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RECURRENT STRINGS IN A OL LANGUAGE

Taishin Nishida and Youichi Kobuchi
Department of Biophysics, Kyoto University

0. Introduction

In the original papers of Lindenmayer (3,4), his rewriting
system explains the growth of filamentous organisms. But his
idea of parallel rewriting has supplied an abundant realm of re-
search to the formal language theory (1,5,6,7). In the context
of the formal language theory, an L scheme defines a mapping on
the set of all strings over a given finite alphabet. A string
is changed into some strings by the L scheme, and these strings
are in turn changed into some other strings, and so on. For a -
string x, there are many descendants of x produced by the mapping
of the given L scheme. Among these descendent strings some might
go back to the original string x after several operations of the
mapping. If every descendent string has a path which goes back
to the original string x, we think that the string x has a kind
of stability. We call such a string 'recurrent' with respect to
the L scheme. Walker and Herman defined an adult string (2,8),
which is entirely mapped onto itself. 1In other words, an adult
string is not changed under the L scheme. Obviously, an adult
string is a special case of our recurrent string, and our defini-
tion is a natural extension of that of Walker's.

From the biological point of view, the recurrentness corre-
sponds to some sort of maturity. Matured organiSms seem to make
no essential change. Accotding to our definition a recurrent
organism can always come back to itself even if it changes into
some other one. We believe that the investigation of the recur-
rentness will shed new lights on the theory of L scheme and L

system. That is, new possibility of treating matured organisms
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will be brought into the framework of L system theory.

In this paper, we give the definitions of a recurrent string
and closed strongly connected set with respect to a 0L scheme S.
Then we prove a factorization theorem of the recurrent string and
a construction theorem of the closed strongly connected set. 1In
the last section we consider some properties of recurrent strings

in a OL language.
1. Preliminaries
First, we give the definitions of OL scheme and 0L system.

- Definition 1.1. A OL scheme S is a pair 8=<I,P> where I is a

finite alphabet, and P is a finite subset of IxI*(called rewrit-
ing rule) such that for any ael there exists at least one xel*
and (a,x)eP. [

We write a-»xe¢P or xeP{(a) instead of (a,x)eP. A 0L scheme S=<I,P>

defines a relation =§» over I* as follows.

Definition 1.2. Let S=<%,P> be a OL scheme. For x,yeli*, we

write =35>y if and only if X=X X,...X , X;el, Y=V ¥,...Y s yieZ*

and xi+yieP for i=1,2,...,n. [

*
The reflexive and transitive closure of == is denoted by =,

] S
*
and n times operation of =§¢ by =%$. We write == (==, =§$) in-
* *
stead of =§>(=§», =%a) when § is understood. The relation =

* -
can be regarded as a relation over 2% . Sometimes we use the
notation =%> which means =2> for some nzl. In L system theory

* . .
== jis usually called a derivation. Note that for every xel%*,

x=gax, and for any nonnegative integer n, A=

Definition 1.3. i) A OL system G is a triple G=<I,P,w> where

<z,P> is a OL scheme and w is in £* called an axiom.
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*
i) A OL language L(G) is given by L(G)={x|xeZ* and w=>x}. [

Now we give an illustrative example of OL scheme which will

be used in the sequel.

Example 1.1. Let S=<Z,P> be a 0L scheme, where I={a,b,c,d,el

and P={a+ae,a-»b,b+a,c+ab,c+ec,d+e,d+c,e>),e+e}. If we consider

a 0L system G=<%,P,a>, then some of the derivations are
a=—>ae==aee=—=>bp, a==>b==a=—ae and a=>ae=>be. It is easily

seen that L(G)=(aub)e*. [J
2. Definitions and Lemmas
In this section we give the definitions of a recurrent string
and a closed strongly connected set. We establish some basic

results.

