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Vocabulary Building for Database Queries

Yuzuru TANAKA

Faculty of Engineering
Hokkaido University

Sapporo, 060 JAPAN

1. Introduction

The introduction of natural language features into query languages seems

to be classified into 3 stages. The first stage is the introduction of the
syntactic flexibility of natural languages. In this stage, users have to
know much about the definite logical access structure defined by the
database system. Queries have to describe a desired logical access path

in a procedural manner, using some type of syntax similar to some natural
languages. The semantics that users can afford is only a one-to-one
correspondence between the names of attributes and the actual attributes

of the database. While such a system may be able to optimize queries, it
can not work if the instruction about which access path to choose is not

given from the user.

The second stage is the introduction of the access flexibility. Such a
system can define a variety of virtual access paths as well as an actual
access structure. This definition may be given by a semantic network or
a logical program such as those with PROLOG. Since they are mostly based
on the first order logic, they are not flexible enough to define the

semantics of a variety of words including those that modify the meanings
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of predicates.

In my personal view, the third stage that has not been much studied untill
now means the introduction of flexible vocabularies. The most part of the
semantics of this kind is able to become completely independent from the

actual logical structure of the system.

This paper gives a formal basis for vocabulary semantics and vocabulary
building facility. For this goal, chapter 2 develops a formal theory of
relations with null values and generalized operatiohs. Based on this,
chapter 3 defines a database access space with infinitely many access
paths, while chapter 4 shows how the stepwise bﬁilding of a vocabulary

defines the formal semantics of a database.
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2. Generalized Operations on Relations

2.1 A partial relation

et § and D be two enumerable sets respectively called an attribute set and

a value set, where we assume an empty set ¢ belongs to D while another
special value "1" does not. By (X~ Y) We denote a set of all the functions
from a set X to another set Y. A subset of (2 > D) is called a relation

over {2, while a subset of (2 ~D') for D'=DV{l} is called a partial relation
over ). An element of (R >~ D) is called a tuple over {2, while one of. ( > D')
is a partial tuple over (. An attribute value ¢ means the nonexistence of
this attribute, while 1 means that the value is unknown. For a partial
relation R over ), we define w(R) as . A special set (¢ > D') is considered

as a singleton e={¢}, i.e.,

e=(p » D')={e}.

Let £ be a function from X to Y, and Z be another set. A restriction of f

within Z denoted by f|z is a function defined as
f|Z e (2~ Y),
and  AeXxnz f| (A)=f(a),
- =1,
Aez-x f|, ()
For each Re (2 -~ D') and a set X, we define a projection of R onto X as
€ (X*w(R) = D)}

[XIR = |vueR s.t.

{u l X" (R) XPw (R)

which is always a relation.

Lemma 2.1
A partial relation R is a relation iff [w(R)]R=R.

(proof)

Obvious.

Different from the case of relations, it does not always hold for a partial
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relation R that [X][YIR=[X® Y]R. The left hand side imposes the condition
that the Y-values should be known, while the right hand side imposes only

the certainty of X/ yY-values.

The natural join of two relations r and s is defined as

r*s = { u | Yie w(r)Vw(s) +~ D) s.t.

A
ulw(r)er u!w(s)as

N n > D- .
M@y nwis) € @@ Mwis) > p-{ph) }
This definition imposes the condition that the values of join attributes

should be known and existent, i.e., they should not be either ¢ nor l.

2.2 Grouping of values and generalized projections

Here we formalize the so-called "GROUP BY" operations that are fundamental

to enrich our formal semantics of queries.

Let r be a relation over ) and Qh be a set defined as
Q, =Vl x/y | x, Y ¢ Q}.

An attribute (X/Y) of an extended attribute set Qh is read as "X grouped by
Y values”". An extended value set D._ is defined as

I h
p. =pu(u, 2Py,
h i

For a subset X of Qh and a tuple U of a relation r over a subset of 2, we

. . h .
define a partial tuple u_ . € (X~ DhU {L}) as follows;
I

Va o h -
Ac QnX “r,x(A) u(a),

and
VV/WEX
u? \Z {vw) | Yve [vWlr s.t.
vl = ®ly and v| e (v > p-{¢}h

if ulwe (Y - p-{¢}h,

1L otherwise.
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For a subset X of Qh, flat (X) denotes a subset of { defined as

flat(x) = (X°Q) V(V (vvw)).

