-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

On the Mapping Data of Planar Graphs (Applied Combinatorial

Title Theory and Algorithms)

Author(s) | OZAWA, TAKAO

Citation 0000000000 (1981), 427: 1-14

Issue Date | 1981-06

URL http://hdl.handle.net/2433/102637

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39233414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ooooboooao
4270 19810 1-14

ON THE MAPPING DATA OF PLANAR GRAPHS

Takao Ozawa

Department of Electrical Engineering
Kyoto University,-Kyoto, Japan 606

1. Introduction

A planar graph is defined to be a graph which can bé"mappea
on a plane. The definition itself indicates only a gloval
nature of a graph, and in order to map a planar graph on a'plane
a set of data concerning the local structure of the graph in
terms of graph elements such as vertices, edges, and/or faces,
is necessary. There can be varieties of such sets of data for
planar mapping. In view of a graph algorithm which is applied
to thé graph, a set may be more convenient than the other, or
an algorithm can be more efficient if it can utilize more than
one set of data. Then it becomes necessary to generate sets
of data from the given set.

In this paper the relations among theSe‘setsareinvestigated
and generation or conversion algorithms from a set to others
are presented. We consider sets of data involving vertices,
edges, and/or faces only, although there can be data involving
paths, etc. Special cares;are-taken to make the time complexity

of the algorithms linear.

2

2. Sets of Mapping Data

Let G be an‘nndireeted nianaf‘graph With \% Qertices, E edges
and F faces. We assume G is nonseparable. From a planar map
of G we can obtain the following sets of mapping data. In these
daﬁalan.nndirected edge in G’is repfesented by two directed
edges with opposit direction. For an directed edge g, e*
denotes the other directed edge in the pair representing an
undirected edge. The edge e* is called the reverse edge of e.

Note (e*)*=e.

INEV(e) ¢ vertex ‘from which edge e is ceming out.
SVE(v): circular sequence of edges around vertex v.
SVV(v): ' circular sequence of vertices around vertex v.
SVF(v): - circular sequence of faces around vertex v.

INEF (e): face which lies on the right side of edge e.

SFE(f): circular sequence of edges around face f.
SFV(f)« circular sequence'of vertices around face f.
SFF(f): - circular sequence of faces around face f.

The veftices, edges and faces of ghare numbered from 1 to
V(,2E and F respectively.

If we denote the corresponding mapping data for the geomet-
rical dual of G bykthe same notetions as those for G but with

bars above them, we have the following relations.
" INEV=INEF, SVE=SFE, SVV=SFF, SVF=SFV. (1)

Example 1. For the graph shown in Fig. 1, we have INEV, INEF,

3

SVE, SVV and SVF as shown in Tables 1 and 2. v=5, E=7, F=4 and

e*=(e+7)mod 14 for this graph.

Fig. 1 Example 1

Table 1
‘e 1.2 3 4 5 6 8 9 10 11 12 13 14
INEV(e) | 1 3 4 5 2 1 2 3 4 5 1 3 2 4
INEF(e) | 1 1 | 2 3 4 4 3 4 4

Table 2
v SVE (v) SVV (v) SVF (v)
11, 6, 11 3, 2, 5 2, a
2 , 7,13 | 3, 4, 1 , 3, 4
3 |2, 12, 8 a, 2, 1 , 3, 2
4 |3, 14, 9 5, 2, 3 ;4,3
5-| 4, 10 1, 4 1, s

3. Conversion Algorithms

Conversion of a set of data to other sets is depicted in
Fig. 2. Since the data in a set involve only one or two of
the three element kinds(vertices, edges and faces), graph

elements which do not appear in a data set must be introdudéd

4

when it is converted to another. For example SVE says nothing
about faces. Thus to obtain SVF from SVE faces must be intro-
duced. The introduced elements are properly numbered to

identify them.

SVE=SFV ' SVV=SFF

+E

SVE=SFE

Wb |
i +F O

SFE=SVE

SFV=SVF

Fig. 2 Conversion of data sets

In Fig. 2 +V, +E and +F mean intfoducing vertices, edges and
faces respectively. The dotted arrows indicate the conversions
concerniﬁg the dual graph. The thin arrow from SVF to SVE
indicates that this conversion is not neceésarily unique.

(1.15 From SVE to INEV. |
[Algorithm 1}

step 1. Set v<«l.

step 2. For each edge e in SVE(v) set INEV(e)+v.

step 3. If v=V, stop. Otherwise set v+v+i and go to step 2i
(1.2) From SVE to SVV.

