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Abstract

Cardinality estimation is a fundamental but long unresolved problem in query optimization.
Recently, multiple papers from different research groups consistently report that learned
models have the potential to replace existing cardinality estimators. In this thesis, we ask a
forward-thinking question: Are we ready to deploy these learned cardinality models in pro-
duction? Our study consists of three main parts. Firstly, we focus on the static environment
(i.e., no data updates) and compare five new learned methods with eight traditional meth-
ods on four real-world datasets under a unified workload setting. The results show that
learned models are indeed more accurate than traditional methods, but they often suffer
from high training and inference costs. Secondly, we explore whether these learned models
are ready for dynamic environments (i.e., frequent data updates). We find that they can-
not catch up with fast data updates and return large errors for different reasons. For less
frequent updates, they can perform better but there is no clear winner among themselves.
Thirdly, we take a deeper look into learned models and explore when they may go wrong.
Our results show that the performance of learned methods can be greatly affected by the
changes in correlation, skewness, or domain size. More importantly, their behaviors are
much harder to interpret and often unpredictable. Based on these findings, we identify two
promising research directions (control the cost of learned models and make learned models
trustworthy) and suggest a number of research opportunities. We hope that our study can
guide researchers and practitioners to work together to eventually push learned cardinality
estimators into real database systems.

Keywords: Cardinality Estimation; Query Optimizer; Machine Learning
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Chapter 1

Introduction

The rise of “ML for DB” has sparked a large body of exciting research studies exploring
how to replace existing database components with learned models [39, 34, 41, 67, 84, 96].
Impressive results have been repeatedly reported from these papers, which suggest that “ML
for DB” is a promising research area for the database community to explore. To maximize
the impact of this research area, one natural question that we should keep asking ourselves
is: Are we ready to deploy these learned models in production?

In this thesis, we seek to answer this question for cardinality estimation. In particular,
we focus on single-table cardinality estimation, a fundamental and long standing problem
in query optimization [93, 18]. It is the task of estimating the number of tuples of a table
that satisfy the query predicates. Database systems use a query optimizer to choose an
execution plan with the estimated minimum cost. The performance of a query optimizer
largely depends on the quality of cardinality estimation. A query plan based on a wrongly
estimated cardinality can be orders of magnitude slower than the best plan [44].

Multiple recent papers [93, 36, 18, 30, 32] have shown that learned models can greatly
improve the cardinality estimation accuracy compared with traditional methods. However,
their experiments have a number of limitations (see Section 2.1.5 for more detailed discus-
sion). Firstly, they do not include all the learned methods in their evaluation. Secondly, they
do not use the same datasets and workload. Thirdly, they do not extensively test how well
learned methods perform in dynamic environments (e.g., by varying update rate). Lastly,
they mainly focus on when learned methods will go right rather than when they may go
wrong.

We overcome these limitations and conduct comprehensive experiments and analyses.
The thesis makes four contributions:

Are Learned Methods Ready For Static Environments? We propose a unified work-
load generator and collect four real-world benchmark datasets. We compare five new learned
methods with eight traditional methods using the same datasets and workload in static en-
vironments (i.e., no data updates). The results on accuracy are quite promising. In terms
of training/inference time, there is only one method [18] that can achieve similar perfor-
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mance with existing DBMSs. The other learned methods typically require 10−1000× more
time in training and inference. Moreover, all learned methods have an extra cost for hyper-
parameter tuning.

Are Learned Methods Ready For Dynamic Environments? We explore how each
learned method performs by varying update rate on four real-world datasets. The results
show that learned methods fail to catch up with fast data updates and tend to return large
error for various reasons (e.g., the stale model processes too many queries, the update period
is not long enough to get a good updated model). When data updates are less frequent,
learned methods can perform better but there is no clear winner among themselves. We
further explore the update time vs. accuracy trade-off, and investigate how much GPU can
help learned methods in dynamic environments.

When Do Learned Methods Go Wrong? We vary correlation, skewness, and domain
size, respectively, on a synthetic dataset, and try to understand when learned methods may
go wrong. We find that all learned methods tend to output larger error on more correlated
data, but they react differently w.r.t. skewness and domain size. Due to the use of black-box
models, their wrong behaviors are very hard to interpret. We further investigate whether
their behaviors follow some simple and intuitive logical rules. Unfortunately, most of them
violate these rules. We discuss four issues related to deploying (black-box and illogical)
learned models in production.

Research Opportunities. We identify two future research directions: i) control the cost
of learned methods and ii) make learned methods trustworthy, and suggest a number of
promising research opportunities. We hope this work can attract more research efforts in
these directions and eventually overcome the barriers of deploying learned estimators in
production.

The rest of the thesis is organized as follows: We present a survey on learned cardinality
estimation as well as its related works in Chapter 2 and describe the general experimental
setup in Chapter 3. We explore whether learned methods are ready for static environments in
Chapter 4 and for dynamic environments in Chapter 5, and examine when learned methods
go wrong in Chapter 6. We present our conclusions in Chapter 7. Finally, future works and
research opportunities are discussed in Chapter 8.
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Chapter 2

Background

2.1 Learned Cardinality Estimation

In this section, we first formulate the cardinality estimation problem, then put new learned
methods into a taxonomy and present how each method works, and finally discuss the
limitations of existing evaluation on learned methods.

2.1.1 Problem Statement

Consider a relation R with n attributes {A1, . . . , An} and a query over R with a conjunctive
of d predicates:

SELECT COUNT(*) FROM R

WHERE θ1 AND · · · and θd,

where θi (i ∈ [1, d]) can be an equality predicate like A = a, an open range predicate like
A ≤ a, or a close range predicate like a ≤ A ≤ b. The goal of cardinality estimation
is to estimate the answer to this query, i.e., the number of tuples in R that satisfy the
query predicates. An equivalent problem is called selectivity estimation, which computes
the percentage of tuples that satisfy the query predicates.

Table 2.1: Taxonomy of New Learned Cardinality Estimators.

Methodology Input Model

MSCN [36] Regression Query+Data Neural Network
LW-XGB [18] Regression Query+Data Gradient Boosted Tree

LW-NN [18] Regression Query+Data Neural Network
DQM-Q [30] Regression Query Neural Network

Naru [93] Joint Distribution Data Autoregressive Model
DeepDB [32] Joint Distribution Data Sum Product Network
DQM-D [30] Joint Distribution Data Autoregressive Model
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2.1.2 Taxonomy

The idea of using ML for CE is not new (see Section 2.2 for more related work). The
novelty of recent learned methods is to adopt more advanced ML models, such as deep
neural networks [36, 18, 30], gradient boosted trees [18], sum-product networks [32], and
deep autoregressive models [93, 30]. We call these methods “new learned methods” or omit
new, i.e., “learned methods”, if the context is clear. In contrast, we refer to “traditional
methods” as the methods based on histogram or classic ML models like KDE and Bayesian
Network.

Table 2.1 shows a taxonomy of new learned methods1. Based on the methodology, we
split them into two groups - Regression and Joint Distribution methods. Regression methods
(a.k.a query-driven methods) model CE as a regression problem and aim to build a mapping
between queries and the CE results via feature vectors, i.e., query → feature_vector →
CE_result. Joint Distribution methods (a.k.a data-driven methods) model CE as a joint
probability distribution estimation problem and aim to construct the joint distribution from
the table, i.e., P (A1, A2, · · · , An), then estimate the cardinality. The Input column repre-
sents what is the input to construct each model. Regression methods all require queries
as input while joint distribution methods only depend on data. The Model column indi-
cates which type of model is used correspondingly. We will introduce these methods in the
following.