V/We X
A generalized projection of a relation r onto a subset X of Qh is defined

as

h Vuer s.t. uh

[x1,r = { ur,Xlw(r)h’\ % r,xlw(r)h,\ <€ (X~ Dh)},

while a generalized projection of a partial relation R onto a subset X of Qh

is defined as

[X]hR = [X]h[flat(X)JR.

Now we consider a set of computable functions F defined as
F={g]| gis computable,3]<z_0 g €((Dh)k > Dhu {L}H }.

For an attribute set , let Qf be a‘set defined as

= V] v o v
Qf Q {g(All A2, ceey Ak) { 1 AiEQ' gEF}.
For a subset X of Qf and a tuple py of a relation r over a suset of 2, we
define a partial tuple u: < E (X - D, Vv {1}) as follows;
I

aeQnx pi < (B) = pa),

and
vg(AlAl'°-lA)€x
1 2 k
f ) .
cees = i i i 1
Ur,X(g(Al' Ak)) if v is not undefined then v else 1,

where

£ R
v = g(ur'X(Al)l---r ur,X(Ak))'

For a subset X of Qf, arg(X) denotes a subset of ) defined as

arg(x) = (XN"Q) VU (VU ).

Y
g(Y) €X
A generalized projection of a relation r onto a subset X of Qf is defined

as

_ £ v f . .
[X]fr - {ur,xlw(r)f“ X HEr s.t. ur,xlw(r)fn XE:(X M Dh) iy
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while a generalized projection of a partial relation R onto a subset X of

Qe is defined as

[x] fR = [X] £ [arg (X) IR.

A more general attribute set Qg is defined as follows;
(1) Q CQg ’
2 Yx, YYeq_  x/YeQ
’ g g 14
v

v v v
3 Al A, e ey
(3) Aksﬂg

’ g(Al,’AZ, cesey Ak)Ele
(4) only those defined by a finite number of applications

of the above rules are elements of Qg.

For a partial relation R over a subset of {, its projection onto some

subset X of Qg is defined as
[X]gR= t[X]R if XeQ,

[X] £ [arg (X) ]h[flat(arg(x) ) ]gR otherwise.

Some important functions are defined below, where S denotes some subset -

of D.
sum(S) lz,‘vgs v if S is a set of numbers,
L otherwise.
max(s) = maxve S v if S has some definite order,
L otherwise.
min(S) = {minvas v if S has some definite order,
L otherwise.

count (S) = cardinarity of S.

For any attributes A, B, and C in Szg, we define average(A ; B/C) that is
also an element of Qg as
sum (sum (A/BC) /C)

average (A;B/C) = .
count (B/C)
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example 2.1

We show a computation process for [average(A;B/C),Clr of an example relation

r over {A, B, C, D}.

r A B C D
1 a c e
1 a c £
3 b c £
3 a c e
4 b c g
2 a d4d h
1 a d h
1 da X

[average (A;B/C),Clx

sum (sum (A/BC) /C)
= [ ,C ]f[sum(sum(A/BC)/C), count(B/C),C]f
count (B/C)

[sum(a/BC)/C, B/C, C]h[sum(A/BC), B, C]f[A/BC, B, C]hIA,AB, Clr

rl=[A, B, Clr r2=[A/BC, B, C]hrl r3=[sum(A/BC), B, C]fr2

1 a ¢ {1, 3} a ¢ 4 a c
3 b ¢ {3, 4} b ¢ 7 b ¢
3 a c {2, 1} a 4 3 a d
4 b ¢ {1} b 4 1 b 4
2 a d
1 a d
1 b a
r4=[sum(A/BC)/C, B/C, C]hr3 r5=[sum(sum(A/BC)/C), count (B/C) , C]fr4
{4, 77 A{a, b} ¢ . 11 2
{3, 1} {a, b} 4 4 .
sum (sum(A/BC) /C)
) r clrg
5.5
2
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2.3 Generalized restrictions of relations

Let P(x) be an n-place predicate, A= (Al, A ceer An) be an n-dimensional

2’

vector of attributes in {, and é be the corresponding set {Al, A ey An}.

