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Chevalley Groups over €((t)) and Deformations

of Simply Elliptic Singularities

by Peter Slodowy

et o 2

In these notes we are going to relate the Jdeformation theory of the so

i

called Simply elliptic Singular1t1f§ to the torresponding Chevalley graﬁﬁe)

e s s

pasrscits

(ész,the formal power series field C((t;&ﬂ‘ Because of lack of space we can

give here only a survey of the main results and the basic concepts involved.

Complete details will be found in a forthcoming work on(gggoipt quotients

for certain gr ps attached to arbitrary Kac Moody Lie algebréi? These
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general results pertain to a much wider class of singularities which in ad-

dition includes at least @he cusp 51ngularities of degree < 5 gwhoee de—

[ Sy e

formation theory has recently been studied by Looijenga (cf. [13] and his

talk at the Kyoto conference). The aim of this article is to explain the
special situation given by the simply elliptic singularities where it is

possible to avoid the technical machinery needed for the,general case.

I. Simple Singularities and Simple Lie Groups

In this part we gquickly recall the relation between the simple singularities
(equivalently: Kleinian singularities or rational double points) and certain

simple Lie groups. For complete details we refer to [21].

1. simple singularities are normal surface singularities with a very spe-
¢ g

cial minimal resolution. The dual graph of the exceptional divisor of such

a resolution is a Dynkin diagram of type. Ar , r>1,D ,xr >4, E6 , E

- r - 7

E8 . Up to analytic isomorphism these diagrams classify the corresponding
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r



20

singularities.

2. Let G be a semisimple, simply connected, complex algebraic group and
T € G a maximal torus with corresponding Weyl group W = NG(T)/T . We have
r = rank G = dim T . Denote by x*¥(T) the group Hom(T,Gm) =7 of alge-

=75 of

braic characters of T and by X%(T) the dual group Hom (Gm,T)
multiplicative one parameter subgroups. Let % c X¥(T) be the system of

roots of T in G . For each o €I we fix an isomorphism

u : G —— U <G
a o
from the additive group Ga onto the root subgroup Ua . For all s e T

we have
s u (c)s_1 =' u_ (a(s)c) c cC
o o ' et -

Let A‘é {al,...,ar} be a system of simple roots of X corresponding to

’ . ‘ . v v v
the choice of a Borel subgroup B> T , and let A = {ul,...,ar}' be the
simple coroots in X,(T) . Since G is simply connected X*(T) is spanned
freely (over Z ) by the fundamental dominant weights Wyre-e sy which are
determined by the condition <mi,a§> = sij . To each wi there corresponds

a fundamental irreducible representation

of G on a finite-dimensional vector space Vi . Let

X; : G =——¢

Xi(g) = trace pi(g)



be the corresponding fundamental character. Then the adjoint quotient of
G 1is given by the morphism

X : 6 —— ¢

X{g) = (x‘l(g),-..,xr(g)) .

The morphism ¥ is the algebraic quotiént of the adjoint action of G “on
itself. Any fibre of X is the union of finitely many conjugacy classes
and its dimension is dim G - r . The restriction of Y to T coincides

with the natural quotient T ‘f*KT/W and T/W can be idehtified with ¢f .

3. Now we will look at the‘fibres of X more closely. Any fibre of X can
be written in the form X_l(x(s)) for a suitable s € T . Let us first
look at s =1 . The corresponding fibre consists of the uﬁipotent eieﬁeﬁts
in G , i.e. those which are represented by unipotent'matrices in ail ra—

tional representations of G‘. It is called the unipotent variety Uni(G)

of G . For arbitrary s &€ T there is a reduction to the centralizer ' Z{s)
of s ‘in Gr which is a reductive subgroup. It is generated by T and:the
root sﬁbgroups U, for which ¢(s) .= 1 . The unipotent variet§ Uni(s) of
Z(s) (i;e. that of its semisimple pért) is the product of the unipotent:
varieties of its simple (almosf)—factors. The fibre bxﬁr(x(S)) is

Z(s)

G—isomorphie to the homogeheeusybundle G x Uni(s) associated to the -

prinecipal fibration G > G/Z(sf and the adjoint actioﬁ of Z(s) on Uni(s).

