.

a) b) i) ii)

Figure 5.2: Normalized frequency distribution of percolation thresholds (a) and the damage
snapshots (b) for the crossover region (ηkσ0 = 0.46, γ = 10 and n = 5000). Two clearly
distinguishable peaks for random breakage (the left peak) and localization (the right peak)
are visible and both mechanisms coexist (statistically) on different MC copies as illustrated
as shown (i) and (ii) in (b). The black curves represent the two Gaussian functions fitted onto
each respective peak. The orange curve represents the sum of the two Gaussian functions.

5.2.2 Order Parameter

As reviewed in Section 5.1, whether the dominant damage regime is the random breakage
or the localization regime, affects the geometric structure of the lattice, thus subsequently
influencing the distribution of percolation thresholds. In this spirit, based on the percola-
tion behaviours, we tentatively introduce a quantitative means to assess the importance of
correlation effects for a given set of ηkσ0 and γ.

With the two-peaked shape of the frequency distribution function as shown in Fig. 5.2
(a), we can determine two expectation values of the percolation threshold. We reproduce the
frequency distributions of percolation thresholds with two Gaussian functions to determine
their mean values µ1, µ2, standard deviations σ1, σ2, and areas A1, A2 under the distinct
peaks. We define an order parameter ξ

ξ = A2/(A1 + A2). (5.1)
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to describe the crossover between the two disordered regimes, where ξ ≃ 0 in the limit of
the random breakage regime and ξ ≃ 1 in the limit of the localization regime. Moreover, ξ

can be employed as a quantitative measure of the strength of correlations.

5.2.3 Phase Diagram

With this introduced order parameter ξ as a measure to assess the crossover between the
two fracture disordered regimes, we analyze how ξ depends on both ηkσ0 and γ in Fig. 5.3.

Fig. 5.3 3 (a) shows ξ as a function of ηkσ0 for several different values of γ, whereas Fig.
5.3 (b) shows ξ as a function of γ for several different values of ηkσ0. For ηkσ0 ≤ 0.30, only
the first peak (ξ ≃ 0) occurs over the whole range of γ values explored. In this regime of
weak stress, the correlated crack growth damage mechanism does not occur. The crossover
region can be observed for stress 0.41 ≤ ηkσ0 ≤ 0.46 over high γ, in which two clearly
distinguishable peaks are seen in the frequency distribution plots. Only for stress σ0 ≥ 0.51,
the system can enter the localization regime. As can be seen, the crossover from random
breakage to localization behaviour is relatively sharp.

a) b)

Figure 5.3: Plots of the order parameter ξ = A2/(A1 + A2) over (a) the initial stress of each
bundle σ0 (scaled by ηk) with γ as parameter, and (b) γ with σ0 as parameter. Interpolated
lines are shown to guide the eye. The method used to determine errors of ξ is described in
footnote 3 on this page.

Using ξ as an order parameter to explore this transition, we have generated the phase
diagram in the plane spanned by ηkσ0 and γ in Fig. 5.4. The crossover region with statistical
coexistence of both fracture disorder regimes is very narrow. As seen in Fig. 5.4, localization
regime occurs for γ > 2.5 and ηkσ0 > 0.45. In the later section, we reconfirm that ξ is a

3ξ is determined by the fitted function of a sum of two Gaussians with six fitting parameters, including
A1 and A2. Most of errors for ξ are calculated based on the variances of A1 and A2. A distribution in
which the other peak is hardly observed by the eye is still fitted by the function of two Gaussians, but the
predicted values of fitting parameters can be very sensitive to the parameter initialization. In this case, the
errors equate to the differences in values of A1 and A2 from different reasonable parameter initializations.
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localization

random 
breakage

Figure 5.4: Phase diagram, illustrated as a color map, in the plane spanned by γ and ηkσ0.
The diagram was generated using Fig. 5.3 with ξ as order parameter. Regimes of random
breakage and localization are clearly discernible, separated by a narrow crossover region.

suitable parameter to assess this transition between the two regimes analyzing the growth
dynamics of the largest crack .

We also report that for ηkσ0 > 3.0, at γ = 1 − 2.5, three peaks were observed. Fig. 5.5
shows the frequency distribution of percolation thresholds which exhibits three distinguish-
able peaks for the case of γ = 1.2 and ηkσ0 = 5.0. We seek an explanation of this "fine
structure" of the distribution. The third peak may come from the separation of the second
peak. A possible explanation is that they correspond to two highly correlated regimes that
both exhibit localized damage patterns at different points in time (see damage dynamics
analysis in Fig. 5.8). One of the regimes exhibits the correlated crack growth mechanism
very early on, right after a few isolated clusters are generated in the initial stage of random
nucleation, whilst the other regime has a pattern of localized damage that occurs much
later driven by cluster merging processes. We expect this fine structure of the distribution
of pL

c to show for ηkσ0 < 3.0 also, but within a very narrow range of γ which is missing in
our numerical analysis.
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Figure 5.5: Normalized frequency distribution of percolation thresholds that exhibits three
discernible peaks for the case with γ = 1.2, ηkσ0 = 5.0.

5.3 Percolation Behaviour

We inquire whether the percolation thresholds decrease with increasing correlation strength
as expected intuitively. In this section, we present both the two expectation values of the
two separate peaks in the distribution of percolation thresholds and the average percolation
threshold to illustrate the overall percolation behaviour.

5.3.1 Expectation Values of the Two Peaks

We examine the distribution of percolation thresholds by analyzing the expectation values
µ1 and µ2 of the two Gaussian distributions fitted to the two respective peaks in the dis-
tribution. The mean value of the uncorrelated percolation case (when γ → 0 or σ0 → 0) is
puncor

c = 0.4955 ± 0.0002 for L = 100 4. Fig. 5.6 (a) and (b) show µ1 and µ2 as functions
of γ for different stresses ηkσ0. As can be seen in Fig. 5.6 (a), µ1, which represents random
breakage events, closely approaches puncor

c . As a function of γ, µ1 decreases at first. The
minimum in µ1 is found at around γ = 1 − 2. The variation of µ1 is however, small.

More significant changes are seen in the plot of µ2 as a function of γ. The values of µ2

vary in the range 0.53 ≤ µ2 ≤ 0.64. In the regime of weak initial stress, µ2 increases from an
initially low value at small γ to asymptotically approach a plateau value for γ ≥ 10. At high
initial stress, ηkσ0 > 0.5, µ2 goes through a sharp maximum at small γ and then relaxes
to a small plateau upon increasing γ . The larger is ηkσ0, the sharper is the maximum and
the lower is the plateau value.