Data Processing

Query Featurization

Regression Model

Query Pool 
+ Labels

Query

Green: Train Stage Blue: Inference Stage

Construct

Train

CE
Result

Statistics

Data

Query Processing
CE
Result

Train

Query

(a) Regression Methods (b) Joint Distribution Methods

Look Up
Statistics

: Optional

Data

Joint Distribution Model

Figure 2.1: Workflow of Learned Methods.

1Naru, DeepDB and MSCN are named by their authors. For convenience of discussion, we give others
the following short names. Lightweight Gradient Boosting Tree (LW-XGB) and Lightweight Neural Network
(LW-NN) are two models from [18]. From [30], two complementary methods are proposed, Data&Query
Model - Data (DQM-D) and Data&Query Model - Query (DQM-Q).
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2.1.3 Methodology 1: Regression

Workflow. Figure 2.1(a) depicts the workflow of regression methods. In the training stage,
it first constructs a query pool and gets the label (CE result) of each query. Then, it goes
through the query featurization module, which converts each query to a feature vector. The
feature vector does not only contain query information but also optionally include some
statistics (like a small sample) from the data. Finally, a regression model is trained on a set
of 〈feature vector, label〉 pairs. In the inference stage, given a query, it converts the query
to a feature vector using the same process as the training stage, and applies the regression
model to the feature vector to get the CE result. To handle data updates, regression methods
need to update the query pool and labels, generate new feature vectors, and update the
regression model. In order to reduce the cost, sometimes we can be collect labels using a
sample of the data instead of running queries on the whole dataset.

There are four regression methods: MSCN, LW-XGB, LW-NN, and DQM-Q. One common
design choice in them is the usage of log-transformation on the selectivity label since the
selectivity often follows a skewed distribution and log-transformation is commonly used
to handle this issue [19]. These works vary from many perspectives, such as their input
information, query featurization, and model architecture.

MSCN [36] introduces a specialized deep neural network model termed multi-set convolu-
tional network (MSCN).MSCN can support join cardinality estimation. It represents a query
as a feature vector which contains three modules (i.e., table, join, and predicate modules).
Each module is a two-layer neural network and different module outputs are concatenated
and fed into a final output network, which is also a two-layer neural network. MSCN enriches
the training data with a materialized sample. A predicate will be evaluated on a sample, and
a bitmap, where each bit indicates whether a tuple in the sample satisfies the predicate or
not, will be added to the feature vector. This enrichment has been proved to make obvious
positive impact on the model performance [36, 93].

LW-XGB/NN [18] introduces a lightweight selectivity estimation method. Its feature vector
consists of two parts: range features + CE features. The range features represent a set of
range predicates: 〈a1, b1, a2, b2, · · · , an, bn〉. The CE features represent heuristic estimators
(e.g., the one that assumes all columns are independent). Note that the CE features can
be cheaply derived from the statistics available in the database system. LW-NN (LW-XGB)
train a neural network (gradient boost tree) model using the generated features. Unlike
MSCN which minimizes the mean q-error, they minimize the mean square error (MSE) of
the log-transformed label, which equals to minimizing the geometric mean of q-error with
more weights on larger errors and also can be computed efficiently.

DQM-Q [30] proposes a different featurization approach. It uses one-hot encoding to encode
categorical columns and treats numerical attributes as categorical attributes by automatic
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discretization [15]. DQM-Q trains a neural network model. When a real-world query work-
load is available, DQM-Q is able to augment the training set and train the model with the
augmented set.

2.1.4 Methodology 2: Joint Distribution

Workflow. Figure 2.1(b) depicts the workflow of joint distribution methods. In the training
stage, it transforms the data into a format ready for training a joint distribution model. In
the inference stage, given a query, it generates one or multiple requests to the model and
combine the model inference results into the final CE result. To handle data updates, joint
distribution methods need to update or retrain the joint distribution model.

There are three joint distribution methods: Naru, DeepDB, and DQM-D. Compared to
traditional methods like histogram and sampling, these new methods adopt more complex
models to further capture additional information in the data, such as fine-grained correlation
or conditional probability between columns.

Autoregressive Model. Naru [93] and DQM-D [30] propose similar ideas. They factorize
the joint distribution into conditional distributions using the product rule:

P (A1, A2, ..., An) = P (A1)P (A2|A1) · · · P (An|A1, ..., An−1)

They adopt the state-of-the-art deep autoregressive models such as MADE [25] and Trans-
former [88] to approximate the joint distribution and achieve an impressive estimation
accuracy.

The joint distribution can directly return results to point queries. To support range
queries, they adopt a sampling based method, which runs importance sampling in an adap-
tive fashion. Specifically, Naru uses a novel approximation technique named progressive
sampling, which samples values column by column according to each internal output of
conditional probability distribution. DQM-D adopts an algorithm [46] originally designed
for Monte-Carlo multi-dimensional integration, which conducts multiple stages of sampling.
At each stage, it selects sample points in proportion to the contribution they make to the
query cardinality according to the result from the previous stage.

Sum-Product Network. DeepDB [32] builds Sum-Product Networks (SPNs) [70] to cap-
ture the joint distribution. The key idea is to recursively split the table into different clusters
of rows (creating a sum node to combine them) or clusters of columns (assuming different
column clusters are independent and creating a product node to combine them). KMeans
is used to cluster rows and Randomized Dependency Coefficients [51] is used to identify
independent columns. Leaf nodes in an SPN represent a single attribute distribution, which
can be approximated by histograms for discrete attributes or piecewise linear functions for
continuous attributes.

6



2.1.5 Limitations of Existing Experiments

As pointed in the Introduction, existing experimental studies have a number of limitations.
We provide more detail in this section.

Firstly, many new learned methods have not been compared with each other directly.
Figure 2.2 visualizes the available comparison results using a directed graph. Each node
represents a method, and if method A has compared with method B in A’s paper, we draw
a directed edge from A to B. Since many methods were proposed in the same year or very
close period, the graph is quite sparse and misses over half of the edges. For example, LW-
XGB/NN is one of the best regression methods, but it has no edge with any other method.
DeepDB and Naru are two state-of-the-art joint distribution methods, but there is no edge
between them.

2.3 Recent works comparison (Option 3)

MSCN
Naru

LW-XGB/NN

DeepDBDQM-D/Q
Figure 2.2: Comparison results available in existing studies.

Secondly, there is no standard about which datasets to use and how to generate work-
loads. Other than the IMDB dataset (adopted by MSCN and DeepDB), none of the datasets
adopted in one work appear in another work. As for workloads, these works generate syn-
thetic queries differently. Table 2.2 compares their generated workloads. For join queries in
the JOB-light benchmark (used in MSCN and DeepDB), we report their properties related
to single table. |D| denotes the number of columns in the dataset and OOD (out-of-domain)
means that the predicates of a query are generated independently. Such queries often lead
to zero cardinality.

Table 2.2: Workload used in existing experimental studies.

Predicate Operator Consider
Number Equal Range OOD

MSCN 0 ∼ |D| X X ×
LW-XGB/NN 2 ∼ |D| × close range X
Naru 5 ∼ 11 X open range X
DeepDB 1 ∼ 5 X X ×
DQM-D/Q 1 ∼ |D| X × X

Our Workload 1 ∼ |D| X X X

Thirdly, existing works are mostly focused on the static environment (i.e., no data update
setting). However, dynamic environments are also common in practice. Some papers have
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explored how their method performs when the data updates, but the way that they update
the data varies. As a result, the performance numbers cannot be used to compare between
methods. Furthermore, existing studies have not extensively explored the trade-off between
accuracy and updating time. For example, Naru is a more accurate method but requires
longer time to update the model. It is unclear whether it can still give good accuracy for
high update rates.