An element x € G 1is called regular (resp. subregular) exactly when

dim ZS(X) =r (reép. r + 2 ) which is the same as the condition

dim (conjugacy class of X) =dim G - r (resp. dim G - r - 2 ). There is
exactly ene'regulef orbit in the unipotent variety and hence in any fibre of

X - If G' is simple there is ekactly one‘subregular unipotent orbit, and

2]



22

this is the orbit of greatest dimension among the nonregular orbits in
Uni(G) . If G 1is semisimple there are as many subregular unipotent orbits

as there are simple factors.

4., Now let ‘G be simple of type A = Ar R Dr ’ Er and choose a suffi-
ciently small normal slice S < G to the subregular unipotent orbit of G .

We may assume that S is transversal to all orbits and that it meets the

subregular unipotent orbit exactly once:

Theorem - (Brieskorn, [2]):

i) s n ﬁni(G) is a simple singularity of type A .

ii) The restriction X|S :S > T/W of the adjoint quotient realizes a

semiuniversal deformation of the simple singularity S n Uni(G) .

From this theorem we can.derive many useful informations concerning simple
singularities and their deformations. To determine the singularities in the
fibres of a semiuniversal deformation we have to look at the singularities
in ‘S n X—l(x(s)) for s e T sufficiently close to 1 . In this case a
basis A(s) of the root system X(s) = {d € Zl a(s) = 1} of Z(s) may be
embedded into a base A of' L , and for each connected component of A(s)
there exists a simple singularity in S n_x—l(x(s)) of the corresponding
type. This description also shows that the discriminant (i.e. the critical
set) of X|S coincides with the discriminant of the ramified covering

T — T/W (near ¥(1) ).

5. All deformations of a simple singularity admit a simultaneous resolution.
This fact can be derived from the following construction. Let B > T be a
Borel subgroup of G . Then B can be written as a semidirect product

B :
B=TWX U where U is the unipotent radical of B . Let G X (B) Dbe the
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bundle associated to the.principal fibration G -+ G/B. and the adjoint

action of B on itself (B) . We obtain a commutative diagram

where ¢(g % b) = gbg_1 , B(g ¥ b) = 0(g % tu) =t and P is the natural

quotient map (we denote the class of (g,b) in G X B(B) by g% b).

Theorem (Grothendieck, Springer):

The diagram above is a simultaneous resolution of ¥ , i.e. 0 1is smooth,

¢ 1is proper and for all s € T the restriction ¢S : 6_1(3) > X—l(wés))

is a resolution of singularities.

II. Simply Elliptic Singularities

We now review some properties of simply elliptic singularities and their

semiuniversal deformations. Details can be found in the references [9], [10],

[11], [12], [13], [14], [18], [19], [20].

6. A normal surface singularity (Xo,x) with isolated singular point x

is called simply elliptic exactly when the exceptional divisor E = T ~ (x)

in the minimal resolution T : Y = Xo consists of a single elliptic curve.
The selfintersection number of E is necessarily negative, E o E = -4 for
some integer d > 1 . We call d the degree of the singularity. Up to ana-
lytic isomorphism (Xo,x) is determined by its degree d  and the analytic

structure of E . Hence any simply elliptic singularity can be obtained as
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the contraction of the zero section in some negative line bundle over a

suitable elliptic curve E .

The embedding dimension of (Xo'X) is max(3,4) . For 4 =1,2,3 we ob-
tain the "parabolic" hypersurfaces in the sense of :Arnol'd [1] which were

studied by Saito [20].

2
X6 + Y3 + 7  + TXYZ

= 0 d=1
X4 + Y4 + 22 + TXYZ = O d=2
x3 + Y3 + 23+ X¥2 = O da=3

(Here the parameter T 1is related to the j-invariant of the elliptic curve
E , cf, [20]). For d = 4 we obtain the complete intersection of two

quadrics in ¢4 .