Definition 2.1. Let S=<I,P> be a 0L scheme. xe¢IZ* is said to be

*
recurrent with respect to S if for any zel* such that x==z, we

*
have z=>x. [

Definition 2.2. Let S=<I,P> be a OL scheme and A be a subset‘of

n*,

i) A is said to be closed with respect to S if for any xeA and
yeZ* such that x=;>y we have yeA.

i) A is said to be strongly connected with respect to S if for

*
any X,y<A we have x=y. [

Proposition 2.1. With respect to a OL scheme S=<I,P>, xel¥* is

recurrent if and only if xe¢A where A is a closed strongly con-
nected subset of I*.

Proof. If part: For any zeL* such that x=;$z, we have ze¢A be-
cause A is closed. As A is also strongly connected, we have
z=;$x, which means that x is recurrent.

Only if part: Let A=L(G) where G=<I,P,x>. Then A is closed by

the definition of L(G). For any y,z<¢A, there exist derivations
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* * *
x=>y, x==>z and y=>Xx the last one due to the recurrentness of

"
X. So we have y==>z, and A is strongly connected. [

Example 2.1. Consider the 0L scheme S=<I,P> in Example 1.1l.

Then a is recurrent with respect to S. (aub)e* is closed strongly
connected with respect to S. [

If a string x#)A has a derivation x=;$k, then x cannot be re-

current. So we must pick up the 'mortal' symbols as follows.

Definition 2.3. Let S=<I,P> be a OL scheme. The set of vital

symbols ZVCZ is given by
*
ZV={a|an and a==>x implies x#\}.
The set of mortal symbols chE is given by
L_=I-2
m v
or

*
r ={b|bel and there is a derivation b==1i}. [

Definition 2.4. Let xeI*. The vitality ofvx (denoted as v(x))

equals the number of vital symbols in x. [

If a symbol b is mortal, then there is a derivation b=§>A such
that ks<cardl where cardl denotes the cardinality of I. Therefore

Zm and ZV are effectively constructed and the vitality of a string

is effectively computable.

Lemma 2.2. Let S=<I,P> be a 0L scheme. For any X,yel*, we have
the followings.

1) If x=—>y, then v(x)<v(y). ‘

2) If x is recurrent and x=;$y, then v(x)=v(y).

Proof. Obvious. [

The above Lemma tells us that every rewriting rule for a symbol
in a recurrent string must be vitality preserving. This motivates

us to define a further classification‘of Zm and-a subscheme of a
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given 0L scheme as follows.

Definition 2.5. The set of ever mortal symbols meczm is given

by
*
L n=lalacl and a==x implies v(x)=0}. O

X as z___. If a is

We denote the remainder part of ¥ , i.e., I _~-
m m ~mm mv

in va then there is a derivation a=£$x and v(x)=zl. In this case

we can assume k<cardl. Hence it is decidable whether or not a

given symbol a is in me.

Definition 2.6. Let S=<I,P> be a 0L scheme. The vitality pre-

serving scheme of S is a OL scheme S”=<%7,P”> where Z‘=Z;u2mm
and Z; is the maximum subset of L, satisfying

P(Z )cz* T 1%
A4 mm~ v mm
and

P” is the restriction of P to I"xI"*, [

Note that I =5 =7 and I cX_. Note that in the vitality pre-
m “mm mm v v

*
serving scheme <I”,P”"> x==>y implies v(x)=v(y) for any x,yel *.

Proposition 2.3. Let S=<I,P> and S"=<I”,P"> be a OL scheme and

its vitality preserving scheme, respectively. A string is recur-
rent with respect to S if and only if it is recurrent with re-
spect to S”.

