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a b s t r a c t

In this paper, we establish a unified framework for subspace identification (SID) of linear parameter-
varying (LPV) systems to estimate LPV state–space (SS) models in innovation form. This framework
enables us to derive novel LPV SID schemes that are extensions of existing linear time-invariant (LTI)
methods. More specifically, we derive the open-loop, closed-loop, and predictor-based data-equations
(input–output surrogate forms of the SS representation) by systematically establishing an LPV subspace
identification theory. We also show the additional challenges of the LPV setting compared to the LTI
case. Based on the data-equations, several methods are proposed to estimate LPV-SS models based
on a maximum-likelihood or a realization based argument. Furthermore, the established theoretical
framework for the LPV subspace identification problem allows us to lower the number of to-be-
estimated parameters and to overcome dimensionality problems of the involved matrices, leading to
a decrease in the computational complexity of LPV SIDs in general. To the authors’ knowledge, this
paper is the first in-depth examination of the LPV subspace identification problem. The effectiveness of
the proposed subspace identification methods are demonstrated and compared with existing methods
in a Monte Carlo study of identifying a benchmark MIMO LPV system.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Realization based state–space identification techniques, so-
alled subspace identification (SID) methods, have been success-
ully applied in practice to estimate time-varying and/or
onlinear dynamical systems using linear parameter-varying (LPV)
tate–space (SS) models. Successful application examples range
rom diesel engines (Schulz, Bussa, & Werner, 2016), wind-
urbines (Felici, van Wingerden, & Verhaegen, 2007; van Winger-
en, Houtzager, Felici, & Verhaegen, 2009), gas pipelines (Lopes
os Santos, Azevedo-Perdicoulis, & Ramos, 2010), traffic flow
odels (Luspay, Kulcsár, Van Wingerden, & Verhaegen, 2009),
nd bioreactors (Verdult, Ljung, & Verhaegen, 2002) to non-
inear benchmark systems like the Lorenz attractor (Larimore,
ox, & Tóth, 2015). The existing techniques are based on pre-
ictor based subspace identification (PBSID) (van Wingerden &
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Verhaegen, 2009), past-output multivariable output-error state–
space (PO-MOESP) (Felici et al., 2007), canonical variate analysis
(CVA) (Larimore et al., 2015), or the successive approximation
identification algorithm (Lopes Dos Santos et al., 2010). However,
these methods lack a common unified theory to tackle the LPV
SID problem.

The field of subspace identification applies realization theory
to find SS model estimates based on surrogate input–output
(IO) models (with appropriate noise models) estimated form
data. These specialized IO models are estimated by using con-
vex optimization and it can be shown that they correspond
to a maximum-likelihood (ML) estimate under the considered
assumptions. Then, an SS realization is obtained from the IO
model by either a direct realization step or by an intermediate
projection step. In the latter idea, a projection is found to estimate
the unknown state-sequence via matrix decomposition methods,
then the SS matrices are estimated in a least-squares fashion.
Obtaining such a state-sequence is heavily based on realization
theory, as the estimated state-basis should be consistent with the
behavior of the underlying system. In the LTI setting, the IO model
estimation and realization of the SS model under the presence of
process and measurement noise is well understood (Katayama,
2005; Lindquist & Picci, 2015; Van Overschee & De Moor, 1996;
Verhaegen & Verdult, 2007). In the LPV case, contrary to the LTI
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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etting, the stochastic interpretation of the methods with the
ppropriate noise representation is not well understood neither
s the connection between various methods ever been studied.

LPV subspace schemes also suffer heavily from the curse of
imensionality, e.g., see van Wingerden and Verhaegen (2009,
able 1), resulting in ill-conditioning of the estimation prob-
em and high parameter variance. Consequently, two common
ssumptions are taken to reduce the dimensionality: (i) the ex-
itation, in terms of the variation of the scheduling variable p,
s periodic or white (Felici et al., 2007; van Wingerden et al.,
009), and/or (ii) the output-equation of the SS representation is
ssumed to be p-independent (Luspay et al., 2009; Schulz et al.,
016; van Wingerden & Verhaegen, 2009). However, such as-
umptions restrict practical applicability of the methods. To tackle
ll-conditioning and to reduce estimation variance, kernel based
egularization techniques have been proposed (van Wingerden &
erhaegen, 2009; Verdult & Verhaegen, 2005). However, compu-
ational complexity of the involved kernels grows polynomially
r exponentially w.r.t. the design parameters, which significantly
ompromises the effectiveness of these schemes. Alternatively,
S models can directly be estimated by minimization of the
2-loss in terms of the prediction-error associated with the model.
hese so-called prediction-error methods (PEM) minimize the
2-loss directly using gradient-based methodologies (Lee & Poolla,
997; Verdult, Bergboer, & Verhaegen, 2003; Wills & Ninness,
008, 2011) or by the expectation–maximization scheme (Wills
Ninness, 2011). However, minimization of the ℓ2-loss w.r.t.

o the LPV-SS model parameters is a nonlinear and nonunique
ptimization problem, requiring an initial estimate close to the
lobal optimum.
The goal of this paper is to obtain a unified formulation to

reat the LPV subspace identification problem and derive its asso-
iated stochastic properties by systematically establishing an LPV
ID theory. This unified framework enables us to (i) understand
elations and performance of LPV SIDs, (ii) extend most of the
uccessful LTI subspace schemes to the LPV setting, (iii) decrease
he dimensionality problems, and (iv) relax assumptions on the
cheduling signal. In addition, we establish stochastic LPV real-
zation theory which provides state estimation with maximum
ikelihood efficiency. To the authors’ knowledge, this paper is the
irst in-depth treatment of the subspace theory in the LPV case. In
his paper, we focus on projection based schemes, but the direct
ealization schemes can easily be abstracted from the developed
esults, i.e., see Cox (2018). We follow well-known concepts
rom the LTI literature, e.g., Van Overschee and De Moor (1996),
erhaegen and Verdult (2007), and our theoretic results are also
ased on preliminary studies in the LPV setting (van Wingerden
Verhaegen, 2009; Verdult, 2002; Verdult & Verhaegen, 2005).

he main contributions of this paper are:

(i) Formulating the state estimation problem by a maximum-
likelihood approach based on canonical correlation analysis
and by a realization based approach.

(ii) Stochastic interpretation of state estimation with maxi-
mum likelihood efficiency under the presence of noise.

(iii) Computationally efficient formulation of SIDs to decrease
the effects of the curse of dimensionality.

The unified subspace theory is tackled in the global identifi-
ation setting, i.e., under general trajectories of the scheduling
ignal, contrary to some results in the literature (Felici et al.,
007; Lopes dos Santos, Ramos, & Martins de Carvalho, 2008; van
ingerden, Felici, & Verhaegen, 2007).
The proposed schemes based on a realization argument could

lso be applied in a setting where the scheduling signal is affected
y a noise that might be correlated to the measured input and
utput signals. This often occurs if the scheduling p is a function
2

of the measured input or output signals. In such case, the IO
estimation step could be performed by using an instrumental
variable approach (Tóth, Laurain, Gilson and Garnier, 2012). How-
ever, investigation of such formulation is outside of the scope of
this paper.

This paper is organized as follows: first, the assumed data-
generating system with LPV-SS representation and general
innovation noise structure are presented and the open-loop,
closed-loop, and predictor-based data-equations are derived
(Section 2). Then, the considered parametric LPV-SS identification
problem is introduced (Section 3). Next, the state realization
problem is tackled based both on a maximum-likelihood and a
realization argument. This is accomplished first for the open-
loop (Section 4) and then for the closed-loop identification setting
(Section 5), leading to the LPV formulation of various well-known
LTI subspace methods. The efficiency of the unified framework is
demonstrated by a Monte Carlo study on an LPV-SS identification
benchmark (Section 6).

2. The LPV data-equations

In this section, surrogate input–output representations of SS
models are formulated which are key in solving the subspace
identification problem. Namely, we derive the LPV open-
loop data-equation (Section 2.2), closed-loop data-equation
(Section 2.3), and the predictor-based data-equation (Section 2.4)
for LPV data-generating systems in an SS form (Section 2.1).

2.1. The data-generating system

The goal is to obtain an SS model estimate of the data-
generating system So represented in the following LPV-SS inno-
vation form1

xt+1 = A(pt )xt + B(pt )ut + K(pt )ξt , (1a)

yt = C(pt ) xt + D(pt )ut + ξt , (1b)

where x : Z → X = Rnx is the state variable, y : Z → Y = Rny is
the measured output signal, u : Z → U = Rnu is the input signal,
p : Z → P ⊂ Rnp is the scheduling signal, and ξ : Z → Rny is the
sample path realization of the zero-mean stationary process:

ξt ∼ N (0,Ξ 2), (2)

where ξt : Ω → Rny is a white noise process with sample
space Ω (set of possible outcomes) and Ξ 2

∈ Rnx×nx is a
positive definite covariance matrix. Furthermore, we will assume
u, p, y, ξ to have left compact support to avoid technicalities with
initial conditions. The matrix functions A(·), . . . ,K(·) defining the
SS representation (1) are affine combinations of bounded scalar

1 In the majority of the subspace literature (Van Overschee & De Moor, 1996;
an Wingerden et al., 2009; Verhaegen & Verdult, 2007), the data-generating
ystem is assumed to be in the innovation form as given in (1). However,
n Cox (2018), it is shown that the noise description in (1) is not equivalent
o a state–space form with general noise representation, i.e., a representation
ith different noise processes on the state and output equation. Cox (2018) also
hows that a static, affine K(pt ) can approximate the general setting if the state
imension is increased. In practice, we often need to restrict parameterization
f K, e.g., to the static, affine parameterization in (1), to reduce complexity of
he estimation method and variance of the model estimates. Hence, despite the
ossible increase of the state order of the equivalent innovation form, the usage
f this affine form has been found adequate in practical applications (Felici et al.,
007; Luspay et al., 2009; Schulz et al., 2016; van Wingerden et al., 2009).
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unctions ψ [i](·) : P → R:

A(pt ) =

nψ∑
i=0

Aiψ
[i](pt ), B(pt ) =

nψ∑
i=0

Biψ
[i](pt ),

C(pt ) =

nψ∑
i=0

Ciψ
[i](pt ), D(pt ) =

nψ∑
i=0

Diψ
[i](pt ),

K(pt ) =

nψ∑
i=0

Kiψ
[i](pt ),

(3)

here {Ai, Bi, Ci,Di, Ki}
nψ
i=0 are constant, real matrices with appro-

riate dimensions and ψ [0](·) = 1 is assumed to be constant.
dditionally, for well-posedness, it is assumed that {ψ [i]

}
nψ
i=1 are

inearly independent over an appropriate function space and are
ormalized w.r.t. an appropriate norm or inner product (Tóth, Ab-
as and Werner, 2012). Due to the freedom to consider arbitrary
unctions ψ [i], (3) can capture a wide class of static nonlinearities
nd time-varying behaviors. For notational simplicity, we define
t = [ψ [0](pt ) . . . ψ [nψ ](pt )].