To the first six simply elliptic singularities there is associated an affine

Dynkin diagram A -

d 1 2 3 4 5 6

I | | | | | !
R
A Eg E, E; Dy A, A, XA

The deformation theory of these singularities can be described completely in
terms of the corresponding diagrams. This was suggested already-in the work
of Saito [201 and established precisely in the works of Kndrrer [9],
Looijenga [10], [11], [12], Pinkham [19] and Merindol [14]. The basic tool

in Pinkhami's approach is the theory of the corresponding Del Pezzo surfaces.

7. We first give a rough picture of the semiuniversal deformation

¢ : X >V of a simply elliptic singularity Xo , cf. [14], [18]. We may



25

choose ¢ to be equivariant with respect to natural Gm—actions on X
and V and we may assume that there is a projection

+ - , +
p:Vv->9 ={1ec]| |\ >1} as well as a section s : @ >V of p

+
mapping £ onto the fixed points of Gm in V with the following prop-

R , o , A . )

erties. Décompose V.= Ve v) Vf , where Ve = s(f );, Vf = y-Ve . Then a»
fibre ¢—1(S(A)) has a simply elliptic singularity of the same degree 4
as Xo and the exceptional elliptic curve E of its minimal resolution

is isomorphic to C*/<Al|i e Zz> . A fibre over V

£ is either smooth or

has at most simple singularities.

The dimension of V is max(11-d,1) and it is smooth exactly when a < 5.

~ F +1. . ;
Then V = Q x C° ! ,;, where r =9 —-da . For  d = 6 we obtain

vzatx C(I?1 X P2) where C(IP1 X PZ)' is the affine cone over the Segré

embedding of P1 X P2 into P5 . For 4 = 7 - each slice ‘Vx =‘p_1kk§ “is

a cone over a surface of degree 7 in P6 (depending on X ). For 4 =8

there are two components V = V1 v V2 which intersect along Ve .  Bach

slice V1 A is a cone over an embedding of the elliptic curve
14

i .t L 2 _
c*/<\*|i € 2> into P and vV, ZQ x¢€ . For d=9 we have

~ At
Vred = ) X ¢, however V has embedded components along Ve .. For 'd > 10

~ F . .
we have Vred = Ve = , but again "V is not reduced. (Under the iso-

morphisms given above p and s will always have the canonical form.)

A simply elliptic singﬁlérity can be smoothed by aéformation if and only if
da<9.If 4d=29 there are no singular fibres over Vf , and if d =8

there are none above V14\ Vf‘. In the other cases ’(d f 8) - the discriminant

of ‘¢ is of particular interest. It was described in a uniform way by

Pinkham and Looijenga (d < 3) .

8. We now recall this construction. It suffices to consider the discriminant

=vV_ AV of the restriéfion o, : ¢—1(V ) —V The
A _ A £,A

Dye Ve a =V £,0
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exceptional elliptic curve E  in the resolution of ¢-1(S(A)) is then

isomorphic to c*/<t> .

Let Xx(T) denote the lattice genefated by the coroots of some root system
Z and let. T = X,(T) @ €* be a maximal torus of the corresponding simply
connected complex Lie group. By A we denote the abelian variety

VX*(T) ® E = T/X4(T) ® als . The Weyl group W of I acts naturally on
X%(T) and A . There is an essentially unique c®-bundle L over A
endowed with a W-action and such that its first Chern class cl(L) equals
the negative normalized Killing form on X,(T) (value 2 on short coroots).
Here we use the Appell-Humbert identification cl(Pic a) = SZX*(T) c HZ(A,C).
The isotropy groups of W on L are generated by reflections. Therefore -
L/W is a smooth space. Let D « L/WV denote the discriminant of the

ramified covering L > L/W .

Theorem (Looijenga, Pinkham):

Let )2 be a root system of type E E, , E

8;' 7 D r A

X
6 ' Dg 4 A A, . Then

2 1

the pair (L/W,D) is isomorphic to the pair (Vf K'DX) for the cor-
—= PesT , Ior e TOf

responding simply elliptic singularity. Let E.e Vf y = L/W Dbe the image of
14

a point s € L and ws the stabilizer of s in W . Then there is a type

preserving bijection between the irreducible factors of- Ws and the (simple)

singularities in the fibre ¢_1(§3 of the deformation ¢ .