To obtain SVV from SVE, INEV(e) is used. To each edge in

SVE(v) corresponds a vertex in SVV(v) .

{Algorithm 2]

step 1. Set v<l.

step 2. For each edge e in SVE(v) set the vertex in SVV(v)
corresponaing to e, equal to INEV(e*).

step 3. If v=V stop. Otherwise set v<v+l and go to step 2.

(1.3) From SVE to INEF, SVF, SFV or SFE.
INEV is used here, too. To each edge in SVE(v) correspoﬁds a

face in SVF(v).

[Algorithm 3]
ste? l. Set v«1l and r+<0.
step 2. If all the edges in SVE(v) are scanned, go to step 4.
step 3. Let e be the first unscanned edge in SVE(v).
step 3.1. Set r«r+l. Introduce a face fr' Set v‘+v and

J

J<—e.(vJ and ey are variables indicating a vertex and an

edge respectively.)

e

step 3.2. Set the face in SVF(VJ) corresponding to eyr equal
.to fr. Set INEF(eJ)+fr. Add vy and ey to SFV(fr) and
SFE(fr) respectively. Mark eJ'scanned.

step 3.3. Let ex be the edge following e, in SVE(VJ) and let

J
= *
Vi INEV(eK).

step 3.4. If eK*=e, go to step 2. Otherwise set ViVk and

eJ+eK*, and go to step 3.2.

step 4. If v=V, stop. Otherwise set v<«v+l and go to step 2.

At step 3 a face fr is introduced. Then the vertices and

6

edges around this face are sought in steps 3.2, 3.3 and 3.5, as

is illustrated in Fig. 3.

Fig. 3 Step 3.2 to step 3.4.

(2) .From SVV to INEV, SVE.

To obtain INEV from SVV edges must be introduce. Some cares
must be taken for parallel edges. Once INEV is obtained, SVV
is essentially the same as SVE, and conversion algorithms from

SVV to others can be derived similarly to those from SVE.

(3) From iNEV and'INEF to SVE.

‘kﬁy sortiﬁg the edges oﬁ thé keys (vertices) given by INEV, we
getba set ofvedges around each vertex. The order of edges in
’SVE, however, cannot be determined from INEV only. Askis
shown iﬁ Fig.’4(é), the set of edges (undirected) around a
'lﬁertex‘and fhe set of edgés around a faCé havebtwo edges in

common, if they have”any‘common edges at all. These two edges

®

Fig. 4 Common edges of SVE(v) and a face.

7

must be consecutive in SVE(v), and by finding thésefcdnsecﬁfive
edges we can determine the order of edges in SVE.

To find such edges we sort all the edgeé aéain on the keys
(faces) given by INEF this time. Now,FINEvband INEF are data
on directed edges. If undirected edges arekréplaced by pairs
of directed’edges, £he_consecutive edges in SVE and the edges
in INEF-are not the‘same. As is shown in Fig. 4(b), if the
and e

consecutive edges around v are e e.* and e, give

1 2' "1 2
INEF(el*)=INEF(e2)=f. Considering this fact we have the
following algorithm} in which we can use the bucket sort to

obtain linear time complexity.

[Algorithm 4]

step 1. Sort all the edges on the keys(véftices)‘given‘by INEV
to obtain a sequencé of - edges Which is partitioned into sets
of edges around vertices. The sequence is denoted by SA and
the sets of edges around vertex v is denoted by AVE(v).

sfep. 2. ‘Béhind each edge in SA insert its réverse edge to -
obtain a new sequence SB. The set of edges thus obtained
from AVE(v) is denoted by BVE(v). .

step 3. .Sort the edges of SB on the keys(faces) givgn“by INEF.
By this sorting BVE(V) is partitioned in;ozsubsets eacthf
which consists of two»adjaceht edges around a face. TheAget
of two edges obtained from BVE(V)‘for:faqe,f isvdénoted by

CVE(v,f).

Now we are ready for the algorithm to obtain SVE frbm”iNﬁV

and INEF.

[Algorithm 5]

step 1.
step 2.
step 3.
step 4.

go to

step 5.

Example 1l (continued).

Set v<«l.

Let e be the first edge in AVE(v).

Add eJ

Let f=INEF(eJ*) and {eJ*L eK}=CVE(v,f). If e

step 5.

If v=V stop.

to SVE(v).

Otherwise set e_<e

For the graph in Fig.

Set e_<e,

J

and go to step 3.

=e’

Otherwise set v<«v+l and go to step 2.