2l
A predicate P(A) (1) for we ( - D) is defined as
P(A) (u) iff (VA€§_ H(A)#undefined N U (A)#L)
ANP@), BB, oy 1)) .

P(A) is called a predicate scheme of Q.

A restriction of a partial relation R over some subset of ! by a predicate

scheme P(A) of Q is a relation defined as

P@IR={u | uers.t. P@W}I.

Lemma 2.2

YxeQ [x1[P(A)IR = [X][P(a)](xVXIR.

(proof)

Obvious from the definition.

A generalized restriction of a partial relation R over some subset of {} by

a scheme P(A) for éc Qg is defined as

Ve [(Xx] [P(a)] R = [X] [p(a)l[xVE] R.
g g g9 g - -9
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3. Intensional Relations and an Information Space
For a partial relation R over some subset of (), we define a function lntR
from Qg to a set of relations as
int
R = A x. [x]gR.

This function is called a intension of R over ). A restriction of lntR by

a scheme P(A) is defined as

e @1 = ax. x] @1 R&Y D).

Theorem 3.1

Yxeq (12 (a) 13"%R) (x) = [x]_[P(a)] R.
g ) - 9

(proof)
(P (@)1 " R

Ax. [x]gtp@lintRmvz&)

. P(A A
Ax [x]g[ (_)][xVA]gR

AX. [x]g[P(_A_)]gR (from the definition of
[P(n) ]g) .

A relation ([P (é)]lntR) (X) can be informally interpreted as all the
information about X that can be obtained from R and satisfies the condition

P(A). We define a set of all the intensional relationsover Q as

where ER() is a set of extensional relations over  defined as
L
5@ > D)

=V
ERy =Yg eq
’ g

Let L be an enumerable set called a set of labels. We define a set ,QL as

follows;

1) qeq®

. : L
(2) VAgQL, Vz gL 7A is an element of Q ,

v

3) Yxe QL, YcQL (X/Y) is an element of QL,

L L
(4) "Al, "A2, ...,VAngQ,ggF g, Ay ooy B)EQ
(5) only those defined by a finite number of applications

of the above rules constitute QL.
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. . . . n,m n,m
An elementary adjective for § is a triple (P “(x;y), A, B), whexe P ! (x;y)
is a (n+m)-place predicate and A, B are n and m dimensional vectors of

attributes in Qg.

For an elementary adjective 8= (P(x;y), A, B), its inverse 8 is defined

as

(p* (Z_;i{_) ¢+ B, é_) [

where V_}g, Vl P(x;y) iff P*(y;x).
Let 9 be some set of elementary adjectives. Each 8¢0 is considered as a
label for attributes and, for simplicity, G=(P(§;29, A, B) is denoted by
P(A;6B), where GE?(eBl' eB2,..., BBn). Besides, A and B of 6=P(A; B) is
denoted by ée and Ee.

For a pair of same dimensional vectors A and B of attributes in Qe, a
renaming operator A/B renames attribute name Bi of a relation to a new

name A,, i.e.,
1
@/B)x = {u* | Vuerz},
where p*e (Ww(x)-B)VA -+ D),

and VAgw(r)-B  p*(a)=p(a)
Vis.t. B eBrulx) u*(a)=u(s,).

For simplicity, (A/B) is denoted by (X/B) if its meaning is clear.

Def. 3.1

Let 50 be an intensional relation over (), and O be a set of elementary

adjectives for . An information space for (Q, O, 50) is an intensional
0

relatien xr over (” satisfying

v k = .
(1) XCQg r(X) = x (X),

(2) Y9 = P, (A76B) Vi s.t. x00(0) = ¢

r(X9(Y)) = [Xe(Y)]g[Pe(g_;eg)]g(g(xué_)*g(e(Y)Ve(E))).
(3) Yoeo x(a()) = (BY/V)x(Y),

(4) for each subset X of QO, r(X) is the maximal set

satisfying the above conditions.

- 10 -
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Theorem 3.2

The condition (2) (3) (4) of Def. 3.1 may be replaced by the following

condition.
Vo = p(a;08) Yx s.t. xr0 0% Yy
£(XB(1)=[X6(N]_[P(@; ()] _(xxvH»z v E),
where Yre ERy 0r = G (@)W (x)r.
(proof)

Let s be an intensional relation satisfying the new condition, and r be an

information space defined by Def. 3.1.

