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Abstract.
The braid group, with generators 1,2,...,n, has the presentation
{iji=j'i.j if |i-4] =1
13=J71 it |i-J4] > 1.
In this paper, we prove that the two products P=1-.3-5-.., and Q = 2
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1. Introduction

In [2], Coxeter posed the following problem:

Problem. The braid group, with generators 1,2,..,n, has the
presentation ‘
{'i.ji=j'i.j if |i-7] =1
15=71 if |1i-3] > 1.
Prove or disprove that the two products P=1-3-5-..., and  =2-4-6-
satisfy PQPQ..=QPQP.. with n+1 letters on each side of the
equals sign. [ |

In this paper, we give an affirmative answer to the problem.
Here, we consider a topological feature of this problem. A generator
1 of the braid gruop corresponds to the following state of braids:
1 2 1 n

| LXK 1]

For example, the problem for n =4 corresponds to the following state

of braids:
P Q
Q p
P Q
Q P
P Q

All proofs in this paper are combinatorial, but these topological

images will be helpful to see some of the proofs.

2. Definitions and notation
Let T' = (V,E) be a multigraph. We define the semigroup S corresponding
to I' as the following. S is generated by the elements of V subject to

the relations
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ijijew.=j1j1.. for 1,j €V
with e(i,7) + 2 letters on each side of the equals sign, where e(3,5)
denotes the number of edges which join i and j. Now we define Coxeter

semigroups by the following graphs:

1 2 3 n
An . * - - L —e
1 2 3 n
Bn — * - - )
1
\§ s n
Dn 4 @ ®
/
1
E 5 3 4 6 ~ n (n=6,78)
n o @ A 4 A 4 A @ 2 4
2
P, L2 3 %
H, 1 2 . n (n=3,4)
Let X'n be a Coxeter semigroup with generators 1,2, .‘.., n. We use

the following notation for elements of X,.

R For X = xlxz .es xkeX,n, tX:z xkxk - e :1:1.

Bl if i<
° [7".7] = t
[4,i] otherwise.

® XXy ... T iT x—l —:rg a:_k (x_i will be defined _later.)
. S.n:= { T1T .o xnexn: { Tyy Ty oee s Ty }1={1,2,...,n}}L
o k(X,):= min{ keN: 4 = [1,n]" for all 4€5,cXp ).

© Afy 2 .., n}= Dpi=[LnlLn - 1101200110

* For 4, BEX,, we denote A= B if A and B are identical, letter
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by letter.

® The Coxeter group corresponding to X, is denoted by }n’ i.e.,

~ relations in X
1= 1,2, ... l n >
Xn < vees ™2 _ jdentity for 1sisn

e The Coxeter number of }n is denoted by h(?n), that is
r(X,) := min{ k| X" = identity for all XeS,cX,}

Remark.  Note that 2k(X,) = h(X,). n

3. The cancellation property of Coxeter semigroups
In this section, we show that the cancellation law holds in Coxeter

semigroups. This property will be used in sections 4, 5.

Lemma 3.1 Let " be a multigraph with edge multiplicities £3, and
contains no Xgq (the complete grapvh of order 3) nor s=—e——e - Let S
be the semigroup corresponding to I'. Suppose that 1 X = jY holds for
i, JEV(T') and X,Y€S. Then, it follows that

(i) if i =4, then X =7,

(ii) if 1 # 7 and e(i,5) =0, then X =32, Y =1Z for some Z,

(iii) if e(4,j) =1, then X =351 Z, Y =41jZ for some Z,

(iv) if e(i,j) =2, then X =j1j2Z, Y=1j1Z for some Z.

(v) if e(4,j) =3, then X =3j1ji1Z, Y=1j1j2Z for some Z.
Proof. The lemma for words X, Y of word-length s will be referred to
as L, If 1 X is transformed jY by a sequence of ¢ single applications
of the defining relations, then the whole transformation will be said
to be chain-length t. We prove the lemma by induction on s. We assume
(a) Lg is true for 0 <£s < r for transformations of all chain-length, and
(b) Lr+1 is true for all chain-length <¢.
Let X, Y be of word-length r+1, and 1 X = jY through a transformation
of chain-length ¢ +1. Let the successive words of the transformation
be

le'i.X, ey WgEkW, ey Wt+25jY,

with 2<g9g=<t+1. The transformations 1 X —-kW, kW —>jY are each of
chain-length <%¢, and we can apply (b) to them.