Pinkham actually gives a construction of the total space of ¢ , too. His
method also extends to the cases d = 7 and 8 . If 4 = 8 the pair

The case d = 7 can be

(V2 Ia) Vf,A'DA) is obtained by putting Z = A1 .

described similarly by using a rank two lattice containing an A, -system

1
(for precise details cf. [14]).

For later use we note the following. We may pull back L to a trivial
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c*-bundle T x €* over T equipped with an action of the affine Weyl

group W=wx Xe(T) . The translations X,(T). will then operate on T

és the subgroup Xu(T) ® <Xi> = Xe(T) of T , and the action on T X c*
will be determined by an automorphy factor e : T X X, (T) ~ ¢*. since X (T)
acts freely on T x €*¥ we obtain the same isotropy groups for W on

T X ¢* as for the action of W on L . By the same reason the discriminants
of the ramified coverings T X ¢¥— (T X ¢*)/# = L/W and L + L/W

coincide.

III. Chevalley Groups over €((t))

Extended Dynkin diagrams, affine root systems and affine Weyl groups arise
in the study of algebraic groups over local fields [3], [5]. It has been

natural to ask (cf. for example [19]) whether there would be a similar re-

i

lation betwee@'

s;gplyhellipticksingularit;gé and the corresponding

@%evallgy grou?é’oﬁefw C{(ffﬁ as there was between simple singularities and

ER—

simple complex Lie groups.

A first attempt is to repeat the construction of{the morphism ¥ : G > T/W

;Vovefwgﬁe base>field K = C((t)Z}. However, this will lead only to forms of

Q;Giblé si@gﬁlafitieé oﬁer K} (cf. [21] Appendix 1). In particular one does

i

not end up with finite dimensional objects over € . To remedy these defects

one %iijzg”modify”é Chevalley gféﬁpﬁovefw“leih a way suggééééa»BQﬁ{fﬁfh“g

U %
tfheory of the closely related Epclidean Kac Moody Lie algebras [6], [15]&f

—

9. ILet (G be a semisimple simply connected algebraic group over € ./ Let

K =C((t)) = { Z aitl| a, ecC, io € Z} " be the field of power series
i>i
-0

over C amd/ﬁa(K) the group of points of G over K\} The most important

ot 2 - et s e A T T RO
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modification' of G{(K) will be.the.following-semidirect product. By Q % c*

we denote the group of C—automorphlsms of g} given by -

AR e

Xp(t) =" p(At)

where )\ € ¢* and p(t) is a power series in -t . This group acts natu--

rally on G(K) and we may form the(eemldlrect product G(K) 3 Q ). The'

prOJectlon p : G(K) X Q > Q is 1nvar1ant under conjugatlon by G(Ky . If

R

(g,A) is an element of the fibre p (K) conjugation by an element

x € G(K) will look like 5i{%f}i§;§2“ ey =¥
R R E—

x(@Mx Lt = (xg'x LN

where )\x"1 =t - x(Xt)_1' if we write x as a power series in ‘t .

It w1ll turn out later that forf’“~—~¥ 1 the correspondlng conjugacy clas»fg
Wlll have flnlte C-codimension in G(K) Q and that it is possible to
define a quotient of (a part of) G(K) X ) with respect to.conjugation.

However, to obtain a complete picture we need a further modification of the

group G(K) .