Proof. Let xel* be recurrent with respect to S. By virtue of
Lemma 2.2 x must be in %X“*. Because S~ is a subscheme of S, x

is also recurrent in S°. If xXeI”* is recurrent with respect to

S”, then it is easy to see that x is recurrent in S. [

Let S"=<I”,P”> be the vitality preserving scheme of a OL
scheme S=<I,P>. We define vital recurrent symbols in Z;r as

follows.
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Definition 2.7. The set of vital recurrent symbols Z;r satisfies

the following condition:

*
aez;r¢==»aez; and for any z such that a=z there exists a

*
derivation z==>x where x contains a. [J

Note that it is decidable whether or not a given symbol is in

o .
vr

Example 2.2. Consider the 0L scheme S=<%,P> in Example 1.1.

Then ZV={a,b,c}, Zm={d,e}, and me={e}. The vitality preserving

scheme is <{a,b,e},{a+ae,a+b,bra,e>\,e+el}>. Z$r={a,b}. 0
3. Recurrent Strings with Respect to a 0L Scheme

In this section we consider the characteristics of the recur-
rent string and the closed strongly connected set with respect
to a OL scheme. 1In view of Lemma 2.2 recurrent strings will be
characterized by the vitality. One can also easily see that the
vital symbols in a recurrent string must be vital recurrent.

Let S=<I,P> be a 0L scheme. For each beZm there is a minimum
positive integer kb such that biﬁ%A. Let k=1mn<kb. We can easi-

b€Zm
ly see that k is effectively computable.

Lemma 3.1. Let S=<I,P> and S”=<I”,P"> be a OL scheme and its vi-
tality preserving scheme, respectively. Then the following con-
ditions are equivalent:

1) x is recurrent with respect to S and v(x)=1l.

2) x=lar for some lrezé* and an&r such that a=;>x=;>x.

-

vx

3) a=E>x for some ael and nzk.

Proof. 1)=2): By Proposition 2.3, x is recurrent with respect

to S and we can write x=lar for some lrezé* and anG. If 1lr=X,
. . P * 3 0 + .
then a is in Zvr and there is a derivation a=a because a=x 18

recurrent. Assume lr#), then there is a derivation lr=;>k.
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Thus we can have a derivation x=i$y such that a=;$y. By the re-
current property of x, we also have a derivation y=;$x. There-
fore, a=;$y=;$x=;by=;$x. This proof guarantees that a is in Z;r.
2)+3): Obvious.

3)+1): Let x=;$y. Because anGr, there is a derivation y=;=>llarl
where llrleZQ. By the assumption that a=2>x and nzk, we have

* *
llarlﬁgbx. Thus x==$y==$llarl=2$x for any possible y, and we see

that x is recurrent with respect to S° and hence with respect to
s. O ’

Theorem 3.2. Let S=<X,P> be a OL scheme and xeI¥* where v(x)=k

for a nonnegative integer k. Then x is recurrent with respect

to S if and only if X=X X e o Xy such that v(xi)=l and Xy is

recurrent with respect to S8 for i=1,2,...,k.
Proof. If part: It is sufficient to show that if x and y are

recurrent so is xy. Let xy=2=1>zlz2 such that x=§:>zl and y=g>22.

m m
As there are derivations zl=ébx and 22=égy for some positive

=£>x and 2z =£$y where

integers m 1 2

1 and m,, we have derivations z

p=(n+m2-l)(n+ml)+ml=(n+ml—l)(n+m2)+m2.

Only if part: Let S°=<I”,P”> be the vitality preserving scheme
of S. If x is recurrent with respect to S° such that v(x)=k,

we can write X=b1alb2a2"’bkakbk+l where aiezvr (i=i,2,...,k)

. . . .
and blb2"'bk+lezm . Then there exists a nonnegative integer

n n L P
n such that blbz...bk+l==$A and ai==>liair

i=1,2,...,k. Let y=1

- o

i liriezm for
*

1a1r112a2r2"'1kakrk' Because x==y and

*
X is recurrent there is a derivation y=>x. Then x can be

. . - ‘%
written as x 1lalr112a2r2...1kakrk where lirieZm such that

*
lilalri=—1

.a.r. in that derivation for i=1,2,...,k. Because
i“ivi i7iti

. - n n - - -
llrllzrz...lkrk~blb2...bk+l==$x, we have liairi==:>liairi and

* + : .
a,=—»l.a.r,=>l.a.r.. Hence by Lemma 3.1, l.a.r is recurrent
i i7ivi iTiti i

=X
1 1 1
for i=1,2,...,k. O
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Theorem 3.2 says that a recurrent string of vitality k is facto-
rized into k segments each of which is recurrent and contains
one vital recurrent symbol.