4For an infinite square lattice, the exact percolation threshold is pc = 0.5 [99].
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For ηkσ0 < 3.0, the variances of both peaks in the distribution of percolation thresholds,
viz., σ1 and σ2, increase with ξ, but the peak due to random breakage is narrower, with σ1

in the range 0.01-0.02, whereas σ2 lies in the range 0.05 to 0.12. In the localization regime,
fracture formation on the lattice is dominated very strongly by the sample-spanning cracks,
which exhibits a large variability in shape among different simulation runs, resulting in larger
σ2. In the random breakage regime, percolating clusters exhibit a high degree of similarity
for different simulation runs performed at a given set of parameters, resulting in a narrow
peak in the probability distribution of percolation thresholds. The general trends are that
σ1 and σ2 increase with increasing ηkσ0 and γ, with the more regular and pronounced trends
seen in σ2. High sensitivities of σ2 to these parameters are seen in the random breakage
regime. In the localization regime, at γ > 5, σ2 becomes independent of γ.

5.3.2 Average Percolation Threshold

The average percolation threshold pL
av is defined in Eq. (2.15) in terms of the distribution of

percolation thresholds pL
c . Fig. 5.7 (a) illustrates pL

av as a function of γ for different values of
ηkσ0. For all values of ηkσ0, pL

av drops below puncor
c at low γ. At higher value of γ, it exhibits

a dramatic growth to a value much higher than puncor
c . We notice for ηkσ0 > 0.60, after

reaching a maximum, pL
c then drops for large γ. Especially for very high stress ηkσ0 > 3,

it can decline to a plateau even lower than puncor
c . As can be seen, this overall behaviour of

pL
av is consistent with the variation of µ1 and µ2 illustrated in Fig. 5.6 (a) and (b). We will

not elaborate to discuss it into details.
We here present pL

av as a function of ηkσ0 for different values of γ to examine whether
there is a change in percolation behaviour with σ0. Fig. 5.7 (b) depicts that pL

av rises at first
and then drops as an overall trend for all γ. For GLS (γ = 2), we observe pL

c decreases from
puncor

c at first, consistent with the observation of the minimum values in pL
c in Fig. 5.7 (a)

at around γ = 0 − 2. As for γ > 2, we do not know whether pL
av decrease at first at small

stress ηkσ0 also. We should examine the tiny range of stress at around 0 < ηkσ0 < 0.2, but
we have not currently obtained adequate data to verify this.

To conclude, it defies our intuition that the overall percolation threshold pL
av will always

decrease with a higher correlation strength. The characteristics of the percolation behaviour
are as follows: (1) At ξ ∼ 0, which corresponds to a weakly correlated system, pL

av reduces
slightly with increasing ξ. A slight increase in the correlation strength accelerates the merg-
ing of clusters and thereby promotes formation of the percolating cluster. Similar behaviour
was observed for prototypical long-range correlated percolation models explored in Refs.
[117, 118, 121, 123, 124, 126, 153] (as reviewed in Section 2.2.2). (2) As ξ increases further
(i.e, at the crossover region), we observe a subsequent growth of pL

av. The system appears
localized damage merely at one or a few dominated clusters, after the initial stage of ran-
dom nucleation. This pattern of damage mechanism does not contribute to the merging of
many random isolated clusters to form a percolating crack. Harter in his work [117] also
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Figure 5.6: Plots of (a) µ1 and (b) µ2 as a function of γ with ηkσ0 as parameter. The reader
can refer to footnote 3 for details of the error estimates of µ1 and µ2.
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Figure 5.7: Plots of average percolation thresholds pL
av over (a) γ with ηkσ0 as parameter,

and (b) ησ0 with γ as parameter. Error bars indicate standard deviations of the means of
the percolation thresholds pL

av.
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showed that the percolation thresholds reduce but will increase again for sufficient correla-
tion length. (3) When approaching ξ ∼ 1, the localized damage regime occurs at an early
stage. pL

av once again drops (even below puncor
c ), and this was previously reported in the

nucleation and growth study of Ref. [154]. In the next section, we will support the above
explanations of the peculiar percolation behaviours by analyzing the cluster structures.

5.4 Cluster Structure Analysis

In this section, we characterize the cluster structures in both dynamic and static ways. We
discuss the dynamics of the largest crack in Section 5.4.1. The characterization of growth
of the largest crack reveals three different damage dynamical processes for the random
breakage regime, the localization regime and their crossover region, thus it provides further
support for the introduced order parameter ξ. Moreover, the dynamics of the largest crack
reveals how a cluster grows into a percolating cluster, hence it gives insight further into
the variation of the percolation thresholds as a function of ηkσ0 and γ. In section 5.4.2, we
analyze the cluster structures particularly at the onset of the percolation. We give a static
analysis of the largest crack at a percolation threshold, that illustrates the variation of the
percolating crack size as a dependence of ηkσ0 and γ. We also analyze the moments of the
clusters. In the next chapter, the 0th moment of cluster size distribution will be employed to
separate the random breakage regime and the localization regime further for larger lattice
sizes.

5.4.1 Dynamics of the Largest Crack

We analyze the size of the largest cluster of broken bonds SL, normalized by the total number
of bonds N , as a function of the fraction of failed bonds Nb/N . For damage propagation by
the random breakage, formation of a sample spanning cluster of broken bonds proceeds in
three stages, illustrated with the red solid line in Fig. 5.8: I. random nucleation of isolated
cracks (slope ∼ 0); II. merging of cracks into larger clusters (slope ≫ 1); and III. growth
of the largest crack (slope ∼ 1). Regardless of the overall correlation strength ξ, stage I is
always observed since the initial stress is uniformly distributed on the lattice. As ηkσ0 or γ

become larger, i.e., the system shifts towards the localization regime in Fig. 5.4, stage II,
the merging stage, becomes less pronounced. In this regime, correlated growth of a single
crack dominates. Eventually, for systems with ξ ∼ 1 (dash dotted line), a direct transition
from stage I to stage III occurs, bypassing the merging stage. Upon increasing the value of
ξ, the accumulation of stress on the largest crack accelerates, which has a significant impact
on the localization regime, affecting the percolation threshold, and time-to-fracture. This
strong acceleration effect is due to the exponential breakage rule considered in our work.
The effect is much weaker if a power-law breakage rule is considered, as in Ref. [87], in
contrast to the unchanged fracture pattern in study of Ref [155] even for LLS scheme.
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Figure 5.8: Normalized growth of the largest crack size SL/N with the fraction of failed
bonds Nb/N in the lattice. Three regimes are shown: uncorrelated percolation, where ξ = 0
(red solid line); crossover, where 0 < ξ < 1 (dashed line); and localization, where ξ ≃ 1
(dash dotted line). Three growth stages are indicated: I. nucleation of cracks, II. merging
of cracks and III. growth concentrated on the largest crack.