10. Thefﬁagwﬂsedy Lie algebra g correspondingmtdﬂ G(K) is given as the’

follow1ng one-dlmenSLOnal central extension of the p01nts g ® C[t t {D of

L SITP——

the Lie algebra g of G over the Laurent polynomial ring G[t,t 1] . We

have : §_ (g ® C[t t ]) @ ¢ as a C- vector space and the Lie bracket for

elements :x ®@u ,y®v, xyeqg, uve C[t t ] is defined by

e



29

where - (, ) 1is the Killing form on g and Res (udv).. means the residue

of the differential form udv (cf. [4]). Kac has developed a theory of -

for §_ ﬂlncludlng an. analogue of the We;]'}

N s

hlghest welght representatlo‘

i

f
/
5

i character formula [ ]g

R

i,

s g

Tf G is simple of rank £ then there are r % 1

fundamental representatlons correspondlng to fundamental dominant weights

e et o et PN e

similarly as in the classical theory. All these representations are of

et . -

nfinite dimension ovel;@ In [4] Garland has shown how to lift these
w x, - - e

ot e

I

representations tof representatlons of a central extension G of G(K) b Q

e

1+C*+G——*G(K)>¢Q+1 .

%M’i mf; Q

To describe this extension it.is, according to the theory of Moore [17],

sufficient to know the restriction of this extension tog’{ the maximal torusv;ge

e S i St g,

v‘ﬁiK* of some SL (K)‘subgroup of G(K) associated to a long Vroot\; Garland

shows that the.extension. € is defined by the inverse of the tame symbol,

i.e. ?two elements u,v “of the torus K* llfted to G in a spec:.al way.

g/;nultiply according to ,2}‘ & }’(* - bh;&.% K\W" *5'?(‘?\# C Qkk\‘iﬂmﬂ; {f:
)v(u)\) (v) c (V\) (u)‘u—\) (v) )

uev = uv (-1

:;,’where uesv is the product in & , uv is the product in K , v : K> Z’

st AP G g nmpai a7

lS the t-valuat:.on on K = C((t)) cand c :K~>C 1s the. constant term of y

power serles.» In the formula above the value of . ¢ 1lies in ¢¥ and is

| ———

regarded as an element of the center of & .

s o ———— IP—

To define and analyse (har cters and conjugacy classes of ie \)we have to
. coniF

i

introduce some important subgroups of & .
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N VoM e
Ldne S k2T ETER)S T’(;Km Q /N
s Pener

11. In mj}é&d/e will keep the notations of section 2.. The compo-

sition G > G(K) ¥ Q > Q is also denoted by p A,f"/l;y T = *(T) ® (1‘:*' we/

e o st

g

e s i

g denote the complex po:.nts <

@.,,Mr‘gggi‘mamlmtorus ofG’ We regard T as a

subgroup of T(K) € G(K) which are the K—valued points of T and G . Let

g i — JT—

3 P g e P i

5 T = (T X Q)}. Then ;\: is a max:Lmal C—torus in G of dJ.menSJ.on T:@

which, using a section of T in G , can be written as a product

Tx ¢¥x Q. Using the ordinary Bruhat decomposition of - G(K) one proves:

S SR
£ L

Proposition 1: Let§ N be the normal:.zer of T in G l Then there is an
LI e

exact sequence

-,”1+T+N—>W->1£(/ ‘\lJ \j‘g; \Jw

Tas %(mcfﬁ“}cz‘? I LR

[ \
k\where W is the affrhe Weyl group W= W ff X*(T) ;":"“"“ww )(yi(."[} c e

S emm— N T - SRS

There is a pa.rtlcularly; nice section of X (T) J.nto the image of N in

s o s

G(K) M Q glven by the subgroup

Xu(T) @ <t | i € 2>C Xy(T) ® K¥ = T(K) |

y)
[, /a: o

lLet r‘1">\ =p (M) n T . Then T>\ is a €®-bundie over = C G(K) = SZ
ol el A
N
equlpped with the natural action of N/T =vg g e subgroup X *(T) of W

]1’ " operates on TZ\ by translatlons through the subgroup X (T} ® <)\ ]1 € Z>

*‘ of T .{5 Comparing the automorphy factor for the action of X 1,(_(T) on T)\

with the automorphy factor of the construction at the end of section 8

one obtains:
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Propositiontzz.(;;e W-actions. on the c®-bundle TA Eand the Ly*—bundle
. s S

?rkv&* defined ihAsection 8”f0r5the same _Aﬁ coincide with respect to the
natural identification oo

o

Fo= T x ¢¥x {\} T x ¢¥

L | 4t

T, = T x {1} = T .