2.2 Related Work

Here we introduce some related works to learned cardinality estimation.

Single Table Cardinality Estimation. Histogram is the most common cardinality esti-
mation approach and has been studied extensively [69, 72, 33, 60, 23, 71, 27, 28, 85, 1, 6, 48,
80, 56, 59] and adopted in database products. Sampling based methods [49, 91, 24, 75, 95]
have the advantage to support more complex predicates than range predicates. Prior work
mainly adopts traditional machine learning techniques to estimate cardinality, such as
curve-fitting [9], wavelet [57], KDE [31], uniform mixture model [64], and graphical mod-
els [26, 14, 87]. Early works [43, 52, 50, 2] also use neural network models to approximate
the data distribution in a regression fashion. In comparison, new learned methods have
shown more promising results [36, 18].

Join Cardinality Estimation. Traditional database systems estimate the cardinality
of joins following simple assumptions such as uniformity and independence [44]. Some
works [36, 32] can support joins directly, while others [35, 89, 17, 92] study how to extend sin-
gle table cardinality estimation methods to support join queries. Empirical study [63] evalu-
ates different deep learning architectures and machine learning models on select-project-join
workloads. Leis et. al [45] propose an index-based sampling technique which is cheap but
effective. Focusing on a small amount of “difficult” queries, some works [90, 68] introduce
a re-optimization procedure during inference to “catch” and correct the large errors, while
another line of research tries to avoid poor plans by inferring the upper bound of the inter-
mediate join cardinality [7].

End-to-End Query Optimization. Recently, more and more works try to tackle the
query optimization problem in an end-to-end fashion. Sun et. al [81] propose a learning-
based cost estimation framework based on a tree-structured model, which estimate both
cost and cardinality simultaneously. Pioneer work [62] shows the possibility of learning state
representation of query optimization for the join tree with reinforcement learning, and many
follow-up works [54, 40, 86, 94] reveal the effectiveness of using deep reinforcement learning
for join order selection. Marcus et. al propose Neo [55], which uses deep learning to generate
query plans directly. There are also several end-to-end query optimization systems [3, 97, 78]
available in the open-source community.
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Benchmark and Empirical Study in Cardinality Estimation. Leis et. al [44] pro-
pose the Join Order Benchmark (JOB), which is based on the real-world IMDB dataset
with synthetic queries having 3 to 16 joins [44]. Unlike JOB, we focus on single table car-
dinality estimation. Ortiz et. al [63] provide an empirical analysis on the accuracy, space
and time trade-off across several deep learning and machine learning model architectures.
Our study is different from their work in many aspects. We include both data-driven and
query-driven learned methods (whereas they focus on query-driven models) and both static
and dynamic settings. Also we try to explore when learned models would go wrong with
controlled synthetic datasets and propose simple logical rules to evaluate them. Harmouch
et. al [29] conduct an experimental survey on cardinality estimation, but their target is on
estimating the number of distinct values, which is different from this thesis.

Machine Learning for Database Systems. Zhou et. al [98] provide a thorough survey
on how ML and DB can benefit each other. In addition to cardinality estimation, ML has the
potential to replace and enhance other components in database systems such as indexes [39]
and sorting algorithms [41]. Another aspect is to leverage ML to automate database con-
figurations like knob tuning [96, 84], index selection [67], and view materialization [34].
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Chapter 3

Experimental Setup

Our study evaluates learned cardinality estimators under different settings. We describe the
general setup used in all of our experiments in this chapter.

Evaluation Metric. We use q-error as our accuracy metric to measure the quality of the
estimation result. Q-error is a symmetric metric which computes the factor by which an
estimate differs from the actual cardinality:

error = max(est(q), act(q))
min(est(q), act(q)) .

For example, if a query’s actual cardinality is 10 and estimated cardinality is 100, then
error = max(100,10)

min(100,10) = 10.
Q-error is the metric adopted by all learned methods [36, 18, 93, 32, 30]. It measures the

relative error, which can penalize large and small results to the same extent. Furthermore,
it has been proved to be directly related to the plan quality in query optimization [58].

Learned Methods & Implementation. As shown in Table 2.1, there are five recently
published papers on learned cardinality estimation: Naru [93], MSCN [36], LW-XGB/NN [18],
DeepDB [32], and DQM [30]. We exclude DQM from our study since its data driven model
has a similar performance with Naru and its query driven model does not support our
workload (confirmed with DQM’s authors).

For Naru and DeepDB, we adopt the implementation released by the authors with minor
modifications in order to support our experiments. We choose ResMADE as basic autoregres-
sive building block for Naru because it is both efficient and accurate. For MSCN, since the
original model supports join query, it needs extra input features to indicate different joins
and predicates on different tables. To ensure a fair comparison on single table cardinality
estimation, we modify the original code by only keeping features represent predicates and
qualifying samples. We implement both neural network (LW-NN, on PyTorch [65]) and gra-
dient boosted tree (LW-XGB, on XGBoost [10]) approach for LW-XGB/NN according to the

10



description in its original paper [18], and use Postgres’s estimation result on single column
to compute the CE features.

Hardware and Platform. We perform our experiments on a server with 16 Intel Xeon
E7-4830 v4 CPUs (2.00GHz). For the neural network models (Naru, MSCN, LW-NN), we
run them not only on CPU but also on a NVIDIA Tesla P100 GPU to gain more insights
under different settings.

Our Study Questions. Our study is driven by the question: are we ready for learned
cardinality estimators? In order to answer this, we evaluate learned cardinality methods
under both static (Chapter 4) and dynamic (Chapter 5) settings. In order to gain more
insights, we further examine the situations when learned methods do not perform well
(Chapter 6).
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Chapter 4

Are Learned Methods Ready for
Static Environments?

Are learned estimators more accurate than traditional methods in static environment? What
is the cost for the high accuracy? In this chapter, we first compare the accuracy of learned
methods with traditional methods, and then measure their training and inference time in
order to see whether they are ready for production.

4.1 Setup

Dataset.We use four real-world datasets with various characteristics (Table 4.1). We choose
these datasets because first, the size of these datasets are in different magnitudes and the
ratio between categorical and numerical columns varies; second, each dataset has been used
in the evaluation of at least one prior work in this field.

Table 4.1: Dataset characteristics. “Cols/Cat" means the number of columns and categorical
columns; “Domain" is the product of the number of distinct values for each column.

Dataset Size(MB) Rows Cols/Cat Domain

Census 4.8 49K 13/8 1016

Forest 44.3 581K 10/0 1027

Power 110.8 2.1M 7/0 1017

DMV 972.8 11.6M 11/10 1015

1. Census [16]: Also known as the “Adult” dataset, which is extracted from the 1994
Census database. We remove the column fnlwgt since its values are nearly identical
and thus cause the cardinality result to be either 0 or 1 whenever a predicate is placed
on it.

2. Forest [16]: Forest cover type dataset consists of 54 attributes. As in [18], we keep the
first 10 numerical columns for evaluation (since the rest of the attributes are binary).
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3. Power [16]: Household electric power consumption data gathered in 47 months. The
same with [18] we use the 7 measurement attributes in our evaluation.

