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Discrete approximations for stochastic
“differential equations

By
Yoshihiro SAITO and Taketomo MITSUI

Dept. of Information Eng.,Fac. Eng.,Nagoya Univ.,Nagoya,JAPAN
November 22 , 1990

1 Introduction

Among discrete approximations for deterministic differential equations

(DDEs), Runge-Kutta method (RK method) is well known. The aim of

the present paper is to describe stochastic version of RK method and to

consider of its applicability for stochastic differential equations (SDEs).
We consider stochastic initial value problem (SIVP) for scalar au-

tonomous stochastic differential equations given by

{ dX(t) = f(X)dt + g(X)dW (t), t € [to,T], (1)
X (to) = Xo,

where W (t) represents the standard Wiener processes, namely Gaussian
stochastic variables, characterized by their mean and covariance as

E(W (1) =0, ©
Cw(t,s) = E(W(OW(s)) = mint, ). (3

SIVP(1) is equivalent to stochastic integral equation (SIE) for all ¢ in
some interval [ty, T): |

X() = X(t0) + [ fXEds+ [ qXEIW ). @)

Here, the second integral, called as stochastic integral (SI), is defined by

[{XO) = i 50X () + (1= DX )AL (5)

where 0 < A < 1, AWy = W(tg41) — W(tx) , b = max(tx41 — tx) and
the mode of convergence is in mean square. In particular if A = 0, (5)
is called Ito SI and if A = 1/2, Stratonovich SI. Also corresponding to
A=0and A =1/2, eqn.(1) is called the Ito SDE and the Stratonovich
SDE, respectively.

Hereafter we use the following notations in the Stratonovich case:

f , d,.
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2 Preliminaries
First we introduce the central tool of calculus ; Ito’s formula:
Assume that the functions f and g satisfy the condition guaranteeing the
ezistence and uniqueness of solution to SIVP(1), that is
i) The functions f(z) and g(z) are measurable with respect to x,
forz e R.
i1) There exists a constant K satisfying for z,y €R
(a) Lipshitz condition '
|f(z) = fW)] + |9(=) — 9(v)| < K|z — ],

(b) linear growth condition
|f ()P + lg(=)” < K*(1 +|z[?). |
i11) Xo is independent on W(t) fort >0, and EX?2 < co.
If the real-valued function F(z) has continuous derivatives F', F" for z €
R and X(t) is a solution of SDE (1), then F(X(t)) has the stochastic
differential ’

dF(X(8)) = [fF'+ %g’F"](X (#)dt + [gF' )X ())dW (). (6)

For simplicity by introducing the following operators,

d
L,= g%’)
(6) is expressed as |
dF(X () = [LFY(X (2))dt + [LoFY(X (2))dW (t) (1)

and its integral version is given for ¢ € [to, T by

t t ,
F(X(©) = F(X(t0) + [ [LeFIX (s))ds + [ [LFUX()dW (s). (@)
Between the Ito SI and Stratonovich SI holds the following relationship:
b b 1,
F 9(X(s)aw(s) = [ g(X()dW(s) + 5 [Togl(X(s))ds.  (9)
This implies that the solution for the Stratonovich SDE
d, X = f(X)dt + g(X)dW ()
is also the solution of the Ito SDE

AX = [f + 36's](X)dt + g(X)dW ().

2
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Conversely, the solution X(t) of the Ito SDE
dX = f(X)dt + g(X)dW (2)
solves the Stratonovich SDE
4.X =[f ~ 59'5)(X)d + g(X)dW 1)

3 Runge-Kutta approximations
Stochastic version of RK method; m-stage RK method has the form

Xn = Xn—-l + EP:F:h + ZiniAWn) (10)
=1 =1
where
XO = Xg,_
Fl = f()_(n-—l))
Gl = g()gn—l);
F, = f()_(n—l + faFih + 121G1AW,),
G; = g(Xa-1+ BaFih + 121GiAW,), (11)
Fm - f():(n—l + ;n=—11 ﬂijjh + E;n=_11 7ijjAWn);
Gn = g(Xna+ T BmiFih + Z;n:_il YmiGiAW,),
with

h=At, =t, —tas,
AW, = W (t,) — W (tazy).