We first prove the fact that
X s(X)>x(x)

by mathematical induction on rank(X), where rank(X) is defined as follows;
VXCQg rank(X) = 0,

rank (XY)=rank (X) +rank (Y¥) ,
rank(8)=rank(§e)+rank(Ee)+1=l (v A [ Qg ),
rank (8 (X) )=rank (X) +rank (9),

rank (X/Y) =rank (X) +rank (Y) .

For each X satisfying rank(X)=0, i.e., X< Qg,_g(x) equals to r(X), and hence
S(X)> r(X) holds for rank(X)=0. Let us assume that s(Y)> r(Y) holds for any
Y whose rank is less than k, and let rank(Z) be k. We can assume without
loss of generality that 2 is X0 (Y) with X"G(QO)=¢. Then s(X0(Y)) is equal
to

[XG(Y)]g[P(A;O(E))]g(g(X Vé)*eg(YU_E_)).
Since it holds that

k = rank(X0(Y)) = rank(X)+rank(Y)+1,
rank(X)é’k,
rank(Y);'k,

rank (X vV X) = rank(X)+rank (&)

rank (YV E) rank (Y) +rank (B)
it can be assumed that

E(XUE) DE(XVE)I
s(YVB)>r(YvE).

- 11 -
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Hence it holds that
S(x6(1) > [X6(N)] _[P(a;0(B)] (x(xvA)Hr(¥vE).

From the condition (4) of Def.3.1, 6x(Yv B) must be a super set of

r®(¥Y) Ve (B)). Hence we can conclude that
s(X6(¥)) > [X6(X) ] [P (A e(g_))]g(r(xpé)*er(w“g))
> 14l 14 (xVR) * O () V6 (B))
=xr(x6(Y)).

Since we have proved that, for any X, s(X) includes r(X), s is an
information space if it satisfies the conditions (1) (2) (3) of Def.3.1.
Obviously, s satisfies the condition (1). Let us check the condition (3).

From the definition of s, s(6(Y)) is equal to
(e (Y) ]g[P(_Zi;e (B)) ]g(§_(§) *¢s(YVB)),
which is included by
6 (y) ]gei(Y v B)
c 0s(Y).
This proves the condition (3). Since s(B(Y)VB(B)) is
[6(Y)Ve(® ]g[P(é_;e (E))]g(s(é)*eg(YV B))

from the definition of this theorem, the substitution of £(XV§_) and
r(g(Y)V 6(8)) in the condition (2) by _s_(XVzi_) and the expression given

above gives
. v i
[x6 (V)] _[P(2;6(B))] (s(xVE)

*[0(Y)V e(E)]g[P(g_;etg))]g(g@*eg(yvg)))

[X6(Y) lg[P(A_;e(g))]g(g(xvg) *s (K)*0s (Y Vv B))

[xe(y) ]g[P(g;e(B;))]g(s(xvg)*eg(w B))

s(X0(¥)).

Hence s satisfies Def 3.1, and we have proved the theorem.

- 12 -
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Theorem 3.3

an infomation space r does not depend on the way to choose O in the condition

(2) of Def.3.1.

(proof)

We prove, for X satisfying XnO(Qe) = XI\T(QG) =¢, r(Xo{¥)T(2)) is
uniquely evaluated independently from which adjective should be chosen
first.

If ¢ is first chosen then
£(x0 ()T (2))=[X0 ()T (2)] [P (250 (B))] (x(xV A vT(2))*z(0(Y)0(B))).

Since EF'Qg holds, (XV3A) and T(Qe) are disjoint. Hence x(XV E}JT(Z)) is

equal to
[XZ\_T(Z)]g[Q(Q;T(p_))]g(r(XVQVQ)*r(T(Z) VIT(@)) .
Therefore, x(Xo(Y)T(Z)) is
[XU(Y)T(Z)]g[P(é;G(EQ)]g
(([xz"a_r(z)lg[Q(c;r(g))lg(g(xvgvg”:_)*g_(r(z) v (D)) *r(o(X)a(B))),
which is equal to
[XG(Y)T(Z)]g[P(é;G(ED)]g[Q(ng(Ep)]g
(x(XVEV O *c(T(Z)VT (D)) *r(c(¥)o(B)))
={MWHQH&NyN@MQ@ﬂ@H%
F(E(XUZ&_U ) *r(t(z)vT (D)) *x (o (¥)0(B)))

from the definition of a generalized projection. The last expression is

independent of the order between ¢ and T.