.2. The open-loop data-equation

The first step in tackling the subspace identification prob-
em is to represent the dynamics of the data-generating system
1) as an equivalent IO representation, the so-called data-equation.
he unknowns in these data-equations are estimated by convex
ptimization and the final SS model is obtained from these data-
quations using matrix decomposition techniques (see
ection 3–5 for more details). Hence, the data-equations are key
n formulating the subspace problem.

Open-loop data-equations are rarely used in the literature,
s the innovation noise ξt is unknown. In light of the MAX
dentification setting in Cox (2018) and Cox and Tóth (2016), the
nnovation noise ξt can be uniquely obtained by convex optimiza-
ion, which renders the open-loop equations attractive for further
nvestigation, similar to Mercère, Markovsky, and Ramos (2016)
n the LTI setting. Using (1b), the output w.r.t. a future window
∈ N+, where N+ = {i ∈ Z | i > 0}, starting from time-instance
can be written as
t+f

t = (Of ⋄ p)txt + (Ľf ⋄ p)t ž
t+f

t + ξ
t+f

t , (4)

where žt = [u⊤
t ξ

⊤
t ] is the extended ‘‘input’’ signal and yt+f

t , ξ t+f

t ,
nd žt+f

t are sequences according to the notation

qs
l =

{[
q⊤

l q⊤

l+1 · · · q⊤

s−1

]⊤ if s > l,[
q⊤

l−1 · · · q⊤

s+1 q⊤
s

]⊤ if s < l.

Furthermore, the matrix functions in (4) are given as

(Of ⋄ p)t =

[
C⊤(pt ) · · ·

(
C(pt+f)

∏f

i=1 A(pt+f−i)
)⊤
]⊤

, (5a)

B̌(pt ) =
[
B(pt ) K(pt )

]
, (5b)

Ď(pt ) =
[
D(pt ) 0ny×ny

]
, (5c)

and Ľf is as given in (5d) inside Box I where At , . . . , Ďt is a
shorthand notation for A(pt ), . . . , Ď(pt ). Here,

∏f

i=1 is considered
with left multiplication. In (4) and (5a)–(5d), the ⋄ operator is a
shorthand notation for dynamic dependency on the scheduling
signal, i.e., (Of ⋄ p)t = Of(pt , pt−1, pt−2, . . .).

Next, the state can be decomposed by using the past values of
the input and noise signals:

x = (Ř ⋄ p) žt−p
+ X , (6)
t p t t p

3

with past window p ∈ N+, past data žt−p

t , and

(Řp ⋄ p)t =

[
B̌(pt−1) A(pt−1)B̌(pt−2) · · ·[

p−1∏
i=1

A(pt−i)

]
B̌(pt−p)

]
, (7a)

Xp =

[
p∏

i=1

A(pt−i)

]
xt−p. (7b)

ombining the output-equation based on the future values (4)
ith the state-equation based on the past values (6) results in
he open-loop data-equation
t+f

t = (OfŘp ⋄ p)t ž
t−p

t + (Ľf ⋄ p)t ž
t+f

t + ξ
t+f

t

+(Of ⋄ p)tXp, (8)

which has the form of a MIMO LPV-IO model. Estimating the
underlying IO relationship of (8) requires the input-scheduling
pair (u, p) and the innovation noise ξ to be uncorrelated in order
to obtain an unbiased estimate of the relationship (8) under PEM,
e.g., see Chiuso (2007), Jansson (2005) and Verhaegen and Verdult
(2007). The case when (u, p) and ξ are uncorrelated is usually
referred to as the open-loop identification setting (Eykhoff, 1974;
Ljung, 1999; Verhaegen & Verdult, 2007), characterized by the
following two assumptions:

A.1 The input signal u is quasi-stationary and uncorrelated
with ξ , i.e., Ē{ut (ξt+τ )⊤} = Ē{ut (ξt−τ )⊤} = 0 for all τ ∈

N0.2
A.2 The scheduling signal p is quasi-stationary and uncorre-

lated with ξ .

Assumptions A.1 and A.2 are not restricting, for example, when
considering the LPV modeling problem of a thermal loop in a
wafer scanner. The thermal distribution of the wafer varies with
the position, but it does not influence the measurement noise
of the position sensor and, therefore, the position as scheduling
signal fulfills Assumption A.2. On the other hand, an inverted
pendulum setup with stabilizing controller where the angle of the
pendulum is the scheduling signal (and output) will not satisfy
Assumptions A.1–A.2. In such a case, p is correlated with past
values of ξ due to the closed-loop interconnection between plant
and controller.

2.3. The closed-loop data-equation

To overcome the limitations of the open-loop setting, the data-
equation (8) can be written in an alternative form. Analogously
to LTI identification (Chiuso, 2007; Jansson, 2005; Verhaegen &
Verdult, 2007), the output-equation (1b) is substituted in the
state-equation (1a), resulting in

xt+1 = Ã(pt )xt + B̃(pt )z̃t , (9)

where z̃t = [u⊤
t y⊤

t ]
⊤ and the corresponding matrix functions are

Ã(pt ) = A(pt ) − K(pt )C(pt ), (10a)

B̃(pt ) = [B(pt ) − K(pt )D(pt ) K(pt )]. (10b)

It is important to note that (9) does not depend explicitly on
the stochastic process ξ . Hence, the state-equation (9) can be

2 The generalized expectation operation Ē of a process u is defined as
¯ {ut } = limN→∞

1
N

∑N
t=1 E{ut }. A process u is said to be quasi-stationary if

there exists finite c1, c2 ∈ R such that (i) ∥E{ut }∥2 < c1 for all t , and (ii)Tr (Ē{u u⊤
}
) < c for all τ , e.g., see Ljung (1999).
t t−τ 2 2
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(Ľf ⋄ p)t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ďt 0 0 · · · 0
Ct+1B̌t Ďt+1 0 · · · 0

Ct+2At+1B̌t Ct+2B̌t+1 Ďt+2 · · · 0
...

...
. . .

. . .
...

Ct+f−1

[
f−1∏
i=2

At+f−i

]
B̌t Ct+f−1

[
f−2∏
i=2

At+f−i

]
B̌t+1 Ct+f−1

[
f−3∏
i=2

At+f−i

]
B̌t+2 · · · Ďt+f−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5d)

Box I.
:
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reated in a deterministic setting. However, moving from the
pen-loop to the closed-loop dynamics comes at the cost of
olynomial dependency of the Ã and B̃ matrix functions. Opposed
o the LTI setting where K = K ∈ Rnx×ny , applying (9) instead
f (1a) increases the model complexity. Using (9), the stacked
utput-equation (4) can equivalently be represented as
t+f

t = (Õf ⋄ p)txt + (L̃f ⋄ p)t z̃
t+f

t + ξ
t+f

t . (11)

n (11), (Õf ⋄ p)t denotes the observability matrix with Ã instead
f A, (L̃f ⋄p)t is constructed with Ã, B̃, and the future values z̃t+f

t
re similarly stacked as žt+f

t in (4). Note that žt+f

t is dependent on
he pair (ut , ξt ) and z̃t+f

t on (ut , yt ). The state can be written as a
ombination of past signals (similar to (6))

t = (R̃p ⋄ p)t z̃
t−p

t + X̃p, (12)

here p ∈ N+ is the past window, (R̃f ⋄ p)t denotes the reacha-
bility matrix (7a) with Ã and B̃ instead of A and B, and X̃p is the
initial condition (7b) with Ã instead of A.

Combining (11) and (12) results in the closed-loop data-equation

yt+f

t = (ÕfR̃p ⋄ p)t z̃
t−p

t + (L̃f ⋄ p)t z̃
t+f

t + ξ
t+f

t + (Õf ⋄ p)t X̃p. (13)

To formulate our identification problem in the closed-loop case,
we take the following assumptions:

A.3 The input signal u is quasi-stationary and uncorrelated
with future values of ξ , i.e., Ē{ut (ξt+τ )⊤} = 0 for all τ ∈ N0.

A.4 The scheduling signal p is quasi-stationary and uncorre-
lated with future values of ξ .

Assumptions A.3 and A.4 allow to identify systems under general
feedback structures, e.g., see Eykhoff (1974), Ljung (1999) and
Verhaegen and Verdult (2007).

2.4. Derivation of the predictor

A commonly applied data-equation for subspace identification
is the predictor form, e.g., see Chiuso (2007), Chiuso and Picci
(2005) and van Wingerden and Verhaegen (2009). To formu-
late the one-step-ahead predictor for the output, the closed-loop
state (9) is substituted into the output-equation (1b) and we take
the conditional expectation, resulting in:

ŷt|t−1 = C(pt )X̃p + D(pt )ut

+

p∑
i=1

C(pt )

⎡⎣ i−1∏
j=1

(Ã ⋄ p)t−j

⎤⎦ (B̃ ⋄ p)t−iz̃t−i. (14)

Note that (14) is the minimal variance estimator of yt and that
(14) represents an LPV-ARX model where p → ∞ will diminish
the influence of the initial condition X̃p under the assumption that
Ã is stable. The one-step-ahead predictor of the output can be
 i

4

similarly stacked as the closed-loop data-equation (13) leading
to the predictor-based data-equation:

ŷt+f|t+f−1
t|t−1 = (ÕfR̃p ⋄ p)t z̃

t−p

t + (L̃f ⋄ p)t z̃
t+f

t + (Õf ⋄ p)t X̃p. (15)

ote that (15) is the one-step-ahead predictor of (13). Hence, the
S representation of So can be captured by the predictor (14)
rom which (15) can be constructed (Chiuso, 2007; Chiuso & Picci,
005; van Wingerden et al., 2009; van Wingerden & Verhaegen,
009).