We distinguish some cases according to the induced subgraph

< {1, 7, k} >T. The general pattern of the proof is, however, exactly the
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same for each case, and it will be sufficient here to deal with one

case only, as a typical example of the common method of proof.

also [3].
Case. < {i,j k}>p = =X
By (b) and
1 X=kW=3Y,
we have
X=kikP
W=1k1P=3k@
Y=kj@
for some P, Q. By (a) and (2),
kiP=jR
kQ=1R
for some R. By (4),
iP=jkS
R=kjS
for some S. By (6),
P=3T
kS=4T
for some T. By (9),
S=1kiU
T=kikU

for some U. On the other hand, by (5) and (7),

Q= 'ik“i.M
R=kikM=kjS

for some M. By (a) and (13),
ikM=3j8

and so
kM=jN
S=1iN

for some N. By '(14),
M=j3k0
N=kjo

for some 0. By (10) and (15),
S=1k1U=1N.

By (17) and -(18),

(1)
(2)
(3)

(4)
(5)

(6)
(7)

(8)
(9)

(10)
(11)

(12)
(13)

(14)
(15)

(16)
(17)

(18)

See
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N=kjO=kiU,
and so
iU =j0. (19)
By (19),
U=3j4 (20)
0=14 (21)
for some A. By .(1), (8), (11), and (20),
X=kikP
—kikjT
=kikjkikU
=kikjkikjA
—kijkjikjA
=kjikijkjA
—kjikikjkA
=kjkikijkA
—jkjikijkA
=jkijkjikA
=j-kikjkikA (22)
By (3), (12), (16), and (21),
Y=kj@Q
=kjikiM
=kjikijko
=kjikijkiA
=kijkjikid
—kikjkikiA
=kikjikikA
=kikijkikA
=i-kikjkikA. (23)
By (22) and (23), we have X =jZ, Y =42 for Z:=kikjkikA. |

Lemma 3.2 In Coxeter semigroups, it follows that

(i) if iX=141Y, then X =7,

(ii) if X1 =Y 14, then X =7.
Proof. Follows from Lemma 3.1(i) and the fact that A = B holds iff
th =1, |
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4, Type An

In An’ we define §<'n>

=1:=n+1-4. Note that this operator is
considered as a graph isomorphism of 4,. In this section, we prove

the following theorem which gives an affirmative answer to the problem

of Coxeter.

Theorem 4.1 In 4,, the following hold.
n+l 2 .
(1) For A€A,, A = A, holds iff AES,,.
(2) Suppose that ABE€A,, n =2m. Then, (4B)™4 = A, holds iff ABES,

and B = A.

(3) Suppose that A€A,, n=2m+1. Then, 4™l = A_ holds iff 4€S,, and
A= A

Remark. We verify that Theorem 4.1 answers to the question of

Coxeter. In A'n’ define P:=1:-3:5-..., Q:=2:4-6-....
(1) If n=2m, then =P, P =@, and so,
PQPQ..(n+1letters) = (PQ™P
= An
= (Q P™Q
=QPQRP..(n+1letters).
(2) If n=2m+1, then PR=PQ, QP =QP, and so,
PQPQ..(n+1letters) = (P QM
= An
—-(Q P)m+1
=QPQP..(n+1letters). m

To prove the theorem, we need several lemmas.

Lemma 4.2 For all A€S,, GA=[1,n]G holds for some GEA, 4.

Proof. We prove this lemma by induction on n. We can write 4 in
the form as A=Xn, or A=nX. If A=nX, we have XA=XnX. In
both cases, we have X A=Y n X for some X€A, 1, Y€Sn_1. By induction
hypothesis, we have ZY =[1,n-1]1Z for some Z€A, _o. So,

ZXA=ZYnX=[1n-1]1ZnX =[1,n]Z X. ||
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Formulae 4.3 In 4,, the following hold.

(1) k[1,n]=[1,n]k -1 for 2 <k < n,

(i) 11,7 = [1,n1%n,

(i) k[1,n]™*! = (1,1 K for 1 <k <,

(v) A" = (1™ for aes,,

(V) kA, = A,k for 1sk<mn,

(vi) &, ='A, = A,.
Proof. (i)-(iii) follow from the definition of 4,. We prove (iv). Suppose
that A4€S,. By Lemma 4.2, there exists G€4, such that GA= [1,n]G. So,

we have

c A'n+1 _ [1,n]n+lG _ G[l,n]n+1.
n+l _ [1,n]n+1.

This and Lemma 3.2 give A4 For the proof of (v) and (vi),

see [3]., [ |

Lemma 4.4 Suppose that AZesn, n = 2m.