Let QG' Qe be

0
I
@
5
o

For each 60, 6* and 54 are defined as

<@
*
1

AX. v s.t. O(y)=xn 99.

AX. x!\§ .

5]

[e>
*
1

- 13 -
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Besides, for each intensional relation r and 6 €0, x is defined as

0r = Ax. 6r(x).

Theorem 3.4
An information space r for (Q, O, 50) satisfies the following;
Yo = P(a;0(B)) "X s.t. xn0 (@) # o
r(X) =(Ip] ((6x8*)(xB*))) (X).

(proof)

Obvious.

For an information space r for (Q, O, EO), we define 9* as follows;
(1) 0cO*
(2) Yoeo 6 eo*
(3) Vg,V eo*

GoT g 0% (c°T) =0 °1

o+ e 0* (+1) =0 +T
o-T 0% (o-1) =0 -1
o*1T ¢ O* (o*t) =0 *T_

(4) only those defined by a finite number of applications
of the above rules constitute Q*.
Besideé, we define Q* as follows;
C]
(1) Qe Q*
(2) ¥x, "Yeq* X/Yeqg*
(3) VA ’ VA r eeer VAnEQ* vggF g(A]_. Azl ceay An) EQ*

1 2
(4) Vaeg* Ygep 0AEQ*

(5) only those defined by a finite number of applications
of the above rules constitute Q*.
An intensional relation r* over Q* is defined as
(1) "X« q® r*x =zr(x
2) Yoeo YK s.t. X00(Q%) £ ¢

T*(X) =(16] ((Bz*0*)* (x*8*))) (X)
where the domains of all the operations are assumed to

be extended from Qe to Q¥

_14_



(3)

(4)

(5)

(6)

V(U"T) € 0*

Y(o+1) € O*

Y(o-T) € O*

V(O*T) € 0*

*(X(0°T) (¥))

(X(o°T) (Y) /X0 (T(Y))) x> (XO(T(Y))),

T* (X(04T) (Y))

(X(0+T) (Y) /X0 (Y) ) r* (X0 (Y))
V(X (0+T) (Y) /XT(¥) ) r* (XT(Y)),
£*(X(0-1) (¥))

= (X(0-T) (Y) /X0 (Y) ) x* (X0 (Y))
= (X(0-T) (Y)/XT(¥))x*(XT(¥)),
£* (X(0*T) (¥))

= (X(0*T) (¥) /X0 (Y) ) x* (X0 (Y))

N (X (o*T) (Y) /XT (X)) x* (XT(Y)) .

- 15 -

41
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4. Stepwise Vocabulary Building for Database Queries.

Def. 4.1

A stepwise vocabulary building process for a database with a partial
relation A over a finite attribute set QO is a sequence of triples

(Qi. Oi, £i) defined as below;

(1) T T L
= = (oo]
¢ OOC GlC COn (S
A = ':EO" _:Ell cee g __1_'n = _r_‘_nl
(2) el is a set 6f>ele'mentary adjectives of Qi-l’
i » * ‘ *
(3) Qi is a set Qi-l for“(vszi_l, 91—1 ’ £i—l)'

r ).

S Lo . N
(4) x., is an lnformatlyon space r* of (Qi—l' ei—l X q

Then _{m is called a universal information space of (QO, {ei}, A) and {@i}
is called the stepwise basic vocabularies of adjectives, and Q® is called

- the lexicon.

Theorem 4.1
For each Xc Qm, £°° (X) is computable if X and A is finite.

(proof)
This can be proved by mathematical induction on rank(x) that is a modified

version of the »previous defintion and is defined as follows;
Yx < oy ~ Tank(x)=0
rank (XY)=rank (X) +rank (Y)
Vi Ve €0 rank (g ) =rank @6 ) +rank (1_36)+l
rank (8 (X) )=rank (X) +rank (0 )
rank (X/Y)=rank (X) +rank (Y) +1
rank (g (X) ) =rank (X) +1
rank ((0°T) (X))=rank (0 (T (X)))+1
rank( (geT) (X)) =rank (g ) +rank (t ) +1
where *» is a one among +, -, *.

rank (6 _) =rar}k ©)+1.