4. DMV [61]: Vehicle, snowmobile and boat registration records from the State of New
York. We directly adopt the same snapshot, which contains 11,591,877 tuples and 11
attributes, from previous work [93].

Workload. We describe our unified workload generator. The goal of our workload gener-
ator is to be able to cover all the workload settings used in existing learned methods (see
Table 2.2).

Intuitively, a query with d predicates can be thought of as a hyper-rectangle in a d-
dimensional space. A hyper-rectangle is controlled by its center and width. Correspondingly,
a query is controlled by its query center and range width. For example, consider a query
with d = 2 predicates:

SELECT COUNT(*) FROM R

WHERE 0 ≤ A1 ≤ 20 AND 20 ≤ A2 ≤ 100

Its query center is (20−0
2 , 100−20

2 ) = (10, 40) and its range width is (20 − 0, 100 − 20) =
(20, 80).

There are two ways to generate query centers. For ease of illustration, suppose that we
want to generate a query center for columns A1, A2. The first way ( 1 ) is to randomly select
a tuple t from the table. Let t[A1], t[A2] denote the attribute values of the tuple on A1 and
A2. Then, we set the query center to (t[A1], t[A2]). The second way ( 2 ) is to independently
draw a random value c1 and c2 from the domain of A1 and A2, respectively, and set the
query center to (c1, c2). 2 is called out-of-domain (OOD in Table 2.2), which aims to test
the robustness of learned estimators more comprehensively from the entire joint domain.

There are two ways to generate range widths. Let the domain for Ai be [mini,maxi] and
the domain size be sizei = maxi −mini. The first way ( 1 ) is to uniformly select a value wi

from [0, sizei]. The second way ( 2 ) is to select a value from an exponential distribution with
a parameter λi (we set λ = 10/sizei by default). Note that if Ai is a categorical column, we
will only generate an equality predicate for it, thus the width is set to zero in this case. If a
range on one side is larger than maxi or smaller than mini, then it becomes an open range
query. Thus, our workload contains both open and close range queries.

Our workload generator covers all the above settings ( 1 , 2 , 1 , 2 ). To generate a query,
we first uniformly select a number d from 1 to |D| and randomly sample d distinct columns
to place the predicates. The query center is generated from 1 and 2 with a probability
of 90% and 10%, respectively, and the range width is generated from 1 and 2 in equal
proportions. The reason that we do not use an equal probability for the query center is
that OOD is typically less common than the other way in real workloads. Figure 4.1 shows
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the selectivity distribution of generated workloads on different datasets, which results in a
broad spectrum.

10−3 10−2 10−1 100
Query Selectivity

0.0
0.2
0.4
0.6
0.8
1.0

F
ra
ct
io
n Census
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Power
DMV

Figure 4.1: Distribution of workload selectivity.

Hyper-parameter Tuning. We describe hyper-parameter tuning for each model.
For neural network methods (Naru, MSCN, LW-NN), we control the model size within

1.5% of the data size for each dataset. For each method, we select four model architectures
with different numbers of layers, hidden units, embedding size, etc. and train each model in
different batch size and learning rate in accordance with the original papers. Since MSCN
and LW-NN are query-driven methods, we select 10K queries as a validation set to determine
which hyper-parameters are better. Since Naru is a data-driven method (i.e., no query as
input), we use training loss to find optimal hyper-parameters.

For LW-XGB, we vary the number of trees (16, 32, 64...) as in [18]. Since LW-XGB is a
query-driven method, similar to MSCN and LW-NN, we select 10K validation queries for it.

For DeepDB, we do a grid search on RDC threshold and minimum instance slice and only
keep the models within the size budget (i.e., 1.5% of the data size). An interesting finding is
that DeepDB does not output the training loss like Naru during construction, thus queries
are needed for hyper-parameter tuning. However, DeepDB is designed to be a data-driven
method, which is not supposed to use queries. To ensure a fair comparison with other
methods, we select a very small number of validation queries (i.e., 100 queries) for DeepDB
to do hyper-parameter tuning.

To ensure a fair comparison, we use 100K queries to train all the query-driven methods
(MSCN, LW-XGB/NN).

Traditional Techniques. We compare with a variety of traditional techniques, which are
either used by real database systems or reported to achieve the state-of-the-art performance
recently.

• Postgres, MySQL and DBMS-A are used to represent the performance of real database
systems. We use PostgreSQL 11.5 and 8.0.21 MySQL Community Server in our ex-
periment, and DBMS-A is a leading commercial database system. They estimate car-
dinality rapidly with simple statistics and assumptions. In order to let them achieve
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their best accuracy level, we set the statistics target to the upper limit (10,000 for
Postgres, 1024 for MySQL). For DBMS-A, we create several multi-column statistics in
order to cover all columns with histograms.

• Sampling uses a uniform random sample to estimate the cardinality. We sample 1.5%
tuples from each dataset to make the size budget the same as the learned models.

• MHIST [71] builds a multi-dimensional histogram on the entire dataset. We choose
Maxdiff as the partition constraint with Value and Area being the sort and source
parameter since it is the most accurate choice according to [72]. We run the MHIST-2
algorithm iteratively until it reaches to 1.5% of the data size.

• QuickSel [64] represents query-driven multi-dimensional synopsis approaches’ perfor-
mance. It models the data distribution with uniform mixture model by leveraging
query feedback. We choose QuickSel because it shows better accuracy than query-
driven histograms including STHoles [6] and ISOMER [80] in [64]. We use 10K queries
to train the model.

• Bayes [13] shows the estimation results of probabilistic graphical model approaches [26,
87, 14]. We adopt the same implementation in [93], which uses progressive sampling
to estimate range queries and shows a very promising accuracy.

• KDE-FB [31] represents the performance of modeling data distribution with kernel
density models. It improves naive KDE by optimizing the bandwidth with query
feedback. We sample 1.5% tuples from each dataset (max to 150K) and use 1K queries
to train the model.

4.2 Are Learned Methods More Accurate?

We test all the methods using 10K queries on each dataset. Table 4.2 shows the q-error
comparison result. Bold values in the “Traditional Methods” section denotes the minimum
q-error that traditional methods can reach, while in the “Learned Methods” section it
highlights the learned methods that can achieve a smaller (or equal) q-error than the best
traditional method. The last row summaries the comparison by using “win” to denote
learned methods beating traditional methods, and “lose” means the opposite.

Overall, learned methods are more accurate than traditional methods in almost all the
scenarios. The best learned method can beat the best traditional method up to 14× on max
q-error. The improvement over the three real database systems is particularly impressive.
For example, they achieve 28×, 51×, 938×, and 1758× better max q-error on Census, Forest,
Power and DMV, respectively. Even in the only exception that learned methods lose (50th
on Forest), they can still achieve very similar performance to the best traditional result.
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Among all learned methods, Naru is the most robust and accurate one. It basically has
the best q-error across all scenarios and keeps its max q-error within 200. As for query-driven
methods, LW-XGB can achieve the smallest q-error in most situations except for max q-error,
in which it cannot beat MSCN. We find that the queries which have large errors on LW-XGB
and LW-NN usually follow the same pattern: the selectivity on each single predicate is large
while the conjunctive of multiple such predicates is very small. This pattern cannot be well
captured by the CE features (AVI, MinSel, EBO) adopted LW-XGB/NN. In comparison,
MSCN can handle this situation better which may be due to the sample used in its input.