(1) If A=1B, then there exist zy, ..., %,,, ¥y ..,Y,, such that AA= xq
. xmyl YU 1< e < Ty YLD e DYy T 1, Yy = n.

(2) If A= B1, then there exist z4, ..., 2,,%1, ..., Y,, such that 44 =z
XY e Yy B < e < Ty Y1 e DYy YL TN Yy = 1.

Proof, This lemma is easily proved by induction on m. [ ]

We say that 4 = aqQg ... ak€An is increasing (resp. decreasing) if aq
< v < ag (resp. o > ... > o). ’
Lemma 4.5 Suppose that D1UeS, 1, D decreasing, and U iﬁcreasing.
Then, it follows that [1,n]1D1U = U n D[1,n].

Proof. Induction on n.
Case 1. D=D'2
[L,n]1D1U

I

1[2,n]1D'21U

= 1([2,n]D"2U)1

= 1(Un D'[2,n])1 (by induction hypothesis)
=UnD'121[3,n]

=UnD'212[3,n]

= U n D[1,n].

Case 2. U=2VU’

[1L,n]1D1U =[1,n]D12V’
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=1213,n]D2U’

=21([2,n]D2U")

= 2 1(U’'n D[2,n]) (by induction hypothesis)
=2U'nD1[2,n]

=Un D[1,n]. |

Lemma 4.6 Suppose that 1 X n Y€.S‘,n, n=2m, X = Ty oo Ty q increasing,
Y =Yg Yy g decreasing. Define ' Ug:= [1,n - 1], Dy:= [n,R], and for 1<
<m -1, define

’ U,:=the word obtained by deleting Y from Uj—l’

J
D.:=the word obtained by deleting z; from Dj—l’

J _ J
Then, it follows that Uijl XnY=XY Uj—le—-l‘
Proof. Define [%,jlz:= [%,j1NZ.
Uj Djl XnY
= (j‘7 ['n,a:j+1] [Q:J—I,Z]DJ 1 [Z,xJ—l]X [:tj,'n—l]X n [77,'—1,$j+1]y [17‘7'"1,2]Y
= Uj [xJ—l,Z]DJ 1 [z,x‘,"l]X ['n,xj] [:CJ+1,'n—1]X n ['n-l,xj+1]Y [xj—l,Z]Y
(by Lemma 4.5)
= UJ ['n—l,xJ+1]Y [-'L'J—l,z]pj 1 [Z,IJ-l]X [xJ,'n—l]X DJ—].
= [1,yj—1] [yj+1,n—1]Uj [n—l,yj+1]y [?Jj,z]y 1 [Z,yj"l]x [yj+1,'n-1]X Dj—l
= ['yj+1,'n—1]X [’n'l,yj"'l]y [1;yj] [‘yj'l’z]y 1 [Z,yj'l]X [yj“'l’"_l]X Diq
= [y;+1,n-1]y [n-1,y;+1]y [2,y;-11x ¥, [¥;-1,2)y [Ly;] [y ;+#1,n-1]x D;_4
(by Lemma 4.5)
= [2,y;-1]x [y +1,n-1]y [n-1,y,;+1)y [y;,R2)y U;_1 D4

Lemma 4.7 Under the same assumption in the previous lemma, it
follows that (1 X nY)™ = (X )™ [1,n,2].
Proof. Using Lemma 4.6, we have
x 1™ 1,n,21 = (x V™ lugp,
= @xY)™?Up1xny

=U

m-1
m—le—l(l XnY)
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=@xav)™ = N

Proposition 4.8 If AZesn, = 2m, then (4)™4 = Ap-
Proof. Induction on m. ' | '
Case 1. A=18B.
By Lemma 4.4, AA=1XnY holds for some X increasing, Y decréasing,
with |X| = |¥]. |
(AD™Ma=(1xnY)™A
— (XYY" [1,n,211 B (by Lemma 4.7)
= BB™ 1,n,118
~ (8 BY™ 1B[1,n,1]
= A{z’ ,n—l}[l’n’l] (by induction hypothesis)
= [1,n][n - 1,1][2,n - 1][2,n - 2] ... [2,2]
= A
Case 2. A=B1.
(A4)™4-4 = (B1B n)™
=B-(1BnB™B-n
=B A,n (by case 1)
= AnE n = AnZ.
By Lemma 3.2, we have (4 M4 = A,
Case 3. 1¢A.
By cases 1, 2, we have (4 A)mZ= A,. Hence,
(AD™A =14, = A, n

ne

Lemma 4.9 The following two conditions are equivalent.
(1) A=4€s,, n=2m+1,
(2) There exist P = pq ... p,, increasing, Q= gy ..+ 9,, decreasing such that