RK method (10) yields sequences which approximate the sample paths
of the solution X (t) of SIVP(1). That is, the numerical approximation
is generated iteratively from the difference equation with increments

At =1, —tny
corresponding to the chosen interval partition
bo<ti < <ty < - <ty=T,
and the Wiener increments

AWn = W(tn) - W(tn—l);
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which are obtained as sample values of normal random variables of mean
zero and variance At,,:

AW, = (At,)i¢, €€ N(0,1).

It is convienient to work with equally spaced partitions. Therefore we

now use the following notation

T -1t
N b

h=At, = AW = AW, = hi¢.

The continuous parameter process corresponding to RK method (10) is
given by

Xn=Xp1+ (t - tn—-l) f:piFi + [W(t) - W(tn—l)} ’Zn:in"’ (12)
=1 =1
t € (tp-1,t,]

and (11).
Riimelin (1982) has established the following convergence result for
RK method (10).

Theorem 1 (Rimelin [5])

Suppose f, f', g, ¢', g" are bounded. Then the corresponding con-
tinuous parameter process (12) defined by the m-stage RK method (10)
converges uniformly on [to, T| in the quadratic mean sense to the Ito so-
lution of '

dX = [f + Ag'g)(X)dt + g(X)dW (2).

Here the correction factor is A =0 for m =1 and
m 1—1
A=)"qgy %  form>2. (13)
=2 =1

Remark Let -

&= Y
=1

then expression (13) is rewritten as

A= Z q"d,'.

1=2



Thus if RK method having the order larger than or equal to 2 as the
quadrature for the second integral in (4), then we have

e 1
A= Z q,-d,- = 5
=2

Therefore if this method is applied to Ito SDE, the numerical solution
converges to Stratonovich solution. That is, to obtain Ito solution using
RK method (10), one requires the following transformation:

1,
f—»f—ggg-

If X(t) and X,, denote the exact solution and numerical solution of SIVP
(1), respectively, the local error from ¢t =t,_; to t = t,, is defined by the
following;: '

E(|X (tn) = Xal* | X (ta-1) = Xno1 = En-1)

where Z,_; is an arbitary real value.

Definition 1 The numericl scheme X, is of order v iff
E(IX(tn) - an2|X(tn—-1) = Xn—-l = En—l) = O(h‘y+1) (h’ l 0)

4 RK schemes of lower order
First of all we give two known RK schemes for SDE.
Il.m=1,y=1

Euler-Maruyama scheme (Maruyama 1955):

):_{0 = )g(]) _ _ (14)
Xo = Xooi+ f(Xao1)h + g(Xnon) AW.
2. m=2,y=2.
Heun scheme (McShane 1974):
)go = )€0) (15)
Xn = Xn—l + %[Fl + Fg]h + %[Gl + Gz]AW
where
Fl = F(Xn-l);
Gr = g(Xn-1),
Fz = F(‘_Xn-l + Flh + GlAW),
G2 - g(Xn—l + Flh + GlAW),

255
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F=f- %g'g- (16)

By virtue of the Remark for Theorem 1, (16) is required to give the
solution of Ito SDE. Similarly, we can attempt to construct a 3-stage RK
scheme; stochastic version of 3-stage Heun method:

X:O = X_O) (17)
Xpn=Xpa1+ %[Fl + 3F3]h + %[G] + 3G3]AW,

where _
Fl = F(J_Xn—l),
G = g(}(_n—-l)’
F, = F(Xa-1+3Fh+;GAW),
G2 = g(X',,_.l + %Flh + %G]AW),
F3 - F(X -1 + %th + %GQAW),
G3 = g(Xn—l + %th + %GQAW),

1
F=f- 59’9-
But unfortunately this scheme has order 3 only if SDE (1) holds fg' +

29%¢" = f'g. This result of Riimelin is described in the folowing theorem

Theorem 2 (Rimelin [5] ) |
Suppose f(z) and g(z) have continuous and bounded derivatives up
to the sizth order . Then if consistency condition

1
fg'+59°9" = f'9,
namely
isn’t satisfied, any RK method cannot attain order 3.

To verify above, one expands 3-stage RK scheme (17) at (tp—1, X,—1) via
- Taylor series as follows

Xn = n-1 + [ - %glg]n-lh + gn—lAW
+3g'gla-1 (AW’
+§[f’9 +9'f — 9% — 39"¢*Jn-1hAW
+5l9%9 + 9"9*lna(AW)?
+0(h?) + O(h|AW|?) + O(|AW )

= Xpa+[f - %ng]n—lh + gn1AW
+3(Lsg + Lof) — 5L29)n-1hAW
+3[Lggln-1(AW)? (19)
+§[L3g],._1(AW)3
+0(h?) + O(h|AW|?) + O(|AW]*).