Fig. 5.9 illustrates the growth dynamics of the largest cluster in three stress ranges: (a)
ηkσ0 = 0.30, (b) ηkσ0 = 0.46, and (c) ηkσ0 = 2.0. SL varies from the GLS to the LLS,
corresponding to different fracture regimes. When ηkσ0 = 0.30, the overlap of the SL curves
in Fig. 5.9 (a) indicates that only the random breakage mechanism occurs, consistent with
ξ ∼ 0 for ηkσ0 ≤ 0.30 in Fig. 5.3. As for Fig. 5.9 (b), representing the crossover region,
as shown by the largest crack, localized damage was not observed even for the extreme
case of LLS (i.e., for large γ). But the merging stage is shrinking, indicating the transition
to localization. In Fig. 5.9 (c), all three pathways of formation and growth of clusters are
present, corresponding to parameter ranges 0 ≤ γ ≤ 2 (the random breakage regime),
2.2 ≤ γ ≤ 2.4 (the crossover region), and γ ≥ 2.6 (the localization regime).

Fig. 5.10 illustrates the growth for (a) γ = 1, (b) γ = 3, and (c) γ = 100. SL varies
from low to high stress ranges. We notice for γ ≥ 3 as shown in Fig. 5.10 (b) and (c),
all three pathways of formation and growth of clusters are present, corresponding to the
random breakage regime ((b) ηkσ0 ≤ 0.81 and (c) ηkσ0 ≤ 0.20), the crossover region ((b)
0.91 ≤ ηkσ0 ≤ 1.22 and (c) 0.33 ≤ ηkσ0 ≤ 0.46) and the localization regime ((b) ηkσ0 ≥ 1.52
and (c) ηkσ0 ≥ 0.81). The higher γ is, the earlier the correlated crack growth occurs during
the dynamics (for a same ηkσ0). Similar damage behaviours are also shown in Fig. 5.9 (c)
for high stress ηkσ0 = 2.0, varying γ from GLS to LLS. Fig. 5.10 (a) shows the dynamics of
SL when γ = 1 (GLS): the higher stress promotes the merging of clusters and accelerates
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Figure 5.9: Normalized growth of the largest crack size SL/N with the fraction of failed
bonds Nb/N in the lattice for different stresses with γ as parameter. The black horizontal
dashed lines and green horizontal dashed line indicate SL/N at a percolation threshold in the
uncorrelated percolation case (insets of (a)-(c)) and in the localization regime (inset of (c))
respectively. Cluster growth is shown for different ranges regimes in (a) with ηkσ0 = 0.30,
(b) with ηkσ0 = 0.46, and (c) with ηkσ0 = 2.0. The shaded area indicates the crossover
region where 0 < ξ < 1.
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the damage to the stage of the correlated crack growth. This dynamic behaviour (Fig. 5.10
(a)) is different with the overlaps of the curves in Fig. 5.9 (a) (low stress ηkσ0 = 0.30 for
varying γ), even though both illustrations correspond to the random breakage regime.

γ��γ� 

� !!γ

(b)

(c)

(a)

Figure 5.10: Normalized growth of the largest crack size SL/N with the fraction of failed
bonds in the lattice for different γ with ηkσ0 as parameter. The black horizontal dashed
lines and green horizontal dashed line indicate SL/N at a percolation threshold in the
uncorrelated percolation case ((a)-(c)) and in the localization regime ((c)) respectively.
Cluster growth is shown for different ranges regimes in (a) with γ = 1, (b) with γ = 3, and
(c) with γ = 100. The shaded area indicates the crossover region where 0 < ξ < 1.

As can be seen in Figs. 5.9 and 5.10, the SL dynamic curves of ξ ∼ 0, ξ ∼ 1 and 0 < ξ < 1
all correspond to three distinctive paths. This provides further support for the validity of
order parameter ξ. Localization regime corresponds that the direct transition from stage I
to stage III, bypassing the merging stage. Interestingly, the onset of the localization regime
(ξ ∼ 1) corresponds that that cluster merging stage is skipped at the first time (see Fig. 5.9
(c) and Fig. 5.9 (b) and (c)).
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We also attempt to seek a qualitative explanation of the peculiar variation of percolation
thresholds by examining the crack growth dynamics. The horizontal dashed lines (black) in
Fig. 5.9 (insets) and Fig. 5.10 indicate SL/N (at pL

c ) of the uncorrelated percolation case
and the horizontal dashed lines (green) indicate SL/N (at pL

c ) when ξ ∼ 1. The horizontal
dashed lines help roughly compare how fast a system reaches a percolation point. A further
discussions of the variation of percolation threshold will be shown in Fig. 5.11 (d). We
confirm with Fig. 5.10 (a) that when ξ ∼ 0, the early clusters merging contributes to the
temporary drop of pL

av at around γ = 1−2. The higher the stress, the lower the minimum of
the percolation threshold (compare with Fig. 5.6 (a)). We notice that in the crossover region
(the shaded areas), the system takes a larger damage fraction (Nb/N) to reach percolation
(black dashed lines) upon a further increase of ξ, until the system reaches the onset of
the localization regime (ξ ∼ 1). After that onset, the stronger the localized regime is, the
earlier the Nb/N reaches the percolation threshold (green dashed lines). The above damage
dynamics analysis provides a further support for the overall peculiar percolation behaviour
that pL

av has slight drop at ξ ∼ 0 but later grows and eventually drops when ξ increases
from 0 to 1.

5.4.2 Cluster Structures (Static)

Now we analyze the static cluster structures. The kth moment of the cluster distribution is
defined as

mk = Σsskns, (5.2)

where ns represents the number of clusters of size s, averaged over n MC runs. m0 is the
total number of clusters and m1 represents the total number of broken bundles in the lattice.
The average cluster size Sav is equal to m1/m0. As we analyze the cluster structure at the
critical point, viz., the onset of percolation, we change the notations of m0, m1 and Sav

to m0,c, m1,c and Sav,c respectively. We also analyze the largest crack size at a percolation
threshold SL,c.