A=PnQand @=P"1, je, pi+g;i=nfor1sjsm
Proof. (1) implies (2): .
Let A= P1P2 «+o PR 9192 -+ s { P; } increasing, { 9; }l decreasing. Suppose
that p; =1. Since

A=py..Pp19{..9 =4, v

we have ¢; =2, ie., ¢ =n-1. Next, 92=2 or ¢; =2, and say gq; = 2.
Since

4= 1p2 voe Pp T Q4 oo pl_lz
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=Py Ppl295..9; =

we have —q_k =3, i.e., g =n-2. Continuing this way, we have (2).
(2) implies (1):
Suppose that 4 =pq ... p,, 1 ¢ ... ¢, satisfies the condition of (2). Assume
that py =1, then ¢4 =2 and so

A=py..P,1295..9, =1B
holds for some B. Next, p; =2 or ¢, =2, and say py =2. Then, we
have g5 =3 and so,

A=Dp;..p,1230;.. =12¢C

holds for some C. Contlnulng this way, we have (1). [ ]

Lemma 4.10 Suppose that nX€S,n, X=%y .. Zppy Zp> oo > 2, < . <

z, for some %, 2<1i=<n. Define zyi=n, Vy= [n,1][1,n], and for VJ 1=

n
ijijR with 1 <7 < n, define V-:z Px-QR if 154, Vj.: PQ:::JR
if 1< j=n. Then, XV 1—V 'nXholds

Proof. Induction on n. Define zX):= zN{1, ...,k}. If j=1, then

X VO = X[n,1)1,n] = [n,1{1,n]1X = [n,1][1,n-1]n X = Vln X.

So, we may assume j > 1,

Case 1. &,=n-1, V;y=n-n-1. V("1 2n-1, x(0D v§-’_‘;2).
_ y{n-2) (n-2)
XVig=X n-1:n.n-1.V;27%.n-1
) B R 4 Uon

=n- X(n_z)(n -1 V‘g-’}lz))n en -1
=nn -1V (n - 1. ¥ B n -y

(by induction hypothesis)
VjX(n_z) ‘n-n-1

=v;on- "By -v.ax
Case 2. z,=n-1, V

- g =nen-1. VR g x(072) _ ylnE)
xv, g =x"®nt.nin-1.7 0y
L R

=n-X(n—2)-n-1-n-X=anX.

Case 3. zp=n-1, V; g=n-n-1.V"% .01,

XV =n-1-X"3nay1,n -1

- 10 -
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= n-1-[n,11,n - 11x("72)
—nen-1-n[n-211Ln-2]n-1.x""3)

=[n,A][1l,n -2In X = V .n X.

Case 4. zp=n-1, V; 4=n-n-1: V(n1 ) x(n-2) v§~’_‘1‘2).

XV,

jo1=7n- 1. X(n z)n ‘n-1- V‘(j"_ll_z)

=n-1-n.x"B)n - 1.vin2)
—n-1-n(n-1.V{8) (n-1.x{""2))
(by induction hypothesis)
= n-n—1-n-V§"‘2)X:anX.
Case 6. 23=n-1, V; y=n-n- 1-V(-n1_2), X(n—2) Vg’f_llz)
XV;q=(n- X(" Dyn(n-1.v§D) = v, n x. l

Proposition 411 If A=4€S,, n=2m+1, then Al =4, .
Proof. We distinguish two cases.

Case 1. A=nX.

By Lemma 4.10, XmVo = Vo, (n X)™, where V, is defined in Lemma 4.10. By
Lemma 4.9, we have nX =P n @, where P, @ satisfy the conditions in

Lemma 4.9 (2). So, we have
P @™Mn,1l1,n] = [n,111 Q 4™
Since Q = -15<'n,—1>
Q (P QMn,11L,n] = A, _q[n,1[L,n] = [n,1]A,,
On the other hand, |
QAniN @A™ = [n,11P 1 Q@ A™ = [n,1]4 A™ = [n,114™*1,
m+l

, using Proposition 4.8, we have

Combining these identities, we have 4 = A,
Case 2. A= X n. .
By case 1, we have (tA)m+1 = Ap,. So, Am"'1 = tA.n = Ap. |

n» the following hold.

(1) If ABEA,, n=2m, and (AB)"A = A,, then B =14, ABES,,.

(2) It A€4,, n=2m+1, and (4B = A, then 4=1Zes,,.