4.3 What Is the Cost For High Accuracy?

Since learned methods can beat the cardinality estimators used in real database systems by
a large margin, can we just directly deploy them? In this section, we examine the cost of
these highly accurate learned methods. We compare learned methods with database systems
in terms of training time and inference time. Figure 4.2 shows the comparison result.
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Figure 4.2: Training and inference time comparison between learned methods and real
database system (MSCN’s CPU and GPU results on DMV are overlapped).

Training Time. For learned methods, we record the time used to train the models reported
in Table 4.2. For database systems, we record the time to run the statistics collection
commands.

Database systems can finish constructing statistics in seconds on all datasets, while
learned methods generally need minutes or even hours to train a model. LW-XGB tends
to be the fastest learned methods, which can even achieve better performance than some
database systems on small datasets since fewer trees are created. DeepDB is the second
fastest and needs a few minutes to train the model. Since we run the same number of
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epochs on all datasets, Naru’s training time highly depends on the data size. With GPU, it
only needs 1 minute on Census but takes more than 4 hours on DMV, and this time would
be 5× to 15× slower on CPU. LW-NN also benefits from GPU acceleration, which takes
around 30 minutes to finish training on all datasets but the time can be up to 20× longer
if using CPU. On the other hand, MSCN exhibits similar training time on the two devices,
and GPU is even 3.5× slower than CPU on small datasets. Our guess is that MSCN uses for
loops to handle the conditional workflow when minimizing the mean q-error, which cannot
make use of the strength of GPU and the overhead becomes more obvious when the model
itself is small.

There is a tradeoff between training time and model accuracy. Neural network methods
(Naru, MSCN and LW-NN) trained in an iterative fashion would produce larger error with
fewer training iterations. For all these models, we adopt the same epochs reported in the
original paper on all datasets, although some models can achieve similar performance with
much fewer iterations. For example, using 80% less time, we can train a Naru model on
DMV dataset with only slightly performance degrade. However, even if we only run 1 epoch
on GPU, it will still be much slower than database systems. We will further explore this
trade-off in Section 5.3.

Inference Time. We compute the average inference time of the 10K test queries by issuing
the queries one by one. Figure 4.2 shows the result. For database systems, we approximate
the time by the latency they return execution plan (without executing it), which should be
longer than the real cardinality estimation time due to other overheads such as parsing and
binding. Despite of that, all three DBMSs can finish the whole process in 1 or 2 milliseconds.
Query-driven models (MSCN and LW-XGB/NN) are very competitive, which can achieve
similar or better latency (but notice that DBMS’s result includes other overheads). The
remaining models are much slower. DeepDB needs around 25ms on the three larger datasets
and takes an average of 5ms on Census. Naru’s inference time is sensitive to the running
device, which needs 5ms to 15 ms on GPU and CPU can be up to 20× slower.

The cardinality estimator could be invoked many times during query optimization. Long
inference latency can be a blocking issue of bring these accurate learned estimators like Naru
and DeepDB into production, especially for OLTP applications with short-running queries.
In addition, shortening the inference time of these methods is not a trivial task. Take Naru
as an example. Its bottleneck is the dependency of the selectivity computation for each
attribute in the progressive sampling procedure, which needs to be done sequentially.

Hyper-parameter Tuning. Hyper-parameter tuning is another cost for learned methods.
The learned models shown in Table 4.2 represent the models with the best hyper-parameters.
Without hyper-parameter tuning, the learned models could perform very badly. Table 4.3
shows the ratio between the largest and the smallest max q-error among all the neural
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network models trained during hyper-parameter tuning. We can see that the ratio for Naru,
MSCN and LW-NN can be up to 105, 102 and 10, respectively.

Table 4.3: Ratio between the worst and best max q-error

Estimator Census Forest Power DMV
Naru 10.51 5.69 12.74 4 · 105

MSCN 4.48 36.52 88.89 7.55
LW-NN 3.48 4.64 8.58 8.06

While essential for high accuracy, hyper-parameter tuning is a highly expensive process
since it needs to train multiple models in order to find the best hyper-parameters. For
example, as shown in Figure 4.2, Naru spends more than 4 hours in training a single model
on DMV with GPU. If five models are trained, then Naru needs to spend 20+ hours (almost
a day) on hyper-parameter tuning.

4.4 Main Findings

Our main findings of this chapter are summarized as follows:

• In our experiment, new learned estimators can deliver more accurate prediction than
traditional methods in general and among learned methods, Naru shows the most
robust performance.

• In terms of training time, new learned methods can be slower than DBMS products in
magnitudes except for LW-XGB, which can achieve similar performance with database
systems on small datasets.

• New learned estimators that based on regression models (MSCN and LW-XGB/NN)
can be competitive to database systems in inference time, while methods that model
the joint distribution directly upon data (Naru and DeepDB) requires much longer
time.

• GPU can speed up the training and inference time of some of the new learned es-
timators, however it cannot make them as quick as DBMS products and sometimes
introduce overhead.

• Hyper-parameter tuning is an extra cost which cannot be ignored for adopting neural
network based estimators.
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Chapter 5

Are Learned Methods Ready for
Dynamic Environments?

Data updates in databases occur frequently, leading to a “dynamic” environment for car-
dinality estimators. In this chapter, we aim to answer a new question: Are learned methods
ready for dynamic environments? We first discuss how learned methods perform against
DBMSs in dynamic environments, then explore the trade-off between the number of updat-
ing epochs and accuracy, and finally investigate how much GPU can help learned methods.

5.1 Setup

Dynamic Environment. In a dynamic environment, both model accuracy and updating
time matter. Consider a time range [0, T ]. Suppose that there are n queries uniformly
distributed in this time range. Suppose that given a trained initial model, the model update
starts at timestamp 0 and finishes at timestamp tu (tu ≤ T ). For the first n · tu

T queries,
their cardinalities will be estimated using the stale model. For the remaining n · (1 − tu

T )
queries, the updated model will be used.

Figure 5.1 shows an example. Suppose T = 100 mins and Naru spends tu = 75 mins
updating its model. Then, Naru needs to estimate the cardinalities for 75% (25%) of the
queries using the stale (updated) model. Since many queries will be handled by the (inac-
curate) stale model, although Naru performs the best in the static environment, this may
not be the case in this dynamic environment.

0 T = 100 mins

Stale Model Updated ModelNaru

25% queries75% queries

Finish updating

tu = 75 mins

Start updating

Figure 5.1: An illustration of a dynamic environment.
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Dataset & Workload & Metric We use the same four real-world datasets as Chapter 4.
We append 20% new data to the original dataset and apply our workload generation method
to the updated data to general 10K test queries. That is, there are 10K queries uniformly
distributed in [0, T ]. Here, T is a parameter in our dynamic environment. Intuitively, it
represents how “frequent” the data is being updated. For example, if the data is periodically
updated every 100 mins, then we can set T = 100 mins. We report the 99th percentile q-error
of the 10K queries.

Data Update. We ensure that the appended 20% new data has different correlation char-
acteristics from the original dataset. Otherwise, the stale model may still perform well and
there is no need to update the model. To achieve this, we create a copy of the original
dataset and sort each column individually in ascending order, which leads to the maximum
Spearman’s rank correlation between every pair of columns. We randomly pick up 20% of
the tuples from this copied dataset and append them to the original dataset.