Fig. 5.11 illustrates (a) m0,c, (b) m1,c, (c) Sav,c and (d) SL,c as a function of the parameter
γ for different stress ranges. Fig. 5.11 (b) shows m1,c, i.e, the number of failed bundles at a
percolation threshold, thus we get,

m1,c(γ, σ0) = pav
c (γ, σ0)N. (5.3)

As we already illustrated the overall change of pav
c (γ, σ0) in Fig. 5.7 (a), here we will not

repeat the discussions. We particularly look into m0,c, Sav,c, and SL,c.
Fig. 5.11 (b) illustrates m0,c. For a system at ξ ∼ 0, as the lattice is dominated by

many isolated small size clusters, a slight increase of the correlation strength helps the
merging of the clusters, reducing the total number of clusters. Upon a further increase of ξ,
the correlated damage grows only on one or few cracks, but this localization pattern does
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(a) (b)

(c) (d)

Figure 5.11: Cluster structures (a) m0,c, (b) m1,c, (c) Sav,c and (d) SL,c at a percolation
threshold as a function of γ for different stresses ηkσ0 = 0.46, 1,22, 2.03. The inset in (a)
shows m0,c for ηkσ0 = 0.46.
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not contribute to connections of the isolated clusters, resulting in a climb of m0,c. This
explains the trend for stress ηkσ0 ≤ 1.22. However, for a very high stress (ηkσ0 = 2.03),
corresponding to ξ ∼ 1, the localized damage occurs at a very early stage (see dash dotted
line in Fig. 5.8) just after the occurrence of a very few isolated clusters driven by the
random nucleation. (These descriptions of the physical dynamics have been presented in
Section 5.3.2.) Interestingly, we find the minimum of m0,c just happens at the crossover
region. In the next chapter, a quantitative analysis of m0,c will be employed for the phases
(or regimes) separation for L > 150.

Fig. 5.11 (c) shows Sav,c, that is equal to m0,c/m1,c. We observe the sharp maximums
for Sav,c at high initial stresses: roughly at the points γ = 3 for ηkσ0 = 1.22 and 5 for
ηkσ0 = 2.03 respectively. These points falls into the crossover region. As for low stress
(ηkσ0 = 0.46), Sav,c has a continuous increase as a function of γ.

Fig. 5.11 (d) shows SL,c, the largest crack size, at a percolation threshold varying with
ηkσ0 and γ. We observe when ξ ∼ 0, SL,c has a relatively moderate decrease attributed
from the increase of the clusters merging. Upon a further increase of ξ, in other words, the
system takes a crossover to the onset of localization, a rapid growth of SL,c is observed until
SL,c reaches a higher plateau (SL,c/Nb = 0.46 at ξ ∼ 1). Because the damage remains con-
centrated in the same domain, it overall requires a larger SL,c to form a cluster percolating
both sides of the lattice. In other words, the fractal dimension of the largest crack area for
a system in the localization regime is much larger than that in the random breakage regime
5.

5.5 Time-to-Fracture

Next, we analyze the time-to-fracture, or lifetime tPEM of PEMs. In studies of fiber bundle
models [82, 87, 137], fibrous materials can be considered to fracture when all material ele-
ments fail. In our present model, however, a PEM is assumed to fracture when a percolating
crack appears for the first time as reactive gases can permeate across the sample-spanning
crack. Fig. 5.12 displays tPEM for the evaluated ranges of σ0 and γ. The frequency dis-
tribution of tPEM values, obtained in each case over n MC runs performed under identical
conditions, is shown for three different systems, with details given in the caption. It exhibits
a single peak for the random breakage regime, i.e., for ξ ∼ 0, shown in Fig. 5.12 (a), as well
as in the localization regime with ξ ∼ 1, shown in Fig. 5.12 (c). A combination of two peaks
can be discerned in the crossover regime, Fig. 5.12 (b). Using these distributions, we have
calculated the expectation value of tPEM, which is depicted as a function of ηkσ0 for various

5The fractal dimension of our 2D lattice describes how the area increases with its linear size. For a system
of ξ ∼ 1, the fractal dimension of the largest damage area tends to be 2 as the bundles in that domain almost
have a complete breakdown, whereas the fractal dimension of a system in the random breakage has a portion
of bundles failed in the largest crack area, so it is between 1 to 2 [156].
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γ in Fig. 5.13 (a), and, alternatively, as a function of γ for various ηkσ0 in Fig. 5.13 (b).
Due to the exponential bundle breakage law, introduced in Eq. 2, tPEM follows essentially
an exponential dependence on ηkσ0. The slope of the semi-logarithmic plot in Fig. 5.13 (a)
decreases upon transition from random breakage to localization regime.

Figure 5.12: Frequency distributions of the time-to-fracture tPEM (normalized to αk) for
systems in the regimes of random breakage (left, ηkσ0 = 0.30 and γ = 4.0), crossover
region (middle, ηkσ0 = 0.41, γ = 10) and localization (right, ηkσ0 = 5.0, γ = 100). The
distribution in the crossover region exhibits a superposition of two Gaussian peaks.
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Figure 5.13: Time-to-fracture tPEM (normalized to αk) (a) on a log-scale as a function of
ηkσ0 with γ as parameter and (b) as a function of γ with ηkσ0 as parameter.

Fig. 5.13 (b) displays the time-to-fracture of the lattice, tPEM, as a function of γ. It
exhibits a peculiar transition between two plateaus, from a higher value in the random
breakage regime, attained for γ < 2 (ELS), to a lower value in the localization regime that
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is approached asymptotically for γ > 5 (LLS). The magnitude of the transition shows a high
sensitivity to ηkσ0. At the highest stress value included in the plot, the two plateaus differ by
a factor of 10, whereas at low stress values the transition becomes insignificant, illustrating
the concerted impact of stress and effective range of stress transfer on the dynamics of the
percolation transition.

Fig. 5.14 shows the color map of tPEM as a function of both γ and ηkσ0. For the particular
case k = 1 and T = 298K, dimensional scales of σ0(MPa) and tPEM are shown on the upper
abscissa (298K) and at the right side of the color bar (298K), respectively. To find tPEM

as a function of σ0 and γ at other k, the parameters in Table 3.1 should be used. To study
the impact of temperature, values of α1 and η1 are recalculated based on an assumption
that activation energy Ea and activation volume ν remain the same, with ratios in Table
3.1 remaining unaffected by T . The upper abscissa (353K) and the right side of the color
bar (353K) shows an example of the effect of T on tPEM in three different stress regimes
for k = 1. We notice that, compared to the phase diagram, the crossover curve the similar
way, however the crossover ξ in phase diagram is quite narrow as shown in Fig. 5.14.