1 we get AVE and

BVE as shown in Table 3 by sorting the edges on the keys given

by INEV, and then inserting reverse edges. By sorting again

Table 3
v 1 2 4 5
AVE(v) {1, 6, 11 5, 7, 13 3 9, 14 10
BVE(v) (1,8,6,13,11,4,5,12,7,14,13,6|2,9,8,1,12,5|3,10,9,2,14,7/4,11,10,3
Table 4
v 1 2 4 5
CVE (v,) 1,4 8,6(13,1115,6{12,7114,13 3,219,7110,14 11,10
f 1 2 4 2 3 4 113 4 4

BVE on the keys given by INEF, we get CVE in Table 4.

first steps of application of Algorithm 5 are as follows.

step 1:
step 4:
step 4:
step 3:

step 5:

v=1l.

e *=8, f=2,

J

J

SVE(1)={1,6,11}.

v#V. v=1+1=2.

e *=13, f=4, eK=ll.

step 2: e=1, e_.=1l.

J

e_=6. eK#e.

K

eK#e.

step 4:

step.3: SVE(1l)={1}.

f=1, e_=1. e

K

step 2: e=5, eJ=5. . e

The

step 3: SVE(1l)={1,6}.

(4.1) From SVF to INEV and INEF.

To obtain INEV from SVF edges must be introduced. A face
and its subsequent face in SVF(v) define an edge, which, .
however, may not be unique. For example we get SVF(VJ)= SVF(VK)
={fR,fL} from Fig. 5. From these we get two pairs of faces

(fR,fL), (fR,fL), which must define different two edges.

&
&

Fig. 5 Example 2.

For the simplicity of discussion we first assume that there
are no two edges having the same pair of faces on their both
sides, and therefore the pairs obtained from SVE are all unique.

Another problem in introducing edges is to identify the
directed edge pair e and e* representing an undirected edge.

If a pair of faces (fR,fL) is replaced by an edge e, (fL,fR)
must be replaced by e*. This problem can be solved in linear
time by bucket sorting all the pairs of faces twice. 1In the
following algorithm the number of faces in SVF(v) is denoted by

NF(v), and p is the number to identify a pair of faces.

fAlgorithm 6]

step 1. Set v+«1l and p<«l.

step 2. From SVF(v) construct a sequence of pairs of faces,
each of which are consecutive in SVF(v). Assign numbers p,
p+l,.., and p+NF(v)-1 to'the pairs. . Denote the pair assigned

number p by P (p)=(£f). Set MV (p)+v. (MV(p) is a memory

Rp’pr

10
to record the relation between~v and p.)

step 3. If v<V, set p«p+NF(v), v+v+l, and go to step 2.

step 4. Sort numbers pon the keys given by P(p) twice to obtain
two sequences of numbers, which are denoted by SR and SL'
The keys for the first sorting are the pairs of faces in’the
order obtained from SVF, and those for the secbnd are the
pairs of faces in the reverse order to the above(If the

order obtained from SVF is fR, £ its reverse order is fL’

L'
fR')’ Denote the k-th(k=l,2,{,,2E) number p in Sg and S,

by Sp(k) and s; (k) respectively.

Now we can construct INEV and INEF.
[Algorithm 7]
step 1. Set k<«l and e<l.

step 2. Suppose»SR(k)=p. If pr<f for P(p), in%roducewaAnew

Lp
'ed?e é', Sé?’IﬁEV(e)+MV(p)£'INEF(e)+fRP, ME(p)+e(MEﬁp) is a .
memory télfécofa the relation between e and p.), and e+e+l,
and'gq to stepr4; _ 7 " |

steé 3.‘ Now pr}pr for P(p); and én edge has already been
yint?o§u¢edqur (pr(pr

, pL=SL(ki5, Suppose ME(pL)=eL and e

). This edge is given by ME(pL) where

*=(eL+E) Then set

L mod 2E °
INEV(eL*)+V(p), INEF(eL*)+pr and’ME(p)+eL*.

step 4. If k=2E, stop. Otherwise set k«k+1l, and go to step 2.

Next, if some of the pairs of faces-obtained from SVF are -
same, we have to find some information from SVF to distinguish
them.. In case of a series connection of exactly two -edges(un-

directed), the vertex to which they are incident can be

10

identified, since SVF for it has only two faces. In introduc-
ing edges, we must take care so that different edges must be

incident to the vertex.