. Parametric subspace identification setting

Known LTI and LPV subspace schemes are based on the afore-
entioned data-equations or their simplifications. The subspace
chemes rely on matrix decomposition techniques applied on
fRp to obtain a realization of these two matrices; however,

these decomposition techniques cannot be directly applied to
parameter-varying matrices. As shown in van Wingerden and
Verhaegen (2009), the main difficulty comes from the time-
varying observability matrix, as the dependency structure of the
reachability matrix can be absorbed in an extended input vector.

In this paper, we are interested in estimating the unknown
matrices {A, . . . , Ki}

nψ
i=0 corresponding to parameters θA =

vec{A0}
⊤

· · · vec{Anψ }
⊤
]
⊤. The collection of unknown parame-

ers is denoted by θ = [θ⊤

A · · · θ⊤

K ]
⊤ with θ ∈ Θ = Rnθ and nθ =

1 + nψ )(n2
x + 2nynx + nunx + nynu). The parameters of the data-

enerating system So are denoted as θo and we denote with S(θ ′)
he model (1) with parameters θ ′. The identification problem of
S models based on a data set DN = {(yt , pt , ut )}Nt=1 has non-
nique solutions up to a transformation matrix, e.g., see Cox
2018) and Verdult (2002). Hence, we aim at identifying an
somorphic, jointly state minimal S(θ ) w.r.t. S(θ0) defined by the
ollowing set3:

θ =

{
θ ′

⏐⏐⏐ ∃T ∈ Rnx×nx s.t. rank(T ) = nx and θ ′
= S(θ, T )

}
, (16)

here the indistinguishable manifold S is given in (17) inside
ox II.
Given a data set DN and the basis functions {ψ [i]

}
nψ
i=0, the

oal of this paper is obtain a consistent estimate θ̂ of the data-
enerating system So such that θ̂ → θ ∈ Iθo with probability one
s N → ∞. For the identification setting to be well-posed, the
ollowing standard assumptions are taken

A.5 S(θo) is an element of the model set, meaning that ∃θ ∈ Θ

such that θ ∈ Iθo .

3 The representation S is jointly state minimal if Řnx and Onx have at least
x linearly independent rows or columns, respectively, in a function sense,
.e., rank(Ř ) = n and rank(O ) = n .
nx x nx x
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S(θ, T ) =
[
vec{T−1A0T }

⊤
· · · vec{T−1Anψ T }

⊤ vec{T−1B0}
⊤

· · · vec{T−1Bnψ }
⊤ vec{C0T }

⊤
· · · vec{Cnψ T }

⊤

vec{D0}
⊤

· · · vec{Dnψ }
⊤ vec{T−1K0}

⊤
· · · vec{T−1Knψ }

⊤
]⊤
. (17)
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A.6 The state-minimal SS representation with static, basis affine
dependency structure of the system So is structurally state-
observable w.r.t. to the pair (A(pt ), C(pt )) and structurally
state-reachable w.r.t. to the pair(A(pt ), [B(pt ) K(pt )Ξ−1

])
(Cox, 2018, Lem. 2.4).

A.7 The open-loop dynamics A(pt ) or closed-loop dynamics
Ã(pt ) are asymptotically stable for the open-loop or closed-
loop cases, respectively.

A.8 The past window p is chosen sufficiently large, such that
Xp ≈ 0 or X̃p ≈ 0, ∀p ∈ PZ for the open-loop or closed-loop
cases, respectively.

We can only estimate system dynamics that manifest in the
data, so the system is represented with a structurally minimal IO
equivalent SS representations, as formalized in Assumption A.6.
With Assumption A.7, the influence of the initial state xt−p can
e neglected in (8), (13), or (15). This property is widely applied
n subspace identification (Chiuso & Picci, 2005; Jansson, 2003;
an Overschee & De Moor, 1996; van Wingerden & Verhaegen,
009; Verdult & Verhaegen, 2002). See Verdult and Verhaegen
2002, Lemma 5) for an upper-bound on the approximation error
f this assumption. Note that we do not assume that either
C(p),D(p)) or K(p) are parameter independent to reduce the
omplexity of the IO model opposed to state-of-the-art LPV sub-
pace schemes (van Wingerden & Verhaegen, 2009; Verdult &
erhaegen, 2005).
Next, we will develop a unified theory to extend the LTI

4SID, MOESP, CVA, SS-ARX, and PBSID principles to the LPV
ase. There are two significant differences with respect to the
TI case. Firstly, almost all LTI formulations apply a (partial) ARX
odel structure, however, in the LPV case, the LPV-ARX model
omes with significantly larger parameterization compared to
he MAX representation in the open-loop setting. Secondly, we
pply a predictor pre-estimation step to identify the unknown
uantities of the matrices OfŘp, Ľf , ÕfR̃p, etc. and construct the

full matrices instead of estimating the matrices OfŘp, Ľf , ÕfR̃p

directly using the data-equations (8) or (13). Direct estimation
of the matrices by oblique projections comes with a significant
computational cost (Verdult & Verhaegen, 2002, Table 1) com-
pared to the predictor formulation (van Wingerden & Verhaegen,
2009, Table 1), especially in the LPV case. Furthermore, direct
estimation of the matrices will not take the structural restrictions
of Ľf into account, which leads to a non-causal model estimate as
pointed out in Shi and Macgregor (2010). Therefore, we follow an
alternative route by estimating a predictor in the pre-estimation
step and construct OfŘp, Ľf , ÕfR̃p to lower the computational
emand and to enforce a causal model, similar to recent lit-
rature (Chiuso, 2007; Jansson, 2005; Qin, Lin, & Ljung, 2005;
erhaegen & Verdult, 2007).

. Subspace identification in open-loop form

In this section, we derive two methods to realize the state-
equence based on the open-loop data-equation (8). The first
ethod is based on a maximum-likelihood argument using canon-

cal correlation analysis (CCA) (Section 4.2) and the second method
pplies a realization based argument (Section 4.3). The latter de-
 t

5

terministic state realization approach results in the LPV extension
of various LTI schemes by using different weighting matrices in
the state realization step.

4.1. Main concept

The stochastic and the deterministic approaches use the fact
that the observability and reachability matrices can be decom-
posed into a parameter independent and a parameter dependent
part. To this end, define

P̌u
t|p = ψt ⊗ · · · ⊗ ψt−p ⊗ Inu ,

P̌ξt|p = ψt ⊗ · · · ⊗ ψt−p ⊗ Iny ,
ˇ t,p = diag

(
P̌u
t−1|0, P̌

ξ

t−1|0, . . . , P̌
u
t−1|p−1, P̌

ξ

t−1|p−1

)
,

Lt|f = ψ⊤

t ⊗ · · · ⊗ ψ⊤

t+f ⊗ Iny ,

Nt,f = diag
(
Lt|0, . . . , Lt|f−1

)
.

The p-step extended reachability matrix and the f-step extended
observability matrix are given as

Rp =
[
R1 · · · Rj

]
, Of =

[
O⊤

1 · · · O⊤

i

]⊤
, (18)

ith dimensions Rp ∈ Rnx×
(
nu
∑p

l=1(1+nψ )l
)

and Of ∈(
ny
∑f

l=1(1+nψ )l
)
×nx where Rk, Ok are defined as

1 =
[
B0 · · · Bnψ K0 · · · Knψ

]
,

Rk =
[
A0Rk−1 · · · AnψRk−1

]
, (19a)

1 =

[
C⊤

0 · · · C⊤
nψ

]⊤

,

Ok =
[
(Ok−1A0)⊤ · · · (Ok−1Anψ )

⊤
]⊤
. (19b)

Using Assumption A.8, the open-loop data-equation (8) can be
ecomposed as
t+f

t = Nt,fOf  
(Of⋄p)t

ŘpM̌t,p  
(Řp⋄p)t

žt−p

t + (Ľf ⋄ p)t ž
t+f

t + ξ
t+f

t , (20)

ata-equation (20) describes the IO relations of the data-
enerating system based on an SS form. The unknowns in this
O relation are the so-called sub-Markov parameters CiAj · · · AkBl
nd CiAj · · · AkKl. Using (20), the sub-Markov parameters and the
nknown noise sequence ξt can be estimated by LPV-MAX model
stimation using convex optimization (Cox, 2018, Thm. 5.5).
In this section, the state realization is accomplished by as-

uming that a sub-part of the structural observability matrix Of

ssociated with the parameter independent part of the SS repre-
entation, i.e., C0 and A0, is full column rank (common assumption
pplied in practice (Luspay et al., 2009; Schulz et al., 2016; van
ingerden et al., 2009; Verdult et al., 2002)).4 To this end, define

4 Any CiAiKi combination could be taken instead of C0A0K0 . In such case,
dditional assumptions should be taken on the associated scheduling variable
o fulfill the observability criterion, which is not treated in this paper to simplify
he discussion.
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he scheduling independent observability matrices

0
f =

⎡⎢⎢⎢⎣
C0

C0A0
...

C0A
f−1
0

⎤⎥⎥⎥⎦ , Õ0
f =

⎡⎢⎢⎣
C0

C0(A0 − K0C0)
...

C0(A0 − K0C0)f−1

⎤⎥⎥⎦ ,
for the open-loop and closed-loop setting, respectively.5

A.9 The scheduling independent part of the observability ma-
trix is of rank nx, i.e., rank(O0

f ) = nx or rank(Õ0
f ) = nx for

the open-loop or closed-loop case, respectively.

o make use of this assumption, the observability matrix Of

n (20) is split into a part that depends on O0
f and a part that does

ot:
t+f

t − (Ľf ⋄ p)t ž
t+f

t − N∗

t,fO
∗

f ŘpM̌t,pž
t−p

t O0
f ŘpM̌t,pž

t−p

t + ξ
t+f

t , (21)

where

L∗

t|i = ψ⊤

t ⊗ · · · ⊗ ψ⊤

t+i−1 ⊗
[
ψ

[1]
t+i · · · ψ

[nψ ]

t+i

]
⊗ Iny ,

N∗

t,i = diag
(
L∗

t|0, . . . , L
∗

t|i−1

)
,

O∗

1 =

[
C⊤

1 · · · C⊤
nψ

]⊤

,

O∗

i =
[
(O∗

i−1A0)⊤ · · · (O∗

i−1Anψ )
⊤
]⊤
,

O∗

f =
[
(O∗

1)
⊤

· · · (O∗
f )

⊤
]⊤
.