Model Update. The initial models we use are the same as Chapter 4, which are tuned
towards a better accuracy. We follow the original papers of the learned methods to update
their models. Naru and DeepDB are trained on data. As described in their papers, Naru
is updated by one epoch, while DeepDB is updated by inserting a small sample (1%) of
the appended data to its tree model. MSCN and LW-XGB/NN use query results as training
data. Since the updating procedure is not discussed in the original MSCN paper, we adopt
LW-XGB/NN’s updating procedure for MSCN. After generating a training workload, we use
a sample (5% of the original datasets) to update the query label. LW-XGB and LW-NN
originally use 8K and 16K queries for updating accordingly. We assign 10K queries for
MSCN as a fair size of training data.

Note that the updating time is different from the training time presented in Figure 4.2.
To update a model quickly, the updating time involves fewer epochs. Also, for query driven
methods, they need to add the query results’ updating time because this is a major difference
between data-driven and query-driven learned methods.

5.2 Which Method Performs the Best in Dynamic Environ-
ments?

In this experiment, we test 5 learned methods against 3 DBMSs on CPU. We vary T for
each dataset to represent different update frequencies: high, medium, low. Note that our
four datasets are different in size, so T is set differently for each dataset. The results are
shown in Figure 5.2. If a model cannot finish within T , we will put “×” in the figure.

We first compare DBMSs with learned methods. We can see that DBMSs have more
stable performance than learned methods by varying T . The reason is that DBMSs have
very short updating time and almost all the queries are run on their updated statistics.
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Figure 5.2: Comparison of learned methods and DBMSs under different dynamic environ-
ments on four datasets.

We also observe that many learned methods cannot catch up with fast data updates. Even
if they can, they do not always outperform DBMSs. For example, when T = 50 mins on
DMV, DBMS-A outperforms DeepDB by about 100× since the updated DeepDB model
cannot capture correlation change well.

We then compare different learned methods. Overall, LW-XGB can perform better or
at least comparable with others in most cases. MSCN and LW-NN do not perform well
since they need longer updating time and the stale models process too many queries. Recall
that Naru has a very good accuracy when there is no update. In dynamic environments,
however, Naru does not outperform LW-XGB when update frequencies are high or medium.
Naru has a similar performance with DBMSs on Census and Forest. This is because Naru
uses 1 epoch to update its model. Although it enables a shorter updating time, 1 epoch is
not enough to have good accuracy for Census and Forest datasets. For DMV, we have the
same observation as [18]. Naru performs well on DMV within 1 epoch. We will discuss this
trade-off between updating epochs and accuracy in the next subsection. DeepDB usually
has a very short updating time. However, its updated model cannot capture the correlation
change well, thus it does not outperform LW-XGB/NN in most cases.

In terms of updating time, there is no all-time winner on different datasets. For example,
on Census, DeepDB (data driven) is the fastest method, whereas on DMV, LW-XGB (query
driven) is the fastest one, although these two methods are the top-2 fastest methods in this
experiment. The reason behind this is that the updating time of data driven methods is
usually proportional to the size of the data. Intuitively, data driven methods compress the
information of the data to the models to represent the joint distribution. When the size
of the data gets larger, the complexity of the model should be higher and harder to train.
In contrast, query driven methods have the training overhead of generating query labels.
However, given a larger dataset and a fixed number of training queries, the complexity of
their models do not necessarily become higher. In practice, the choice of using data or query
driven methods is really subjective to the applications.
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5.3 What Is the Trade-off Between Updating Time and Ac-
curacy?

We explore the trade-off between the number of updating epochs and accuracy for learned
methods. Due to the space limit, we only show Naru’s results on Census and Forest to
illustrate this point.

We set T = 10 mins on Census and T = 100 mins on Forest to ensure Naru with differ-
ent epochs can finish updating within T . Figure 5.3 shows our results. “Stale” represents
the stale model’s performance on 10K queries. “Updated” represents the updated model’s
performance. “Dynamic” represents the Naru’s performance (the stale model first and then
the updated model) on 10K queries. We can see a clear trade-off of Naru on Forest. That
is, “Dynamic” first goes down and then goes up. The reason is that long training time
(epochs) makes the model update slow. It leaves more queries executed using the stale
mode. Even though more epochs improve the updated model’s performance, it hurts the
overall performance.
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Figure 5.3: Trade-off (Naru): epochs vs accuracy.

In this Naru experiment, we show the trade-off between updating time and accuracy by
varying the number of epochs. There are other ways to achieve this trade-off. For example,
for query-driven methods, they need to update the answers to a collection of queries. Using
sampling is a nice way to reduce the updating, but it will lead to approximate answers,
thus hurting the accuracy. It is an interesting research direction to study how to balance
the trade-off for learned methods.

5.4 How Much Does GPU Help?

We explore how much GPU can help Naru and LW-NN. We set T = 100 mins on Forest and
T = 500 mins on DMV to ensure they can finish updating within T . The results are shown
in Figure 5.4.

We can see that with the help of GPU, LW-NN is improved by around 10× and 2× on
Forest and DMV, respectively. There are two reasons for these improvements: (1) LW-NN’s
training time can be improved by up to 20× with GPU; (2) A well-trained LW-NN (500
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Figure 5.4: GPU affects the performance.

epochs) has a good accuracy. For Naru, it is improved by 2× on DMV. However, it does
not get improved on Forest. This is because that 1 epoch is not enough for Naru to get a
good updated model on Forest, although shorter updating time leaves more queries for the
updated model.

5.5 Main Findings

Our main findings of this chapter are summarized as follows:

• Learned methods cannot catch up with fast date updates. MSCN, LW-NN, Naru, and
DeepDB return large error in dynamic environments for different reasons.

• Within learned methods, there is no clear winner. Naru performs the best when date
updates are not frequent, while LW-XGB performs the best in more dynamic environ-
ments.

• In terms of updating time, DeepDB is the fastest data-driven method and LW-XGB is
the fastest query-driven method, but there is no clear winner between DeepDB and
LW-XGB.

• There is a trade-off between updating time and accuracy for learned methods. It is
not easy to balance the trade-off in practice and requires more research efforts on this
topic.

• GPU is able to, but not necessarily, improve the performance. It is important to design
a good strategy to handle model updates in order to benefit from GPU.
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Chapter 6

When Do Learned Estimators Go
Wrong?

One advantage of simple traditional methods like histogram and sampling is their trans-
parency. We know that when the assumptions (e.g., attribute-value-independence (AVI),
uniform spread) made by these estimators are violated, they tend to produce large q-errors.
In comparison, learned estimators are opaque and lack understanding. In this chapter,
we seek to explore scenarios when learned methods do not work well. We run a micro-
benchmark to observe how their large error changes when we alter the underlying dataset.
We also identify some logical rules that are simple and intuitive but are frequently violated
by these learning models.

6.1 Setup

Dataset. We introduce our synthetic dataset generation procedure. We generate datasets
with two columns by varying three key factors: distribution (of the first column), correlation
(between the two columns) and domain size (of the two columns). Each dataset contains 1
million rows.

The first column is generated from the genparato function in scikit-learn [66], which can
generate random numbers from evenly distributed to very skewed. We vary the distribution
parameter s from 0 to 2, where s = 0 represents uniform distribution and the data becomes
more skewed as s increases.

The second column is generated based on the first column in order to control the cor-
relation between the two columns. We use c ∈ [0, 1] to represent how correlated the two
columns are. For each row (v1, v2), we set v2 to v1 with a probability of c and set v2 to
a random value drawn from the domain of the first column with a probability of 1 − c.
Obviously, the two columns are independent when c = 0. They are more correlated as c
increases and become functional dependent when c = 1.
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We also consider domain size d (the number of distinct values), which is related to the
amount of information contained in a dataset. It can affect the size needed to encode the
space for models like Naru. To control the domain size, we convert the generated continuous
values into bins. In our experiment, we generate datasets with domain size 10, 100, 1K and
10K.