Example 1(continued). From SVF in Table 2 for the graph in

Fig. 1, we construct péirs of faces as given in Table 5. Then
they are sorted to result in SR and SL in Table 6. By Algo-
rithm 7 we get ME(p) as given in Table 5, and INEV and INEF as

in Table 1.

‘Table 5

p | 1| 2]3|4|5]|6]7]8]09|10[]11|12]13]14
P(p) |1,2[2,4]4,1(2,3]3,4]4,2(1,3]3,2(2,1|1,4(4,3[3,1|1,4{4,1
Mv(p) | 1 | 1| 1| 2]2]2[3[3|3[alalals]5s
ME(p) | 1 | 6 |11] 5| 7 |13] 2 12| 8| 3|14 9] 4|10

Table 6
k 1 2 3'F 4 516 |7 8 9 10411 | 12 | 14°} 14
SR(k) 1 7 10 13 9 4 2 12 8 53 {14 6 ll,

P 1,2|1,3|1,4|1,4(2,1|2,3|2,4|3,1|3,2|3,4(4,1]4,1|4,2|4,3
sp(k) [9f12/14| 3 [1|8 |6 |7 |4 11[13[10[25
P |2,1|3,1|4,1]4,1|1,2|3,2|4,2|1,3]2,3]4,3]1,4|1,4[2,4[3,4

If there is a series connection of more than two edges (un-
’direéted) in G, SVF does not give a unique planar mapping. For
the cases other than the above we need more detailed discussion

which is omitted here.

(4,2) From SVF to SVE.

Once INEV is obtained, SVE can easily be constructed from

11

12

SVF. The pairs of faces obtained from SVF are replaced by
edges by use of number p and ME(p), that is, the pair numbered

p is replaced by ME(p).

4. Planar Mapping of G.

From SVE, SVV or SFE a planar map of G can be obtained as
discussed in references [1]-[5]. INEV or INEF alone is not
sufficient for giving a planar map, but SVE can be constructed
by use of both INEV snd INEF, and then a planar map of G can be
derived.

Suppose G is not triconnected. Then there can be more than
one planar map of G, and mapping data may have to be modified
.to allow possible mappings. Let (a,a') be a separation pair of

c. [4]

If there are S, separation. classes(including classes
consisting of one edge) with respect to (a,a'), theré can be
(sa—l)! ways of mépping the classes for the separation pair.
A separation class can be split again, if it contains another
sepération pair. A split component is a separation class which
contains no separation pair other than the relevant one. If a
split component has more than one vertex besides the sepafation
pair, it can be mapped in two ways on the plane. Let ng be the
number of such split'components. Then the total number of
planar éaps of G is :

all separation pairs

i (s -1)! 2"s (2)
(a,a') a

12

13

For a vertex v in a separation pair, SVE(v) is partitioned
according to its separation classes. The order of subsequences
obtained by the partitioning are changed to give different

planar maps of G.

5. Concluding Remarks.

In the conversion algorithms given in this paper no searching
for vertices, edges or faces is performed, since a searching in
SVE etc. makes the time complexity of an algorithm nonlinear.

A searching may be more efficient if only a part of mapping
data is to be derived.

Actual drawing of a graph on a plane from a set of mapping
data manually or by use of a computer is another problem. If
the numbers of vertices, edges and faces are very large, this
problem becomes very difficult to solve. An algorithm for
actual drawing of such a graph will depend on what kind of
drawing is needed.

Acknowledgements. This work was partly supported by the Grant

in Aid for Scientific Research of the Ministry of Education,
Science and Culture of Japan under Grant Cooperative Research

(A) 435013(1979-1980).

References.

[1] Edmonds' Theorem: Busacker, R. G. and Saaty, T. L.,
"Finite Graphs and Networks," pp. 95-96, McGraw Hill, N. Y.,

1965.

13

14

[2] Iri, M.: "On the method to draw a planar graph on a plane,"
Tech. Rep. Circuit & System Theory, CT68-28, Inst. Elec.
Comm. Eng. Japan, 1968.

[3] Yoshida, K. and Ohta, T.: "Topological layout of monolithic
integrated circuits," Trans. (C), Inst. Elec. Comm. Eng.
Japan, vol.52-C, No.l2, pp.796-803, 1969.

[4]’ Hopcroft, J. E. and Tarjan, R.: "Dividing a gfaph into
triconnected components," SIAM J. Comup. vol.2, No.3,
pp.135-159, 1973.

[5] Tutte, W. T.,: "How to draw a graph," Proc. London Math.

Soc. (Series 3), vol.1l3, pp.743-767, 1963.

14