Based on (21), introduce the data-equation describing the so-
called open-loop corrected future:

y̌t+f,(c)
t = yt+f

t − (Ľf ⋄ p)t ž
t+f

t − N∗

t,fO
∗

f ŘpM̌t,pž
t−p

t . (22)

Using an LPV-MAX estimate of (20), the open-loop corrected
future y̌t+f,(c)

t (22) can be efficiently computed from data. Then,
using this surrogate variable, (21) can be reduced to a data-
equation excluding the time-variation in the observability matrix:

y̌t+f,(c)
t = O0

f ŘpM̌t,pž
t−p

t + ξ
t+f

t . (23)

Representation (23) forms the starting point for finding an es-
timate of the state-bases. In the sequel, we formulate projec-
tion SID methods based on a maximum-likelihood argument
(Section 4.2) and realization based argument (Section 4.3) on the
corrected open-loop data-equation (23) to obtain an estimate of
the state-sequence.

4.2. Maximum-likelihood estimation

The corrected formulation (23) is the fundamental data-
equation to obtain an estimate of the state-sequence. In this
section, the state-sequence is estimated using the canonical cor-
relation analysis. The CCA is a well-known method in statistics
that finds a (lower dimensional) space that maximizes the corre-
lation between two random variables (Rao, 1979). In our case, this
translates to the objective of finding the unknowns O0

f , Řp, and
the subspace of xt by maximizing the correlation between y̌t+f,(c)

t
and M̌t,pž

t−p

t , e.g., see Chiuso (2007), Gičans (2009), Katayama
(2005), Larimore (1983) and Larimore (2005) to mention a few.
In Chiuso (2007) and Katayama (2005) statistical optimality of
CCA in the LTI setting has been shown by formulating the op-
timal one-step-ahead predictor of the state based on either the
past or future data. We will take an alternative viewpoint by
formulating an estimate of the state-sequence by maximizing

5 The closed-loop scheduling independent observability matrix is presented
ere for compactness of the paper.
6

the log-likelihood function associated with the least-squares (LS)
stimation problem of the unknowns O0

f Řp based on the signals
ˇ
t+f,(c)
t and M̌t,pž

t−p

t of the model (23). Larimore (1983, 2005)
laim maximum log-likelihood of the state estimation using CCA,
owever, the mathematical derivations are scattered within the
iterature and appear to be incomplete, as pointed out in Gičans
2009). In Theorem 1, we prove the maximum log-likelihood
roperty for the LPV case. For notational simplicity, let us define
he following data-matrices

ˇ
p,N =

[
M̌1,pž

1−p

1 · · · M̌N,pž
N−p

N

]
,

Y̌ (c)
f,N =

[
y̌1+f,(c)
1 · · · y̌N+f,(c)

N

]
.

Theorem 1 (CCA Based State Estimation: Open-Loop Case). Given an
LPV data-generating system (1) and an associated data set DN with
Žp,N Ž⊤

p,N ≻ 0. Compute the following singular value decomposition
(SVD)( 1
N
Y̌ (c)
f,N

(
Y̌ (c)
f,N

)⊤)−
1
2
Y̌ (c)
f,N Ž

⊤

p,N

( 1
N
Žp,N Ž⊤

p,N

)−
1
2

= US̃V⊤, (24)

ith the matrices Ũ and Ṽ , given by

Ũ =

( 1
N
Y̌ (c)
f,N

(
Y̌ (c)
f,N

)⊤)−
1
2
U, Ṽ =

( 1
N
Žp,N Ž⊤

p,N

)−
1
2
V .

Under Assumptions A.1–A.2 and A.5–A.9,

X̂N = Ṽ⊤

nx Žp,N , with
1
N
X̂N X̂⊤

N = Inx , (25)

here Ṽnx defines the first nx columns of Ṽ , is a maximum-likelihood
stimate of the state-sequence. The associated log-likelihood function
inimized by this estimate is

log L =
f nyN
2

(log(2π ) + 1)−
N
2

log
(
det
(
Ũ
)2)

+
N
2

nx∑
i=1

log(1 − s̃2i ), (26)

where S̃ = diag(s̃1, . . . , s̃nx ). □

Proof. See the Appendix. ■

In case of infinite data, i.e., N → ∞, S̃ will contain exactly nx
nonzero singular values which are equal to one (see Cox, 2018,
Remark 9.1). In case of finite data, the state order nx can be
selected by a gap in magnitude between the singular values (Van
Overschee & De Moor, 1996; Verhaegen & Verdult, 2007). Alter-
natively, the stochastic interpretation of the CCA in Theorem 1
allows for a data-driven selection of the model order nx based on
the log-likelihood function L (26) using an information criterion
such as Akaike’s or the Bayesian information criterion (Ljung,
1999). In depth investigation of order selection is beyond the
scope of this paper.

Using the estimate of the state-sequence x̂, the state–space
matrices {Ai, Bi, Ci,Di, Ki}

nψ
i=0 are estimated using two linear re-

gression steps, e.g., see Verdult and Verhaegen (2002, Sec. 2.5).
The first step is a standard ℓ2-loss minimization problem based
on the output-equation (1b) with the solution:[
Ĉ0 · · · Ĉnψ D̂0 · · · D̂nψ

]
= YNΦ

†
N,o, (27)

where Φ† defines the right-pseudo inverse of Φ and the regres-
sion matrices are

ΦN,o =

[
ψ1 ⊗ x̂1 · · · ψN ⊗ x̂N

]
, YN = [y1 · · · yN ].
ψ1 ⊗ u1 · · · ψN ⊗ uN
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sing the output-equation (1b), an estimate of the innovation
oise is found in the form of the residual error of (27):

ξ̂1 · · · ξ̂N ] = YN −

[
Ĉ0 · · · Ĉnψ D̂0 · · · D̂nψ

]
ΦN,o.

(28)

he remaining state–space matrices are estimated by a second
inear-regression step based on the state equation (1a):[
Â0 · · · Ânψ B̂0 · · · B̂nψ K̂0 · · · K̂nψ

]
= X̂ ′

NΦ
†
N,s,

(29)

ith

N,s =

⎡⎣ψ1 ⊗ x̂1 · · · ψN−1 ⊗ x̂N−1
ψ1 ⊗ u1 · · · ψN−1 ⊗ uN−1

ψ1 ⊗ ξ̂1 · · · ψN−1 ⊗ ξ̂N−1

⎤⎦ , X̂ ′

N =
[
x̂2 · · · x̂N

]
.

4.3. Realization based estimation

In Section 4.2, a statistical viewpoint has been taken based on
only the input-scheduling-corrected output signals. Alternatively,
inspired by the Ho–Kalman scheme in Tóth, Abbas et al. (2012)
or the PBSID scheme in van Wingerden et al. (2009), the problem
can be tackled from the realization point of view, i.e., the state
is realized by decomposing the sub-Markov coefficients in O0

f Řp.
Opposed to the Ho–Kalman scheme, we are interested in the
state-sequence of the innovation form (1) including the noise
dynamics. In the LTI case, these ideas have been extensively
exploited resulting in many variants of subspace identification
schemes, e.g., see Qin (2006), Van Overschee and De Moor (1996)
and Verhaegen and Verdult (2007). As recognized in Van Over-
schee and De Moor (1996, Thm. 12), most of the LTI subspace
schemes only differ by left- and right-multiplication of the Han-
kel matrix with different weightings. Following this concept, a
unified LPV formulation of subspace schemes can be introduced:

Theorem 2 (Unified State Realization: Open-Loop Case). Given an
LPV data-generating system (1) and an associated data set DN with
Žp,N Ž⊤

p,N ≻ 0. Under Assumptions A.1–A.2 and A.5–A.9, let O0
f Řp be

the consistent estimate of the sub-Hankel matrix in (23). Compute
the following SVD

W1O0
f ŘpW2 = USV⊤, (30)

where the full rank weightings can be taken as

HK
{
W1 = I,
W2 = I, N4SID

{W1 = I,

W2 =

(
Žp,N Ž⊤

p,N

) 1
2
,

p-CCA

⎧⎪⎨⎪⎩W1 =

(
Y̌ (c)
f,N

(
Y̌ (c)
f,N

)⊤)−
1
2
,

W2 =

(
Žp,N Ž⊤

p,N

) 1
2
,

where the HK stands for Ho–Kalman, N4SID is numerical subspace
state–space system identification, and p-CCA is projected canoni-
cal correlation analysis following the default naming in the subspace
literature, see Van Overschee and De Moor (1996). A realization of
the state-sequence is given by

X̂N = S
1
2 V⊤

nxW
−1
2 Žp,N . □ (31)

Proof. The LPV estimation problem can be rewritten in an LTI
formulation because the IO model (23) representing the SS form
of the data-generating system is linear time-invariant w.r.t. the
signals M̌ žt−p and y̌t+f,(c). Hence, the derivation for LTI subspace
t,p t t

7

schemes can be directly applied. For a rigorous proof, see Van
Overschee and De Moor (1996, Chpt. 4.3). To illustrate, it is not
difficult to show that

O0
f = W−1

1 UnxS
1
2
nx , Řp = S

1
2
nxV

⊤

nxW
−1
2 . (32)

ence, taking (6) and Assumption A.8 into account, right-
ultiplying the reachability matrix Řp in (32) with the data
atrix Žp,N leads to a realization of the state as in (31). ■

An important fact in Theorem 2 is the absence of the closed-
oop dynamics, contrary to the LTI case (Qin, 2006; Van Overschee
De Moor, 1996), and the required pre-estimation step to obtain
0
f Řp. Opposed to the LTI case, we do not apply oblique projec-
ions to remove the effect of future inputs, e.g., see Van Overschee
nd De Moor (1996, Sec. 4.2) (the oblique projection is an indirect
S estimation and prediction step). In the LPV case, we apply the
re-estimation step making the oblique projections of the future
nput superfluous and, therefore, a MOESP like weighting is not
resent. The unified formulation in Theorem 2 applies N4SID and
CA like weightings to the estimated Hankel matrix, but it is not
n LPV extension of these methods, due to the missing oblique
rojections. In addition, it is important to note that the CCA in
heorem 1 and the p-CCA in Theorem 2 are different as CCA is
ased on stochastic realization theory and signal relations while
-CCA is based on pre-estimated sub-Markov coefficients. This
heoretical split can also be found in the LTI literature, e.g., be-
ween Larimore (1990) and Van Overschee and De Moor (1996),
espectively. Both principles are equivalent for N → ∞, as the
blique projections and least-squares estimates are consistent
nd unbiased (Bauer & Ljung, 2002). The choice of the weightings
1 and W2 has been discussed by many authors. In the LTI case,

t has been proven that W1 has no influence on the asymptotic
ccuracy of the estimates, see Bauer and Ljung (2002), Chiuso and
icci (2004) and Gustafsson and Rao (2002). On the other hand,
n finite data, the optimal choice is still an open question.
For any applied weighting, the estimated state-sequence in the

nified formulation (31) is not guaranteed to have unit variance
ompared to the estimate by the CCA method in (25). In the
TI case, it can be shown that the resulting model estimate is
tochastically balanced for any choice of the weighting (Arun
Kung, 1990), similar to deterministic Ho–Kalman realization.

n the LPV case, the observability and reachability Gramians are
cheduling-dependent and the authors believe that the state-
equence (31) is structurally balanced, but formally proving this
roperty is a subject of future research.