Workload. Since the goal of this experiment is to study the cases when learned methods
go wrong, we generate center values from each column’s domain independently (OOD) for
all the queries in order to explore the whole query space and find as many hard queries as
possible. Other workload generation settings are the same as Chapter 4.

Hyper-parameter Tuning. We adopt the default hyper-parameters recommended in [32]
(RDC threshold = 0.3 and minimum instance slice = 0.01) for DeepDB and fix the tree
size of LW-XGB to 128. As for neural network models, we randomly pick up three hyper-
parameter settings with 1% size budget using the same way as Chapter 4 and select one
that consistently reports good results.

6.2 When Do Learned Estimators Produce Large Error?

We examine how the accuracy of learned models will be affected by different factors. We
train the exact same model on datasets with only one factor varied and the other two fixed,
and use the same 10K queries to test the models. Instead of comparing different models,
here we aim to observe the performance change for the same model on different datasets.
We only exhibit the distribution of the top 1% q-errors to make the trend on large errors
more clear.

Correlation. A common thing we found when we vary the correlation parameter c is that
all methods tend to produce larger q-error on more correlated data. Figure 6.1a shows the
top 1% q-error distribution trend on different correlation degrees with the first column
distribution s = 1.0 (exponential distribution) and domain size d = 1000. It is clear that
boxplots in all the figures have a trend to go up when c increases.

Another observation is that the q-error of all estimators rises dramatically (10 ∼ 100×)
when two columns become functional dependent (c = 1.0). This pattern commonly exists
on different pairs of s and d values we tested, which indicates that there is space to im-
prove theses learned estimators on highly correlated datasets especially when functional
dependency exists.

Distribution. Each learned method reacts differently when we change the distribution of
the first column. Figure 6.1b shows the top 1% q-error distribution trend when s goes from
0.0 to 2.0 while fixing the correlation c = 1.0 and domain size d = 1000.

In general, Naru outputs larger max q-errors when data is more skewed (s > 1.0), while
MSCN, LW-XGB/NN and DeepDB show an opposite pattern. We suspect this difference
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Figure 6.1: Top 1% q-error distribution under different correlations (a), distributions (b)
and domain size (c).
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might be caused by the different basic building blocks used in each method. The common
thing shared within the latter approaches is that they all incorporate basic synopsis like
sampling or 1D histogram in their models. These statistics might directly record a relatively
accurate cardinality for the query involving a frequent value in the dataset, and thus reduce
the max error when data is very skewed. If this is true, we can study how to incorporate a
similar idea into Naru and make it more robust on skewed data.

Another interesting thing is that unlike max q-error, the 99th percentile q-error (the
lower extreme of the boxplot since we only report top 1% q-errors) shows an opposite
pattern on MSCN and DeepDB. Here we guess that for both methods, it might be because
of the number of queries with very small selectivity increases when s increases. In such
cases, the sample feature in MSCN would remain in all zero on many queries, which is not
very useful. As for DeepDB, since its leaf node has the AVI assumption, it would produce
very large result when the selectivity of each predicate is large but the combined result is
very small, which is common when s is large.

Domain Size. Figure 6.1c shows the top 1% q-error distribution on datasets generated
under different domain size (s = 1.0 and c = 1.0). Notice that Naru may use a different
model architecture on each domain size to meet the same 1% size budget.

Except for LW-NN, all methods output larger error on larger domain size. Naru exhibits
a 100× performance degrade when domain size goes from 1K to 10K. This may be because
that the embedding matrix on 10K domain occupies a big portion of the size budget and thus
the rest of the model does not have enough capacity to learn the data distribution. Having
a more efficient encoding method could mitigate this issue for Naru. LW-XGB shows a very
strong result when domain size is 10 and the error becomes 100× bigger on larger domains.
MSCN and DeepDB are relatively more robust than other methods but still experience
around 10× degrade when domain size increases from 10 to 10K.

It is interesting to see that LW-NN and LW-XGB show opposite trend even though they
share the same input feature and optimization goal. It is very likely that this phenomenon is
caused by the underlying model they adopt. We suspect that the input query space becomes
more “discrete” when the domain size is as small as 10. Therefore a small change in the
query predicate can dramatically change the cardinality result or might not affect it at all.
It can be hard for the neural network used in LW-NN to learn since compared with the
tree-based model in LW-XGB, neural network intuitively fits the data in a more smooth and
continuous way.

6.3 Do Learned Estimators Behave Predictably?

During our experimental study, we identify some illogical behaviors from some of the learned
models. For example, when we changed one of the query predicates from [320, 800] to a
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smaller range [340, 740], the real cardinality decreased, but the estimated cardinality by
LW-XGB unexpectedly increased by 60.8%.

This kind of unreasonable behavior caught our attention. The violation of simple logical
rules like this could cause troubles for both DBMS developers and users (see Section 6.4
for more discussion). Inspired by the work [82] in the deep learning explanation field, we
propose five basic rules for cardinality estimation. These rules are simple and intuitive which
the users may expect cardinality estimators to satisfy:

1. Monotonicity: With a stricter (or looser) predicate, the estimation result should not
increase (or decrease).

2. Consistency: The prediction of a query should be equal to the sum of the predictions
of queries split from it (e.g. a query with predicate [100, 500] on Ai can be split to two
queries with [100, 200) and [200, 500] on Ai respectively and other predicates remain
the same).

3. Stability: For any query, the prediction result from the same model should always
be the same.

4. Fidelity-A: The selectivity estimation should be equal to 1 for querying on the entire
domain (e.g. SELECT * FROM R WHERE mini ≤ Ai ≤ maxi).

5. Fidelity-B: The estimation should be 0 for a query with an invalid predicate (e.g.
SELECT * FROM R WHERE 100 ≤ Ai ≤ 10).

According to these proposed rules, we check each learned estimator and summarize
whether it satisfies or violates each rule in Table 6.1. Some of the rules like Fidelity-B can
be fixed with some simple checking mechanisms, however here we only consider the original
output of the underlying model used in each estimator in order to see whether these models
behave in a logical way natively.

Table 6.1: Satisfaction and violation of rules by learned estimators. (X: satisfied, ×: violated)

Rule Naru MSCN LW-XGB LW-NN DeepDB

Monotonicity × × × × X
Consistency × × × × X
Stability × X X X X
Fidelity-A X × × × X
Fidelity-B X × × × X

Naru’s progressive sampling technique introduces uncertainty to the inference process,
which causes the violation of stability. Specifically, we find that the estimations on the same
query can vary dramatically when two columns are functional dependent and the query
predicate covers a large range on the first column while only a few values on the second
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Figure 6.2: Prediction result of running Naru on the same query 2000 times (s = 0.0, c = 1.0,
d = 1000).

column. It is because the variance of the conditional probabilities that Naru would sample
during inference is very large. Figure 6.2 shows an example of the estimation results using
Naru to run a query (the actual cardinality is 1036) for 2000 times under this setting. The
results are spread over the range of [0, 5992]. This instability also causes Naru to violate
monotonicity and consistency rules.

The regression-based methods (MSCN, LW-NN, LW-XGB) violate all the rules except for
stability. It is not a very surprising result since there is no constraint enforced to the model
during both training and inference stages. In comparison, DeepDB does not violate any
rules since it is built on basic histograms and the computation between nodes is restricted
to addition and multiplication.