Next we consider the closed strongly connected set. Let
S=<I,P> be a 0L scheme and A be a closed strongly connected set
with respect to S. Then for any xeA, L(G)=A where G=<I,P,x>,
that is, a closed strongly connected set is a 0L language. We
will show that there is a finite set B for S such that AnB*#dg
for an arbitrary closed strongly connected set A. In other

words A=L(G) where G=<I,P,w> for some weB*,

Definition 3.1. Let S=<I,P> be a OL scheme. A closed strongly

connected subset of I* is said to be an elementary closed
strongly connected set (abbreviated as ECSC) with respect to S,

if v(x)=1 for any xeA. [J

Lemma 3.3. For each ECSC A with respect to a 0L scheme S, there

exist an xe¢A and an aezér such that a==>x for some isk.
Proof. Let aezér be contained in some string ye¢A. By Lemma 3.1

. . i .
there is a recurrent string x such that a==x for some i<k. For

sufficiently large integer j we have y=;$x. Hence xe¢A. [

Lemma 3.4. Let S=<I,P> and S°=<I”,P”> be a OL scheme and its

vitality preserving scheme, respectively. If n=cardZGr, then

there exist at most n ECSCs with respect to S.

Proof. If not, then there exist an an&r and two strings lar
and l”ar” (lr,l’r’eZé*) such that they belong to different ECSCs.

Observing the only if part proof of Theorem 3.2, for sufficiently
large integer m, we have 1°r"=2>) and a=%>lar. Thus we ahve

1ar’>1ar. This is a contradiction. [

Definition 3.2. Let A be an ECSC and xcA. x is said to be a

base string of A, if there is an aez;r such that a==>x and there

are no string ye¢A and symbol bez;r such that b=;$y and j<i. 0O
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That is, x is a minimum step derivable string from an element in

Z;r. Lemma 3.3 guarantees that the number of such base strings

is finite and all the base strings are effectively constructed.

Definition 3.3. Let S=<I,P> be a 0L scheme and lét Al, A2,...,

An be the enumeration of the ECSCs with respect to S. A base
set BcI* is given by B={xl, x2,...,xn} where X is a base string

of Ai for i=1,2,...,n. [

Theorem 3.5. Let S=<I,P> be a 0L scheme and B be a base of S.

If AcX* is closed strongly connected with respect to S, then
there exists weB* such that A=L(G) where G=<%,P,w> is a 0L system.
Proof. By Theorem 3.2 for any xe¢A such that v(x)=k, x has the

factorization X=X XKoo e Xy e From the definition of ECSC, X;

belongs to some ECSC Aj- for i=1,2,...,k. Then there is a base
1 .

m .
string b. of A. such that b. ¢B and b. =%.x. for some nonnega-
J; Ji Ji J; i

tive integer m;. By applying the same argument of the if part

proof of Theorem 3.2, we have bj b. ...b. égbx Xoee Xy for some

1 32 Jk 1

nonnegative integer m. Let w=b. b, ...b. and our proof is
J1 2 Ik
completed. [J

4. Recurrent strings with Respect to 0L System

In this section we think about a few problems of the recurrent
strings with respect to a OL system. Let us consider the problem
to decide for a given 0L system G whether or not there exist re-
current strings in L(G). For example, L(G) in Example 1.1 con-
sists of recurrent strings only.. On the other hand, if we con-
sider G=<I,P,c> where I and P are those of Example 1.1, some of
the strings in L(G) are not recurrent. Now we must consider the

symbols which can derive wvital recurrent symbols.
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befinition 4.1. Let S=<I,P> be a 0L scheme. We define two sets

of symbols which can derive the vital recurrent symbols as
follows
*
Zvd={a|aezv and there is a derivation a=x such that
- +
Xe (Zmuzvr) }
*
Zmd={b|bezm and there is a derivation b==x such that