. Subspace identification in closed-loop form

The concepts of the presented state estimation and realization
chemes for the open-loop identification setting in Theorems 1
nd 2 will be extended to the closed-loop case in this section.
imilar to the open-loop case, the realization problem is first
ackled from an ML point of view (Section 5.2) and then from a
eterministic realization viewpoint (Section 5.3). We would like
o emphasize that the scheme presented in van Wingerden and
erhaegen (2009) simplifies the realization problem by consid-
ring the matrix functions C , D, and K to be constant. No such
ssumption will be taken next.

.1. Main concept

Construction of the matrices Ñt,f , Õf , R̃p, and M̃t,p in the closed-
oop case are more involved due to the multi-quadratic param-
terization of Ã(pt ) and B̃(pt ) in (10). First, define all unique
ombinations of the scheduling induced variation ψt ⊗ ψt as

t =

[
1 ψ⊤

t ψ
[1]
t ψ

[1]
t · · · ψ

[1]
t ψ

[nψ ]

t ψ
[2]
t ψ

[2]
t

ψ
[2]
ψ

[3]
· · · ψ

[nψ ]
ψ

[nψ ]
]⊤

, (33)
t t t t
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here µ : Z → M ⊂ Rnµ+1 with dimension nµ =
1
2nψ (nψ + 3) is

alled the extended scheduling variable6 in the sequel. In addition,
efine

A0 · · · Anµ
]

=
[
A0 − K0C0 A1 − K1C0 − K0C1 · · ·

Anψ − Knψ C0 − K0Cnψ − K1C1 − K1C2 − K2C1 · · ·

−K1Cnψ − Knψ C1 − K2C2 − K2C3 − K3C2 · · ·
]
,

nd

B0 · · · Bnµ
]

=
[
B0 − K0D0 B1 − K1D0 − K0D1 · · ·

Bnψ − KnψD0 − K0Dnψ − K1D1 − K1D2 − K2D1 · · ·

−K1Dnψ − KnψD1 − K2D2 − K2D3 − K3D2 · · ·
]
,

ext, let us define the closed-loop p-step extended reachability
atrix:

˜
u
1 =

[
B0 · · · Bnµ

]
, R̃

y
1 =

[
K0 · · · Knψ

]
,

R̃
i
j =

[
A0 · · · Anµ

]
(Inµ ⊗ R̃

i
j−1),

R̃p =

[
R̃
u
1 R̃

y
1 · · · R̃

u
p R̃

y
p

]
, (34a)

ith i ∈ {u, y} and define the closed-loop f-step extended
bservability matrix as

˜1 =

[
C⊤

0 · · · C⊤
nψ

]⊤

,

Õj = (Inµ ⊗ Õj−1)
[
A⊤

0 · · · A⊤
nµ

]⊤
,

Õf =

[
Õ

⊤

1 · · · Õ
⊤

f

]⊤

. (34b)

Finally, the scheduling dependent data-matrices are given as

P̃u
t|j = µt ⊗ · · · ⊗ µt−j ⊗ Inu ,

P̃y
t|j = µt ⊗ · · · ⊗ µt−j−1 ⊗ ψt−j ⊗ Iny ,

M̃t,j = diag
(
P̃u
t−1|0, P̃

y
t−1|0, . . . , P̃

u
t−1|j−1, P̃

y
t−1|j−1

)
,

L̃t|i = µ⊤

t ⊗ · · · ⊗ µ⊤

t+i−1 ⊗ ψ⊤

t+i ⊗ Iny ,

Ñt,i = diag
(
L̃t|0, . . . , L̃t|i−1

)
.

By applying the aforementioned matrices and Assumption A.8,
Eq. (13) reads as

yt+f

t = Ñt,fÕf  
(Õf⋄p)t

R̃pM̃t,p  
(R̃p⋄p)t

z̃t−p

t + (L̃f ⋄ p)t z̃
t+f

t + ξ
t+f

t . (35)

It can be proven that the LPV-SS representation (1) with state
imension nx is stochastically structurally state-observable if and
nly if rank(Õnx ) = nx (Cox, 2018, Lem. 9.4). Similarly, the SS
epresentation (1) is stochastically structurally state-reachable if
nd only if rank(R̃nx ) = nx (Cox, 2018, Lem. 9.4). In addition, based
n the extended Hankel matrix ÕfR̃p, the existence of a stochas-
ic realization of So with finite model order nx can be proven
Cox, 2018, Lem. 9.5). Hence, the data-equation (35) allows us to
btain a state–space realization of the data-generating system So
y representation (1) . The unknown coefficients CiA0 · · ·A0B0,
iAij · · ·AijBij, CiA0 · · ·A0Ki, CiAij · · ·AijKi for i, j = 0, . . . , nψ
ound in ÕfR̃p and L̃f are the sub-Markov coefficients of the multi-
uadratic parameterization of the closed-loop formulation (35).
hese unknown quantities can be estimated by a linear regression
f an LPV-ARX model.
The developed concepts of the open-loop setting can be ap-

lied to obtain a realization of the model in the closed-loop

6 nµ is given by
(
nψ + 1

1

)
+

(
nψ + 1

2

)
− 1 where

(
n
k

)
denotes the binomial

oefficient.
8

etting. This concept has successfully been used in the LPV lit-
rature, e.g., in Larimore (2005), Verdult and Verhaegen (2002)
nd van Wingerden and Verhaegen (2009) to mention a few. To
his end, the closed-loop counterpart of (21) is
t+f

t − (L̃f ⋄p)t z̃
t+f

t − Ñ∗

t,fÕ
∗

f R̃pM̃t,pz̃
t−p

t = Õ0
f R̃pM̃t,pz̃

p+t
p +ξ

t+f

t , (36)

here

Õ
∗

1 =

[
C⊤

1 · · · C⊤
nψ

]⊤

,

Õ
∗

j = (Inµ ⊗ Õ
∗

j−1)
[
A⊤

0 · · · A⊤
nψ

]⊤

,

Õ∗

f =
[
(Õ

∗

1)
⊤

· · · (Õ
∗

f )
⊤
]⊤
,

L̃∗

t|i = µ⊤

t ⊗ · · · ⊗ µ⊤

t+i−1 ⊗
[
ψ

[1]
t+i · · · ψ

[nψ ]

t+i

]
⊗ Iny ,

˜ ∗

t,i = diag
(
L̃∗

t|0, . . . , L̃
∗

t|i−1

)
.

rom (36), the closed-loop corrected future can be introduced as

˜
t+f,(c)
t = yt+f

t − (L̃f ⋄ p)t z̃
t+f

t − Ñ∗

t,fÕ
∗

f R̃pM̃t,pz̃
t−p

t , (37)

hen using the same principle as in the open-loop case, (36)
s reduced to a data-equation where the time-variation in the
bservability matrix disappears due to the use of the corrected
uture

˜
t+f,(c)
t = Õ0

f R̃pM̃t,pz̃
t−p

t + ξ
t+f

t . (38)

he closed-loop form (38) enables to treat the state realization
roblem equivalent to the open-loop case in Section 4.

.2. Maximum-likelihood estimation

The corrected formulation (38) is the fundamental data-
quation to obtain an estimate of the state-sequence. In this
ection, the state-sequence is estimated using the ML point of
iew introduced in Section 4.2. For notational simplicity, let us
efine the following data-matrices

˜
p,N =

[
M̃1,pz̃

1−p

1 · · · M̃N,pz̃
N−p

N

]
,

Ỹ (c)
f,N =

[
ỹ1+f,(c)
1 · · · ỹN+f,(c)

N

]
.

For the closed-loop case, we can reformulate Theorem 1 as:

Theorem 3 (CCA Based State Estimation: Closed-Loop Case). Given
an LPV data-generating system (1) and an associated data set DN
with Z̃p,N Z̃⊤

p,N ≻ 0. Compute the SVD( 1
N
Ỹ (c)
f,N

(
Ỹ (c)
f,N

)⊤)−
1
2
Ỹ (c)
f,N Z̃

⊤

p,N

( 1
N
Z̃p,N Z̃⊤

p,N

)−
1
2

= US̃V⊤, (39)

nd the matrices Ũ and Ṽ given by

Ũ =

( 1
N
Ỹ (c)
f,N

(
Ỹ (c)
f,N

)⊤)−
1
2
U, Ṽ =

( 1
N
Z̃p,N Z̃⊤

p,N

)−
1
2
V .

Under Assumptions A.3–A.4 and A.5–A.9,

X̂N = Ṽ⊤

nx Z̃p,N , with
1
N
X̂N X̂⊤

N = Inx , (40)

rovides a maximum-likelihood estimate of the state-sequence. The
ssociated log-likelihood function minimized by this estimate is

log L =
fnyN
2

(log(2π ) + 1)−
N
2

log
(
det
(
Ũ
)2)

+
N
2

nx∑
i=1

log(1 − s̃2i ), (41)

where S̃ = diag(s̃1, . . . , s̃nx ). □
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roof. Follows the same reasoning as in Theorem 1 with trivial
daptations. The complete proof is found in Cox (2018). ■

Note that, Theorem 3 is the LPV counterpart of the LTI SS-ARX
cheme presented in Jansson (2003). Hence, an important contri-
ution of our framework is the extension and the generalization
f the CCA to the LPV setting making it possible to directly extend
he SS-ARX scheme. In addition, as a contribution, the derived
CA setting allows to prove the maximum-likelihood property
nd to obtain the log-likelihood function of the estimate, which
ave not been formally proven in the LTI case, see Jansson (2003).