298K 353K

k=1

298K

353K

k
=
1

Figure 5.14: A color map of tPEM in the γ and ηkσ0 plane. Dimensional values of ηkσ0 and
tTEM are shown at the abscissa (top) and the color map legend, respectively, for T = 298K
and T = 353K.

Table 5.1 shows the dimensional lifetime tPEM (hours) obtained with our model for
σ0 = 3MPa, 5MPa and 30MPa, bundle sizes k = 1, 3, 10, and T = 298K and 353K. We use
τ0 = 1.0×10−11s, Ea = 1.95×10−22 kJ, ν = 0.418 nm3 [13] as well as the parameters in Table
3.1 for the calculations of αk and ηk. As can be seen, temperature has a marked impact
on tPEM, with the higher T destabilizing the bundle network. Moreover, tPEM decreases
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with increasing σ0, whereas a larger k has a stabilizing effect. While all these trends are
reasonable, it will be important in future work to evaluate tPEM for more realistic lattice
configurations in 3D.

Table 5.1: Lifetime for k = 1, 3, 10 at T = 298 and 353K in the range of σ0 = 3 − 30MPa.
The two limits for the range of tPEM values given in parentheses correspond to γ varying
from 0 to 100 respectively.

k σ0(MPa) T = 298K, tPEM (h) T = 353K, tPEM (h)
1 3 4.2×105∗ 2.5×102 ∗

5 (3.1–2.6)×105 (2.0–1.6)×102

30 (11–2.1)×103 6.9-1.3
3 3 5 ×105† 3 ×102 †

5 5 ×105† 3 ×102 †

30 (16–8)×104 (10–5.0)×101

10 3 6 ×105† 4 ×102 †

5 6 ×105† 4 ×102†

30 3.2×105 ∗ 2.0 ×102 ∗

∗ The changes of these values of tPEM are insignificant when varying γ.
† These values corresponds to ηkσ0 < 0.2, in which the data were not obtained. We approx-
imated the values by extrapolating data in Fig. 5.13 (a).

5.6 Summary

An essential property in this chapter is the order parameter ξ introduced based on the
distribution of percolation thresholds. The distribution exhibits two discernible peaks and
can be employed to assess the crossover between the two disordered fracture regimes, the
random breakage regime and the localization regime. In the crossover region, a coalescence
of the two regimes can be observed for different statistical copies. We question which regime
prevails when the lattice size approaches an infinite limit. The size effects will be analyzed
and discussed in the next chapter.
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Chapter 6

Results: Finite Size Effects

6.1 Overview

As reviewed in Section 2.1.3 (Fig. 2.16), Shekhawat et al. proposed a size-scaling theory
which described a crossover between the two fracture regimes, i.e., the random breakage
regime (percolation-type) and the localization regime (correlated crack growth). That theory
predicts that the localization regime prevails when the lattice approaches the infinite size
limit. Another scaling theory proposed by Kim et al. in Ref. [157] proposed that at any
given finite load σ0 > 0, the infinitely large system instantly breaks down. In this regard,
we are interested in assessing the competition between the two fracture regimes within the
framework of our present model when L increases.

Chapter 5 has presented a detailed analysis of the model considered in this thesis for
a finite lattice at fixed size L = 100 over a parameter space of ηkσ and γ. We introduced
the order parameter ξ based on the distribution of percolation thresholds and ξ provides a
reliable tool to assess the phase (or regime) separation (over ηkσ and γ). The localization
regime is characterized by ξ ≃ 1 while the random breakage regime corresponds to ξ ≃
0. More intriguingly, we observe a narrow crossover region for 0 < ξ < 1 in which the
distribution of percolation thresholds exhibits two Gaussian-like peaks and both regimes
coexist in a statistical sense. In this chapter, we attempt to generalize the analysis for
varying lattices sizes to investigate the impacts of finite size effects.

The order parameter ξ, determined by the distribution of percolation thresholds requires
thousands of MC realizations performed on a given set of L, ηkσ and γ. However, due to the
computational costs, we can obtain only 50-200 MC realizations at each set for L > 150 in
most cases. Thus, we will tentatively employ another physical quantity to explore how the
two fracture regimes shift with L in this chapter. Here we have considered L varying from
30 to 400. The structure of this chapter is as follows: Section 6.2 presents m0, the number
of clusters, as another means to explore the crossover between random breakage regime and
the localization regime. With an analysis of m0, we obtain a phase diagram that extends to
varying sizes. In Section 6.3, we analyze ξ and the crack growth dynamics for several sets of
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ηkσ and γ in the (vicinity of) crossover region, to show competing manner of the two regimes
for different L. Section 6.4 analyzes the variation of the average percolation threshold with L.
This analysis is done to compare the peculiar change of percolation thresholds dependent
on the correlation strength as shown in Section 5.3. Section 6.5 shows the lifetime of a
PEM analysis for configurations of uncorrelated percolation, the crossover region and the
localization regime. Lastly, in Section 6.6, preliminary studies of growth dynamics of small
γ and σ0 will be presented.

6.2 Phase Diagram

We have introduced the order parameter ξ in Chapter 5 to separate the regimes of random
breakage and localization over ηkσ0 and γ. Employing ξ, we have obtained the phase diagram
of the two regimes for lattices of L = 100 in Fig. 5.4. However, ξ is determined by two
Gaussian functions that are fitted to the distribution of percolation thresholds, and to get ξ

within acceptable errors, we need to complete 2000 to 10000 Monte Carlo (MC) realizations
for a single set of L, ηkσ0 and γ. However, subject to the computational costs, for lattices
of L > 150, we only carry out 50–200 MC realizations for each configuration.

Fig. 5.11 shows m0, the number of clusters, as a function of γ for low to high stress
values. We observe the minimum values of m0 fall into the narrow crossover region, viz.,
0 < ξ < 1. We now tentatively plot the minimum values of m0 and compare them with
the original phase diagram of L = 100 (Fig. 5.4) which was determined by ξ. In Fig. 6.1,
these dots of the minimum values of m0 are joined by a dashed line and this line overlaps
with the narrow crossover region of the phase diagram. Thereby, we can adopt m0 as an
indicator for the phase separation for L > 100.