6



On the other hand, Taylor scheme of order 3 proposed by Wagner and
Platen (1978) (see [1] in detail) which is derived from Ito’s formula (6)
has the following form:

Xo = X
Xo = Xosn+ f - ‘Lyg]n—lh + gn-lth’
z[LJQ]n—l(& + 7-52)’17
[ gf]n—l(‘fl 7'52)’“ (20)

%[ gg]n—lflh’
5[ .qg]n--lf?h'3
%[ g]n—lf?hfi

where & and & are independent of the random variables N (0, 1).
Replacing with

AW = E]h%, AW = Egh%,
expresion (20) turns to

X Xo,

X,, Xn-—l + [f - %ng],,_lh + g,._.lAW
+[%(Lfg + Lyf) — 1L2gla1hAW
+1[Lgglnr(AW)? (21)
+5 [ g]n—l(AW)3

+7[Lyf Lfg]n—lhAW

Comparing (19) with (21), we establish an improved version of 3-stage
RK scheme: ,

Xo = X,
Xn = Xa-1+ {{F1 +3F5]h+ {[G) + 3Gs]AW, (22)
+7[Lgf Lfg],._lhAW
where _
F = F(gfn—l),
G = g(Xn—l))
Fz = F(X,._l + 1F1h+ 1(;'1AVV)
G, = g(Xn—l + lFlh + IGIAW)7
F3 = F(X,,_l + 2F2h+ 2G2AW)
G3 = g(Xn—l + th + G2AW),
F=f- -;-y'y

257
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with independent random variables AW and AW of normal distribution
N(0,h). Note that if consistency condition (18) Lyf = Lyg is satisfied,
the improved 3-stage RK scheme (22) coinsides with the 3-stage RK
scheme (17).

5 A numerical example
The schems presented in the previous section will now be demonstrated
through a simple example, the stochastic Ginzburg-Landau equation (see

(2])

d, X = [aX — X°|dt + o X dW, (23)
dX = [(c + %UQ)X — X%dt + o XdW, (24)

with parameters o and o. Note that this equation doesn’t satisfy the
consistency condition (18). We will determine the second moment at
t = 3 with the starting value X (0) = 1 and parameters & = 0 = 2. The
simulation was done with sample number N= 100, 000 and different time
stepsizes. We used three numerical schemes: (i) the Euler-Maruyama
scheme (14), (ii) 2-stage RK scheme (15) and (iii) improved 3-stage RK
scheme (22). Also numerical solution was considered for the Ito solution.
Namely the scheme (i) is applied to eqn.(24), while the schemes (ii) and
(iii) without transformation (16) are applied to eqn.(23). The second
moment of the exact solution has stationary value:

Y=EX’=a=2.

The results of three schemes are shown Table 1 and Fig. 1. In Table 1 no
result of (i) with A = 0.03 means that a stochastic numerical instability
arises. From the results we can conclude that the improved RK scheme
is superior to other two schemes. ‘

6 Future aspects
1. Derivation of high order RK scheme

So far we gave the concept of order in strong sense. It is however
difficult to derive scheme of order 4 in this situation. In many purposes
it is not necessary to consider this mode of convergence. We only require
weak convergence; for example the convergence for the first two moments
EX,, EX2. Thus we attempt to derive high order RK scheme with weak
order. Also there may exist some problems when RK method is applied
to n-dim SDE.
2. Weak-sense linear stability analysis

By applying the numerical scheme to the test equation (supermartin-



gale eqn.)

X(0) = 1,

Il

{ dX = MXdt+pXdW (A<0,2)+u?<0),

we will consider the numerical stability of the first two moments of the
solution X (2).

s
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Table 1
Y (t=3)

h (1) (11) (1)
0.030 || *.**** { 2.2015 | 1.9010
0.025 || 1.6500 | 2.1893 | 1.9387
0.020 || 1.7176 | 2.1382 | 1.9402
0.015 [ 1.8259 | 2.1239 | 1.9778
0.010 |f 1.9003 | 2.0813 | 1.9866

(FACOM M-780)
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Fig. 1
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