.3. Realization based estimation

The state estimation problem has been tackled from the input-
cheduling-corrected output statistics point of view in
heorem 3. Alternatively, the state-sequence realization problem
an be interpreted as a weighted decomposition of the stochastic,
losed-loop Hankel matrix Õ0

f R̃p. More specifically, the concepts
ntroduced for the open-loop case in Section 4.3 can be directly
xtended to the closed-loop case leading to a unified theory,
hich immediately extends various LTI subspace methods to the
PV case:

heorem 4 (Unified State Realization: Closed-Loop Case). Given an
LPV data-generating system (1) and an associated data set DN with
Z̃p,N Z̃⊤

p,N ≻ 0. Under Assumptions A.3–A.4 and A.5–A.9, let Õ0
f R̃p be

the consistent estimate of the sub-Hankel matrix in (38). Compute
the following SVD

W1Õ0
f R̃pW2 = USV⊤, (42)

here the full rank weightings can be taken as

HK
{
W1 = I,
W2 = I, PBSID

{W1 = I,

W2 =

(
Z̃p,N Z̃⊤

p,N

) 1
2
,

p-SS-ARX

⎧⎪⎪⎨⎪⎪⎩
W1 =

(
Ỹ (c)
f,N

(
Ỹ (c)
f,N

)⊤)−
1
2
,

W2 =

(
Z̃p,N Z̃⊤

p,N

) 1
2
.

he HK, predictor based subspace identification (PBSID) and pro-
ected space state autoregressive exogenous method (p-SS-ARX)
ollow the default naming in subspace literature, see Jansson (2003),
an Overschee and De Moor (1996) and van Wingerden and Ver-
aegen (2009). Then, a realization of the state-sequence is given by

ˆN = S
1
2 V⊤

nxW
−1
2 Z̃p,N . □ (43)

Proof. Based on a similar argument as for Theorem 2. ■

In Chiuso (2007) and van Wingerden and Verhaegen (2009)
he implementation and derivation of the PBSID method is ac-
omplished differently. Without exploring the theoretical basis,
imilar to the above given general theory, the authors in Chiuso
2007) and van Wingerden and Verhaegen (2009) aimed at re-
lizing a computationally efficient estimator by computing the
VD on W1Õ0

f R̃pZ̃p,N = USV⊤ and realize the state by X̂N =

S
1
2 V⊤

nx . Obviously, this method is equivalent to the above defined
BSID weighting, but it is computationally more efficient as it
voids the square root operation in (42). Additionally, Chiuso
2007) proves asymptotic equivalence between LTI PBSID and LTI
S-ARX. Extension of this proof to the LPV case has not been
ccomplished yet, but it is likely to hold. A so-called ‘‘optimal’’
ormulation of Theorem 4 can also be derived (Cox, 2018, Sec. 9.8)
ased on the LTI formulation (Chiuso, 2007). The general idea
9

of Chiuso (2007) is to prove that the initial condition Xp on the
data-equation falls within the variance of the estimator and it can
be neglected if the past window p is chosen large enough. This
concept translates to taking the assumption that [

∏p

i=1 A(pt−i)] ≈

0 or [
∏p

i=1(Ã⋄p)t−i] ≈ 0 for all p ∈ PZ instead of Assumption A.8.

Remark 5. Theorems 1, 2, 3, and 4 can straightforwardly be
modified such that A(pt ), . . . ,K(pt ) are affinely dependent on
individual basis functions {(α[i]

⋄ p)t}
nα
i=1, . . . , {(κ

[j]
⋄ p)t}

nκ
j=1 with

dynamic dependency.

Remark 6. To lower the computational load w.r.t. the IO es-
timation and realization, we can apply the kernelization based
computation similar to Verdult and Verhaegen (2005) and van
Wingerden and Verhaegen (2009).

6. Simulation example

In this section, we will demonstrate the performance of the
discussed LPV subspace identification schemes on the benchmark
example given in Verdult and Verhaegen (2005). The developed
subspace schemes are compared to the PBSIDopt method (van
Wingerden & Verhaegen, 2009).

6.1. Identification setting

The benchmark is based on a MIMO LPV-SS model with input
dimension nu = 2, scheduling dimension np = 2, state dimension
nx = 2, and output dimension ny = 2. To be able to compare
the developed approaches to existing LPV subspace methods, we
consider the simplified setting with a scheduling independent
innovation noise model

K(pt ) =

[
0.32 0.16
0.64 0.24

]
.

The innovation noise model is chosen such that the open-loop
and closed-loop dynamics are asymptotically input-to-state sta-
ble on the domain pt ∈ P = [−1, 1]2 with a quadratic Lyapunov
function defined by a constant symmetric matrix. The noise pro-
cess ξ is taken as a white noise with distribution ξt ∼ N (0,Ξ )
where Ξ is diagonal and it is chosen such that the signal-to-noise
ratio (SNR)7

SNR[i]
y = 10 log10

∑N
t=1(y

[i]
t )2∑N

t=1(w
[i]
t )2

,

s set for various Monte Carlo experiments as SNR[i]
y = {∞, 25,

10, 0} dB for all i = 1, . . . , ny. The [i] denotes the ith channel,
i.e., element of the vector signal, and SNR[i]

y is the SNR of the
output y[i]. To evaluate the statistical properties of the subspace
schemes, we will carry out two simulation studies with N =

{103, 104
} samples in the identification data set DN and in each

simulation study NMC = 100 Monte Carlo runs are executed. In
each run, new realizations of the input and scheduling signals are
used. The simulation output or one-step-ahead predicted output
ŷ of the estimated model is compared to the measured output and
the one-step-ahead predicted output y of the true system (oracle),
respectively, by means of the best fit rate (BFR)8

BFR = max

{
1 −

1
N

∑N
t=1 ∥yt − ŷt∥2

1
N

∑N
t=1 ∥yt − ȳ∥2

, 0

}
· 100%, (44)

7 The noise wt is a colored noise signal with state-equation xwt+1 = A(pt )xwt +

K(pt )ξt and output-equation wt = C(pt )xwt + ξt .
8 Usually the BFR are defined per channel. Eq. (44) is the average performance

criteria over all channels.
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Fig. 1. The eigenvalues of the estimated A0 and A1 matrices for 20 experiments with SNR[i]
y = 10 dB and N = 104 samples in the data set DN . The figure displays

the subspace methodologies using canonical correlation analysis (CCA), Ho–Kalman like projection in open-loop formulation (HK OL), Ho–Kalman like projection
in closed-loop formulation (HK CL), N4SID projection, CCA like projection (p-CCA), canonical correlation analysis in closed-loop (SS-ARX) predictor based subspace
(PBSID), SS-ARX like projection (p-SS-ARX) and PBSIDopt of van Wingerden and Verhaegen (2009).
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using a validation data set Dval as in Verdult and Verhaegen
(2005). In (44), ȳ defines the mean of the simulation output or
the one-step-ahead predicted output y of the oracle.

For the open-loop setting, the MAX model is estimated using
pseudo linear regression (PLR) where the update is determined by
the enhanced Gauss–Newton method (Cox, 2018, Appx. B.3). Note
that this optimization problem is convex. The PLR is initialized
with a FIR model estimate using ℓ2-regularized least squares
with generalized cross validation (GCV) to estimate the optimal
regularization parameter (Golub & Van Loan, 2013, Sec. 6.1.4).
For the closed-loop setting, an ARX model is estimated using
ℓ2-regularized least squares with GCV. The PBSIDopt (vanWinger-
en & Verhaegen, 2009) uses Tikhonov regularization with GCV.
Next, we will provide a summary of the used design param-

ters, which are optimized to provide the highest BFR on Dval.
he MAX model orders are nb = 4 and nc = 4 for N = 103

nd nb = 6 and nc = 6 for N = 104. The ARX model orders
re na = 6 and nb = 6 for both N = {103, 104

}. The future
nd past window for the open-loop CCA (Theorem 1) are f = 3
nd p = 4 for N = 103 and f = 3 and p = 5 for N = 104.
or open-loop unified method (Theorem 2), the future and past
indows are f = 1 and p = 4 for N = 103 and f = 3 and p = 4

or N = 104. The future and past windows for the closed-loop
ethods (Theorems 3 and 4 and PBSIDopt) are chosen as f = 3
nd p = 4 for both N = {103, 104

}. For the enhanced Gauss–
ewton method of the MAX estimation, we enforce a minimal
scension step size of β1 = 10−4 per iteration (Armijo–Goldstein

condition), the initial value for singular value truncation for the
search direction is γ = 10−8, the minimum of the regularization
parameter is λmin = 10−5 (Levenberg–Marquardt regularization),
the minimum orthogonality requirement of the search direction
is ν = 0.01, the minimum step length for backtracking is αmin =

.001, and the first-order termination condition is ϵ = 10−6

with a maximum of 20 iterations. See Cox (2018, Algo. 7.1 and
Appx. B.3) for details.

6.2. Analysis of the results

Table 1 shows the mean and the standard deviation (between
parentheses) of the BFR on Dval of the estimation algorithms
per Monte Carlo run for various SNR[i]

= {∞, 25, 10, 0} dB.
y

10
The SS-ARX like weighting of Theorem 4 (p-SS-ARX) experiences
numerical problems for the data set with N = 103 samples and,
therefore, the BFR is substantially lower. The table shows that
the state realization methods based on the maximum-likelihood
argument (CCA and SS-ARX) outperform the state realization
schemes. Most likely, this difference comes from the fact that the
CCA argument obtains a minimum variance estimate of the state
given the hypothesized noise. In addition, Fig. 1 also shows that
the structural estimation bias of the realization based schemes
is bigger than the structural bias of the maximum-likelihood
schemes. The structural bias is caused by the fact that the initial
condition in Assumption A.8 is not yet small enough. The bias can
be further reduced by increasing the past window p; however,
this will increase the parameter variance and, therefore, decrease
the overall BFR on the estimate.