.+
xa(Zmuzvr) and v(x)=21}. 0O

Obviously Zvcm If aezvd (eZmd), then there exists a nonneg-

vd®
ative integer ks<cardl such that a=£>x and Xe(ZmUZ;r)+. Therefore

it is decidable whether or not a given symbol a is in Zvd (Zmd).

For xe¢I* alph(x) denoted the set of symbols appearing in x

and for Aci* alph(A)= v alph(x).
XehA

Theorem 4.1. Let G=<I,P,w> be a OL system. L(G) contains a re-

current string which is not X if and only if the following condi-
tion holds.

In case v(w)=21l; alphwczvduzm.

In case v (w)=0; alphwand#¢.

Proof. 1If part: Obvious.
Only if part: First assume v(w)=21. If alphchVduZm fails to hold,

in other words if there exists aealphwn(zv-zvd), then there ex-
ists a symbol beZV—Z;r in any descendant of a. By the factoriza-

tion theorem, the vital symbols contained in a recurrent string
must be vital recurrent. This is a contradiction. Next assume
v(w)=0. Let x be a recurrent string in L{(G). Then some symbol
b in w must derive a substring x~ of x which contains some ele-
ments of Z;r. From the definition of Zmd’ b is in Zmd' O

Note that in case v(w)=0 there is always the recurrent string A

in L(G). From Theorem 4.1 we have the following

-10 -
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Theorem 4.2. Let G=<I,P,w> be a OL system. It is decidable

whether or not there are recurrent strings in L(G). O

Finally we compare the recurrent language with the adult
language of a OL system. The recurrent and adult languages

are defined as follows.

Definition 4.2. Let S=<I,P> be a 0L scheme and G=<I,P,w> be a

0L system where I and P are those of S and wel¥*.

i) x is said to be adult with respect to S if x=;¢y implies y=x.

ii) An adult language of G is defined as A(G)={x|xe¢L(G) and x is
adult with respect to S}.

ili) A recurrent language of G is defined as R(G)={x|xeL(G) and x

is recurrent with respect to S}. 0

A(0L) and R(OL) denote the family of adult languages and the
family of recurrent languages for 0L systems, respectively.

The following results are known (2).

Lemma 4.3. There exists an algorithm which takes as input any
0L system G and produces as output a 0L system H=<I,P,s> such
that A(H)=A(G), and for each acalph(A(H)), P contains a+a and

no other production with a on the left. [

Theorem 4.4. AOL)=#CF). 0O

Theorem 4.5. 4(OL)<R(OL).
Proof. Let H=<I,P,s> be a OL system and A(H) be an adult language.

P may be assumed to have the form of Lemma 4.3. Define A as
follows

A={a]acalph(x) and x appears in the derivation s=;$A(H)}.
Let K=<A,P”,s> where P"=P|, ,,. Clearly A(H)=A(K)<R(K).
If xeL(K) and x is not adult, then there is an adult string y
such that x=;$y, since any a¢A has a derivation a=;$z where 2z
is adult. From the definition of adult string we cannot have

*
y==>X, thus all the recurrent strings in L(K) are adult. [

-11 -
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Corollary 4.6. Z(CF)cRrOL). [

It is not known whether or not the above inclusion is proper,
but we conjecture FHCF)=R(0L). The proof of Theorem 4.4 is a
straightforward constructive one and in which Lemma 4.3 plays
an essential role. Obviously Lemma 4.3 does not hold for the
recurrent case. Some other method will be required for the

proof of our conjecture.
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