Employing m0 to infer the "crossover lines" to separate the two fracture regimes, we
generate new phase diagrams for L = 100, 250 and 400 in Fig. 6.2 accordingly. We also
further verified that systems of L = 250 and 400 at "the crossover lines" have two discernible
peaks in the distributions of the percolation thresholds, i.e., 0 < ξ < 1, though we have
not obtained a sufficient large number of MC realizations to fit the distribution with two
Gaussian functions to deduce accurate values of ξ. Fig. 6.3 shows two examples of the
distributions of the percolation thresholds obtained by performing (a) 325 MC realizations
at a set of L = 250, ηkσ0 = 0.51 and γ = 5.5, and (b) 80 MC realizations at a set of L = 400,
ηkσ0 = 0.61 and γ = 4.

We note that the crossover region shifts towards to smaller values of γ and ηkσ0 upon
increasing L. This suggests that, in the vicinity of the crossover region, the localization
regime prevails for larger lattice sizes for ηkσ0 and γ. To further support this, several
physical quantities, including ξ and the largest crack growth, will be analyzed in the next
section.
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localization

random 
breakage

Figure 6.1: The minimum values of m0 are shown by triangular dots linked by a dashed
line. The color map represents the phase diagram (Fig. 5.4) in the plane spanned by γ
and ηkσ0 and was generated with the order parameter ξ. Regimes of random breakage and
localization are separated by a narrow crossover region. The minimum values of m0 clearly
fall into the crossover region. Thus, minimum values of m0 can be adopted to separate the
two regimes for larger sizes L.

Clearly, the fracture regime is sensitive to the lattice sizes of systems in the vicinity of
the crossover region 1. Now it comes to the question of the fracture regime for a parameter
space of ηkσ0 and γ that is far away from the crossover region when L → ∞. We verified that
only one (clear) Gaussian-like peak can be observed in the distributions of the percolation
thresholds for systems of ηkσ0 = 0.2, γ = 100 and sizes upto L = 400. At this point, because
of the limited exploration of the size effect, we cannot verify that a system can eventually
convert to the localization regime for L → ∞ over the entire range of ηkσ0 and γ. In Section
6.6, preliminary results relating to this question will be presented.

6.3 Transition of Fracture Regimes in the Crossover Region

In this section, we provide further support that in the vicinity of the crossover region,
upon increasing L, the damage regime has a transition from the random breakage to the
localization. We present an analysis of ξ and the largest crack dynamics to characterize the
competing behaviours of the two regimes in this region.

1Strictly speaking, the term "crossover region" in this section refers to a set of small values of ηkσ0 and
γ in which 0 < ξ < 1 for L = 100.
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localization

random breakage

Figure 6.2: Phase diagrams in the plane spanned by γ and ηkσ0 for different sizes L = 100,
250 and 400. Regimes of the random breakage and the localization are separated by the
"crossover line" determined by minimum values of m0. A minimum value is estimated by
the minimum of the interpolated line applying to the discrete m0 values, and the value’s
error bar is determined by its two closest m0 values.

(a) (b)

Figure 6.3: Frequency distributions of the percolation thresholds for the cases of (a) L = 250,
ηkσ0 = 0.51, γ = 5.5 performed by 325 MC runs and (b) L = 400, ηkσ0 = 0.61, γ = 4
performed by 80 MC runs.

6.3.1 Order Parameter ξ

Even though we cannot obtain a complete analysis of ξ in a plane spanned by ηkσ0 and
γ due to the insufficient number of MC realizations, an effort can be made to examine
several specific configurations in the crossover region. For example, we performed 3330 MC
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realizations for the set of L = 250, ηkσ0 = 0.36 and γ = 100, that reveals a frequency
distribution of percolation thresholds that can be fitted with two Gaussian functions to
acquire an acceptable value of ξ.

Fig. 6.4 shows ξ for ηkσ0 = 0.36 and 0.41 in the LLS scheme (γ = 100) for several sizes
L. Upon increasing L, ξ increases from 0 to 1. This supports that the system in the vicinity
of the crossover region has a crossover from the random breakage regime to the localization
regime as increasing L .

0 100 200 300 400
L

0.0

0.2

0.4

0.6

0.8

1.0
ξ

γ=100
ηkσ0=0.41
ηkσ0=0.36

Figure 6.4: ξ obtained with ηkσ0 = 0.41 and ηkσ0 = 0.36 for γ = 100 (LLS) as a function of
L in the crossover region. The method used to determine errors of ξ is described in footnote
3 on page 43.

6.3.2 Largest Crack Dynamics

The above characterization of ξ can be further verified by the analysis of largest crack
growth. Fig. 6.5 shows SL/N as a function of the damage fraction Nb/N for several sizes
L obtained with ηkσ0 = 0.41 in the LLS scheme (solid lines). We also illustrate the growth
dynamics of uncorrelated percolation (dashed lines) for comparison. According to the three
distinctive pathways that corresponds to the two fracture regimes and their crossover shown
in Fig. 5.8, we verify that the systems of increasing L cross over to the onset of the local-
ization regime at L = 400. We have not further verified whether a system of L > 400 has a
regime of even stronger correlation, in which the localized damage mechanism occurs much
earlier (see the dashed dotted line in Fig. 5.8).
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Figure 6.5: Largest crack growth SL/N as a function of damage fraction Nb/N for ηkσ0 =
0.41 and γ = 100 (solid lines) for several sizes L. SL/N of the uncorrelated case (dashed
lines) are presented as a comparison.

6.4 Variation of Percolation Thresholds

We have shown an unusual variation of the percolation threshold with the increase of the
correlation strength at a fixed size of L = 100 in Section 5.3. We have learned that at ξ ∼ 0,
the average percolation threshold pL

av exhibits a slight decay first. Upon the further increase
of ξ, pL

av increases subsequently. If approaching ξ ∼ 1, pL
av once again drops, even below

puncor
c if the localized damage mechanism is strong enough. In this section, we attempt to

exclude the possibility that the unusual behaviour of pL
av is attributed to the size effects.