12. Consider the points G(mﬁ t D) of G over the formal power series

ring and the natural reduction homomorphism "mod t" :

U U\ 9 : G(ﬂ:[tJ)——eG s@ | L0
‘\,J SR -
B =B DB"%-‘Y"@} —B ?T
Let EB € G be a Borel subgroup containing T and B' = r (B) its pre-

image under r . We consider B' as a subgroup of G(K) and call

e

B := _1(B' ¥ Q) an Iwahori subgroup of & . According to Moore's theory

o
O

o o N T st

31

[17] we have an isomorphism of groups (B = (B' ¥ Q) x C* (with ¢¥* the
-3 :

Q T x U where U is the kernel of the obvxous prOJectlon B> T/} we

e
i twn T N Y sty e, —
1

then have the afﬁlne Bruhat decomposition originally due to Iwahori and

Matsumoto [5] and\@dapted to our context by Garland [4]

£y A .
DR N - L

ez

&
3

\\ t;‘ k.%) ﬂ W
Theorem 1: The group G is the dlSjOlnt union of the distinct deuble co-

sets TwiB, we ﬁ/T,:.’:'“ft;:‘z:w

et

R ™ :
Let(jﬁ < X*KT) be the root system of T}in G ]and ;u : G — U e G

Q\\\ fixed addltlve one parameter subqroup corresponding to an o€ éj (cf:

A

section 2). Through the projection T > T we consider I as a subset of



Let‘(h € X (T) be the character deflned by the com] 051t10nw

= C* / The afflne root system of T 'in G - is- now defineq

1 e Z}jf For any afflne root

16 € we obtalnga complex'one parameter group

% with the property

for all

-1 ;_'
s ua(c)s = ua(a(S)c)

se€T , c e, by composing

i o S LT
ch_t, %K Ua(K)

co > ct ¥ u_(cth)

twith a fixed grouptheoretic:section an(K)-——+ G .

e

T “jsam

B T

'ggbfor-WQQK)f or thegafflne one

Theorem:

ﬁ«’) _(”> - c*
ENC;(K

Let .s € T Vsuch that }p(s)l Ié(s)l # 1

T N

{ Y(s) = { G Z| a(s) = 1}‘\ Then Z(s) is a finite subroot systeﬁ of I

oo
R ~

and Z(s) 1is a finite dimensional complex reductive group with root system

¥ (s)

13.

generated by the subgroups T and ﬁa ,aei(s) .

Let &° consist of the elements in G which are conjugate into a




(— > 1/‘ m T)\/W - Cr ! Sending the
e

o (X (8)senaX, (5))
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affine Bruhat decomposition one deduces:

Proposition l: ILet {s,s' be elements ln T cohjugate under & J Then

=

s and s' are conjugate by an element‘in N .

TN g

e R 5 ‘ e
pLye N «4‘\
As a corollary we obtain a set-theoretic map " |
o Llelie ér/im |
[ Y , e ‘{
G B = H?f‘,f‘ - %
i U ! T« ' i
TR kL @w
Mg > P P

a\i""'%k ’«‘é ) v“’ﬁ’v& X jﬂe E
T/W is the set-theoretic quotlent') defined unlquely in the. follow1ng

(here

lS conjugate to some b E

;\Then kT(g) is the class of s .i

To form an analytlc quotlent T/W we have to delete{ihe 901nts s

e T w1th .

. Now let; G be simple and Py : G~ GL(V ) , i = O,...,r ;
R s —— s
fundamental lrreduCLble representatlons of G 1ntroduced in sectlon 10 By 7 i
A e b i - ¢ - - st me . i s 1
| i
gXi /ﬁ St s g A5 %
aEEeracter formula [7] Let (T | 1 T {s € T!Ip(s)l > 1} % \;i? {
- - Lo
Proposition 2: The characters X; are W lnvarlant holomorphlc functlon;ﬁ
P = B i

W—orbit of an element s e TX Y

H
H

is an ana%ytlc isomorphism onto ¢r 1\ {o} for all o

A€ Q, IX] > 1ﬁ{ with the possible exception of a discrete subset of

bounded from .above.