Compared with PBSIDopt proposed in vanWingerden and Ver-
haegen (2009), we can see that direct implementation of the CCA
and SS-ARX schemes have comparable performance. However
theoretically, PBSIDopt should be close to the BFR performance
of the standard implementation of PBSID, but Table 1 and Fig. 1
highlight a clear difference. This is caused by the kernel trick
of PBSIDopt that significantly improves numerical accuracy. In
addition, the difference in BFR between some realization tech-
niques is in the order of 10−9. For example, the case of HK OL,
N4SID, and p-CCA for a data set with sample size N = 103.
his indicates that the IO estimation step is dominant over the
ealization step in terms of the BFR for these particular cases.
hese observations indicate how important it is to develop a
umerically efficient implementation of the developed subspace
dentification schemes to enhance their performance beyond the
heoretical developments of this paper. Therefore, extending the
ernel implementation to Theorems 1, 2, 3 and 4 is an important
bjective for future research. Furthermore, while the comparison
s provided here with p-independent innovation noise models,
he developed subspace schemes in this paper are capable to
ccomplish state estimation with p-dependent noise scenarios

that are beyond the capabilities of the current state-of-the-art.

7. Conclusion

In this paper, we have presented a unified framework to
formulate extensions of subspace identification methods for LPV
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ean and standard deviation (between parentheses) of the BFR of the estimation algorithms per Monte Carlo run for different SNR[i]

y = {∞, 25, 10, 0} dB. The table
isplays the subspace methodologies using canonical correlation analysis (CCA) in open-loop, the Ho–Kalman like projection (HK) in open-loop (OL) or closed-loop
CL), N4SID projection, CCA like projection (p-CCA), canonical correlation analysis in closed-loop (SS-ARX) predictor based subspace (PBSID), SS-ARX like projection
p-SS-ARX) and PBSIDopt of van Wingerden and Verhaegen (2009).
(a) BFR using the simulated output.

BFR [%] N = 103 N = 104

∞ dB 25 dB 10 dB 0 dB ∞ dB 25 dB 10 dB 0 dB

CCA 98.45 (0.2202) 97.85 (0.2568) 91.10 (0.8816) 78.79 (2.544) 99.43 (2.749 · 10−2) 99.05 (0.0654) 94.95 (0.3470) 87.36 (1.017)

HK OL 98.33 (0.1940) 97.90 (0.2674) 90.12 (1.163) 72.57 (2.318) 97.50 (9.764 · 10−2) 97.40 (0.1238) 93.78 (0.5231) 78.32 (1.592)
N4SID 98.33 (0.1940) 97.90 (0.2674) 90.12 (1.163) 72.57 (2.318) 97.51 (9.694 · 10−2) 97.41 (0.1235) 93.91 (0.5031) 77.32 (1.716)
p-CCA 98.33 (0.1940) 97.90 (0.2674) 90.12 (1.163) 72.57 (2.318) 97.70 (9.652 · 10−2) 97.50 (0.1324) 93.77 (0.6117) 74.37 (2.298)

SS-ARX 95.88 (0.8259) 96.02 (0.7916) 90.17 (0.957) 82.59 (2.243) 99.93 (1.636 · 10−2) 99.36 (6.611 · 10−2) 95.78 (0.3136) 92.71 (0.5857)

HK CL 94.53 (1.0340) 92.39 (1.397) 71.75 (4.340) 60.72 (2.645) 99.85 (4.567 · 10−2) 96.97 (0.3260) 86.15 (0.9586) 78.74 (1.203)
PBSID 94.57 (1.0205) 92.45 (1.382) 74.55 (3.162) 62.16 (3.255) 99.85 (4.567 · 10−2) 97.02 (0.3223) 86.27 (0.9683) 78.70 (1.212)
p-SS-ARX 63.02 (11.79) 51.18 (6.672) 46.00 (2.728) 45.38 (2.664) 99.86 (4.510 · 10−2) 96.58 (0.4401) 85.64 (1.005) 78.50 (1.228)

PBSIDopt 99.93 (2.533 · 10−2) 98.98 (0.1961) 94.82 (0.8025) 86.47 (1.915) 99.92 (1.744 · 10−2) 99.58 (5.473 · 10−2) 97.53 (0.2391) 92.94 (0.5976)

(b) BFR using the predicted output.

BFR [%] N = 103 N = 104

∞ dB 25 dB 10 dB 0 dB ∞ dB 25 dB 10 dB 0 dB

CCA 98.92 (0.1708) 96.21 (0.1470) 85.20 (0.8021) 65.47 (1.843) 99.50 (2.504 · 10−2) 97.00 (3.581 · 10−2) 87.00 (0.2044) 67.88 (0.4496)

HK OL 98.90 (0.1557) 96.27 (0.1596) 84.17 (0.8873) 58.84 (1.592) 97.63 (0.1072) 95.65 (8.794 · 10−2) 84.15 (0.6078) 57.24 (0.8006)
N4SID 98.90 (0.1557) 96.27 (0.1596) 84.17 (0.8873) 58.84 (1.592) 97.63 (0.1068) 95.65 (8.748 · 10−2) 84.13 (0.6025) 57.37 (0.9458)
p-CCA 98.90 (0.1557) 96.27 (0.1596) 84.17 (0.8873) 58.84 (1.592) 97.72 (0.1085) 95.68 (9.926 · 10−2) 84.79 (0.6815) 57.60 (1.215)

SS-ARX 97.24 (0.5553) 95.31 (0.5791) 84.30 (1.064) 72.19 (1.657) 99.94 (1.323 · 10−2) 97.02 (0.0760) 88.63 (0.2212) 77.42 (0.5231)

HK CL 95.86 (0.7027) 93.17 (0.8058) 72.53 (2.883) 51.40 (2.905) 99.88 (3.682 · 10−2) 96.75 (0.2393) 85.93 (0.6049) 72.27 (0.6701)
PBSID 95.88 (0.7007) 93.20 (0.798) 74.50 (2.093) 53.48 (3.061) 99.88 (3.682 · 10−2) 96.77 (0.2351) 85.98 (0.6128) 72.25 (0.6748)
p-SS-ARX 68.09 (12.87) 54.42 (8.925) 44.78 (3.105) 29.11 (1.757) 99.88 (3.627 · 10−2) 95.58 (0.3735) 84.79 (0.7385) 71.56 (0.7321)

PBSIDopt 99.95 (1.710 · 10−2) 97.23 (0.1720) 87.95 (0.5796) 74.09 (1.624) 99.94 (1.397 · 10−2) 97.12 (0.0689) 89.13 (0.1646) 76.34 (0.3061)
w
H
t
u
N

H

identification by systematically developing LPV subspace iden-
tification theory. Based on the derived open-loop, closed-loop,
and predictor-based data-equations, several methods have been
proposed to estimate LPV-SS models in one unified framework
based on a maximum-likelihood or realization argument. Hence,
we have shown how to extend LTI CVA, SS-ARX, PBSID, and
N4SID to the LPV setting. The effectiveness of the presented
subspace identification methods is demonstrated in a Monte
Carlo study by identifying a MIMO LPV benchmark system. An
important future direction of research is to improve numeri-
cal efficiency and reduce computational load of the developed
methods.
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ppendix. Proof of Theorem 1

The idea of the proof is based on the reasoning used in Gičans
2009) for the LTI case, however, we will also fix some of the in-
onsistencies found in Gičans (2009). Representation (23)
eads as:

ˇ
t+f,(c)
t = O0

f Řp
H0

f,p

M̌t,pž
t−p

t + ξ
t+f

t = O0
f xt + ξ

t+f

t . (A.1)

ote that ξ t+f

t is a sample path realization of a Gaussian white
oise with variance Σ2

ξ = If ⊗ Ξ 2. The model (A.1) is depen-
ent on the unknown sub-Markov parameters in H0

f,p, which are
arameterized as H and the unknown noise variance Σ2

ξ with
ymmetric parameterization Σ2. Due to the Markov property of
epresentation (A.1) and by employing Bayes’ rule, the maximum
ikelihood estimate can be obtained by maximizing the likelihood
11
or, equivalently, by minimizing the log-likelihood based on the
data set DN

min
H∈Θ

Σ2∈S

− log L(H,Σ2) = min
H∈Θ

Σ2∈S

1
2
f nyN log(2π )

+
1
2
N log

(
det

(
Σ2))

+
1
2

N∑
t=1

ε⊤

t|HΣ
−2εt|H, (A.2)

here the one-step-ahead prediction-error is εt|H = y̌t+f,(c)
t −

M̌t,pž
t−p

t and the future window is f. As the signals are assumed
o be persistently exciting, i.e., Žp,N (Žp,N )⊤ ≻ 0, the well-known
nique stationary point of (A.2) is obtained at (Gibson, Wills, &
inness, 2005, Lem. 3.3)9

ˆ 0
f,p =

1
N
Y̌ (c)
f,N Ž

⊤

p,N (Žp,N Ž
⊤

p,N )
−1, (A.3a)

Σ̂2
ξ =

1
N
Y̌ (c)
f,N (Y̌

(c)
f,N )

⊤
−

1
N
Ĥ0

f,pŽp,N Ž
⊤

p,N (Ĥ
0
f,p)

⊤. (A.3b)

The solution (A.3) is a consistent estimate which is efficient
in terms of the parameter variance. The interest is not in an
estimate of H0

f,p, but to attain a realization of the state, O0
f , and

Řp separately that together will maximize the likelihood (A.2). To
start, assume that ŘpŽp,N is known a-priori in (A.1). Then, similar
to (A.2), the solution to the linear least-squares problem is

Ô0
f =

1
N
Y̌ (c)
f,N Ž

⊤

p,N Ř
⊤

p

(
1
N
ŘpŽp,N Ž⊤

p,N Ř
⊤

p

)−1

, (A.4a)

9 The estimate Σ̂2
ξ =

1
N εt|Ĥε

⊤

t|Ĥ
is simplified as

1
N
Žp,N (Y̌

(c)
f,N − Ĥf,p Žp,N )⊤ =

1
N
Žp,N

(
Y̌ (c)
f,N −

1
N
Y̌ (c)
f,N Ž

⊤

p,N

( 1
N
Žp,N Ž⊤

p,N

)−1
Žp,N

)⊤

= 0.
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N
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(
Y

m
n
n

b
(

I
d

w

N
w
Q

Q

N
v
a

T
(

−

t
S

H

Σ̂2
ξ =

1
N
Y̌ (c)
f,N (Y̌

(c)
f,N )