6.4 What Will Go Wrong in Production?

We discuss four issues that may appear when deploying (black-box and illogical) learned
models in production.

Debuggability. It is challenging to debug black-box models like Naru, MSCN and LW-
XGB/NN. Firstly, black-box models may fail silently, thus there is a high risk to miss a bug.
For example, if there is a bug in the hyper-parameter tuning stage, the model can still be
trained and may pass all test cases. Secondly, black-box models make it hard to trace an
exception back to the actual bug. If the learned model produces a large error for a given
query, it is difficult to tell whether it is a normal bad case or caused by a bug in the code
or training data.

Explainability. Another related issue is that black-box models lack explainability. It brings
some challenges for query optimizer version update. We might find a model architecture or
hyper-parameter method improve the estimation accuracy and want to add it to the new
version. However, it is hard to explain to the database users about which type of query and
what kind of scenario will be affected by this upgrade.

Predicability. Since learned methods do not follow some basic logic rules, the database
system may behave illogically, thus confusing database users. For example, a user would
expect a query to run faster by adding more filter conditions. Due to the violation of the
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monotonicity rule, this may not be the case when the database system adopts a learned
model like Naru, MSCN, or LW-XGB/NN.

Reproducibility. It is common that a database developer wants to reproduce customers’
issues. In order to reproduce the issues, the developer needs information, such as the in-
put query, optimizer configurations, and metadata [79]. However, if the system adopts Naru
which violates the stability rule, it would be hard to reproduce the result due to the stochas-
tic inference process.

6.5 Main Findings

Our main findings of this chapter are summarized as follows:

• All new learned estimators tend to output larger error on more correlated data, and
the max q-error jumps quite dramatically when two columns are functional dependent.

• Different methods react differently for more skewed data or for data with larger domain
size. This might be due to the differences in the choice of models, input features, and
loss functions.

• We propose five rules for cardinality estimators and find that all new learned models
except for DeepDB violate these rules.

• The non-transparency of the models used in new learned estimators can be trouble-
some in terms of debuggability, explainability, predicabiltiy, and reproducibility when
deployed in production.
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Chapter 7

Conclusion

In this thesis, we raised an important but unexplored question: “Are we ready for learned
cardinality estimation?”. We surveyed seven new learned methods and put them into a
taxonomy. We found that existing experimental studies are inadequate to answer this ques-
tion. In response, we proposed a unified workload generator and conducted comprehensive
experiments on four real-world and one synthetic datasets. We explored whether learned
methods are ready for both static environments and dynamic environments, and dived into
when learned methods may go wrong.

We concluded that new learned methods are more accurate than traditional methods.
However, in order to put them in a well-developed system, there are many missing parts
to be resolved, such as low speed in training and inference, hyper-parameter tuning, black-
box property, illogical behaviors, and dealing with frequent data updates. As a result, the
current learned methods are still not ready to be deployed in a real DBMS. Overall, this is
an important and promising direction to be further explored by the database community.
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Chapter 8

Future Work

We have showed that the high cost (Chapter 4 and Chapter 5) and the non-transparency
(Chapter 6) are the two main challenges of applying learned carnality estimators in DBMS.
What can we do in order to close these gaps? In this chapter, we discuss future work
opportunities for learned cardinality estimation in the two research directions. We also
further discuss the limitation of this experimental study and what can be done in the next
stage.

8.1 Research Opportunity

We propose the two research directions targeting on the two disadvantages of learned meth-
ods: high cost and non-transparency.

8.1.1 Control the Cost of Learned Estimators

Balance the Efficiency-Accuracy Tradeoff. Balancing the tradeoff between accuracy
and training (updating) time as well as inference latency can be an interesting aspect to
start with. To retrain a model, simple approximate methods like using a sample instead of
full data to calculate the queries’ ground-truth or incrementally updating the model, can be
leveraged to make neural network models more efficient. Similar ideas in machine learning
techniques such as early stop [8] and model compression [11] can also be used to reduce the
cost.

Ensemble methods can also be a way to balance this tradeoff. A fast but less accurate
method can be used as a temporary replacement when the slow but accurate model is not
ready. Another idea is to apply multiple approaches in a hierarchical fashion. For example, if
a query is less complex (e.g., having fewer predicates [75]), we can use lightweight methods
to estimate the cardinality, otherwise we choose the heavy but accurate one.

Hyper-parameter Tuning for Learned Estimators. Hyper-parameter tuning is crucial
for new learned models to achieve high accuracy. Algorithms like random search [5], bayesian
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optimization [76], and bandit-based approaches [47] can be adopted to reduce the cost of
obtaining a good hyper-parameter configuration.

Meta-learning tackles the hyper-parameter tuning problem in a “learning to learn” fash-
ion [20, 22, 4]. The basic idea is to learn from a wide range of learning tasks and solve new
similar tasks using only a few training samples. Specifically, when we want to train a model
for cardinality estimation on a new dataset or a new workload, there is no need to start
entirely from scratch. Instead, we can leverage our previous learning experience, such as
the relationship between dataset characteristics and good hyper-parameter sets, in order to
obtain a good configuration more efficiently.

Another aspect for hyper-parameter tuning is the goal of tuning. Usually, the goal is to
find the configuration with the best accuracy/loss. In the cardinality estimation setting, it
is worth doing more exploration to take training/updating time into consideration, because
of the trade-off above.

8.1.2 Make Learned Estimators Trustworthy

Interpret Learned Estimators. There have been extensive works in machine learning
explanation trying to understand why a model makes a specific prediction for a specific
input, such as surrogate models [73], saliency maps [77], influence function [37], decision
sets [42], rule summaries [74], and general feature attribution methods [83, 53]. These tech-
niques could be leveraged to interpret black box cardinality estimators to some extend. For
example, when we get a large error for a query during the test phase, we can use influence
function [37] to find the most influential training examples, or we can use shapely value [53]
to check the importance of each input feature. However, how effective these methods are in
the cardinality estimation setting is still an open problem.

Handle Illogical Behaviours. Our study shows that many learned methods do not behave
logically. One way to handle this is to define a complete set of logical rules and identify
which rules are violated for a certain method. This will add more transparency to each
learned method and enable the database developers to know what kind of behavior can be
expected from each method. The logical rules we propose in Section 6.3 can be seen as an
effort from this perspective. Another way is to enforce logical rules as constraints for model
design. There are some existing works in the machine learning community [38, 12, 21].
Similar ideas could be applied to the design of cardinality estimation models.

8.2 Limitation and Future Work

In this section, we present some limitations of this experimental study and what we can do
in the next stage:
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• We only focus on the problem of single table cardinality estimation. The cardinality of
join query is a more challenging problem and there are many works trying to improve
existing solutions (Section 2.2). As future work, we plan to extend our experimental
study to join query and identify new challenges that are caused by the join operation
for learned methods.

• For the evaluation in dynamic environment (Chapter 5). We construct synthetic data
update and do not consider cases when data is static but query workload changes. In
the next step, we plan to explore and conduct experiments on real-world data updates.
We will also include workload drift scenarios in our future work.

• For now, we only examine each method to see whether they satisfy a logic rule or not
(Section 6.3). For methods that violate the rules, our next plan is to design experiments
to show how frequently these rules are violated.

• We plan to do an end-to-end evaluation in our next step to see how the accuracy
improvement and high cost of learned methods can actually impact the overall per-
formance including both query optimization and execution.
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