Proof. (1) Suppose that (4 B4 = A,, then ABES,. Suppose Z‘Zesn,
» then by Proposition 4.8, (Z2)"z = A,. By Lemma 4.2, GAB =12 Z G holds

for some G€An. Hence,

Proposition 4.12 In A

- 11 -
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B : m+l Zym+l, A
GBA, =GA,B=CG(AB) =(Z2) G=ZA,6=ZGA,,
which implies 6B=2ZG, or GB=ZG. So,
GAB=22ZG=2ZGB,
which implies GA=Z2G = GB. This gives B = A.

(2) Suppose that Am+1= Ap, then AE€S,. Suppose Z=§€Sn, then by
Proposition 4.11, Z'm+1 = A,. By Lemma 4.2, GA=2ZG holds for some
G€An. Hence, |

A, =A™ zmg_ A =T,

G
which implies ¢ = 6. Therefore,

Proof of Theorem 4.1 Suppose that Am+1 = A,, then AES,,. This and

Formulae 4.3 (iv) give (1), since A, =[1,n]n+1. ‘(2) and (3) follow from
Propositions 4.8, 4.11, and 4.12. [ |

Remark., Since h(zn) =mn+1, Theorem 4.1 gives Ic(An) =mn +1. |

5. Types B, and D,

In this section, we deal with B, and D,,.

Lemma 5.1 For all AES,n, GA=[1,n]G holds for some GES‘n-l in Bn
and Dn’

Proof. Similar to the proof of Lemma 4.2. ]

Formulae 5.2 In B,, the following hold.
(1) k1,m]1=[1,m]1k -1 for 3 <k < n,
(1) 201,01 = [1,n]n,
(iii) 12[1,n] = 2[1,n]1,
(iv) k[1,n]" = [1,n1%k for 1 <k < n.
Proof. It is not difficult to check these formulae using the defining

relations of B'n' [ ]

Theorem 6.3  For A€B,, A" =[1,n]" holds iff A€S,.

Proof. The proof of this theorem is similar to the proofs of Formulae

- 12 -
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4.3 (iv) and Proposition 4.12 (2). ||

In D,,, we define i:=1i if 3<i<mn, a:= 8 if {a, B} ={1,2}. Note that

this is a graph isomorphism of D,.

Formulae 5.4 In D,, the following hold.
(i) k[1,n]l=[1,mlk-1 for 4 sk <n,
(i) 3[1,n1% = (1,n1n,
(ii1) a[1,n]? = [1,n1%a for a = 1,2,
(iv) k1,n]"1 = [1,n1" 1% for 1=k <n, n odd,
(v) Ic[l,n]n—1 = [1,n]n_1k for 1<k <n, n even.
Proof. It is not difficult to check these formulae using the defining

relations of D,. ]

Theorem 5.5 In D,, the following hold.
(1) For AeD,, A*"2-[1nP"? it 4es,,.
(2) Suppose that A€D,, n odd. Then, 4" =[1,n]""! holds iff 4€s,, and

A=A
(3) Suppose that A€D,, n even. Then, An_1 = [1,'n,]'n_1 holds iff A€S,,.
Proof. Using Formulae 5.4 (iv) and (v), one can prove (1) and (3) in the
similar way of the proofs of Formulae 4.3 (iv) and Proposition 4.12 (2).
We prove (2). The proof that an1 o [1,'n]'n—1 implies Z=A€.S‘n is also
similar to the proof of Proposition 4.12 (2). So, suppose that 4 = A€ES,.
Since 4 = A, A is represented as A=PzxQ where z= a8, {a, B}={1,2}.
Note that z, 3, 4, ..., n satisfy the relations of Bo_qt

x 3 4 n

o« - o &~ o

Therefore, by Theorem 5.3,

YU T TY RIS Lt S o ) m
Remark.  Since h(B,)=2n and h(D,)=2n-2, Theorems 5.3, 55 give
k(Bn) =N, k(Dzm) = 2m - 1, and ’C(Dzm + 1) = 4m. .

6. Other types

Results in this section are obtained by calculations using a computer.

-13 -
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Theorem 6.1 In the exceptional types, we have

In these six types, Zk(Xn) =h(}n) holds except Eg which satisfies
k(Eg) = h(Eg). In Eg, define a:= g8 if {a, 8} =1{3,4},{5,6}, and i:=1

otherwise. Note that this is a graph isomorphism of EG'

Theorem 6.2  For AcEg 4°=[1,61° holds iff 4€Sg and 4 = 4.
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