⊤
−

1
N2 Y̌

(c)
f,N Ž

⊤

p,N Ř
⊤

p

×

(
1
N
ŘpŽp,N Ž⊤

p,N Ř
⊤

p

)−1

ŘpŽp,N (Y̌
(c)
f,N )

⊤. (A.4b)

The log-likelihood function associated with (A.4), given Řp, Žp,N
and Y̌ (c)

f,N , is

− log L(Ô0
f Řp, Σ̂

2
ξ ) =

1
2
f nyN (log(2π ) + 1)

+
N
2

log
(
det
(

1
N
Y̌ (c)
f,N (Y̌

(c)
f,N )

⊤
−

1
N2 Y̌

(c)
f,N Ž

⊤

p,N Ř
⊤

p

×

(
1
N
ŘpŽp,N Ž⊤

p,NR
⊤

p

)−1

ŘpŽp,N (Y̌
(c)
f,N )

⊤

))
. (A.5)

Note that the last product in (A.2) can be simplified to

1
2

N∑
t=1

ε⊤

t|Ô0
f Řp
Σ̂−2
ξ εt|Ô0

f Řp
=

1
2
Tr
{
NΣ̂2

ξ Σ̂
−2
ξ

}
=

1
2
f nyN.

ext, the focus will be on obtaining the p-step extended reach-
bility matrix Řp that minimizes the log-likelihood (A.5). Similar
o Larimore (2005), take the following constrained SVD

S̃ = Ũ⊤
1
N
Y̌ (c)
f,N Ž

⊤

p,N Ṽ ,

s.t. Inyf = Ũ⊤
1
N
Y̌ (c)
f,N (Y̌

(c)
f,N )

⊤Ũ, InZ = Ṽ⊤
1
N
Žp,N Ž⊤

p,N Ṽ ,
(A.6)

here Ũ ∈ Rnyf×nyf , S̃ ∈ Rnyf×nZ , and Ṽ ∈ RnZ×nZ , and nZ =

nu + ny)
∑p

i=1(1 + nψ )i. This constrained SVD is unique in case
ˇ (c)
f,N (Y̌

(c)
f,N )

⊤
≻ 0 and Žp,N Ž⊤

p,N ≻ 0, which comes naturally under
the persistency of excitation conditions. The matrix S̃ is a diagonal
atrix with ordered singular values s̃21 ≥ · · · ≥ s̃2n ≥ 0 and
= min(nyf, nZ). In the following discussion, we assume that

yf ≤ nZ to simplify notation. Note that (A.6) is equivalent to

1
N
Y̌ (c)
f,N (Y̌

(c)
f,N )

⊤
= (ŨŨ⊤)−1,

1
N
Žp,N Ž⊤

p,N = (Ṽ Ṽ⊤)−1,

1
N
Y̌ (c)
f,N Ž

⊤

p,N = (ŨŨ⊤)−1Ũ S̃Ṽ⊤(Ṽ Ṽ⊤)−1
= Ũ†S̃(Ṽ †)⊤,

(A.7)

y applying the left pseudo-inverses. Substituting the relations
A.7) into the second line of (A.5) leads to
N
2

log
(
det
(
Ũ†) det ( Inyf − S̃(Ṽ †)⊤Ř⊤

p

×

(
Řp(Ṽ Ṽ⊤)−1Ř⊤

p

)−1
ŘpṼ †S̃⊤

)
det
(
(Ũ†)⊤

) )
. (A.8)

n (A.8), the product property of the determinant is applied:
et(AB) = det(A) · det(B). It is important to see that the con-

strained SVD (A.6) only decomposes the signal relations based
on the (co)variances and the decomposition does not change the
minimization of (A.5). To simplify the notation, define

Q ≜ (Ṽ †)⊤Ř⊤

p ∈ RnZ×nx , (A.9)

hich represents an injective mapping of Řp to Q as Ṽ is full rank.
Applying this transformation, (A.8) read as

−
1
2
N log

(
det
(
(ŨŨ⊤)−1

)
×det

(
Inyf−S̃Q (Q⊤Q )−1Q⊤S̃⊤

))
. (A.10)

ote that minimization of (A.5) is equivalent to minimizing (A.10)
ith a change of variables. Furthermore, the inverted expression
⊤Q in (A.10) can be written as

⊤Q = Řp(Ṽ Ṽ⊤)−1Ř⊤
=

1
ŘpŽp,N Ž⊤ Ř⊤

=
1
XNX⊤, (A.11)
p N p,N p N N

12
which is the sample variance of the to-be-chosen state variable.
The realized state is an isomorphic representation with respect
to the original SS form of the underlying data-generating sys-
tem, see Section 3. Hence, its sample variance 1

N XNX⊤

N can be
chosen to be any arbitrary positive definite matrix. In CCA, the
variance is chosen to be identity, hence, all states have equal
magnitude and are maximally uncorrelated. As such, minimizing
the log-likelihood (A.10) renders

min
Q⊤Q=Inx

log
(
det
(
Inyf − S̃QQ⊤S̃⊤

))
= min

Q⊤Q=Inx
log
(
det
(
Inyf − Q⊤S̃⊤S̃Q

))
, (A.12)

by applying Sylvester’s determinant identity. To find an expres-
sion for minimizing the log-likelihood, note that the determinant
of a matrix is the product of its eigenvalues. From Poincaré sep-
aration theorem (Lemma 7) it follows that the choice Q⊤Q = Inx
will not lead to a single solution of (A.12). Using Lemma 7, let us
investigate the individual descending sorted eigenvalues

λnyf−i+1
{
Inx − Q⊤S̃⊤S̃Q

}
= 1 − λi

{
Q⊤S̃⊤S̃Q

}
≥ 1 − λi

{
S̃⊤S̃

}
= 1 − s̃2i , (A.13)

for i = 1, . . . , nx. Hence, minimization of the marginal like-
lihood (A.12) has a lower-bound based on the product of the
singular values in S̃. The lower-bound is clearly obtained if Q =

[Inx 0]⊤, which also satisfies Q⊤Q = Inx . There might be other
solutions to the minimization problem of (A.12), however, we
take the solution equal to the CVA solution of Larimore (1983).
Hence, the latter choice of Q maximizes the marginal likeli-
hood function (A.5). An estimate of the reachability matrix R̂p is
obtained by reformulating (A.9) as

R̂p = Q⊤Ṽ⊤
= [Inx 0]Ṽ⊤, (A.14)

which results in selecting the first nx columns of Ṽ . Then, the
estimates of the observability (A.4a) and noise covariance (A.4b)
are equivalent to

Ôf = Ũ†S̃(Ṽ †)⊤R̂⊤

p = Ũ†S̃Q , (A.15a)

Σ̂2
ξ = (ŨŨ⊤)−1

− Ũ†S̃(Ṽ †)⊤R̂⊤

p R̂pṼ †S̃⊤(Ũ†)⊤

= Ũ†(Inyf − S̃QQ⊤S̃⊤)(Ũ†)⊤, (A.15b)

where (Ṽ †)⊤Ṽ =
1
N ŘpŽp,N Ž⊤

p,N Ř
⊤
p = Inx due to (A.6) and (A.11).

ote that the multiplication S̃Q selects only the first nx singular
alues of S̃. Combining the estimates (A.14) and (A.15a) results in
n estimate of H0

f,p:

Ĥ0
f,p = Ũ†S̃QQ⊤Ṽ⊤. (A.16)

he log-likelihood function corresponding to the estimates (A.14)–
A.16) is

log L(Ĥ0
f,p, Σ̂

2
ξ ) =

f nyN
2

(log(2π ) + 1)

+
N
2

log

(
det

(
1
N
Y̌ (c)
f,N (Y̌

(c)
f,N )

⊤

) nx∏
i=1

(1 − s̃2i )

)
=

−
N
2

log
(
det
(
Ũ
)2)

+
f nyN
2

(log(2π ) + 1)+
N
2

nx∑
i=1

log(1 − s̃2i ).

The last remaining step is to show that the estimates of the
Hankel matrix Ĥ0

f,p (A.16) and the noise Σ̂2
ξ (A.15b) are equivalent

o the estimates in (A.3) that characterize the minimum of (A.2).
ubstitute (A.7) in (A.3)

ˆ 0 =
1
Y̌ (c) Ž⊤ (

1
Žp,N Ž⊤ )−1

= Ũ†S̃Ṽ⊤, (A.17a)
f,p N f,N p,N N p,N
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v
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V

V

Σ̂2
ξ =

1
N
Y̌ (c)
f,N (Y̌

(c)
f,N )

⊤
−

1
N
Ĥ0

f,pŽp,N Ž
⊤

p,NĤ
⊤

f,p

= Ũ†(Inyf − S̃S̃⊤
)
(Ũ†)⊤. (A.17b)

The estimates (A.15b) and (A.16) are identical to (A.17) when the
all singular values are selected, due to S̃Q . In case the number
of data points goes to infinity, i.e., N → ∞, then S̃ will con-
tain exactly nx nonzero singular values. In the finite data case,
the number of states in the realization is selected based on Q .
n conclusion, the SVD (26) maximizes the marginal-likelihood
unction of the linear estimation problem (23) w.r.t. the un-
nowns O0

f , Řp and the covariance Ξ 2 with state-sequence (25)
nd log-likelihood function (26).
Note that in early literature on CVA SID (Larimore, 1983,

990), the constrained SVD (A.6) was performed with arbitrary
ositive-definite weight Λ ∈ S such that I = Ṽ⊤ΛṼ , which

is called the CVA method. The CCA and CVA methods coincide
with the weighting choice in (A.6). The CVA method with Λ ̸=
1
N Žp,N (Žp,N )

⊤ and Λ ≻ 0 leads to a minimal prediction-error
solution of εt|Ĥ (Larimore, 1990, Eq. (10)), but will not lead to
a maximum-likelihood estimate of H. ■

Lemma 7 (Poincaré Separation Theorem). Let A ∈ Sn and B ∈ Rn×r

be matrices such that B⊤B = Ir . Let λi{�} represent the eigenvalues
of a matrix sorted in descending order. Then,

λi
{
B⊤AB

}
≤ λi {A} , i = 1, . . . , r. □

Proof. See Rao (1973, p. 64). ■
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