. The map T : &

o
X
J

) ~0O \ ~ ~
= —_—
Let G 1 {g e & | ]p(g)l s T 1/W may be
. N +1
composed with the morphism T

r

~ r
> 1/W > QX C

(s mod W) h—é-(p(s),x (8)yeeey xr(s)) , to glve the igeb;aic tracé“mémg

o & '™
7 ~0 r+ 1 {j’ O

¥
MJ
= |



ot

o 5

& —7 %}e ;; 11— (F(% f?(e;égﬁ !
?:u )

If (g € §°> 1 maps to a convergent power series in §j¢((t))) X Q then

pi(é) may ‘be con51dered as an operator of trace class on V “with respecf:D

e g“_.,

x (T(g))

o m————— i /
; Sstaiatl e i st MM
‘will coincide w1th the analytic trace of oy (g) . e T
s )

ﬁ( . seni

e

U

oron S

fIf G = Gl'x...X Gk is semisimple with simple factors G, the extension%

& is only a quotlent of the product G X...X Gk by a (k-1)

o —dlmenSLan}

N

“e

i\central torus; Accordingly fundamental characters of & are given by pro-

s s bR e, e

ducts of fundamental characters of the G, satisfying certain conditions.

These characters will in generalfiot be algebraically independeﬁg as is the.

case for simple G .
14. Let se T, |p(s)| > 1 . We know from section 12 that the centralizer

Z(s) of s in & 1is a finite dimensional reductive group. We denote its

_ ~0 “Votes
unipotent variety by Uni(s) . & 2\ T}ﬁi iiigﬁé

L |

Theorem 1: _zze fibre (T(S)lj is

@—1somorphic to the associated. bundle

pre)

G x Z(S)Uni(s) .

Corollary: The fibre T’l(T(s)) contains only finitely many: conjugacy

classes which are all of finite C-codimension.:

Let B 1 = Bn G NP Then there is a commutative diagram

ot ‘\A N ., B ¢ A ~0 : =
&(‘ﬂ \@V‘ U (53§9XB(B>1)5 —— &, ;12T ('C(S)
.

I
T;’%"*’ég;g U & 1, ——— T, A D 7 (%)

>/

1 o
0 T : %
{

, 5 i, P
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defined in the same way as in section 5.

Theorem 2:. The diagram above is a simultaneous resolution: for T .

The proof of these theorems is analogous to the proof in the classical case

(cf. [21]), the crucial startingbpoint being a theory of{Jordan normal form

for elements in aot)

IV. Conclusion

15. Combining,%Ei}aéécriptiéns of the semiuniversal deformation ¢ : X -+ W

o o .
éf a simply elliptic singularityand{the fibres of T : &

for the corresponding group G we obtain the following result. Let

Xp = ¢—1(Vf) . 3 X ﬁ?{% :’X.?(ﬁ(}ﬁﬁ éﬁ&?‘

. T2V == T A

Theorem: For{simply elliptic singularities of degree 4 < 63 there is an

f

identification V_ = T N 1/W such that for all x ¢ Xf there is a neighbor-

hood X_(x) of x and an{gnclusion X_(x) <> & N making the following
— f — ——— £ > U

o S,

diagram commute 7

A similar statement is true for the part ¢2 : ¢-1(V2) >V of the semi-

2

universal deformation in case d =8 .

he root systems attached to simply elliptic singularities/form only a small

L

part of all root systems. Some further root systems can be attached to
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(simply elliptic siﬁgul§£é§§ggwgggiggéa%§;yg?'rgroup oEisymmetries,(cf.

[8]). An analogue-of the theorem above then holds for the deformations
conserving symmetries. Here groups over C((t)) come’ into play which are-
not of Chevalley type. They will be dealt with in the work on general Kac

Moody algebras mentioned in the introduction.
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