Fig. 6.6 (a) to (c) shows pL
av as a function of γ for sizes L = 100 (blue) and L = 250

(orange) from low to high stresses. At low stress ηkσ0 = 0.51, we observe that pL
av in the case

of L = 250 stabilizes for a even higher plateau value than that of L = 100. For a relatively
high stress ηkσ0 = 1.0, we note a sharp maximum at small γ for both sizes, but the lower
plateau at high γ for L = 250 is even lower than that for L = 100. The higher the stress is,
the lower the plateau value is. We observe plateau values lower than puncor

c for both sizes
at ηkσ0 = 5.0 as shown in Fig. 6.6 (c), and the maximum value for L = 250 is higher than
that for L = 100

Fig. 6.6 (d) shows pL
av as a function of ηkσ0 in the LLS scheme (γ = 100) for several

sizes L. We observe that pL
av reaches a maximum for all sizes and then rapidly drop with the

increase of ηkσ0. At high stress, ηkσ0 = 10.2, pL
av can reach a value less than puncor

c , because
the system has a damage mechanism of correlated crack growth that occurs at an early
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stage, prior to the merging stage. The larger L is, the higher and sharper the maximum is,
and the lower pL

av is for high stress.
To conclude, upon increasing ξ (the correlation strength) from 0 to 1, pL

av undergoes
a slight drop first, but grows and eventually drops again when the correlation is strong
enough. This peculiar percolation behaviour of pL

av is not caused by the finite-size effects.

(d)

(a) (b)

(c)

Figure 6.6: Plots of the average percolation thresholds pL
av over γ for (a) ηkσ0 = 0.51, (b)

ηkσ0 = 1.0 and (c) ηkσ0 = 5.0, and pL
av over ηkσ0 for (d) γ = 100 for different L. Errors

bars indicate standard deviations of the means of pL
av.

6.5 Time-to-Fracture

In Section 5.5, we estimated the time-to-fracture, tPEM, for square lattices of L = 100.
However, the size L of a real polymer membrane network is estimated to have a scale of
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L = 102 − 103, considering that the thickness of a film is about 10 – 150 µm [158] while the
typical bundle length is about 40 nm [58, 128]. We now discuss size effects on tPEM.

The middle rail of Fig. 6.7 shows tPEM for systems of several sizes L in the random break-
age regime, the localization regime and their crossover. The average percolation thresholds
pL

av are shown in the left rail of Fig. 6.7 to compare. The right rail of Fig. 6.7 shows tPEM as
a function of 1/L to get an estimate of tPEM for L → ∞. Time-to-fractures tPEM of different
fracture regimes exhibit distinctive dependence of L.

Fig. 6.7 (b) shows tPEM for a system of uncorrelated percolation, as an extreme case
of the random breakage regime, with ηkσ0 = 0.41 and γ = 0. tPEM remains almost the
same within a variance of 2% and the slight change in tPEM merely arises from the size
effects of the uncorrelated percolation threshold puncor

c as illustrated in Fig. 6.7 (a). As
limL→∞ puncor

c = 0.5 for a square lattice, we expect that tPEM will eventually stabilize at
around 0.388 for a large system as suggested in Fig. 6.7 (c).

In the crossover region with ηkσ0 = 0.41, γ = 100 as seen in Fig. 6.7 (e), tPEM reduces by
7% while L increases from 50 to 250. But pL

av in Fig. 6.7 (d) exhibits a substantial increase
with L, hence we realize that the decrease of tPEM is not linked to the variation of pL

av. We
observe an even more pronounced drop of tPEM for the regime of strong localized damage
with ηkσ0 = 5.0, γ = 100, in Fig. 6.7 (h) which corresponds to a change by 44 % as L

increases from 50 to 250, but pL
av reduces by only 3% (Fig. 6.7 (g)). Hence, we conclude that

the stronger the correlation strength (or ξ) is, the more strongly the reduction of tPEM varies
with L. As indicated in Fig. 6.7 (i), αktPEM converges to around 0.00006 when L → ∞.

A Nafion membrane in a cell has a lifetime up to 20 000 hours [50] under ideal conditions
at a temperature of 35 oC to 40 oC. As indicated by Table 5.1 (for L = 100), lifetime
predictions of PEMs at a low stress are consistent with this value. But for a high stress
regime, tPEM reduces significantly (by 10 times) and reduce even further with larger lattice
sizes L. However, we should note that tPEM can be underestimated for high values of ηkσ0

and γ, limited by the framework of our present model. The main impact factor is the
assumption of stress conservation during stress redistribution.

6.6 Preliminary Studies

6.6.1 Fracture Regimes for Small σ0 or γ

We have shown in Sections 6.4 and 6.5 that upon increasing L, the fracture regime exhibits
a transition from the random breakage regime to the localization regime in the vicinity of
the crossover region. We now explore the fracture regime of small ηkσ0 or γ that is far away
from the crossover region.

Fig. 6.8 shows the dynamic analysis of the largest crack growth SL/N for ηkσ0 = 0.2
and γ = 100 (solid lines) for several sizes L. The dynamics of SL/N for systems of the
uncorrelated case (dashed lines) are presented for comparison. As can be seen, SL/N for the
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Figure 6.7: Time-to-fracture tPEM (normalized to αk) for (b) the uncorrelated system (ηkσ0

= 0.41 and γ = 0), (e) the crossover region (ηkσ0 = 0.41 and γ = 100), and (h) the
localization regime (ηkσ0 = 5 and γ = 100) as a function of L. Values of the corresponding
average percolation threshold pL

av are shown in (a), (d), and (g). tPEM as a function of 1/L
are shown in (c), (f), (i).
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case ηkσ0 = 0.2 and γ = 100, closely approaches the dynamic lines of the uncorrelated case
of the same size L. Therefore, systems of sizes up to L = 400 remain in the random breakage
regime and a crossover to the regime of localization is not found. A further verification of
whether the damage regime approaches the localization regime when L → ∞ for any finite
ηkσ0 and γ relies on a numerical exploration of lattices of much larger sizes.

Figure 6.8: Largest crack growth SL/N for ηkσ0 = 0.2 and γ = 100 (solid lines) compared
with the growth dynamics of uncorrelated percolation (dashed lines).

6.7 Summary

In this chapter, we focused on analyzing the competition between the two fracture regimes
for different lattice sizes. We observed a transition from the random breakage regime to the
localization regime in the vicinity of the crossover region of ηkσ0 and γ upon increasing
L. As for small values of ηkσ0 and γ, the crossover to the localization regime is not yet
observed owing to the limited lattice sizes.

We also analyzed the time-to-fractures of PEMs. It shows a rapid decrease of the lifetime
in the regime of high stress for large sizes of lattices. A crucial assumption to be revisited
in future work is the stress conservation considered in this model.
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Chapter 7

Conclusions and Outlook

This chapter presents the main findings of the work in this thesis and potential extensions
for further studies.