- 16 -
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Here we list up several important forms of adjectives.

Def. 4.2
Yac@”™ R = ((x=y) (x;y), A, B), i.e., (A = AA).
Def. 4.3
VAeQm VVth
'A(av) = ((y='v') (x;y), ¢,4), i.e., (A(BV)Aa'v'),

where 9 is one of the relational operators =, #,

z_r f_l >, <.
. . N

Let O be a special attribute that does not belong to ! . For the
convenience, we add O to QO by extending A to a cartesian product of A and

= i = X i
u= ({0} » D). i.e., Anew Aold ({O} > Dh). Now we are able to define
another important type of adjectives.
Def. 4.4

Vae® 2% = ((x=y) (x;y), A, O), i.e., (80 = A).

We are also allowed to define,for each pair of attributes A and B in o7,

their addition, subtraction, and multiplication as below.

Def. 4.5
Ya, 'Be @7 a+B = (°+8%)0
a-B = (a°-8%)0
a*s = (a°*8%)o0.
Theorem 4.2
Yae 0° Vxe® £ (a°%0)x) = £°(ax)
(proof)
Obvious.

A vocabulary for A is a suset V of X* and a, where L * is a set of all the
finite strings of an alphabet § and g is a function from (V\JQ”u 0*) to

Q®V 0”° such that YaeQ”voe® o (a)=a.

- 17 -
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We define for each subset X of V, a relation over X with respect to R

€, {@l}, A) as

<X = (xﬁx(x))g?(a(x)).

example 4.1
For an example relation with
Q, = {driver, licence #, typist, typespeed, salary},
we are able to define the word "employee" ‘as
a(employée) = driver+typist. .
For example, <employee, typé speed5 can be evaluated as

<employee, type speed>

(employee, typespeed/(driver+typist), typespeed)
é&(driver+typist, typespeed)

(employee, type speed/({driver+typist), type speed) ;

((driver+typist), type speed/(drivero+typisto)o, type speed)
5%((drivero+typisto)0, type speed)

(employee, type speed/(drivero+typisto)O, type speed)

(((driver°+typist°)o,type speed/driveroo,type speed)
Ef(driveroo, type speed)

V((driver°+typisto)0,type speed/typistoo,type speed)
Eﬁ(typistoo, type speed))

(employee, type speed/ driver, type speed)
Eé(driver,‘type speed)
V(employee, type speed/ typist, type speed)
Ef(typist, type speed)
= (employee, type speed/typist, type speed)
Ef(typist, type speed),

while < employee, salary> can be evaluated as
o0
(employee, salary/ driver, salary)r (driver, salary)

[e0)
VU (employee, salary/ typist, salary)r (typist,salary).

- 18 -
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example 4.2
Let us see another database with
QO = {employee, department, salary},
and define an elementary adjective "rich_man" as
rich man = (rich_man(salary) > average(salary; employeé/¢)).

Then, for example, the query that requests the listing of all the departments
that have at least one employee whose salary is more than the average of the

company can be simply expressed as
<rich man(dept)>,
while the list of all such employees can be requested by

<rich_man (employee)>.
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5. Concluding Remarks

The vocabulary building facility concerned in this paper is a new cocept
of query semantics. It makes a new approach to the effective enhancement
of the database usability. The framework developped in this paper has the

following features:

(1) ada ﬁoc vocébulary building is allowed.

(2) As shown.in the examples, even a very complicated request is
expressed as a very simple query.

(3) It is not necessary for us to describe either a virtual access
path nor an actual one.

(4) It provides generalized projections and generalized restrictions.

(5) If we consider a vocabulary V as an attribute set, we can
construct a new vocabulary V* over V. . Since the description of
V* includes no elements of Qw, the definition of V* is independent
from the database.

(6) For each pair of different concepts, the framework provides the
means to define their common concept, their difference concept,

and their union concept.

If a proper part of our common vocabulary used in daily conversation is
adequately built into a vocabulary of the system, then our man-machine
communication will become much smoother and more reliable. By having a
common vocabulary, a man and a machine can communicate even a very
complicated command with a very few words. Our approach will open out

new vistas of these possibilities.
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