7.1 Conclusions

This thesis details how fracture dynamics on polymer electrolyte membranes (PEMs) are
mapped onto a kinetic bond percolation model with a square lattice. This work provides both
practical and physical insight into the fracture dynamics process. For practical purposes,
we are motivated to predict the lifetime of polymer electrolyte membranes (PEMs). For a
general view of statistical physics, we elaborate on understanding the fracture regimes in
the disordered media in our current model framework.

Under the assumption of an exponential breakdown rule for bonds in the network and a
power-law stress transfer rule (σadd ∼ r−γ), the correlation between the breakage events is
described by the physical quantities γ and σ0. The former factor controls the effective range
of the stress transfer and the latter is the initial stress field magnitude, which is assumed
to be uniformly applied to the system. By tuning the parameters γ and σ0, we have found
a crossover between the two limits of fracture regimes: a percolation-type random breakage
regime in the limit of weak correlation and a localization regime in the limit of strong
correlation. The most important finding is probably the ability to describe the correlation
strength or the degree of disorder of the system in terms of an order parameter ξ . We have
explored lattices of both a fixed size and varying size L and the following main conclusions
can be drawn.

The (frequency) distribution of percolation threshold shows two Gaussian-like peaks that
exhibit a competing behaviour. In the two limiting fracture regimes, only one peak of the
distribution (but with different widths) can be observed, while the distribution exhibits two
Gaussian-like peaks in the crossover region. Hence, the order parameter ξ was introduced
based on the area of the second peak to assess the crossover between the two fracture
regimes. According to ξ, we generated the phase diagram of the two regimes and their
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crossover in the plane spanned by σ0 and γ based on ξ, at a fixed lattice size L = 100. For
larger lattices, as indicated by the phase diagrams (via the cluster structures analysis), the
crossover region has shifted towards smaller values of σ0 and γ. In other words, the fracture
regimes also compete for the increase of L in the vicinity of the crossover region. In this
region, the localization regime is dominant for lattices of larger L.

Although the percolation thresholds may be intuitively expected to drop with the in-
crease of the correlation strength, we observe this slight drop only when the correlation
is very weak. Under stronger correlation, however, the percolation thresholds grow even
higher than that of the uncorrelated case and eventually drop again when transiting to the
localization regime. We confirmed that the peculiar percolation behaviour is not due to
finite-size effects.

We analyzed the largest crack growth dynamics in the different regimes. Even though
Refs. [159, 160] indicated that the percolating crack is formed or the final collapse of the
system is caused by the coalescence of several cracks rather than the growth of a single one,
this is not true in our model for strongly correlated damage regime, i.e., the localization.
For a weakly correlated system, it is indeed that the parallel growth of microcracks and the
merging of these cracks leads to the system’s final failure. However, for a damage regime
of localization, the growth of a single crack occurs very early on and that leads to the
percolation of the system. The first time the stage of merging of cracks is skipped signals
the onset of the localization regime.

The statistics of percolating cracks was used for a lifetime assessment of PEMs. The
lifetime decreases exponentially with σ0. For larger initial stress σ0, the local load sharing
(LLS) regime significantly reduces the lifetime of PEMs. As a function of γ, the PEM
lifetime exhibits a transition from a higher plateau at γ < 2 to a lower plateau at γ > 10.
Upon increasing L, the lifetime reduces, especially for strongly correlated systems.

We cannot conclude at this point that the above peculiar phenomena, i.e., the percolation
behaviour, the damage growth regime, and the time-to-fractures of PEMs, have a more
general meaning for statistical physics of fracture, or these behaviours are just limited to
this present model. This model is within the same framework as the fiber bundle model
(FBM), together with an assumption of an exponential breakage law of fractures. The most
typical characteristic of the FBM is the assumption of stress conservation during the fracture
process. This is clearly the cause of a counterintuitive observation of the rapid decrease of
the time-to-fractures for large system sizes. Furthermore, Shekhawat et al. in Ref. [19] and
Kim et al. in Ref. [157] have concluded that the random breakage regime is just a finite-size
effect. This has been confirmed in the limited range of σ0 and γ values in our work, in which
lattice sizes are explored up to L = 400. For the whole range of σ0 and γ, finite-size effects
remain to be further investigated.
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7.2 Outlook

This section discusses several possible extensions for further studies. To further understand
finite-size effects, several explorations for larger lattices can be carried out within the current
framework of the model. Further, this model should be modified to make more realistic
predictions of the fracture dynamics in polymer electrolyte membrane networks. The outlook
is detailed in the following paragraphs.

To explore whether the limit of L → ∞ corresponds to a damage regime of localization,
for a system of any finite values of σ0 and γ, the numerical calculations need to be performed
on lattices of particularly large sizes L. Approaching this limit, there comes to technical
problems, viz., the considerable cost of computational time and RAM. In future studies,
we can propose a modified algorithm that improves computational efficiency. A finite-size
scaling analysis can then be studied given sufficient MC realizations over adequate parameter
space σ0, γ and L. However, as indicated by Newman in Ref. [86], a system evaluated with
an exponential breakdown rule (or the Gumbel strength distribution) is not expected to
show any simple scaling, whereas a system evaluated with a power-law breakdown rule can
[19]. (See discussions in Section 2.1.3.)

A major challenge of the modeling of the fracture dynamics on PEM networks is prob-
ably the introduction of a more realistic stress redistribution scheme during the fracture
process. The stress field in a PEM is caused by an internal swelling pressure of water, but
the current scalar stress field and the load transfer scheme of a power-law-type spatial decay
is rather simple. The most nonphysical part is the assumption of stress (load) conservation;
we expect a qualitatively different fracture propagation behaviour when a stress dissipa-
tion rule is introduced. Further, more theoretical or numerical explorations of stress field
reconstructions of PEM supercells can be conducted to provide a more solid support in the
future modeling of stochastic fracture processes.

Currently, to keep computational costs reasonable, the PEM network is mapped to two
dimensional square lattices. Melchy and Eikerling in Ref. [58] has considered a more realistic
three-dimensional cubic lattice, but at a quite small lattice size L = 20. Our preliminary
simulations of cubic lattices suggest that the lifetime (of systems of the same number of
bundles) will be reduced due to the lower percolation threshold of the cubic lattice. Further-
more, as the self-assembled network has a randomly disordered structure, a more ambitious
goal is to study the fracture dynamics on a disordered structure. For examples of studies
on disordered networks, the reader can refer to theoretical and experimental works by Reid
et al. [161, 162]. Moreover, in the future, we can introduce nonuniformities in bundle sizes,
stiffness, elastic modulus, and surface charge density in the polymer network.
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